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摘摘摘摘     要要要要 

高階合成是一個將演算法層次的描述轉換成暫存器轉移層次設計的程序，它可以提

昇生產力。然而這轉換程序容易錯誤。排程，高階合成的子工作，是驗證高階合成中最

大的挑戰，因為排程會改變原來的執行順序。這篇論文的研究主題是排程驗證。我們提

出一個正規方法可用來驗證排程前後的描述是否相等。排程前後的描述由包含資料路徑

的有限狀態機所表示。它們一開始先被分解成有限條路徑；接著，在這些路徑中找到相

等的路徑。兩個包含資料路徑的有限狀態機的相等和兩條路徑的相等在這篇論文中被定

義。提出的方法不只適合驗證保留控制架構的排程，也適合驗證會改變控制架構的排

程。排程改變控制架構藉由合併連續的路徑或將某些程式碼在不同的基本塊中移動。由

驗證高階合成的測試程式的實驗結果顯示我們演算法可以有效地驗證排程。 
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ABSTRACT 

High-level synthesis (HLS) is a process of generating a register-transfer level design from 

an algorithm level description. It can increase the design productivity. However, this 

translation process can be buggy. Scheduling, a sub-task of HLS, makes the major challenge 

of the HLS verification since it usually changes the original cycle-by-cycle behavior. This 

thesis focuses on the scheduling verification. A formal method for checking equivalence 

between the descriptions before and after scheduling is described. Finite state machine with 

datapaths (FSMDs) are used to represent both descriptions. Two FSMDs are both decomposed 

into finite paths, and the method finds equivalent paths between them. The equivalence of 

FSMDs and paths are also defined. The proposed method is suited to verify not only the 

scheduling preserving the control structure but also the scheduling changing the control 

structure by merging some consecutive paths or moving some codes across the boundaries of 

the basic blocks. The experimental results on several HLS benchmarks show the effectiveness 

of the proposed algorithm. 
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Chapter 1 
Introduction 
 

High-level synthesis (HLS), also called behavioral synthesis, is a process that converts a 

behavior or algorithm description into an RTL (register-transfer level) circuit [1]-[3]. It is 

helpful to gain much higher productivity than RTL or logic synthesis. In Fig. 1, HLS consists 

of the following sub-tasks: 

- Intermediate description generation 

This task compiles a behavior description into an internal representation such as a control 

data flow graph (CDFG) which captures all the control and data-flow dependencies of the 

given behavioral description [1]. 

- Scheduling 

Scheduling assigns operations of the behavior description to specific control steps or clock 

cycles under data-dependencies and constraints.  

- Allocation and binding 

Allocation and binding specify operations to functional units, and assign data to storage 

elements and interconnect units. 

- Architecture generation 

This task builds a controller (a finite state machine, FSM) to control the data-path, 

depending on the information of scheduling, allocation and binding. 
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Fig. 1 An Overview of HLS 

 

Obviously, the correctness of the HLS process is very important for the development of 

HLS. In HLS, scheduling usually changes the original cycle-by-cycle behavior. Moreover, 

many scheduling techniques may even change the control structure. Hence, most of scheduled 

results can not be one-to-one mapped to their original structures. Therefore, scheduling 

becomes the main challenge in the HLS verification. As a result, we focus on the scheduling 

verification. The following sections give an overview of the scheduling methodologies in 

HLS and a review of many previous researches of the scheduling verification. 

 

1.1 Scheduling in HLS 

Scheduling is an important task of HLS. It assigns operations of a behavior description to 

control steps or clock cycles under some given constraints on area or delay. Thus it impacts 

the tradeoff between the design cost and the performance. Scheduling algorithms, traditionally, 
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can be classified into two categories: data-flow-based and control-flow-based algorithms. 

Most of early scheduling algorithms are data-flow-based (DF-based) or basic-block-based 

(BB-based) algorithms. BB-based algorithms focus on taking advantage of parallelism among 

sequences of operations in a basic block (BB); a BB is a straight-line sequence of statements 

containing no branches or internal entrances or exit points. In other words, they do not change 

the control structure. That is, the branch states (the states have more than one outgoing edge) 

and the merge states (the states have more than one incoming edge) of the scheduled result 

can be one-to-one and onto mapped to those of the behavior description. A BB-based 

algorithm is either to minimize the total number of control steps under resource constraints or 

to minimize the resources requirement in a given number of control steps under timing 

constraints. List scheduling [4][5] and force-directed scheduling [6] are two well-known 

BB-based algorithms. 

Fig. 2 shows two FSMDs, Mβ and Mα , representing the descriptions before and after 

BB-based scheduling. In an FSMD, a node is a state and an edge is a control step. Each edge 

of an FSMD consists of status and assignment statements; a status consists of predicates. A 

slash separates the statuses and assignment statements; “-” denotes that no status needs to be 

satisfied. A branch state or a merge state is depicted as a gray node. Obviously, the branch 

state and the merge state of Mβ have a bijective mapping to those of Mα . That is, Mβ and Mα 

have the same control structure. 
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Fig. 2 An Example of BB-based Scheduling 

 

Control-flow-based (CF-based) algorithms focus on taking the advantage of the mutual 

exclusion of operations in the description by analyzing the conditional constructs. These 

algorithms may modify the control structure. The only goal of CF-based algorithms is to 

minimize the number of control steps in all sequences of operations under resource constraints. 

Path-based scheduling (PBS) is the main algorithm of CF-based scheduling [7]. Fig. 3 shows 

that PBS changes the control structure. The FSMD before PBS, Mβ , has two branch states and 

the FSMD after PBS, Mα , has only one.  
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Fig. 3 An Example of Path-based scheduling 

 

In practice, designs tend to use significant amounts of the control flow as well as the data 

flow. To increase the performance and the resource utilization, many code transformation 

techniques such as speculation – derived from the compiler – have been employed by 

scheduling [8]-[15]. 

This thesis only discusses the global code transformation techniques. A transformation is 

local if it only looks at the statements in a BB; otherwise, it is global. Here, two kinds of the 

global code transformation techniques are introduced, code motions and common 

subexpression elimination (CSE). 

Fig. 4 illustrates code motions. Code motions attempt to extract the inherent parallelism in 

designs and increase the resource utilization. They move operations across the boundaries of 

BBs. Each square block is a BB and the node having circular shape is a branch state or a 

merge state. A BB between the branch state and the merge state is called a branch BB. The 

solid lines represent the control flow and the dotted lines represent the direction of code 

motions. Fig. 4 contains following code motions: 
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- Duplicating down (DD): It moves operations from the BB preceding a branch state into all 

branch BBs. This is shown by arcs marked 1. 

- Duplicating up (DU): It moves operations from the BB succeeding a merge state into all 

branch BBs. This is shown by arcs marked 2. 

- Merging up (MU): If all branch BBs have the same operations, it moves these operations 

from all branch BBs to the BB preceding the branch state. This is shown by arcs marked 

3. 

- Merging down (MD): If all branch BBs have the same operations, it moves these 

operations from all branch BBs to the BB succeeding the merge state. This is shown by 

arcs marked 4. 

- Useful move (UM): Move operations from the BB succeeding the merge state into the BB 

preceding the branch state as these operations are independent to all branch BBs; or vice 

versa. Arc 5 indicates this. It moves operations from BB3 to BB0 or from BB0 to BB3 if 

these operations are independent to BB1 and BB2. 

- Speculation (Sp): Move operations from one of branch BBs into the BB preceding the 

branch state if the outputs of the system are the same. It is shown as arc 6. 

- Reverse speculation (RSp): Move operations from the BB preceding a branch state into 

some of branch BBs if the outputs of the system are the same. It is shown as arc 7. 
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Fig. 4 Code Motions 

 

Fig. 5 gives an example of CSE. Gupta et al. [15] have shown that CSE can often expose 

opportunities for optimizations. The original FSMD is Mβ . Mα is the result of CSE. qβ0 and 

qα0 are the initial states where the system starts from. In Mβ , the statements st2(e’⇐a+b) and 

st3(e⇐a+b) compute the same expression “a+b”. Obviously, st2 always executes prior to st3 

and no statement redefines a, b and e' between them. Therefore CSE replaces “a+b” of st3 

with e' in Mα. Note that although statement st6(g⇐a+b) has “a+b”, “ a+b” of st6 can not be 

replaced. st2 and st6 do not compute the same expression because statement st5(b⇐a+f) 

redefines b between st2 and st6. 
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Fig. 5 An Example of Common Subexpression Elimination 

 

 

1.2 Related Works 

Ernst et al [16] and Bergamaschi et al [17] propose a simulation-based verification method 

of HLS verification. Unfortunately, simulation is becoming inadequate with the increasing in 

system complexity. 

Chiang et al [18] propose a model checking technique by using Petri Net model as the 

formal description to check the correctness of BB-based algorithms. Narasimhan et al [19] 

prove the correctness of the force-directed list scheduler (FDLS) [28] algorithm in PVS [27] 

and insert invariant properties as program assertions in the implementation of the FDLS 

algorithm. Radhakrishnan et al [20][21] propose a method based on the precondition-based 

correctness of register transfer split (RTS) [29] and on the completeness of RTS 

transformations to perform the scheduling task with the schedule table generated by the 

scheduling algorithm. However, those methodologies are difficult to identify properties or 
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complete transformations in a large and complex scheduling task. 

Recently, equivalence checking technique is used to prove the functional equivalence of 

two designs. Equivalence checking can be directly applied to the scheduling verification. It 

reads descriptions before and after scheduling as inputs. If two descriptions are functionally 

equivalent, it works successfully; otherwise, it gives a counter example for diagnosis. Neither 

the knowledge of scheduling nor the creation of properties or transformations is needed.  

