A~

=

R F IR [CRTAFFFMLIT

_\ "e-‘\
& = = il

B E =0 & ORR| A B PR R AR

Equivalence Checking of Scheduling with Speculative

Code Transformationsin High-Level Synthesis

oA iEE

EREREYRY EE

dER R A 4 E -

BFEE P i SRR e B AR R R
Equivalence Checking of Scheduling with Speculative Code

Transformations in High-Level Synthesis

oy oAiiFE Student : Chi-Hui Lee
ERE Y EY KR Advisor : Prof. Jing-Yang Jou
B a2

TWE IR IC K & 7 B4 LI

A Thesis
Submitted to Callege of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
M aster
in

Industrial Technology R & D Master Program on
IC Design

January 2010

Hsinchu, Taiwan, Republic of China

dEARL L E-

BREE P 8% R SrB i P PR R KT

FLoiFE B Y Ry Ko

Mo« S PFRE EFEAL

R

BREE - BRIEE é%am#ﬁﬁﬁﬁﬁg$ﬁ%%*:&ﬁ%ﬁ’??uﬁ
BAAA4 o Rd @RS A aF o BR 3IFEF 1 0v %% RS
X PP 0 F] 5 AT § PR R K3 7O B w2 R O A PARERE o AR
- BRI FT X RGEREEN L R EALERE RN g id o g;ﬂ BRI
e LR ST A R o T - B A e R g RUIER D D B 0 B RIY I
BRI B ‘?1?4fﬂpmﬁﬂﬁgmwifﬁﬁv%wuﬁﬁiﬁﬁfﬁﬁéﬂéii
Foo B Neh 23 R ARG RTIAI E R X G %R € TR

A2 o PEATITR Y “ﬁﬁdgﬁﬁﬁwﬁﬁéﬁggﬁﬂm@zwﬁgimﬂﬁﬁod
o

m/?pr—‘ﬁE F m'ﬁ 56\; F5% &F' e i lﬁv‘r = ”’ﬁ EEa2 Eﬁfé_#kfi °

Equivalence Checking of Scheduling with Speculative
Code Transformationsin High-Level Synthesis

Student: Chi-Hui Lee Advisors Prof. Jing-Yang Jou

Industrial Technology R & D Master Program of
Electrical and Computer Engineering College
National Chiao Tung University

ABSTRACT

High-level synthesis (HLS) is a process of generating a register-transfer level design from
an algorithm level description. It can increase the design productivity. However, this
translation process _can be buggy. Scheduling, a sub-task of HLS, makes the major challenge
of the HLS verification since it usually changes the original cycle-by-cycle behavior. This
thesis focuses on the scheduling verification.~A formal method for checking equivalence
between the descriptions before and after scheduling is described. Finite state machine with
datapaths (FSMDs) are used to represent both descriptions. Two FSMDs are both decomposed
into finite paths, and the method finds equivalent paths between them. The equivalence of
FSMDs and paths are also defined. The proposed method is suited to verify not only the
scheduling preserving the control structure but also the scheduling changing the control
structure by merging some consecutive paths or moving some codes across the boundaries of
the basic blocks. The experimental results on several HLS benchmarks show the effectiveness

of the proposed algorithm.

Acknowledgements

| greatly appreciate my advisors, Dr. Jing-Yang Jou and Dr. Juinn-Dar Huang, for their
patient guidance, valuable suggestion, and encouragement during these years. | am also
grateful to Che-Hua Shih and Wan-Hsien Len for their discussion and help on my research.
Specially thank to all member of EDA Lab and Adar Lab for their friendship and company.
Finally, | would like to express my sincerely acknowledgements to my family and my friends

for their patient and support.

Contents

B B e i
A B S T R A T et oo ettt e oot ettt a e e et e e et e e e et e e e e e e et e eba e e e eenrn e aaas il
F ot [1V =T o =T 0 =T o £ PSSR iii
(0] 01 (=T 01 I J PP PPPPPPPPPPPIN v
S 0 T T = USSR Vi
LISt Of TADIES ...ttt e e e e e e e e e e e e e e e e vii
(@ F=T o1 (= g A |01 Yo [1T 1] o IS PPPRPRRR 1
1.1 Scheduling IN HLS ... i i e e it e e e e e e e e 2
1.2 RElated WOTKS. . it sttt et i i ettt e e e e e e e e e e e e e e e e e s 8
Chapter 2 Preliminari@s ... o i eeeeie s et 58 ettt e eeeettb et e s e e e e e e eeeaeaeeeeeeeesnnn 11
2.1 Finite State Machine-with Data-path (FSMD)ccceeviiiiiiiiiiiicceiee e 11
211 PatiS .o bt e T e 13
2.1.2 Characterization of @ Path.........o i e 15
2.1.3 Computational Equivalence of Paths......c..ccc e 16
2.2 YY1 o U1} 7= 1= o = R 17
221 ASSUMIPLIONS ... e ittt kbt dah it e e e e e e e e e e e e e e e eeeeeeetetbaasa s e e e e e e eeeeeeaeeeeeeeessnrnnnnns 17
2.2.2 Computations Of aN FSMD..........ccooiiiiiiiecer e 17
2.2.3 Path Covers of an FSMD.........ccooiiiiiiii e 18
224 Verification Method.........ooooiii s 20
(O gF=T o1 (=T g N Y/ o] 1AV [0 o USSP 23
3.1 An Example Of SPECUIALIONiiiiii i 23
3.2 AN EXaMPIE OF CSE ... s 24
Chapter 4 Our PropoSed MethOduuuuiiiiiiii et e e e e e e e 26
4.1 SOlIULION fOr SPECUIALION ... e 26

41.1 EquIvalence Of PathSuuuiiiiii i 27

4.1.2 N0 1o] o PP PPPPPPPPPPP 30
4.1.3 (@ Y [o T 11] o 1P 31
4.2 SOIULION FOF CSE....oiiiiiiiiiiiiieeee et e e e e e e e e e as 33
421 Available StateMENT..........ooii i 34
4.2.2 N0 1o] o PP PPPPPPPPPPP 36
4.2.3 Compute Available StatemMeNntS............evuviviiiiiiiiie s 37
4.2.4 FAS AlQOItNM ... e e e e e e e e e e eeeaaeee 39
G T © 11 | Y o o 11] o S 43
Chapter 5 Experimental RESUIS i ... i s it 48
Chapter 6 ConclusioN & FULUIE WOTKScoi i it et e et e e e e e e e e e e e e eeees 53
REFEIENCES ... it e et Bt e Bt e h et e b ettt ettt e e e e e e e e e e e e e e e 55

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

List of Figures

L AN OVEIVIEW OF HLS ...t e e e 2
2 An Example of BB-based SCheduling...........uuuuiiiie e 4
3 An Example of Path-based scheduling..............uuuiiiiiiiiiie e 5
o To [N Y/ [o] 1 o] o K= TP PO PP PPPPPPPPPPPPPPR 7
5 An Example of Common Subexpression Eliminationcoeevvvvviiiiiiiiiiie e, 8
B AN FSIMD .ot a e e e e e et e e ra e e e e eanaaas 12
T PAENS e e e e e s e e e e 13
8 COMPULE RANG 15 it b e fie e 15

O Path COVEIS OF M. it vttt o bt et e e e e e e e e 19
10 VerifiCation FIOW s i i st b et b e et e e e e e e e e e 22
11 An Example Of SpecCUlation... ..o it et s e e e e et a e e e e 24
12 An Exampleof Safe-speculation & CSEo il 25
13 An Example of an Effective Variablec............ 28
14 A Example Of SPECUIALIONot iiritiinthnenn bl il e e e e e et e e e e e e 31
15 An Example of anAvailable Statement.....i i e 34
16 An EXample Of LEMMA L (. ottt s e e e e e e e e e e e eeeeeeeesnnenes 36
17 ASOIULION TOF CSE.....oiiiiiiiiiiie ettt e e s e e e e 37
18 Compute Available StatemMENTS..........uuuuueiiiiiiie e e e e e eeeeeaaeee 39
19 A Overview Of OUur AlQOMTNM.........eiiiee e 45
20 Our Proposed AIGOItRMo e e e 46
21 An Example of LOOP INVAIANT..........uuueiiiiieie e e e e e e e e e e e e e e e eeaeennnnnes 53
22 An Example of Copy Propagation.................eeeiiiniineeee ettt e e e e e eeeeeees 54

\Y

List of Tables

Table | Characteristics of EQUIVAIENT CASES 1cccovviiiiiiiiiiiiiiiiire e e 50
Table Il Results of EQUIVAIENT CASES L........uuuuuuiiiiiiiiieeeee ettt e e e e e e e e e e eeeeeeeeennnne 50
Table Il Characteristics of EQUIVAIENT CASES 2........ccevvriiuiiiiiiiiiiieeeeeeee e e e e e e e 51
Table IV Result of EQUIVAIENT CASES 2.......coooiiiiiiieeee e 51
Table V Characteristics of Not EQUIVAIENT CASES.......uuuuiiiiiiiieie e 52
Table VI Results of NOt EQUIVAIENT CASESuuuuiiiiieiiiieeeieeceeeeeeeeetiii e a e e e e eeeeeaeaeeees 52

Vii

Chapter 1
| ntroduction

High-level synthesis (HLS), also called behavioral synthesis, is a process that converts a

behavior or algorithm description into an RTL (register-transfer level) circuit [1]-[3]. It is

helpful to gain much higher productivity than RTL or logic synthesis. In Fig. 1, HLS consists

of the following sub-tasks:

Intermediate description generation

This task compiles a behavior-descriptioninto an internal representation such as a control
data flow graph (CDFG) which captures all the control and data-flow dependencies of the
given behavioral description-[1].

Scheduling

Scheduling assigns operations of the behavior description to specific control steps or clock
cycles under data-dependencies and constraints.

Allocation and binding

Allocation and binding specify operations-to functional units, and assign data to storage
elements and interconnect units.

Architecture generation

This task builds a controller (a finite state machine, FSM) to control the data-path,

depending on the information of scheduling, allocation and binding.

Behavior
Description
v
System Level Intermediate Description
—— System Synthesis ~ / Generation
Algorithm Level , | ¢
" Scheduli
* —— High-Level Synthesis S
Register-Transfer Level \ ¢
: : Allocation & Bindi
' —— Logic Synthesis ocation e
Logic Level '
_ \ Architecture Generation
y ——— Layout Synthesis
Physical Level RTL
‘ Description

Fig. 1 An Overview of HLS

Obviously, the ‘correctness of the-HLS process is very important for the development of
HLS. In HLS, scheduling usually changes the original cycle-by-cycle behavior. Moreover,
many scheduling techniques may even change the control structure. Hence, most of scheduled
results can not be one-to-one mapped to their original structures. Therefore, scheduling
becomes the main challenge in the HLS verification. As a result, we focus on the scheduling
verification. The following sections give an overview of the scheduling methodologies in

HLS and a review of many previous researches of the scheduling verification.

1.1 Schedulingin HL S

Scheduling is an important task of HLS. It assigns operations of a behavior description to
control steps or clock cycles under some given constraints on area or delay. Thus it impacts

the tradeoff between the design cost and the performance. Scheduling algorithms, traditionally,

can be classified into two categories: data-flow-based and control-flow-based algorithms.

Most of early scheduling algorithms are data-flow-based (DF-based) or basic-block-based
(BB-based) algorithms. BB-based algorithms focus on taking advantage of parallelism among
sequences of operations in a basic block (BB); a BB is a straight-line sequence of statements
containing no branches or internal entrances or exit points. In other words, they do not change
the control structure. That is, the branch states (the states have more than one outgoing edge)
and the merge states (the states have more than one incoming edge) of the scheduled result
can be one-to-one and onto mapped to those of the behavior description. A BB-based
algorithm is either to minimize the total number of control steps under resource constraints or
to minimize the resources requirement in a-given number of control steps under timing
constraints. List scheduling [4][5] and force-directed scheduling [6] are two well-known
BB-based algorithms.

Fig. 2 shows two FSMDsMg and M., representing the descriptions before and after
BB-based scheduling. In an FSMD, a node is a state and an edge is a control step. Each edge
of an FSMD consists of status and assignment statements; a status consists of predicates. A
slash separates the statuses and assignment statements; “-” denotes that no status needs to b
satisfied. A branch state or a merge state is-depicted as a gray node. Obviously, the branch
state and the merge stateMyt have a bijective mapping to thoseMf,. That is,Mz andM,

have the same control structure.

/

-/ -
a<Pl,b<cP2

a<Pl,b<pP2

Fig. 2 An-Example of BB-based Scheduling

Control-flow-based (CF-based) algorithms focus on taking the advantage of the mutual
exclusion of operations in the description by analyzing the conditional constructs. These
algorithms may modify.-the control structure. The.only goal of CF-based algorithms is to
minimize the number of control steps in all sequences of operations under resource constraints.
Path-based scheduling (PBS) is the main algorithm of CF-based scheduling [7]. Fig. 3 shows
that PBS changes the control structure. The FSMD before@B3)as two branch states and

the FSMD after PBS, M has only one.

- | youter - | yout<r

Fig. 3/An Example of Path-based scheduling

In practice, designs tend to-use significant amounts of the control flow as well as the data
flow. To increase the performance and the resource utilization, many code transformation
techniques such as speculation — derived from the. compiler — have been employed by
scheduling [8]-[15]:

This thesis only discusses the global code transformation techniques. A transformation is
local if it only looks at the statements in a BB;otherwise, it is global. Here, two kinds of the
global code transformation techniques are introduced, code motions and common
subexpression elimination (CSE).