Mansouri et al [22] introduce the critical states to define the critical path. The equivalence 

between critical paths of behavior description and those of scheduled description was proved 

using the PVS theorem prover. Kim et al [23] define the functional equivalence between two 

FSMDs representing the descriptions before and after scheduling and proved the equivalence 

with PVS. The break-points are introduced to decompose an FSMD into a set of path 

predicates. Both [22] and [23] assume that the control structure is not modified during 

scheduling. The aforementioned methodologies, [18]-[23], are only well suited to BB-based 

scheduling. 

Eveking et al [24] represent the behavioral description and the scheduled description in 

LLS (language of labeled segments) language and give basic transformations to prove the 

computational equivalence of LLS. If the behavioral description can be transformed to the 

scheduled result according to the basic transformations, they are computationally equivalent. 

However, the completeness of basic transformations is hard to define and the transformation 

from the behavioral LLS to the scheduled LLS is tough and tedious. Kim et al [25] extend the 

equivalence checking method of [23] to handle the scheduling employing MU and DD by 

concatenating the critical paths. However, the paths affected by the code motions need to be 

identified. Karfa et al [26] propose an equivalence checking method suited to PBS as well as 

BB-based scheduling. FSMDs are used to represent the descriptions before and after 

scheduling and they are characterized by a finite set of paths. The equivalence of FSMDs is 

transformed into the equivalence of paths. However, it does not support some code 
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transformation techniques, such as Sp and CSE. 

The rest of this thesis is organized as follows. In Chapter 2, the theoretical concepts of the 

equivalent checking method proposed by Karfa et al [26] are discussed. Chapter 3 presents 

two motivational examples, and Chapter 4 describes our proposed method in details. The 

experimental results and analyses are provided in Chapter 5. Followed Chapter 6 gives a 

conclusion and identifies some directions for future works. 
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Chapter 2 
Preliminaries 
 

Here, we discuss a verification method and its theoretic conceptions proposed by Karfa et 

al [26]. Our approach is based on those conceptions and their verification method. The notion 

of computations, paths, and a path cover of an FSMD and the transformations between them 

are defined. The equivalence of two FSMDs is also derived. 

 

2.1 Finite State Machine with Data-path (FSMD) 

An FSMD was proposed by Gajski et al. in [1]. It can trivially implement the descriptions 

of algorithm level (or behavior level) and RT-level. FSMDs are used to represent the 

descriptions before and after scheduling with an additional initial state. An initial state is also 

called a reset state. The FSMD was defined as a 7-tuple, M = <Q, q0, I, O, V, f, h>, where 

1) Q is the finite set of states, 

2) q0 is the reset state, 

3) I is the finite set of inputs, 

4) O is the finite set of outputs, 

5) V is the finite set of variables, 

6) f: Q × S → Q is the state transition function, 

� S is the set of status expressions consisting of arithmetic predicates over I∪V, 

7) h: Q × S → U is the update function of the outputs and variables, where 

� U = {x⇐e | x∈O∪V and e is an arithmetic predicate or expression over I∪V}  is a 

set of variables or output assignment statements. 
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An FSMD is inherently deterministic. For any state q, if the status expressions s1 = s2, it 

implies that f(q,s1) = f(q,s2) and h(q,s1) = h(q,s2). In an FSMD, the concept of time can be 

thought of as the order in which the statements are executed. An example of a behavioral 

description and its FSMD are shown in Fig. 6. A behavior description E1 using C language is 

described in (b). An FSMD M in (a) represents E1 and the detail of M is shown in (c). 

 

 

(a) An FSMD model M for E1 

int yout; 

void E1(P0,P1){ 

 int x = P0; 

 int y = P1; 

 int r = 1; 

 while(x){ 

  if(y) y = y/2; 

  else{ 

   x = x/2; 

   r = r+1;} 

}//endwhile 

r = r * 2; 

yout = r; 

}//endofE1 

 

(b) The behavior E1 in C 

M = <Q, q0, I, O, V, f, h> 

Q = {q0, q1, q2, q3}; I  = {P0,P1}; O = {yout}; V = {x,y,r} 

f(q0,TRUE) = q1 , 

f(q1,!x) = q2 , f(q2,TRUE) = q0 , 

f(q1,x) = q3 , f(q3,y)=q1 , f(q3,!y) = q1 ; 

h(q0,TRUE) = {x⇐P0, y⇐P1, r⇐1},  

h(q1,!x) = {r ⇐ r*2}, h(q2,TRUE) = {yout⇐r},  

h(q1,x) = Ø, h(q3,y) = {y⇐y/2}, h(q3,!y) = {x⇐x/2, r⇐ r +1}. 

 

 

(c) The details of M 

Fig. 6 An FSMD 
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In an FSMD, a walk represents a sequence of transitions. 

Definition 1 [26] Walk ω of M from qi to qj 

A walk ω from a start state qi to an end state qj is a transition sequence of the states. It is 

formulated as
1 11  ... 

i i i ni i i n jC C C
q q q q

+ + −+ +→ → → =  where qk∈Q for all k, i≤k≤i+n and 

there exits ck∈S and transition functions fk such that fk(qk, ck) = qk+1 for all k, i≤k≤i+n-1. For 

short, qi⇒qj . 

 

A state of a walk is called an internal state if it is neither the start state nor the end state. 

 

2.1.1 Paths 

A path is a finite walk. Its definition and characteristic formula are described here. 

Definition 2 [26] Path β of M from qi to qj 

A path β from qi to qj is a finite walk where all the states are distinct or the end state is 

only identical to the start state of β. 

 

Fig. 7 illustrates paths that p1 and p2 are paths and p3 is NOT a path. 

 

 

Fig. 7 Paths 
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Definition 3 [26] Condition Rβ of a path β 

The condition Rβ of β is a logical expression over I∪V which should be satisfied before 

executing β. 

 

Definition 4 [26] Result rβ of a path β 

The result rβ of β is an ordered pair consisting of an updated variable set ϖ and an 

updated output list ο after executing β and is denoted as <ϖβ,οβ>. 

1) Updated variable set ϖβ is an ordered tuple <ei> of arithmetic predicates or 

expressions over I∪V for all variables in V and each ei represents the final value of 

the variable vi∈V at the end state qj. 

2) Updated output list οβ is a list of the output assignment statements with the order in 

which the outputs occur in β. 

 

For a path β, its condition Rβ and its result rβ can be computed by substitution. 

Substitution is a symbolic execution and based on the rule: If a predicate c(y) is true after 

assignment statement y⇐g(y), the predicate c(g(y)) is true before y⇐g(y) [30].  

Fig. 8 describes an example of how to compute Rβ and rβ of β in M by substitution. Let V 

= {a, b, c, d, x}, I = {i1, i2}, and O = {o1, o2} of M. At first, the initial values are {a, b, c, d, x} 

for each variable of V. Hence, at the start state qβ1 , Rβ = Ø, ϖβ = <a, b, c, d, x> and οβ = Ø. 

The first transition from qβ1 to qβ2  has only one status, thus, the condition becomes “Rβ = a ≤ 

x” ; it also has only one assignment statement “c⇐a+d ”, thus, “a+d ” substitutes for “c” and 

ϖβ  becomes “<a, b, a+d, d, x>”. Then, the initial values for the next transition, “qβ2 → qβ3”, 

become {a, b, a+d, d, x}. Similarly, after executing “qβ2 → qβ3 ”, the updated variable set 

becomes “ϖβ = <a*b, b, a+d, d, x>” and the updated output list becomes “[o1⇐⇐⇐⇐a]”. Therefore, 

the initial values of “qβ3 → qβ4” are {a*b, b, a+d, d, x}. Finally, after “qβ3 → qβ4”, “ Rβ = 
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(a ≤ x) & (x < a+d)” and “rβ  = <ϖβ, οβ> = <<a*b, b, a+d, d, a*b+a+d>, [o1⇐a, o2⇐⇐⇐⇐a*b]>” 

at qβ4 are computed. Note that since the status is always prior to the assignment statements of 

a transition, the execution of “x⇐a+c” will not redefine the “x” of “ x < c”. And only the 

initial value “a + d ” substitutes for “c” of “ x < c” in “ qβ3 → qβ4”. 

 

q 3

q 2

q 1

a ≤ x / c ⇐ a + d

x < c / x ⇐ a + c, o2 ⇐ a

q 4

- / a ⇐ a * b, o1 ⇐ a

R  = (a ≤ x) & (x < a+d)

r   = <s , O > = <<a*b, b, a+d, d, a*b+a+d>, [o1 ⇐ a, o2 ⇐ a * b]>

R : a ≤ x

r  : <<a, b, a+d, d, x>, - >

R : a ≤ x

r  : <<a*b, b, a+d, d, x>, [o1 a]>

R : (a ≤ x) & (x < a+d)

r  : <<a*b, b, a+d, d, a*b+a+d>, [o1⇐a, o2 a*b]>

R : Ø

r  : <<a, b, c, d, x>, - >

 

Fig. 8 Compute Rβ and rβ 

 

2.1.2 Characterization of a Path 

Depending on the aforementioned definitions and the substitution method, a path can be 

characterized as “Rβ (v) & rβ (v)” or “Rβ (v) & (vf =ϖβ (v)) & οβ (v)” where v∈I∪Vβ and vf ∈

Vβ .  

A concatenation of a sequence of paths can also be characterized. Let “β = qi⇒qk” and 

“α = qk⇒qj” are paths of an FSDM M and β is a preceding path of α ; their characteristic 

formulas are “Rβ(v)&(vf=ϖβ(v))&οβ(v)” and “Rα(v)&ϖα(v)&οα(v)”, respectively. Then β and 
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α can be concatenated, denoted as βα , and the characteristic formula of βα is “Rβ (v) & Rα (vf) 

& ϖα (vf) & (οβ (v)οα (vf))”. 

 

2.1.3 Computational Equivalence of Paths 

Mβ = <Qβ , qβ0 , Iβ , Oβ , Vβ , fβ , hβ > and Mα = <Qα , qα0 , Iα , Oα , Vα , fα , hα > are two 

FSMDs. 

Definition 5 [26] Computational equivalence of paths (β ≃α) 

Let β and α be paths of Mβ and Mα , respectively. β and α are computationally equivalent, 

denoted as β ≃α , if Rβ = Rα and rβ = rα over Vβ∩Vα . 

 

Notice that the equivalence of paths is restricted to Vβ∩Vα . That is, it is not allowed if R 

and r have some variables not in the intersection and the final values of variables which are 

not in the intersection are ignored. An example of equivalent paths is given below. 

Example 1: Let Vβ = {a, b} and Vα = {a, b, x}, then Vβ∩Vα = {a, b}. Let β and α be two 

paths of Mβ and Mα , respectively. Assume Rβ = Rα  and both have no output assignment 

statements. 

1. If rβ = <<a*b, b>, - > and rα  = <<a*b, b, a*b + a >, - >, ignore the value of x∉Vβ∩

Vα .  

⇒ β ≃α . 

2. If rβ = <<a*b, b>, - > and rα = <<a*x, b, a*b+a >, - >, clearly, the final value of a 

uses x∉Vβ∩Vα in rα . 

⇒ β ≄α . 
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2.2 FSMD Equivalence 

Let Mβ = <Qβ , qβ0 , Iβ , Oβ , Vβ , fβ , hβ > and Mα = <Qα , qα0 , Iα , Oα , Vα , fα , hα > be two 

FSMDs representing the descriptions before and after scheduling, respectively. The objective 

is to verify whether Mβ behaves exactly as Mα . That is, whether they produce the same output 

sequences for all possible input sequences. 

 

2.2.1 Assumptions 

Since the design synthesized by HLS is usually applied to a component of a system, the 

interface should be unchanged after scheduling. Therefore, we have the Assumption 1. 

Assumption 1:  

The input set and output set of two FSMDs are identical. That is, Iβ = Iα and Oβ = Oα. 

 

Assumption 2:  

The system works in an infinite outer loop. That is, an FSMD represents a system, and 

every walk of an FSMD starting from the reset state can always go back to the reset state. 

More specifically, every inner loop of an FSMD must have at least one exit point. 

 

Assumption 2 is reasonable since a hardware design is usually designed to have a reset 

state to prevent the dead lock. According to Assumption 2, all inner loops of an FSMD can be 

cut by a cutpoint introduced in a latter section. 

 

2.2.2 Computations of an FSMD 

Based on Assumption 2, a walk of an FSMD from the reset state to the reset state can be 

seen as a complete computation. In other words, revisiting the reset state implies a termination 

of a computation and a beginning of a new computation. Hence, an FSMD can be thought of 



 

18 

as a set of computations. Then the equivalence of FSMDs can transform to the equivalence of 

computations. 

 

Definition 6 [26] Computation µ 

A computation µ is a finite walk from the reset state q0 to q0 and it has no intermediary 

occurrence of q0 . 

 

Definition 7 [26] Computational equivalence of walks 

Two walks ωβ of Mβ and ωα of Mα are computationally equivalent, denoted as ωβ ≃ωα , if 

R ωβ = R ωα and r ωβ = r  ωα over Vβ∩Vα . 

 

Definition 8 [26] Mβ is computationally contained in Mα (Mβ⊆Mα)  

Mβ is computationally contained in Mα , denoted as Mβ⊆Mα , if, for each computation µβ 

of Mβ , there exists a computation µα of Mα  such that µβ ≃µα . 

 

Definition 9 [26] Computational equivalence of FSMDs (Mβ ≅ Mα) 

Mβ and Mα are computationally equivalent, denote as Mβ ≅ Mα , if Mβ⊆Mα and Mα⊆Mβ . 

 

2.2.3 Path Covers of an FSMD 

Since an FMSD may have inner loops, there may be infinite computations of an FSMD. 

According to Section 2.1.2, a walk is a concatenation of a sequence of paths; a computation 

can be a concatenation of a set of paths. 

 

Definition 10 [26] A path cover P of an FSMD M 
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A path cover P of M is a finite set of paths, if, for each computation of M, it can be 

composed of the paths of P. 

 

Notice that a path cover of an FSMD is not unique. Fig. 9 illustrates path covers of an 

FSMD M. M has only two computations, one is “µ1= q0  →  q1 →  q2 →  q3 →  

q4 →  q6 →  q0 ” and another is “µ2 = q0 →  q1 →  q2 →  q5 →  

q6 →  q0  ”. P1 = {p1, p2, p3} is a path cover of M since µ1 can be composed of p1 and p2 

by concatenating them and µ2 can be composed of p1 and p3. P2 = {µ1, µ2} is also a path 

cover of M. 

 

 

Fig. 9 Path Covers of M 

 

Therefore, following Theorem 1 is derived and it has been proved by Karfa et al [26].  
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Theorem 1   [26] Mβ⊆Mα if there exists a path cover Pβ = {pβ0 , ... , pβn} of Mβ and a set 

of path Pα = {pα0 , ... , pαn} of Mα such that pβi ≃ pαi for all i, 0≤i≤n. 

 

Theorem 1 transforms the problem of equivalent FSMDs to the problem of equivalent 

paths. To find an equivalent path pαi in Mα for each pβi of Mβ , we define the corresponding 

states where the comparison of two paths starting from. 

 

Definition 11 [26] Corresponding state (CS) 

1) The reset states qβ0∈Qβ and qα0∈Qα are native corresponding states and 

2) qβm∈Qβ and qαn∈Qα are corresponding states if qβi∈Qβ and qαj∈Qα are 

corresponding states and there exist paths β = qβi ⇒ qβm and α = qαj ⇒ qαn , such 

that β ≃α . 

 

It is hard to find a path cover constituting all possible computations of an FSMD because 

of the loops of an FSMD. Therefore, Karfa et al [26] introduce the cutpoints. Each loop of an 

FSMD can be cut by at least one cutpoint and the set of paths between cutpoints without any 

intermediary occurrence of cutpoint is a path cover. According to Assumption 2, each inner 

loop of an FSMD must have an exit point, i.e. a branch state; hence, the reset state and the 

branch states are selected to be the initial cutpoints. The set of paths between the initial 

cutpoints without any intermediary occurrence of initial cutpoint is named an initial path 

cover and a path of the initial path cover is named an initial path. 

 

 

2.2.4 Verification Method 

Based on Theorem 1, for each path of the initial path cover Pβ  of Mβ , we want to find an 
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equivalent path in Mα . Because scheduling may change the control structure, a path “β = 

qβi⇒qβj” of Pβ  in Mβ  may not find a computationally equivalent path in Mα . The path 

extension method, proposed by Karfa et al [26], is a solution to handle this situation. It 

extends a path to build a new path cover. The path extension method extends β  with 

following steps: 

1. Find the path sets ps and pe. 

1) ps is the set of all paths of Pβ ending at qβj . 

2) pe is the set of all paths of Pβ starting from qβj . 

2. For each path βs of ps, concatenate βs and each path in pe. Bm is the set of all such 

concatenated paths and qβj is not a cutpoint now. 

3. Remove each path, which is a path of ps or a path of pe, from Pβ .  

4. Add all paths of Bm into Pβ . 

After the process, Pβ  becomes a new path cover of Mβ . A path extension is invalid if it 

becomes a loop or it needs to extend via the reset state. 

Fig. 10 illustrates the verification flow of [26]. Two FSMDs, which are Mβ and Mα 

representing the descriptions before and after the scheduling, are the inputs of the algorithm. 

At first, the algorithm inserts the cutpoints only into Mβ and finds initial path cover Pβ of Mβ . 

Then, it starts from the reset states to find a computationally equivalent path from Mα  for 

each path of Pβ . First, it finds “β = qβi⇒qβj” from Pβ depending on the corresponding states 

(qβi , qαm), and then it find a computationally equivalent path in Mα . If a computationally 

equivalent path “α = qαm⇒qαn” is found, it records the paths (β,α) as the computationally 

equivalent paths and their end states (qβj , qαn) as the corresponding states. But if a 

computationally equivalent path is not found, extend path β to build a new path cover, Pβ . 

Note that, if β is not extensible, the algorithm fails; otherwise, it repeats the process until all 

paths of Pβ  finding their computationally equivalent paths in Mα . Hence, Mβ⊆Mα is proved. 

Then, it interchanges Mβ and Mα and repeats the process to prove Mα⊆Mβ . As both Mβ⊆Mα 
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and Mα⊆Mβ have been proved, Mβ ≅ Mα . 

 

<M  , M > <M  , M >

InsertCutpoint in M

GetEquivalentPath

Fail

ExtendPath

InsertCutpoint in M

GetEquivalentPath

ExtendPath

Pass Fail

CheckEquivalence CheckEquivalence

 

Fig. 10 Verification Flow 

 

Obviously, Karfa’s algorithm has the ability to cope with BB-based scheduling. Since 

BB-based scheduling does not change the control structure, the bijective mapping of cutpoints 

are preserved. It means that for each path of one FSMD , the algorithm can straightly find the 

computationally equivalent path of another one without any extension.  