Fig. 4 illustrates code motions. Code motions attempt to extract the inherent parallelism in
designs and increase the resource utilization. They move operations across the boundaries of
BBs. Each square block is a BB and the node having circular shape is a branch state or a
merge state. A BB between the branch state and the merge state is called a branch BB. The
solid lines represent the control flow and the dotted lines represent the direction of code

motions. Fig. 4 contains following code motions:

Duplicating down (DD): It moves operations from the BB preceding a branch state into all
branch BBs. This is shown by arcs marked 1.

Duplicating up (DU): It moves operations from the BB succeeding a merge state into all
branch BBs. This is shown by arcs marked 2.

Merging up (MU): If all branch BBs have the same operations, it moves these operations
from all branch BBs to the BB preceding the branch state. This is shown by arcs marked
3.

Merging down (MD): If all branch BBs have the same operations, it moves these
operations from all branch BBs_to.the.BB succeeding the merge state. This is shown by
arcs marked 4.

Useful move (UM): Move operations from the BB succeeding the merge state into the BB
preceding the branch state-as-these operations are independent to all branch BBs; or vice
versa. Arc 5 indicates this. It moves operations from BB3 to BBO or from BBO to BB3 if
these operations are independent to BB1 and BB2.

Speculation (Sp): Move operations from one-of branch: BBs into the BB preceding the
branch state if the outputs of the system are the.same. It is shown as arc 6.

Reverse speculation (RSp): Move operations from the BB preceding a branch state into

some of branch BBs if the outputs of the system are the same. It is shown as arc 7.

Branch
state

BB2

\ "% BB3 ¥~ BB3

“““ » Code motion

—— > Control flow

Fig. 4 Code Maotions

Fig. 5 gives an example of CSE. Gupta et al. [15] have shown that CSE can often expose

opportunities for optimizations. The original FSMDNk;. M4 is the result of CSEjz and

Jao are the initial states where the system starts frorvldnthe statementst2e’<a+b) and

st3e=a+b) compute the same expressi@¥b”. Obviously,st2 always executes prior 3

and no statement redefinasb ande' between them. Therefore CSE replacash” of st3

with €' in M,. Note that although statemest6(@<a+b) has ‘a+b”, “a+b” of st6 can not be

replaced.st2 andst6 do not compute the same expression because statsthpria+f)

redefines b between st2 and st6.

z /

z /

stl:c<a<b, cca<hb,

st2:e'<a+b e'ca+b
c/ le/ c/ le/
st3:e<a+b, stSi:b<a+f e<e', bea+f
st4:d<a+d d<a+d

- (o)
stb:g<a+b g<a+b
My M,

Fig. 5°An Example of Common Subexpression Elimination

1.2 Related Wor ks

Ernst et al [16] and Bergamaschi et al [17] propose a simulation-based verification method
of HLS verification. Unfortunately, simulation is becoming inadequate with the increasing in
system complexity.

Chiang et al [18] propose a model checking technique by using Petri Net model as the
formal description to check the correctness of BB-based algorithms. Narasimhan et al [19]
prove the correctness of the force-directed list scheduler (FDLS) [28] algorithm in PVS [27]
and insert invariant properties as program assertions in the implementation of the FDLS
algorithm. Radhakrishnan et al [20][21] propose a method based on the precondition-based
correctness of register transfer split (RTS) [29] and on the completeness of RTS
transformations to perform the scheduling task with the schedule table generated by the

scheduling algorithm. However, those methodologies are difficult to identify properties or

complete transformations in a large and complex scheduling task.

Recently, equivalence checking technique is used to prove the functional equivalence of
two designs. Equivalence checking can be directly applied to the scheduling verification. It
reads descriptions before and after scheduling as inputs. If two descriptions are functionally
equivalent, it works successfully; otherwise, it gives a counter example for diagnosis. Neither
the knowledge of scheduling nor the creation of properties or transformations is needed.

Mansouri et al [22] introduce the critical states to define the critical path. The equivalence
between critical paths of behavior description and those of scheduled description was proved
using the PVS theorem prover. Kim et al [23] define the functional equivalence between two
FSMDs representing the descriptions before and after scheduling and proved the equivalence
with PVS. The break-points are introduced to decompose an FSMD into a set of path
predicates. Both [22] and [23] assume that the control structure is not modified during
scheduling. The aforementioned methodologies, [18]-[23], are only well suited to BB-based
scheduling.

Eveking et al [24] represent the behavioral description-and the scheduled description in
LLS (language of labeled segments) language and give basic transformations to prove the
computational equivalence of LLS. If the behavioral description can be transformed to the
scheduled result according to the basic transformations, they are computationally equivalent.
However, the completeness of basic transformations is hard to define and the transformation
from the behavioral LLS to the scheduled LLS is tough and tedious. Kim et al [25] extend the
equivalence checking method of [23] to handle the scheduling employing MU and DD by
concatenating the critical paths. However, the paths affected by the code motions need to be
identified. Karfa et al [26] propose an equivalence checking method suited to PBS as well as
BB-based scheduling. FSMDs are used to represent the descriptions before and after
scheduling and they are characterized by a finite set of paths. The equivalence of FSMDs is
transformed into the equivalence of paths. However, it does not support some code

9

transformation techniques, such as Sp and CSE.

The rest of this thesis is organized as follows. In Chapter 2, the theoretical concepts of the
equivalent checking method proposed by Karfa et al [26] are discussed. Chapter 3 presents
two motivational examples, and Chapter 4 describes our proposed method in @béails.
experimental results and analyses are provided in Chapter 5. Followed Chapter 6 gives a

conclusion and identifies some directions for future works.

10

Chapter 2
Preliminaries

Here, we discuss a verification method and its theoretic conceptions proposed by Karfa et
al [26]. Our approach is based on those conceptions and their verification method. The notion
of computations, paths, and a path cover of an FSMD and the transformations between them

are defined. The equivalence of two FSMDs is also derived.

2.1 Finite Sate Miachine with Data-path (FSM D)

An FSMD was proposed by -Gajski et al. in [1]. It can trivially implement the descriptions
of algorithm level (or behavior-level) and RT-level. FSMDs are used to represent the
descriptions beforesand after scheduling with an additional initial state. An initial state is also
called a reset state. The FSMD was defined as a 7-tuptes® op, I, O, V, f, h>, where
1) Qis the finite set of states,

2) (o is the reset state,
3) | is the finite set of inputs,
4) O s the finite set of outputs,
5) Vs the finite set of variables,
6) f: Q x S — Qis the state transition function,
® Sis the set of status expressions consisting of arithmetic predicatds over
7) h:Q x S — U is the update function of the outputs and variables, where
® U={xOe|x=0OUVandeis an arithmetic predicate or expression dvwewn} is a

set of variables or output assignment statements.

11

An FSMD is inherently deterministic. For any stgtaf the status expressioss =s2, it
implies thatf(q,s1) =f(g,s2) andnh(g,s1) =h(q,s?. In an FSMD, the concept of time can be
thought of as the order in which the statements are executed. An example of a behavioral
description and its FSMD are shown in Fig. 6. A behavior descrifitlonsing C language is

described in (b). An FSMD Nh (a) represents E1 and the detail oisMhown in (c).