Karfa’s algorithm is also capable of verifying PBS. PBS only merges some consecutive 

paths; it doesn’t move the operations across the BB boundaries after merging the paths. 

Therefore, the algorithm with path extension method is strong enough to handle PBS. 

Karfa’s algorithm obviously supports some code motions: DD, DU, MU, MD, and UM 

through path extension; since moving the operations from one path to another path can be 

thought of as merging these consecutive paths. Note that a merge state is not a cutpoint, the 

algorithm without path extension inherently handles DD and MU.  
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Chapter 3 
Motivation 
 

Although Karfa’s algorithm discussed in Chapter 2 can verify the BB-based and PBS, it is 

still weak in handling some code transformation techniques, such as Sp, RSp, and CSE. 

Following sections give two such examples and we proposed the solutions for these cases in 

the next chapter. 

 

3.1 An Example of Speculation 

The equivalence of two paths defined by Karfa et al can not handle the result of 

scheduling employing Sp or RSp. An example of Sp is shown in Fig. 11. Mβ is the original 

FSMD, and it is functionally equivalent to Mα . Two systems are functionally equivalent if 

they produce the same output sequences for all possible input sequences. Let Vβ∩Vα = {a, b, 

c, d}, I = {x, y} and O = {out}. The scheduler moves “b⇐x+y” from “qβ1 →  qβ3” to 

“qβ0 →  qβ1” and generates Mα . The left computations are “µβl = qβ0 →  qβ1 c
→  

qβ2 →  qβ4 →  qβ0 ” of Mβ and “µαl = qα0 →  qα1 c
→  qα2 →  qα3 →  qα0 ” 

of Mα  shown in bold lines. Their characteristic formulas are “(x<y) & <x–y, b, x<y, x–y+1> & 

[out⇐x–y+1]” and “(x<y) & <x–y, x+y, x<y, x–y+1> & [out⇐x–y+1]”, respectively. 

Obviously, µβl and µαl are not computationally equivalent because <x–y, b, x<y, x–y+1> ≠ 

<x–y, x+y, x<y, x–y+1>; µβl is not extensible. Therefore, Mβ and Mα are not computationally 

equivalent. However, the conditions and outputs of µβl and µαl are equivalent; the different 

values won’t affect the outputs of all computations of Mβ and Mα . That is, µβl and µαl produce 

the same output values for any input. Thus, µβl and µαl should be equivalent. Therefore, a 
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definition of equivalence between paths that captures the notion of functional equivalence is 

needed. 

 

 

Fig. 11 An Example of Speculation 

 

 

3.2 An Example of CSE 

Fig. 12 illustrates an example of safe-speculation (SSp) and CSE. SSp is a method to 

realize Sp [15]. It attempts to move se(e⇐a+b) from “qβ1 c
→ qβ2” to “qβ0 → qβ1”. Unlike 

Sp, it introduces a new variable “e' ” to store the value of “a+b”, and then assigns “e' ” to “e”. 

After SSp, all walks starting from the reset state qα0 to sg(g⇐a+b) have se'(e'⇐ a+b) and 

there is no statement redefining “a”, “b” or “e' ” between se' and sg ; therefore, CSE replaces 

sg with “g⇐e' ”.  

Karfa’s algorithm fails in this case. At first, it calculates that “qβ0 → qβ1 ≃ 

qα0 → qα1”. Then it compares the paths, denoted in bold lines, starting from qβ1 and qα1 . 
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Because the expression of se is replaced in Mα , the final values of “e” are not equivalent; 

therefore, the bold paths are not equivalent. However, if se'(e'⇐ a+b) is recorded in this case, 

both paths have the same final value “a+b” of “e”. 

 

q 0

q

- /

g ⇐ a + b

q 0

q

- /

c ⇐ a < b

c /

e a + b,

d ⇐ a + d

q q

!c /

d ⇐ a + f

- /

c ⇐ a < b,

e' a + b

c /

e e',

d ⇐ a + d

!c /

d ⇐ a + f

- /

g e'

 

Fig. 12 An Example of Safe-speculation & CSE 

 

Sp, Rsp, SSp, and CSE are common techniques in scheduling. None of the formal 

verification methods proposed in Section 1.2 can handle all of them. This thesis proposes an 

equivalence checking method for scheduling to support them, and our method is extended 

from Karfa’s method [26]. Following chapter describes the detail of our method. 
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Chapter 4 
Our Proposed Method 
 

This chapter has three sections; first one defines equivalence of paths to cope with Sp and 

RSp; second one gives a solution to handle CSE; the last one is the detail of our proposed 

algorithm. The purpose of this thesis is to check whether two FSMDs, which are used to 

represent the descriptions before and after scheduling, produce the same output sequences for 

all possible input sequences. Our assumptions and the basic theoretical conceptions, which are 

proposed by Karfa et al [26], are described in Chapter 2. 

In the rest of this thesis, Mβ = <Qβ , qβ0 , Iβ , Oβ , Vβ , fβ , hβ > and Mα = <Qα , qα0 , Iα , Oα , 

Vα , fα , hα > are the behavior FSMD and the scheduled FSMD, respectively. A gray node 

depicted in a figure represents an initial cutpoint. 

 

4.1 Solution for Speculation 

The rest thesis will use the terminologies: a statement, a used variable, and a defined 

variable; therefore, we give their definitions below. 

Definition 12 Statement, Use, and Define 

A statement “st:d⇐e” assigns an arithmetic predicate or expression (e) to a variable (d). 

Then st is said to use all variables occurring in e and to define “d ”. 

 

Example 2: A statement “s:x⇐a+b” is said to define “x” and to use “a” and “b”. In this 

example, “a”, “b” and “x” are the variables of s where “a” and “b” are called used variables 

and “x” is called defined variable. 
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4.1.1 Equivalence of Paths 

Assume two paths which are β of Mβ and α of Mα have the same condition and the same 

outputs, but their final values of some variables are not equivalent. If these final values will 

not be used in both Mβ and Mα , the outputs will not be affected; hence, β and α can be 

thought of as two equivalent paths. 

Definition 13 Effective variable v of a path β 

A variable v∈Vβ is an effective variable of a path β = qβi⇒qβj of an FSMD Mβ if there 

exists a walk which starts from qβj and uses “v” before any defined “v”. 

 

In Fig. 13, β  = 2 4 5q q q→ →  is a path of an FSMD M, depicted in bold line. “d ” 

is an effective variable of β because “d ” is used by the walk “5 6!b
q q→ ” starting from the 

end state q5 of β . On the contrary, “v” is NOT an effective variable of β . Since for all 

possible walks starting from q5 , only the walks containing the path β have a statement 

“d⇐a+v” uses “v”. Others have no statement having “v” as a used variable. However, 

“d⇐a+v” is always executed after the statement “v⇐a+1” redefining v. Therefore, there 

exists no walk starting from q5  and using “v” before any defined “v”. 
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q0

q2

q4

M

q5

!t / 

v ⇐ a + 1t / 

d ⇐ a + 1

- / a ⇐ in1,

b ⇐ in2

- / d ⇐ a + v

- / out ⇐ d

q6

!b / 

d ⇐ d + 1

b / -

 

Fig. 13 An Example of an Effective Variable 

 

Definition 14 Equivalence of two paths (β ≈α) 

Two paths, β of Mβ and α of Mα , are equivalent if  

1) Rβ =Rα, over Vβ∩Vα and  

2) οβ =οα, over Vβ∩Vα and 

3) ∀vi∈Vβ∩Vα and its final value in updated variable set are eβ∈ϖβ and eα∈ϖα ,  

� eβ  = eα, over Vβ∩Vα or 

� “vi” is NOT an effective variable of β in Mβ and of α in Mα. 

 

Clearly, if β ≃α, β ≈α . The equivalence of two walks is defined in the similar way. 

Definition 15 Equivalence of two walks (ω1 ≈ω2) 

Two walks, ω1 of Mβ and ω2 of Mα , are equivalent if  

1) Rω1  = Rω2, over Vβ∩Vα and  

2) οω1  = οω2, over Vβ∩Vα and 

3) ∀vi∈Vβ∩Vα , eω1i and eω2i are the final values of “vi” in ϖω1 and in ϖω2 , 
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respectively,  

� eω1i = eω2i, over Vβ∩Vα or 

� “vi” is NOT an effective variable of ω1 in Mβ and of ω2 in Mα. 

 

The equivalence of FSMDs is similar to the computational equivalence of FSMDs defined 

in Chapter 2. 

Definition 16 Mβ is contained in Mα  

Mβ is contained in Mα , if for each computation µβ of Mβ , there exist a computation µα of 

Mα , such that µβ ≈µα . 

 

Definition 17 Equivalence of two FSMDs (Mβ ≊ Mα) 

Two FSMDs Mβ and Mα are equivalent, denote as Mβ ≊ Mα , if Mβ is contained in Mα and 

Mα is contained in Mβ .  

 

Theorem 2   Mβ is contained in Mα if there exists a path cover Pβ = {pβ0 , ... , pβn} of Mβ 

and a set of path Pα = {pα0 , ... , pαn} of Mα such that pβi ≈ pαi for all i, 0≤i≤n. 

 

The proof of Theorem 2 is similar to it of Theorem 1. 

 

Definition 18 Corresponding state pair (CSP) 

1) The pair of the reset states, qβ0∈Qβ and qα0∈Qα , is a native CSP. 

2) The pair of states, qβm∈Qβ and qαn∈Qα , is a CSP if the states, qβi∈Qβ and qαj∈

Qα , is a CSP and there exists paths, β = qβi⇒qβm and α = qαj⇒qαn , such that β ≈α . 
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4.1.2 Notion 

An example of two equivalent FSMDs, Mβ and Mα , before and after scheduling 

employing Sp is shown in Fig. 14. Sp transforms Mβ to Mα by moving “b⇐x+y” from 

“qβ1 →  qβ3” to “qβ0 →  qβ1”. The reset states are qβ0 and qα0 and the initial path covers 

are {“β0 = qβ0 →  qβ1 ”, “ β1 = qβ1 c
→  qβ2 →  qβ4 →  qβ0 ”, “ β2 = qβ1 !c

→  

qβ3 →  qβ4 →  qβ0 ”} and {“ α0 = qα0 →  qα1 ”, “ α1 = qα1 c
→  qα2 →  

qα3 →  qα0 ”, “ α2 = qα1 !c
→  qα3 →  qα0 ”}. Our algorithm first compares β0 and α0, 

and then computes “ϖβ0  = < a, x+y, x<y, d >” ≠ “ϖα0  = < a, b, x<y, d >”. It is obvious that 

only the final values of variable “b” are not equivalent. Since “b” is immediately used in 

β2 succeeding β0, it is an effective variable of β0 ; thus, β0 ≉ α0 . Therefore, our algorithm 

extends β0 to β0β1 and β0β2, and then compares β0β1 and α0α1 . It results that “ϖβ0β1  = < 

x–y, x+y, x<y, x–y+1 > ≠ ϖα0α1  = < x–y, b, x<y, x–y+1 >”. Similarly, our algorithm checks if 

“b” is an effective variable of β0β1 and α0α1 . In Mβ , “b” is immediately redefined by 

“b⇐x+y” in β0β2 . Therefore, “b” is NOT an effective variable of β0β1 . In Mα , there are 

only two computations: α0α1 and α0α2 . Since α0α1  is not used or defined “b” and α0α2 

always redefined “b” before using it, therefore, “b” is NOT an effective variable. As a result, 

we can conclude that β0β1≈α0α1 .  
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M

q 0
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- / d ⇐ a + 1
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q 2
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M

q 0

- / c ⇐ x < y

q 4

- / d ⇐ a + 1

q 3

- / d ⇐ b + x

- / out ⇐ d

 

Fig. 14 An Example of Speculation 

 

4.1.3 CE Algorithm 

CE Algorithm checks whether a variable v is an effective variable of a path β of a path 

cover P in an FSMD M. Note that, it searches paths in M by breadth-first search (BFS) 

method. A state q is reachable from a state qs means that there exists a walk starting from qs 

and ending at q. Then BFS can discover all reachable states from qs in M [31]. That is, BFS 

can discover all paths in M from the end state qβ of β . 

 

CE Algorithm  

Input: A variable v of a path β in a path cover P 

Output: TRUE (v is NOT an effective variable of β ) or FALSE 

 

CheckEffect(v,β,P){ 

1 qβ = EndState(β); 
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2 // qβ is the source state where BFS starts from 

3 llp = all paths starting from qβ  in P; 

4 tp = llp; 

5 p = Pop(llp); 

6 while(p){ 

7     if (p uses v)  return(FALSE); 

8     else if(p defines v) p = Pop(llp); 

9     else{  

10    qp = EndState(p); 

11       pset = all paths starting from qp in P but not contained in tp;  

12       tp = tp∪pset; 

13       llp = llp∪pset; 

14       p = Pop(llp); 

15     }//endelse 

16 }//endwhile 

17 return(TRUE); 

}//endCheckEffect 

 

Proof of CE Algorithm 

We prove CE Algorithm in two parts. The first part is for the termination and the second 

part is for the correctness. 

1 (Termination) 

CE Algorithm has only one loop, named p-while-loop. The termination of p-while-loop 

depends on the number of paths in tp. Since tp is a subset of P, CE Algorithm can always 

terminate. 

2 (Correctness) 
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As line 7 returns FALSE, there exists a walk starting from qβ and using “v” before any 

defined “v”. Therefore, “v” is an effective variable of β. 

Assume, for the purpose of contradiction, that there exists a walk ω starting from qβ and 

using “v” before any defined “v” as CE Algorithm returns TRUE. Without loss of generality, 

let ω has only one path using “v”, say pv . Since line 7 is not executed, pv is not in tp. 

Therefore, we can let p0 p1… pi be the first part of ω where each pk is contained in tp for all k 

from 0 to i and let the succeeding path pi+1 of pi is not in tp. According to line 8, pi must 

define “v”; otherwise pi+1 should be in tp. Then we can conclude that “v” is not an effective 

variable as return TRUE. 

 

Complexity of CE Algorithm 

n = the number of states of M 

e  = the number of edges of M 

ko = the number of outgoing edges of a state of M 

In the worst case, p travels all edges; therefore, p-while-loop iterates at most e times. Line 

11 scans all outgoing paths of a state and checks whether each path is contained in tp, it 

devotes O(ko*e). Therefore, the complexity of CE Algorithm is O(e2*ko). 

 

 

4.2 Solution for CSE 

The equivalent problem introduced by CSE can be solved if we can record all possible 

available statements. 
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4.2.1 Available Statement 

Definition 19 Available statement st of a state q 

A statement st:v⇐e is available at a state q if 

1) all possible walks from the reset state to q has st and 

2) “v” and all used variables in e are not defined between the last st and q. 

 

Fig. 15 illustrates an available statement of a state. q0 is the reset state. “q0 →  

q1 →  q2 →  q3 →  q4 ” is the only one walk from q0 to q4 . Since “b” of 

“s1:a⇐b+c” is redefined in “q1 →  q2 ”, s1 is NOT an available statement of the state q2. 

On the contrary, “s2:a⇐b+c” is available at the state q4 since the walk from q0 to q4 has s2 

and between s2 and q4 , all variables of s2 are not redefined. 

 

 

Fig. 15 An Example of an Available Statement 

 

An available statement st of a state q holds a main property: all variables of st are 
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preserved the values from the last occurrence of st to q. Therefore, a system produces the 

same outputs as it re-computes st again between the last occurrence of st and q. The following 

lemma is derived. 

 

Lemma 1 

Let statement st be available at a state q in M. M' is transformed from M by two steps: 

1. Add a new paths “q →  q' ”  in M where “q →  q' ” has only a copy st' of st. 

2. Change the start states of all path starting at q to q'. 

Then M ≊ M'. 

 

We give a brief proof of Lemma 1. Since st is available at the state q, the values of all 

variables of st are preserved from the last occurrence of st to q for each possible computation 

µ having q. Therefore, let µ' of M' be the corresponding computation of µ . Clearly, they 

compute the same condition and the same result. Therefore, ∀computation µ ∈M, ∃µ'∈

M' such that µ ≈µ', and vice versa. As the result, M ≊ M'. 

Fig. 16 gives an example of Lemma 1. M' is generated from M having an available 

statements “e'⇐a+b”. Then, M ≊ M'. 



 

36 

 

Fig. 16 An example of Lemma 1 

 

Let Mβ' and Mα' be transformed by Lemma 1 from Mβ and Mα , respectively; then, Mβ ≊ 

Mβ' and Mα ≊ Mα'. Therefore, if Mβ' ≊ Mα', Mβ ≊ Mα . 

 

4.2.2 Notion 

Fig. 17 shows a solution for CSE. Mβ and Mα are partial FSMDs. Vβ∩Vα={c, d, e, e', f }, 

I={a, b}. qβ0 and qα0 are the reset states of Mβ and Mα , respectively. Before finding all 

equivalent paths, our algorithm computes all available statements of each cutpoint of Mβ and 

Mα . in(qβ1) = {“ c⇐a<b”, “ e'⇐a+b”} and in(qα1) = {“ c⇐a<b”, “e'⇐a+b”} are the set of 

statements available at qβ1 and qα1 , respectively. After computing all available statements, our 

algorithm compares β0 and α0 and computes that “ϖβ0 = < a<b, d, e, a+b, f > = ϖα0”. Then it 

compares paths β1 and α1  and computes that “ϖβ1 = < c, a+d, a+b, a+b >”≠ “ϖα1 = < c, a+d, 

e', e' >”. According to Lemma 1, in(qβ1) and in(qα1) are thought of as paths; we concatenate 
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in(qβ1) and β1 and concatenate in(qα1) and α1. As the result, ϖβ1 = < c<b, a+d, a+b , a+b > = 

ϖα1  and β1 ≃α1. 

 

 

Fig. 17 A Solution for CSE 

 

4.2.3 Compute Available Statements 

For each path β = qβi⇒qβj of an FSMD M, gen(β), in(β), kill (β) and out(β) are defined. 

gen(β) is the set of statements of β which are available at the end state of β. At first, gen(β) is 

computed for each path β of M. Therefore, three groups of equations can be created, shown in 

(3.1). in(β) is the set of statements which are available at the start state qβi of β taking into 

account all the available statements of all possible walks starting from reset state to qβi. It is 

the intersection of the sets consisting of possible available statements of all preceding paths of 

β. Oppositely, kill (β) is a subset of in(β) and contains all statements having some variables 

being redefined in β. out(β) is the set of statements which are available at the end state of β. It 

is the union of gen(β) and the statements in in(β) but not in kill(β). 
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1. out(β) = gen(β)∪(in(β) - kill(β))           

2. in(β) =∩p is a preceding paths of β out(p)             (3.1) 

3. in(β0) = Ø where β0 is the path starting from the reset state      

Note that, in(β) for the reset state is handled as a special case because nothing is available if 

the FSMD has just begun at the reset state. And more important, in(β) uses intersection 

because an statement is available at the start state of β only if it is available at the end state of 

all preceding paths according to the definition of an available statement. All paths starting 

from qβi should have the same in set. Therefore, in(qβi) = in(β) for each β starting at qβi.  