M
(a) An FSMD model Mor E1
int yout M=<Q, ¢ |, 0 V,f, h>
void E1(P0,P1){
int x= PO; Q={do, O, &, G}; I = {PO,P1};, O={yout}; V = {x,y,r}
inty=P1; (g0, TRUE) = g,
intr=1;
while(x){ f(on,!x) = @2, (g2 TRUE) = o,
) Y=Y2 (s = s, (Gey)=az, f(daly) =
else{
X = X2: h(ce, TRUE) = {xJ PO, y{I P1, 1] 1},
r=rtl} | h(g!x) = {r0 r*2}, h(ge, TRUE) = {youtl r},
}Y/endwhile
Fr=r*2: h@zx) =G, h@sy) ={yl y/2}, h(gs!y) = {xU x/2, 10 r +1}.
yout=r,
}/endofE1l
(b) The behavior E1 in C (c) The details of M

Fig. 6 An FSMD

12

In an FSMD, a walk represents a sequence of transitions.
Definition 1 [26] Walkwof M from g to g

A walk wfrom astart stateg; to anend statey; is a transition sequence of the states. It is

formulated asqy 0 [q,, O W ... O [q,, =g whereg=Q for all k, i<k<i+n and

there exitey=S and transition functiorfg such thafi(gx, &) = gk+1 for all k, i<k<i+n-1. For

short, ¢=¢; .

A state of a walk is called an internal stdté is neither the start state nor the end state.

2.1.1 Paths

A path is a finite:walk. Its definition and characteristic formula are described here.
Definition 2 [26] PathSof M from g to g
A path S from g;.to g is a finite walk where all the states are distinct or the end state is

only identical to the start state Gf

Fig. 7 illustrates paths that pland p2 are paths and p3 is NOT a path.

l l
|

|
|
|

v

Fig. 7 Paths

13

Definition 3 [26] Condition R of a paths
The conditionRs of S is a logical expression ovét) V which should be satisfied before

executingg.

Definition 4 [26] Resultrs of a paths
The resultrg of S is an ordered pair consisting of apdated variable setv and an
updated output lisb after executing? and is denoted asmsg, g5>.

1) Updated variable setgz is an ordered tuple ez of arithmetic predicates or
expressions ovdrJV for all variables inv and eacte represents the final value of
the variables, =V at the end statg.q

2) Updated output lisp; is a list of the output assignment statements with the order in

which the outputs occur-ia.

For a pathg, its condition Rgz and its resultrs can be computed by substitution.
Substitution is a symbolic execution and based-on the rule: If a pred{gate true after
assignment statemeyit! g(y), the predicate(g(y)) is true before i g(y) [30].

Fig. 8 describes an example of-how to comfiRgandrz of Sin M by substitution. LeV
={a, b,c d, % 1={i1, 12}, and O= {01, 02} of M. At first, the initial values are {a, Iz, d, ¥
for each variable of. Hence, at the start stadg;, Rg= @, ap= <a, b, ¢, d, x> andog= Q.
The first transition frons; to ggz has only one status, thus, the condition becorRgs & <

x”; it also has only one assignment statementd+d ", thus, “a+d ” substitutes for ¢” and
ap becomes “g, b, a+d, d, x>". Then, the initial values for the next transitiongz1J > g7,
become {ab, a+d, d, x}. Similarly, after executing dz-U 1> gg3”, the updated variable set

becomes tgz= <a*b, b, atd, d, x>" and the updated output list becomeslf]l a]”. Therefore,
the initial values of 4gz10 0> g/ are {a*b, b, a+d, d, x}. Finally, after ‘gz [~ g, “Rs=

14

(a<x) & (x<atd)” and rg = <ap, 05> = <<a@*b, b, a+d, d, a*b+a+d>, [o10a, 021 a*b]>"
atggs are computed. Note that since the status is always prior to the assignment statements of

a transition, the execution okl a+c” will not redefine the X” of “x < ¢”. And only the

initial value “a + d ” substitutes forc” of “x < ¢"in “ gz [gps.

R/}Z (%]
rg:<<a,b,c,d,x>,->

Rp:a<x
rg<<a,b,atd, d, x>, - >

-la<ca*bol<a Rp:a<x
________ 7 rpi<<a*b,b,at+d,d, x>, [ol<a]>

x<clxeatcolea Ry (a<x) & (X< atd)
__________________ rp: <<a*b, by atd, d, a*b+tat+d>, [o]<a, 02<a*b]>

Rp = (a<x) &(x < atd)
rg =<sp, Op>=<<a*b, b, atd, d, a*b+a+d>, [0l < a, 02« a * b]>

Fig. 8 Compute Rand 13

2.1.2 Characterization of a Path

Depending on the aforementioned definitions and the substitution method, a path can be
characterized asRp(V) & rg(v)” or “Rs(v) & (i =ap(v)) & 0g(v)” wherevEl UV andvy &
V.

A concatenation of a sequence of paths can also be characterize®. 4 gt=q¢” and
“a= q=q" are paths of an FSDNl and S is a preceding path af; their characteristic

formulas are Ra(V)&(vi=a(V))& 05(v)” and “Ry(V)& @i (v)& 04(V)”", respectively. Thens and

15

a can be concatenated, denotegsas and the characteristic formula 8fr is “Rg (V) & Ry ()

& @y (Vi) & (05(V) 04 (V)"

2.1.3 Computational Equivalence of Paths

Mg = <Qg, Am, I3, Op, Vg, T3, hg> andMy = <Qq, eo, la, Oa, Ve, fa, hy> are two

FSMDs.
Definition 5 [26] Computational equivalena& paths (=a)
Let S anda be paths oMz andM,, respectivelys anda are computationally equivalent,

denoted ag=a , if Rg= R, and ="rgyover 1V, .

Notice that the equivalence-of paths is restricted4o V. That is, it is not allowed iR
andr have some variables not in the intersection and the final values of variables which are
not in the intersection are ignored. An example of equivalent paths is given below.
Example 1: Let Vg ={a, b} and Vs = {a, b, X}, thenVsNV,={a, b}. Let S anda be two
paths ofMz and M., respectively. Assum®; = R, and both have no output assignment

statements.
1. If rg=<<a*b, b>, - >and, = <<a*b, b,a*b + a>, - >, ignore the value o&V;sN
V.
= p=a.
2. |If rp=<<a*b, b>, - >andr, = <<@*x, b, a*b+a >, - >, clearly, the final value

uses ¥VsMVginr,.

= fB*a.

16

2.2 FSM D Equivalence

Let Mﬁ: <Qﬁ, Jm |/3, O/g, Vﬁ, f/g, hﬁ> andM, = <Qq, Jwo, la, Og, Va, fa, hg> be two
FSMDs representing the descriptions before and after scheduling, respectively. The objective
is to verify whetheM behaves exactly ad,. That is, whether they produce the same output

sequences for all possible input sequences.

2.2.1 Assumptions

Since the design synthesized by HLS is usually applied to a component of a system, the
interface should be unchanged after scheduling. Therefore, we have the Assumption 1.
Assumption 1.

The input set and-output set-of two FSMDs are identical.: That¥sl,land G = O,.

Assumption 2:
The system works in an'infinite outer loop. That is, an FSMD represents a system, and
every walk of an FSMD starting from the reset state can always go back to the reset state.

More specifically, every inner loop-of an FSMD must have at least one exit point.

Assumption 2 is reasonable since a hardware design is usually designed to have a reset
state to prevent the dead lock. According to Assumption 2, all inner loops of an FSMD can be

cut by a cutpoint introduced in a latter section.

2.2.2 Computationsof an FSMD

Based on Assumption 2, a walk of an FSMD from the reset state to the reset state can be
seen as a complete computation. In other words, revisiting the reset state implies a termination
of a computation and a beginning of a new computation. Hence, an FSMD can be thought of

17

as a set of computations. Then the equivalence of FSMDs can transform to the equivalence of

computations.

Definition 6 [26] Computationu
A computationy is a finite walk from the reset stafg to o and it has no intermediary

occurrence of g

Definition 7 [26] Computational equivalenc&f walks
Two walks ap of Mg and ay, of Mg are computationally equivalent, denotedi@s wy, if

Rwp= Raeand rig= r g 0ver \zMV,.

Definition 8 [26] Mgis computationallycontained in M (Mg= M)

Mj is computationally contained M, , denoted ad/z< My, if; for each computatiops

of Mg, there exists a.computatigig of M, _such thajz=1/, .

Definition 9 [26] Computational-equivalenag FSMDs Mg= M)

Mg and M, are computationally equivalent, denote as=MM,, if M= Mg and M, & Mg.

2.2.3 Path Coversof an FSMD

Since an FMSD may have inner loops, there may be infinite computations of an FSMD.
According to Section 2.1.2, a walk is a concatenation of a sequence of paths; a computation

can be a concatenation of a set of paths.

Definition 10 [26] A path coverP of an FSMD M

18

A path coverP of M is a finite set of paths, if, for each computationMyfit can be

composed of the paths of P

Notice that a path cover of an FSMD is not unique. Fig. 9 illustrates path covers of an

FSMD M. M has only two computations, one gl=qy O ;00 .00 gz 0
g+ 00 gs 00> qo” and another is (2 = qpU00E q: 00 00 qs 00

gs 0 qo”. P1={pl, p2,p3}is a path cover d¥1 sinceil can be composed piL andp2

by concatenating them an@® can be composed pflL andp3. P2 = {4, (2} is also a path

cover ofM.

PL=1{pi, P2 ps} P2=1{pi,p2}

=

&A@

S
N

B
K
()

& -@(@

3

@@
S\
& @@

Fig. 9 Path Covers of M

Therefore, following Theorem 1 is derived and it has been proved by Karfa et al [26].

19

Theorem1l [26] Mg M, if there exists a path covep® {pgo, ... , n} Of Mg and a set

of path B,= {pao, ... , pm} Of M4 such that p = p,; for all i, 0Osi<n.

Theorem 1 transforms the problem of equivalent FSMDs to the problem of equivalent
paths. To find an equivalent paph in M, for eachps of Mg, we define the corresponding

states where the comparison of two paths starting from.

Definition 11 [26] Corresponding statéCS)
1) The reset statesgf= Qg and go=Q, are native corresponding states and
2) gmEQp and gmE Qs are corresponding states dfs = Qp and g, € Q. are

corresponding states-and there exist p#thsgs = s and = qg = gan, SUCh

thatB=a:

It is hard to find'a path cover constituting all poessible computations of an FSMD because
of the loops of an FSMD. Therefore, Karfa et al [26] introduce the cutpoints. Each loop of an
FSMD can be cut by at least one-cutpoint and the set of paths between cutpoints without any
intermediary occurrence of cutpoint is a path cover. According to Assumption 2, each inner
loop of an FSMD must have an exit point, i.e. a branch state; hence, the reset state and the
branch states are selected to be itligal cutpoints The set of paths between the initial
cutpoints without any intermediary occurrence of initial cutpoint is nameahigal path

coverand a path of the initial path cover is named an initial path.

2.2.4 Verification Method

Based on Theorem 1, for each path of the initial path d@yef Mgz, we want to find an

20

equivalent path irM,. Because scheduling may change the control structure, a @ath “
gs=05" of Pz in Mz may not find a computationally equivalent pathNky. The path
extension method, proposed by Karfa et al [26], is a solution to handle this situation. It
extends a path to build a new path cover. The path extension method eftendb
following steps:
1. Find the path sets @dpe
1) psis the set of all paths ofsfending at g .
2) peis the set of all paths ofsB3tarting from g .
2. For each pathBs of ps concatenatgk and each path ipe Bm is the set of all such
concatenated paths ang i§ nota cutpoint now.
3. Remove each path, which is a path obps path of pefrom P;.
4. Add all paths of Bnnto Pg-:
After the processPp becomes a new path cover Miz. A path extension is invalid if it
becomes a loop or it needs to extend via the reset state.

Fig. 10 illustrates the verification flow- of [26]. Two FSMDs, which &g and M,
representing the descriptions before and after the scheduling, are the inputs of the algorithm.
At first, the algorithm inserts.the cutpoints only ilig and finds initial path coves of Mg.

Then, it starts from the reset states to find a computationally equivalent patiMfroior

each path oPg. First, it finds 8= qz=0q5” from Pg depending on the corresponding states
(9s , dam), and then it find a computationally equivalent pativip. If a computationally
equivalent path & = g.m=0gan” is found, it records the path®,@) as the computationally
equivalent paths and their end stateg (0.n) as the corresponding states. But if a
computationally equivalent path is not found, extend gath build a new path covePg.

Note that, if5is not extensible, the algorithm fails; otherwise, it repeats the process until all
paths ofPz finding their computationally equivalent pathsNly. Hence Mg& M, is proved.
Then, it interchangellz andM, and repeats the process to prig= Mz. As bothMz= M,

21

and M,E Mg have been proved, M M, .

v

<M, , Ms>
InsertCutpoint in My InsertCutpoint in M,
v v
GetEquivalentPath GetEquivalentPath
CheckEquivalence CheckEquivalence
ExtendPath B ExtendPath

v v v
(e) i

Fig. 10 Verification Flow

Obviously, Karfa’s algorithm has the ability to cope with BB-based scheduling. Since
BB-based scheduling does not change the control structure, the bijective mapping of cutpoints
are preserved. It means that for each path-of one -FESkWalgorithm can straightly find the
computationally equivalent path of another one without any extension.

Karfa’s algorithm is also .capable of verifying PBS. PBS only merges some consecutive
paths; it doesn’t move the operations across the BB boundaries after merging the paths.
Therefore, the algorithm with path extension method is strong enough to handle PBS.