Fig. 18 gives an example of how to compute available statements of cutpoints. Mα is a 

partial FSMD having three cupoints (qα0, qα2, qα3) and three initial paths (α0 = qα0 → qα1, 

α1 = qα1 →
c

qα2 → qα3, α2 = qα1 →
c!

qα2 → qα3). At first, our algorithm compute 

gen(α0), gen(α1) and gen(α2). As computing gen(α1), there are two time steps (i.e. two 

transitions) needed to be computed. The first transition contains two statements, “e⇐e' ” and 

“d⇐a+d ”. Since “d⇐a+d ” redefines “d ” by itself, it is not available at qα3 and can not be 

contained in gen(α1). And in the second transition, all its statements are available at qα3 . Our 

algorithm cascades statements with their order, and then gen(α1) consists of “e⇐e' ” having 

order 1, “c⇐d+e” having order 2, and “g⇐e' ”having same order 2. It is worth to notice that 

the time is preserved by recording the order of statements and the statements with the same 

order are executed simultaneously. Next, our algorithm computes in and out of each path. 

Since α0 starts from reset state, in(qα0) = in(α0) = Ø and out(α0) = gen(α0). Because α0 is 

the only preceding path of α1 and α2, this derives that in(qα1) = in(α1) = in(α2) = out(α0). As 

calculating out(α1), “c” of statement “c⇐a<b” in in(α1) is redefined in α1; thus, out(α1) is 

the union of gen(α1) and the rest statements of in(α1), “e'⇐a+d ”. out(α2) is computed in the 

similar way. Finally, our algorithm computes in(qα3). Since there are only two preceding paths 

α1 and α2 of qα3, in(qα3) is the intersection of out(α1) and out(α2). From out(α1), we find all 
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equivalent statements in out(α2) in order, then in(qα3) = {“ e'⇐a+b”, “ c⇐d+e”, “ g⇐e' ”}. 

 

q 0

q

q

q

- /

c ⇐ a < b,

e' a + b

c /

e e',

d ⇐ a + d

!c /

d ⇐ a + f

- /

c ⇐ d + e,

g e'

in(q ): Ø

in(q ):

1.c ⇐ a < b,

1.e' ⇐ a + b

in(q ):

1.e' ⇐ a + b,

2.c ⇐ d + e,

2.g ⇐ e'

gen( ):

1.d ⇐ a + f,

2.c ⇐ d + e,

2.g ⇐ e'

out( ):

1.e' ⇐ a + b,

2.d ⇐ a + f,

3.c ⇐ d + e,

3.g ⇐ e'

out( ) = gen( ):

1.c ⇐ a < b,

1.e' ⇐ a + b

gen( ):

1.e ⇐  e',

2.c ⇐ d + e,

2.g ⇐ e'

out( ):

1.e' ⇐ a + b,

2.e ⇐  e',

3.c ⇐ d + e,

3.g ⇐ e'

 

Fig. 18 Compute Available Statements 

 

4.2.4 FAS Algorithm 

The algorithm of computing all available statements in an FSMD M is shown below. Note 

that the initial paths have been sorted by BFS and the gen set of each path has been calculated. 

FAS Algorithm 

Input: An FSMD M with reset state q0 and initial path cover P0 

gen(β) has been computed for each initial path 

Output: in(β) set for each initial path 
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FindAvailableStatement(M){ 

1 for(all paths p of P0){ 

2    p.travel = FALSE; 

3    p.oldout = Ø; 

4    in(p) = Ø; 

5    out(p) = Ø;} //endfor 

6 Qp = a queue of paths of P0 sorted by BFS and BFS starts from q0 ; 

7 change = TRUE; 

8 while(change){ 

9   llp = Copy(Op); 

10   pp = Pop(llp); 

11   change = FALSE; 

12   while(pp){ 

13     oldout = out(pp); 

14     qs = StartState(pp); 

15     if(qs is reset state) 

16       out(pp) = gen(pp);  

17     else{ 

18       if(some preceding path are not traveled)  

19         in(pp) =∩p is a preceding paths of pp and p.travel is TRUE out(p); 

20       else 

21         in(pp) = in(pp)∩p is a preceding paths of pp out(p); 

22       out(pp) = gen(pp)∪(in(pp) - kill(pp));}//endelse 

23     pp.travel = TRUE; 

24     if(out(pp) ≠ oldout) change = TRUE; 

25     pp = Pop(llp); 
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26   }//endwhile(pp) 

27 }//endwhile(change) 

}//endFindAvailableStatement 

 

Proof of FAS Algorithm 

We prove FAS Algorithm in two parts.  

1 (Termination) 

FAS Algorithm has only two loops, change-while-loop and pp-while-loop. Pp-while-loop 

depends on the number of paths in llp. Since llp is the initial path cover, llp is finite and 

pp-while-loop can terminate for each iteration of change-while loop.  

Then prove change-while-loop can terminate. A walk starting from the reset set is called 

an r-walk. Change-while-loop depends on the number of all possible r-walks. The paths 

starting from the reset state have the constant out set, and then each other path can compute 

the constant in set from an intersection of the constant out sets of all possible preceding 

r-walks. Let Wp be the set consisting of those possible preceding r-walks for a path. 

Let l1 be a loop and let B be an in set of l1. Let’s pass B through l1 and compute the out 

set B' of l1 with the rule (3.1). Clearly, as passing B∩B' through l1 for any number of runs, 

even infinite, we always compute the same constant B'. In other words, let Wf be a subset of 

Wp and each walk, called rf-walk, of Wf has either no loop or only one. The intersection of the 

out set of all walks in Wp is same as it in Wf. Therefore, the constant in set of each path is an 

intersection of the constant out sets of finite walks.  

Since llp is the initial path cover sorted by BFS, after the first run of pp-while-loop, each 

path has an initial in set of an r-walk or an intersection of some r-walks. After a finite runs of 

change-while loop, the constant out sets of all preceding r-walks containing no loop for a path 

are computed. (An r-walk containing no loop may have reverse order because of BFS; for 

example, let an r-walk be p1p2p3, and after BFS, the order of p3 is prior to p2 in llp. 
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Therefore, the r-walk needs at most 2 runs of change-while loop to compute the constant out 

set.) Similarly, all preceding r-walks of a path containing only one loop can compute the 

constant out sets after finite runs of change-while loop. Since there are finite r-walks, 

change-while-loop can terminate. 

2 (Correctness) 

Since a path has only finite preceding rf-walks and each rf-walk can compute the constant 

out set after finite runs of change-while loop, all available statements of a state can be 

computed. Assume, for the purpose of contradiction, that there is a statement st which is not 

available at the start state of a path p, but is in the in set of p. It means that some preceding 

rf-walks don’t have st or a variable of st is redefined in a preceding rf-walk. In the former case, 

the out sets of some rf-walks don’t contain st and the process in line 19 or line 21 will remove 

it. In the latter case, st will be killed by line 22 as compute the out sets of the paths defining st. 

If their original out sets has st, change will be set to TRUE. As a result, all statements in the in 

set of p are available at the start state of p. 

 

Complexity of FAS Algorithm 

n = the number of states of M 

e  = the number of edges of M 

ki = the largest indegree of all states of M 

An iteration of pp-while-loop takes O(ki) and pp-while-loop has at most e iterations. 

Change-while-loop depends on the largest number of the reverse order of all r-walks and the 

longest loop; it has O(e) runs. Therefore, the complexity of FAS Algorithm is O(e2*ki ). 
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4.3 Our Algorithm 

According to the Theorem 2 and Definition 17, Mβ is contained Mα if there exists a path 

cover Pβ = { pβ0 , ... , pβn } of Mβ and a set of path Pα = { pα0 , ... , pαn } of Mα such that pβi ≈ 

pαi for all i, 0≤i≤n. If a set of path Pα of Mα is also a path cover of Mα, it implies that Mβ  ≊ 

Mα .  

Lemma 2   Mβ  ≊ Mα if there exists a path cover Pβ = { pβ0 , ... , pβn } of Mβ and a path 

cover Pα = { pα0 , ... , pαn } of Mα such that pβi ≈ pαi for all i, 0 ≤ i ≤ n. 

 

Since extending a path means to find a new path cover, we insert the cutpoints into not 

only Mβ but also Mα ; then, we obtain initial path covers Pβ and Pα of Mβ and Mα , respectively. 

For each path β of Pβ , our algorithm attempts to find an equivalent path in Mα by finding all 

possible paths in Mα  depending on CSP. Let β find an equivalent path α" of Mα where α" = 

α1α2 and α1 and α2 are initial paths. In this case, at first, β can’t find an equivalent path 

from the initial path cover of Mα , and then our algorithm extends α1 to find a new path cover, 

Pα . Therefore, β can find an equivalent path α1α2 from Pα . If each path of the final Pβ has an 

equivalent path of the final Pα  and each path of the final Pα has an equivalent path of the final 

Pβ , Mβ  ≊ Mα . 

Fig. 19 illustrates the overview of our algorithm and the detail is depicted in Fig. 20. Our 

algorithm reads two FSMDs, Mβ and Mα , as the inputs and produces a set of equivalent paths, 

E, as an output. Initially, the set of equivalent paths E is empty and the set of working list L 

contains no path waiting to find an equivalent path in Mα . Let “(qβ0,qα0)” be the only one 

member of corresponding state pair set, i.e. CSPβα ={(qβ0,qα0)}. After the initialization, our 

algorithm inserts the cutpoints into both Mβ  and Mα . Subsequently, it finds initial path cover 

Pβ0 of Mβ and Pα0 of Mα . Next, it finds all possible available statements, i.e. the in sets of 
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each cutpoint in both Mβ  and Mα . Hence, it is ready for finding equivalent paths.  