Karfa’'s algorithm obviously supports some code motions: DD, DU, MU, MD, and UM
through path extension; since moving the operations from one path to another path can be
thought of as merging these consecutive paths. Note that a merge state is not a cutpoint, the

algorithm without path extension inherently handles DD and MU.

22

Chapter 3
M otivation

Although Karfa’s algorithm discussed in Chapter 2 can verify the BB-based and PBS, it is
still weak in handling some code transformation techniques, such as Sp, RSp, and CSE.
Following sections give two such examples and we proposed the solutions for these cases in

the next chapter.

3.1 An Example of Speculation

The equivalence of two paths defined by Karfa et al can not handle the result of
scheduling employing Sp or RSp.-An example of Sp is shown in FidMA1is the original
FSMD, and it is functionally equivalent #d,. Two systems are functionally equivalent if

they produce the same output sequences for all possible input sequendgs) Vgt {a, b,

c, d}, I = {x, y} andO = {out}. The scheduler movesbT x+y”’ from “qz; O O~ qgs to
“dgo U [qps” and generatedly. The left.computations argus = qg U > g U [H

ez 00> a0 gge” of Mgand Up=0eo O Oz O Q00 ez 00> Qao”

of M, shown in bold lines. Their characteristic formulas axgy) & <x-y, b, X<y, x-y+1> &
[out] x—y+1]” and “(X<y) & <xy, Xty, X<y, x-y+1> & [outl] x—y+1]", respectively.
Obviously, ¢z and 1y are not computationally equivalent becausey<b, x<y, x-y+1> #
<Xy, X+Y, X<y, X-y+1>; 145 is not extensible. Therefor®z andM, are not computationally
equivalent. However, the conditions and outputg/@fand 1y are equivalent; the different
values won't affect the outputs of all computationd/gfandM,. That is,tz andy produce

the same output values for any input. Thug,and t» should be equivalent. Therefore, a

23

definition of equivalence between paths that captures the notion of functional equivalence is

needed.

-/leex<y,
bex+y

le/
deb+x

Fig. 11 An Example of Speculation

3.2 An Example of CSE

Fig. 12 illustrates an example ‘of safe-speculation (SSp) and CSE. SSp is a method to

realize Sp [15]. It attempts to moseel] a+b) from “qp; 0 [sz’ to “gged - gp;”. Unlike

Sp, it introduces a new variable'” to store the value ofd+b”, and then assigne™’ to “¢".
After SSp, all walks starting from the reset statge to sg@l a+b) havese(e]l a+tb) and
there is no statement redefining’;“b” or “e'” betweense'andsg; therefore, CSE replaces
sg with ‘g e .

Karfa’s algorithm fails in this case. At first, it calculates thaizT) - op; =

deo [gq7”. Then it compares the paths, denoted in bold lines, starting dgrandqq;.

24

Because the expression ¥ is replaced inVl,, the final values of & are not equivalent;
therefore, the bold paths are not equivalent. Howevee(d'] a+b) is recorded in this case,

both paths have the same final valaely” of “e”.

ceca<b cea<b,
I e'ca+b
le/ c/ le/
dea+f e<e', dea+f

dea+d

Fig. 12, An Example of Safe-speculation & CSE

Sp, Rsp, SSp, and CSE are.common. techniques in scheduling. None of the formal
verification methods proposed in Section 1.2 can handle all of them. This thesis proposes an
equivalence checking method for scheduling to support them, and our method is extended

from Karfa’s method [26]. Following chapter describes the detail of our method.

25

Chapter 4
Our Proposed M ethod

This chapter has three sections; first one defines equivalence of paths to cope with Sp and
RSp; second one gives a solution to handle CSE; the last one is the detail of our proposed
algorithm. The purpose of this thesis is to check whether two FSMDs, which are used to
represent the descriptions before and after scheduling, produce the same output sequences for
all possible input sequences. Our assumptions and the basic theoretical conceptions, which are
proposed by Karfa et al [26]; are described in"Chapter 2.

In the rest of this thesi8/lz = <Qg, g, I3, Op, V3, Tz, hp> andM, = <Q,, w0, |, Oy,

Va, fa, hy> are the behavior-FSMD and the scheduled FSMD, respectively. A gray node

depicted in a figure'represents an initial cutpoint.

4.1 Solution for Speculation

The rest thesis will'use the terminologies: a“statement, a used variable, and a defined
variable; therefore, we give their definitions below.

Definition 12 StatementUse and Define

A statement'std(] €’ assigns an arithmetic predicate or express@rd a variable d).

Then st is said to usal variables occurring in and to definéd ”.
Example 2: A statement $:x[1 a+b” is said to define X’ and to use &” and ‘b”. In this

example, &”, “b” and *X’ are the variables of where ‘a” and “b” are called used variables

and X" is called defined variable.

26

4.1.1 Equivalence of Paths

Assume two paths which afgof Mz and a of M, have the same condition and the same
outputs, but their final values of some variables are not equivalent. If these final values will
not be used in botMg and M, the outputs will not be affected; heng¢and a can be
thought of as two equivalent paths.

Definition 13 Effective variabley of a paths
A variableveV; is an effective variable of a pafh= qz=0q5; of an FSMDMg if there

exists a walk which starts frooy and usesV’ before any definedv”.

In Fig. 13,5 = g, 0LL g, 00 g is a path of an FSMIM, depicted in bold line.d”

is an effective variable g8 becaused " is used by the walk¢, (1 [1~ g,” starting from the

end stategs of £.°0On the contrary, V' is NOT an effective variable off. Since for all

possible walks starting froms, only the walks containing the paf have a statement
“dda+v’ uses V. Others have no statement having’ ‘as'a used variable. However,
“d0d0a+v" is always executed after the statemewnila+1” redefiningv. Therefore, there

exists no walk starting froms @and using ¥’ before any definedv”.

27

Fig. 13 An_ Example of an Effective Variable

Definition 14 Equivalenceof two paths §=a)
Two paths S of Mz anda of M., are equivalenit
1) Rs=R, over 5NV, and
2) 0p=04 over\snV,and
3 VwviEVsNV,andits final value in updated variable setey€ ap and e <
® e3=¢, over \GMV,0r

€ “v”is NOT an effective variable ¢f in Mg and ofa in M.

Clearly, if B=a, f=a . The equivalence of two walks is defined in the similar way.

Definition 15 Equivalenceof two walks (; =ay)

Two walks, w; of Mg anday of M, are equivalent
1) Ruw =Rz over \3NVyand
2) Ow1 = Ouz OVer \NVyand

3 VViEVeNVg, eu and en are the final values ofv” in @, and in @y,

28

respectively,
€ e.= e, over BNV, or

€ “v”is NOT an effective variable ab; in Mg and ofayin M.

The equivalence of FSMDs is similar to the computational equivalence of FSMDs defined
in Chapter 2.
Definition 16 Mgis contained in M

Mg is contained M, if for each computatiop of Mg, there exist a computatiqu, of

Mg, such thap =4,.

Definition 17 Equivalenceoftwo FSMDs Mg = M)

Two FSMDsMgandM, are equivalent, denote &= M, if Mg is contained iM, and

Mg is contained in M.

Theorem 2 Mgis contained ifM,, if there exists-a path covei= {pso, ... ,Pam} of Mg

and a set of path,Z {pqo, ... , Pm} Of Mg such that p = p, for all i, 0i<n.

The proof of Theorem 2 is similar to it of Theorem 1.

Definition 18 Corresponding state pa{CSP
1) The pair of the reset states,§ Qg and go=Q,, is a native CSP.

2) The pair of stateqjmm=Qpz andqm=Qq, is a CSP if the stategg =Qp andq, <

Q.. is a CSP and there exists pajfis, gs=0sm anda = ;=0 , such thaf=a .

29

4.1.2 Notion
An example of two equivalent FSMD#z and M,, before and after scheduling

employing Sp is shown in Fig. 14. Sp transforMg to M, by moving ‘b0 x+y” from

“Op:0 - 0ps'to “ggo 0 - Qps’. The reset states aggy andqqe and the initial path covers
are {"B0= qe U0 qg", “BI=0p 0 gez00 g 00 dgo”, “B2= Qg O[>
Opz U g OO gp”t and {*a0= Qe O3> Qas”, “Q1= Oz O Qez OG-

ez U b Qoo “02=0az O [daz 00> Qee”}. Our algorithm first compareg0and a,

and then computesiz = < a, X4y, X<y, d >" # “@e = < a, b, X<y, d >". It is obvious that

only the final values of variableb" are not equivalent. Sinceb™ is immediately used in
B2succeedingl0, it is an effective variable ¢80; thus, 0 # a0. Therefore, our algorithm

extendsBOto S0B1 and S0B2, and then compargiyflandalal. It results that &pgp; = <
X=Y, X+Y, X<y, X=y+1.># Wyoa: = < XY, b, X<y, x=y+1 >".'Similarly, our algorithm checks if
“b” is an effectivervariable ‘0081 and afai.-In-Mg, “b’ is'immediately redefined by
“bOx+y” in SOB2. Therefore, b” is NOT an effective variable gfgB1. In M., there are
only two computationsa0ad and a0a2. SinceaOadl is not used or definedh" and al0a2

always redefinedty” before using it, thereforeb™ is NOT an effective variable. As a result,

we can conclude th@gB1=a0al .

30

-leex<y,
bex+y

Fig--14-An Example of Speculation

4.1.3 CE Algorithm

CE Algorithm checks whether a variablas-an effective variable of a pathof a path
cover P in an FSMDM.- Note that, it searches paths in I breadth-first search (BFS)
method. A state) is reachable from.a stafig means that there exists a walk starting frgm
and ending at]. Then BFS can discover all reachable states fropm M [31]. That is, BFS

can discover all paths in WMom the end statezepf 5.

CE Algorithm
Input: A variablev of a pathgin a path cover P

Output: TRUE ¥ is NOT an effective variable ¢#) or FALSE

CheckEffecty,B,P){
1 qp= EndStatef);

31

2 [l ggis the source state where BFS starts from

3 llp = all paths starting fromgin P,

4 tp=Ilp;

5 p = Popllp);

6 while(p){

7 if (p usesy return(FALSE);
8 else ifp defines ¥y p = Popllp);

9 else{

10 gp= EndStategg);

11 pset= all paths starting from,dn-P but not contained in tp;
12 tp = tp Upset

13 llp =llpU pset

14 p ="Poplip);

15 }/endelse
16 }M/endwhile
17 return(TRUE);

}Y/endCheckEffect

Proof of CE Algorithm

We prove CE Algorithm in two parts. The first part is for the termination and the second
part is for the correctness.
1 (Termination)

CE Algorithm has only one loop, named p-while-loop. The termination of p-while-loop
depends on the number of pathstpn Sincetp is a subset oP, CE Algorithm can always
terminate.

2 (Correctness)

32

As line 7 returns FALSE, there exists a walk starting figyrand using ¥V before any
defined V. Therefore, V" is an effective variable gf.

Assume, for the purpose of contradiction, that there exists aawatlrting fromaz and
using ‘v’ before any definedv” as CE Algorithm returns TRUE. Without loss of generality,
let w has only one path using/”; say py. Since line 7 is not executeg, is not intp.
Therefore, we can lgf p;... pi be the first part otvwhere eaclpy is contained irip for all k
from O toi and let the succeeding path: of p; is not intp. According to line 8p; must
define ‘V’; otherwisepi+; should be irtp. Then we can conclude that’‘is not an effective

variable as return TRUE.

Complexity of CE Algorithm

n = the number of states ®f
e = the number of edges of M
ko =the number of outgoing edges of a state of M

In the worst caseq travels all edges; therefore; p-while-loop iterates at mbstes. Line
11 scans all outgoing paths. of a state and checks whether each path is contgpnet in

devotes Qko*e). Therefore, the complexity of CE Algorithm igerko).

4.2 Solution for CSE

The equivalent problem introduced by CSE can be solved if we can record all possible

available statements.

33

4.2.1 Available Statement
Definition 19 Available statemerdt of a state q
A statement st[] e is available at a state q if
1) all possible walks from the reset state to q hasdt

2) “v’and all used variables inae not defined between the lasast g.

Fig. 15 illustrates an available statement of a stgiels the reset state.qp O [

Q: 0 .00 gs 00 q4” is the only one walk fromgo to g4 . Since b” of

“slallb+c” is redefined in §; U - g2";s1.is NOT an available statement of the stpte

On the contrary, s2a1b+c” is available at the statg, since the walk frong, to g, hass2

and between s2 and,cgll variables-of s2 are not redefined.

a<b+cisNOT
available at ¢

dea+b

a<cb+cis
available at ¢,

Fig. 15 An Example of an Available Statement

An available statemendt of a stateq holds a main property: all variables sf are

34

preserved the values from the last occurrencst ¢d q. Therefore, a system produces the
same outputs as it re-compugggagain between the last occurrencetaindqg. The following

lemma is derived.

Lemmal

Let statement dte available at a state g in M' is transformed from Nby two steps:

1. Addanewpathsd O g7 inMwhereg O q'” has only a copy stf st

2. Change the start states of all path starting at g to q'.

Then M= M.

We give a brief proof of Lemma 1. Sinséis available at the statg the values of all
variables ofst are preserved from-the last occurrencstdd q for each possible computation
U having q. Therefore, lef/ of M' be the corresponding computation @f Clearly, they

compute the same condition: and the‘'same result. Therefttemputationy €M, Ju E
M' such thafz =4/, and vice versa. As the resiMt, = M'.
Fig. 16 gives an example of-Lemma N.-is generated fronM having an available

statementsé¢'d a+b”. Then, M = M'.

35

“/e'<a+thb,

cca<l
-le'<ca+b
M

Fig.-16 An example of Lemma 1

le/
e< 1,
deb+1

a<b/
out<d+e a<b/

out<d+e

M =

Let Mg andM, be transformed by Lemma 1 frolhz andM,, respectively; thenylz =

Mg and M, = M. Therefore, iMgz = My, Mg & Mg.