First, our algorithm finds “β = qβi⇒qβj” from Pβ0 depending on “(qβi,qαm)” which is in 

CSPβα , and then it finds an equivalent path, starting from qαm , of Pα0 in Mα . If an equivalent 

path “α =qαm⇒qαn” is found, it records the equivalent path pair “(β,α)” in E and adds 

“(qβj,qαn)” to CSPβα . Subsequently, it removes β from Pβ0 and α from Pα0 . Checking two 

paths are equivalent or not may have three situations. In the first situation, they are exactly 

equivalent. In the second situation, if they are not equivalent because of some final values of 

variables, our algorithm checks those variables by CE Algorithm. If all of them are not 

effective variables, β finds an equivalent path. Otherwise, in the third situation, according to 

Lemma 1, our algorithm generates β' by concatenating in(qβi) and β, and it also generates 

each α' by concatenating in(qαm) and each α in Mα. It compares β' with each α'. If the 

equivalent path of β' is not found, it extends β (go to step 11). Otherwise, β finds an 

equivalent path (go to step 10). Our algorithm repeats the process (GetEquivalentPath) until 

all paths of Pβ0  finding an equivalent path in Mα . Finally, check if Pα0 is empty. If it is, it 

implies that all paths in E constitute path covers of Mβ and Mα . Hence, Mβ  ≊ Mα . 
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Fig. 19 An Overview of Our Algorithm 
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Fig. 20 Our Proposed Algorithm 

 

Proof of our algorithm 

Obviously, the termination of our algorithm depends on the number of paths needed to be 

checked and the number of CSPs of CSPβα . Since there are finite cutpoints and finite initial 

paths in both Mβ and Mα , the combinations of CSPs are finite and our algorithm can only 

extend finite times to generate finite concatenated paths. Therefore, our algorithm can always 
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terminate. 

Since step 8, 9 and 10 of our algorithm in Fig. 20 ensure that E contains only pairs of 

equivalent paths of Pβ and Pα  and as extending a path, our algorithm concatenates all relevant 

paths to build a new path cover and removes the relevant cutpoint and paths from E, Pβ , and 

Pα ; therefore, all paths of E has no cutpoint be an internal state and all are the paths starting 

from a cutpoint and ending at a cutpoint. As a result, as our algorithm executes successfully, 

all equivalent paths are contained in E and they constitute the path covers of Mβ and Mα . 

 

Complexity 

n = the number of states of M 

e  = the number of edges of M 

ki = the largest indegree of all states in M 

ko = the largest outdegree of all states in M 

The complexities of FAS Algorithm takes O(e2*ki ). Let the complexity of comparing two 

statements to be |F|. As findEqlPath, a path in Mα can extend at most n times and each path 

extension needs to concatenate (ki*ko) paths. Therefore, the complexity of findEqlPath is 

O(n*ki*ko*|F|). Note that |F| usually takes much longer time than CheckEffect and 

AddAvailableStatement. When check if the new CSP is in the CSPβα , it has the n2 possible 

combinations. In the worst case, one path is extended n times. There are ki*ko*(n-1) + 

ki*ko2*(n-1)*(n-2) + … + ki*ko(n-1)*(n-1)*(n-2)…2.1 ≈ ki*ko(n-1)*(n-1)(n-1) number of paths. 

Therefore, the complexity of our algorithm is O(nn*ki 2*ko n*|F|). 

In the best case, each path in Mβ can directly find an equivalent path in Mα . No path 

extension and CheckEffect are needed. Therefore, the complexity is O(e2*ki+n*|F|) ≈

O(n*|F|). 
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Chapter 5 
Experimental Results 
 

Our equivalence checking algorithm and Karfa’s algorithm [26] have been implemented in 

C. We compare two paths with symbolic execution. All benchmarks have been run on a 1.86 

GHz Intel Core 2 CPU PC with 2 GB RAM. The run time of all benchmarks is less than 2 

seconds. One benchmark, diffeq, is data intensive; some are control intensive, such as gcd, 

barcaode, tlc and lru ; some are control and data intensive, such as mode and kalman [32][33]. 

test1 and test2, which are built by ourselves, are control and data intensive. The results shown 

in tables are sorted by our run time. 

Table I, Table III and Table V list the characteristics of the benchmarks in terms of the 

number of states in Mβ , states in Mα , variables in Vβ∩Vα , statements in Mβ , and statements 

in Mα . Table II, Table IV and Table VI show the verification results. They list in terms of the 

number of initial cutpoints in Mβ , initial paths in Mβ , initial cutpoints in Mα , initial paths in 

Mα , path extensions in Mβ  with the iterations back to step3, and equivalent paths and in terms 

of the employed scheduling techniques for each case, the run time of our algorithm, and the 

run time of Karfa’s algorithm.  

Table I and Table II are the benchmarks where those cases are all equivalent cases and 

scheduled by PBS or SPARK [15] with removing the SSp in manually. Therefore, our 

algorithm and Karfa’s can handle the cases. Table III and Table IV are the equivalent cases 

scheduled by SPARK except test1 and test2 which are transformed manually. Karfa’s 

algorithm does not support Sp, RSp, SSp and CSE; therefore, it fails to all the cases in Table 

IV. The cases in Table V and Table VI are not equivalent. Each case is added error manually. 

barcode_err and kalman_err are transformed from barcode and kalman by adding an 

improper MU; mode_err removes one operation from Mα ; lru_err changes the end state of a 
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path of Mα ; test2_err has an improper CSE. Our algorithm can find that they are not 

equivalent.  

For most cases, run time depends mainly on the numbers of iterations and path extensions. 

The run time of test2_err is larger than kalman_err because the algorithms extend 80 paths in 

kalman_err as they extend 524 paths in test2_err. The number of iterations contained in a pair 

of braces is the number of paths compared by the algorithms. The number of path extensions 

is the number of failed paths as finding equivalent paths. Since our algorithm only runs one 

pass, our run time of barcode of Table II is less than Karfa’s. However, if two paths are not 

equivalent in findEquivalentPath, our algorithm performs CheckEffect or/and 

AddAvaiableStatement, and then compares again. Besides, FindAvaiableStatement also 

consumes time. Therefore, our average run time is lager than Karfa’s about 2 times.  

The experimental results, including one high complexity case kalman, indicate that our 

algorithm is usable for verifying BB-based scheduling, PBS, code motions and CSE. 

 

Abbreviations of each scheduling technique:  

PBS: Path-based scheduling, 

MU: Merging up,  MD: Merging down 

DU: Duplicating up,  DD: Duplicating down,   UM: Useful move,  

Sp: Speculation,   RSp: Reverse speculation,  SSp: Safe-speculation,  

CSE: Common subexpression elimination. 
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Table I Characteristics of Equivalent Cases 1 

case #Qβ #Qα #variables in Vβ∩Vα #statementsβ #statementsα 

barcode 9 6 4 12 16 

gcd 7 3 3 11 11 

tlc 11 12 5 29 31 

modn 6 4 5 11 21 

lru 23 22 13 18 26 

kalman 105 101 64 104 112 

 

 

Table II Results of Equivalent Cases 1 

Ours [26] Case #cutpoints 

in Mβ 

#Pβ #cutpoints 

in Mα 

#Pα # of Path 

Extensions 

(iterations) 

#E scheduling 

P/ 

F 

Time  

(ms) 

P/ 

F 

Time  

(ms) 

barcode 5 10 5 10 2(10) 8 DD,UM,MU P 24.9 P 31.8 

gcd 6 11 2 7 4(11) 7 PBS P 30.4 P 27.4 

tlc 10 19 10 19 1(19) 18 DU P 36.4 P 33.5 

modn 5 9 4 10 2(18) 11 PBS P 39.8 P 29.2 

lru 21 41 21 41 0(41) 41 DU P 47 P 44.9 

kalman 101 202 101 202 32(202) 170 DU,UM P 481.5 P 215.5 
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Table III Characteristics of Equivalent Cases 2 

case #Qβ #Qα #variables in Vβ∩Vα #statementsβ #statementsα 

test1 8 8 8 12 12 

diffeq 7 7 12 15 20 

gcd 4 5 2 4 9 

barcode 9 10 4 12 27 

tlc 11 12 5 29 44 

lru 23 40 13 18 79 

test2 29 21 23 43 45 

kalman 105 150 64 104 279 

 

Table IV Result of Equivalent Cases 2 

Ours [26] case #Cβ #Pβ #Cα #Pα # of Path 

Extensions 

(iterations) 

#E scheduling 

P/ 

F 

Time  

(ms) 

P/ 

F 

Time  

(ms) 

test1 3 5 3 5 1(5) 4 Sp,RSp,CSE P 22.9 F 24.7 

diffeq 2 3 2 3 0(3) 3 SSp P 23.8 F 22.6 

gcd 4 7 4 7 0(7) 7 SSp P 24.4 F 19.5 

barcode 5 10 6 11 2(10) 8 SSp,DD,UM,MU P 38.1 F 26.8 

tlc 10 19 10 19 1(19) 18 SSp,DU P 46.1 F 29.5 

lru 21 41 21 41 2(41) 39 SSp,DU P 85.5 F 40.1 

test2 9 17 9 17 5(29) 24 Sp,RSp,SSp,CSE, 

UM,MU,MD,DU,DD 

P 111.7 F 553.5 

kalman 101 202 102 203 34(202) 168 SSp,DU,UM P 1437 F 182.8 
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Table V Characteristics of Not Equivalent Cases 

case #Qβ #Qα #variables in Vβ∩Vα #statementsβ #statementsα 

barcode_err 9 6 4 12 15 

mode_err 6 7 5 11 26 

lru_err 23 22 13 18 26 

kalman_err 105 101 64 104 110 

test2_err 28 21 23 43 44 

 

 

Table VI Results of Not Equivalent Cases 

Ours [26] case #Cβ #Pβ #Cα #Pα # of Path 

Extensions 

(iterations) 

P/ 

F 

Time 

(ms) 

P/ 

F 

Time  

(ms) 

barcode_err 5 10 5 11 4(10) F 33.5 F 28.3 

mode_err 4 8 4 12 2(15) F 39.2 F 25.9 

lru_err 21 41 21 41 3(44) F 52.9 F 38.4 

kalman_err 101 202 101 203 19(56) F 273 F 123.6 

test2_err 9 17 9 17 9(9) F 562 F 257.4 
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Chapter 6 
Conclusion & Future Works 
 

In this thesis, a formal verification method is proposed for the scheduling verification in 

HLS. This method is capable of BB-based scheduling and PBS. It is also well suited to verify 

some popular code transformation techniques: DD, DU, MD, MU, UM, Sp, RSp, SSp, and 

CSE. But it still not supports some code transformation techniques, such as loop invariant and 

copy propagation. 

Fig. 21 shows an example of loop invariant. Since all variables of the statement “c⇐x+y” 

are not modified in the loop (qβi1 →  qβi2 →  qβi1), loop invariant technique moves 

“c⇐x+y” out from the loop. Our algorithm fails to this situation. Since the path ending at qβi1 

and the path ending at qαj1 are not equivalent, our algorithm needs to extend the path. After 

the path extension, i.e. removing the cutpoints qβi1 and qβi2, it becomes a walk which is not a 

path. Therefore, our algorithm fails. 

 

q i1

q i2

M M

b / 

c x + y,
a ⇐ a + 1

q j1

q j2

- / c x + y

c / 

d ⇐ a + c
b / 

a ⇐ a + 1

c / 

d ⇐ a + c

!c / ... !c / ...

 

Fig. 21 An Example of Loop Invariant 
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Copy propagation is derived from the compiler. The statements in “g⇐h” form are called 

copy statements where “g” and “h” are variables. Copy propagation replaces “g” with “h” in 

all the statements that have flow dependencies with “g⇐h”. It is illustrated in Fig. 22. Since 

“a⇐x+y” and “c⇐x+y” have the common subexpression, CSE replaces the expression of 

“c⇐x+y” with “ a”. Then, copy propagation finds “d⇐c” having data dependence with 

“c⇐a+b” and it replaces “c” with “ a”. Our approach fails to this case. Since start from the 

CSP “(qβi2,qαj2)”, the final values of “d ” of “ qβi2 →  qβi3” and “qαi2 →  qαi3” are not 

equivalent because “c ≠ a”.  

 

 

Fig. 22 An Example of Copy Propagation 



 

55 

References 
[1] D. D. Gajski, N.D. Dutt, A.C.-H. Wu, and S.Y.-L. Lin, “High-Level Synthesis: 

Introduction to Chip and System Design,” Kluwer, 1992. 

[2] A. A. Jerraya, H. Ding, P. Kission, and M. Rahmouni, “Behavioral Synthesis and 

Component Reuse with VHDL,” Kluwer, 1997. 

[3] P. Coussy, D.D. Gajski, M. Meredith, and A. Takach, “An Introduction to High-Level 

Synthesis,” IEEE Design & Test of Computers, vol. 26, page 8-17, July-Aug. 2009. 

[4] C. Y. Hitchcock and D.E. Thomas, “A Method of Automatic Data Path Synthesis,” 

Design Automation Conference, page 484-489, Jun. 1983. 

[5] B. M. Pangrle and D.D. Gajski, “Slicer: A State Synthesizer for Intelligent Silicon 

Compilation,” IEEE International Conference Computer Design: VLSI in Computers & 

Processors, Oct. 1986. 

[6] P. G. Paulin and J.P. Knight, “Force-directed Scheduling for the Behavioral Synthesis of 

ASIC’s,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and 

Systems, vol. 8, page 661-679, Jun. 1989. 

[7] R. Camposano, “Path-based Scheduling for Synthesis,” IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and Systems, vol. 10, page 85-93, Jan. 

1991. 

[8] G. Lakshminarayana, A. Raghunathan, and N.K. Jha, “Incorporating Speculative 

Execution into Scheduling of Control-flow Intensive Behavioral Descriptions,” Design 

Automation Conference, page 108-113, Jun. 1998. 

[9] L.C.V. dos Santos and J.A.G. Jess, “A Reordering Technique for Efficient Code Motion,” 

Design Automation Conference, page 296-299, Jun. 1999. 

[10] M. Rim, Y. Fann, and R. Jain, “Global Scheduling with Code-motions for High-level 

Synthesis Applications,” IEEE Transactions on VLSI Systems, vol. 3, page 379-392, 



 

56 

Sept. 1995. 

[11] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Dynamic Conditional Branch Balancing 

during the High-level Synthesis of Control-intensive Designs,” Design, Automation and 

Test in Europe Conference and Exhibition, vol. 1, page 270-275, Dec. 2003. 

[12] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Spark: A High-level Synthesis Framework 

for Applying Parallelizing Compiler Transformations,” International Conference on 

VLSI Design, page 461-466, Jan. 2003. 

[13] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Loop Shifting and Compaction for the 

High-level Synthesis of Designs with Complex Control Flow,” Design, Automation and 

Test in Europe Conference and Exhibition, vol. 1, page 114-119, Feb. 2004. 

[14] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Using Global Code Motions to Improve 

the Quality of Results for High-level Synthesis,” IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems, vol. 23, page 302-312, Feb. 2004. 

[15] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau, “Spark: A Parallelizing Approach to the 

High-level Synthesis of Digital Circuits,” Kluwer, 2004. 

[16] R. Ernst and J. Bhasker, “Simulation-based Verification for High-Level Synthesis 

Applications,” IEEE Design & Test of Computers, vol.8, page 14-20, Mar. 1991. 

[17] R. A. Bergamaschi and S. Raje, “Observable Time Windows: Verifying High-Level 

Synthesis Results,” IEEE Design & Test of Computers, vol. 14, page 40-50, April-Jun. 

1997. 

[18] T.-H. Chiang and L.-R. Dung, “Verification Method of Dataflow Algorithms in 

High-Level Synthesis,” Journal of Systems and Software, vol. 80, page 1256-1270, Aug. 

2007. 

[19] N. Narasimhan, E. Teica, R. Radhakrishnan, S. Govindarajan, and R. Vemuri, “Theorem 

Proving Guided Development of Formal Assertions in a Resource-Constrained Scheduler 

for High-Level Synthesis,” Formal Methods in System Design, vol. 19, page 237-273, 



 

57 

Nov. 2001. 

[20] R. Radhakrishnan, E. Teica, and R. Vemuri, “An Approach to High-Level Synthesis 

Validation using Formally Verified Transformations,” IEEE International High-Level 

Design Validation and Test Workshop, page 80-85, August-Oct. 2000. 

[21] R. Radhakrishnan, E. Teica, and R. Vemuri, “Verification of Basic Block Schedules using 

RTL Transformations,” Lecture Notes in Computer Science, vol. 2144, page 173-178, 

Jan. 2001. 

[22] N. Mansouri and R. Vemuri, “A Methodology for Automated Verification of Synthesized 

RTL Designs and Its Integration with a High-Level Synthesis Tool,” Lecture Notes in 

Computer Science, vol. 1522, page 204-221, Jan. 1998. 

[23] Y. Kim , S. Kopuri, and N. Mansouri, “Automated Formal Verification of Scheduling 

Process using Finite State Machines with Datapath (FSMD),” International Symposium 

on Quality Electronic Design, page 110-115, Aug. 2004. 

[24] H. Eveking, H. Hinrichsen, and G. Ritter, “Automatic Verification of Scheduling Results 

in High-Level Synthesis,” Design, Automation and Test in Europe Conference and 

Exhibition, page 59-64, Mar. 1999. 

[25] Y. Kim and N. Mansouri, “Automated Formal Verification of Scheduling with 

Speculative Code Motions,” Great Lakes symposium on VLSI, page 95-100, 2008. 

[26] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar, “An Equivalence-Checking Method for 

Scheduling Verification in High-Level Synthesis,” IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and Systems, vol. 27, page 556-569, Mar. 

2008. 

[27] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A Prototype Verification System,” 

Lecture Notes in Computer Science, vol. 607, page 748-752, Jun. 1992. 

[28] P. G. Paulin and J. P. Knight, “Scheduling and Binding Algorithms for High-Level 

Synthesis,” Design Automation Conference, page 1-6, Jun. 1989. 



 

58 

[29] E. Teica and R. Vemuri, “A Mechanical Proof of Completeness for a Set of 

Register-Level Transformation,” Technical Report 257/05/01/ECECS, University of 

Cincnnati, 2001. 

[30] Z. Manna, “Mathematical Theory of Computation,” McGraw-Hill, 1974. 

[31] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, 

“Introduction to Algorithms,” McGraw-Hill, 2001. 

[32] P. R. Panda and N. D. Dutt, “1995 high level synthesis design repository,” International 

Symposium on System Synthesis, page 170-174, Sept. 1995. 

[33] http://computing.ece.vt.edu/~mhsiao/hlsyn.html 


	1_封面.pdf
	Equivalence Check of Scheduling with Speculative Code Transformations in High-Level Synthesis

	2_書名頁
	5_thesis_chloe