4.2.2 Notion

Fig. 17 shows a solution for CSH; andM, are partial FSMDsVzV,~{c, d, e € f },
I={a, b}. gz and g.e are the reset states Mz and M,, respectively. Before finding all
equivalent paths, our algorithm computes all available statements of each cutpdpwarod
Mg. in(ggy) = {“cl a<b”, “eT a+b™} and in(gsz) = {“c0 a<b”, “e'T a+b”} are the set of
statements available gg; andq,;, respectively. After computing all available statements, our
algorithm compareg0and a0and computes thatdy= <a<b, d, e, a+th,f > = a,y'. Then it
compares path8Zandal and computes thatdz; = <c, a+d, atb, a+b >"# “@,;= <c, a+d,

e', e'>". According to Lemma 1in(gg;) andin(gq.z) are thought of as paths; we concatenate

36

in(ggz) andB1 and concatenaia(qq;) andal. As the results;= <c<b, a+d,atb,atb > =

Wy andfIl=al

in(qp1): _/ po | "dar): @ , a0
lcEa<b ca<h l.cEa<hb, } A
c a > ' Cca<,
].e’<:.a+b e'eath 1.e<:.a+b e ath
c/ le/ c/ le/
e<a-+tb, dea+1 e<e, dea+1
dea+d dea+d
Yo N ()
-/ -/
fea+b fee'
M; M,

Fig. 17 A Solution for CSE

4.2.3 Compute Available Statements

For each pathB= gsz=0g of an FSMDM, gen(§), in(p), kill(8) andout(f) are defined.
gen()) is the set of statements Bfwhich are available at the end statgBoAt first, gen(d) is
computed for each pagof M. Therefore, three groups of equations can be created, shown in
(3.1).in(p) is the set of statements which are available at the startggtaik s taking into
account all the available statements of all possible walks starting from reset sjatet tis
the intersection of the sets consisting of possible available statements of all preceding paths of
L. Oppositelykill(8) is a subset oin(8) and contains all statements having some variables
being redefined 8. out(p) is the set of statements which are available at the end sjaté of
is the union of gerf) and the statements in B)(but not in kil(£).

37

1. out(B) =genPB) U(in(B) - kill(B)

2. IN(B) =M pisapreceding pans o gOUTLP) (3.1)

3. in(B0 = @ whereS0is the path starting from the reset state
Note that,n(f) for the reset state is handled as a special case because nothing is available if
the FSMD has just begun at the reset state. And more importgf,uses intersection
because an statement is available at the start st&erdy if it is available at the end state of
all preceding paths according to the definition of an available statement. All paths starting
from gz should have the same in set. Therefor@gh= in(H) for eachs starting at g.

Fig. 18 gives an example of how-to. compute available statements of cutpbinits.a

partial FSMD having three cupointg.g, Jqz Jo3 and three initial pathsa0= quo I - Jaz,

a1=0az 0 - Qaz0 — Oas 02=0az[1] - oz[D - Gay)- At first, our algorithm compute

gen@0), genal) and gen@2. As computinggen(@l), there are two time steps (i.e. two
transitions) needed.to be computed. The first transition contains two statera@ngs; and
“dd a+d ”. Since ‘d0 a+d " redefines t." by-itself, it is not available at,s and can not be
contained irgen(@Z). And in the‘second transition, all its'statements are availablg.a®ur
algorithm cascades statements with. their order, andgée@?) consists of &[] e' " having
order 1, ‘tJ d+€” having order 2, anddll e'”having same order 2. It is worth to notice that
the time is preserved by recording the order of statements and the statements with the same
order are executed simultaneously. Next, our algorithm computaad out of each path.
Since a0 starts from reset state(q.g = in(a0) = @ andout(a0 = gen(@(). BecausaxOis

the only preceding path @fZ andaZ, this derives that ing;) = in(a2) = in(a2) = ou{(a0. As
calculatingout(a), “c” of statement €[] a<b” in in(aZ) is redefined inaZ, thus,out(al) is

the union ofgen(a) and the rest statementsinfal), “e'] a+d ”. out(a2) is computed in the
similar way. Finally, our algorithm compute¥q.s). Since there are only two preceding paths

alandaZof qu3 iN(Qqeg is the intersection adut(aZ) andout(a2). Fromout(aZ), we find all

38

equivalent statements in ¢at) in order, then ifg.3) = {“ e a+b”, “cld d+e”’, “gle' "}.

M, @ ------- n(dwr): O
out(a0) = gen(al): -/
lcca<b, a0 c<a<b,
le'€a+b e'eatb Nin(qa)
....... lcca<b,
o/ e/ le'ca+b
ece’, dea+f
al j-,+4
o2 out(a2):
out(al): gen(al): @ gen(a2): le'ca+b,
le'€ca+b ||l.e€ e ; ldca+f ||2dca+f
2ec e 2.ced+e, cedte 2cedte ||3.ced+e,
Jced+e |[|2.g€e gee Qgtce 3gce
3g¢ce
...... in(f]a3)3
le'€a+b,
2c€d + e
2g¢e’

Fig. 18 Compute Available Statements

4.2.4 FASAlgorithm
The algorithm of computing all available statements in an F3MB shown below. Note
that the initial paths have been sorted by BFS and the gen set of each path has been calculated.
FAS Algorithm
Input: An FSMD Mwith reset state gpnd initial path cover
gen(f) has been computed for each initial path

Output: in{f) set for each initial path

39

FindAvailableStatement{){

[EEN

\]

(o¢]

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

for(all paths p of B){
p.travel= FALSE;
p.oldout = &;
in(p) = G;
ouip) = G;} //lendfor
Qp = a queue of paths Bj sorted by BFS and BFS starts frog q
change= TRUE;
while(changé{
lip = CopyOp);
pp = Popl(p);
change = FALSE;
while(p){
oldout = oupp);
gs= StartStateip);
if(gs Is reset state)
out(pp) = gertpp);
else{
if(some preceding path are not traveled)
IN(PP) =M pis a preceding paths of pp and paravel s TRUE OUL(P));
else
IN(PP) =iN(PP) i peceding s of w0 OULP);
out(pp) = gerfpp)U (in(pp) - kill(pp));}//endelse
pp.travel= TRUE;
if(out(pp) # oldout) change= TRUE;

pp = Popi(p);

40

26 }/endwhilepp)
27 }/lendwhile(changé

}/endFindAvailableStatement

Proof of FAS Algorithm

We prove FAS Algorithm in two parts.
1 (Termination)

FAS Algorithm has only two loops, change-while-loop and pp-while-loop. Pp-while-loop
depends on the number of pathslip Sincellp is the initial path coverlp is finite and
pp-while-loop can terminate for each iteration of change-while loop.

Then prove change-while-loop can terminate. A walk starting from the reset set is called
an r-walk. Change-while-loop-depends on the number of all possible r-walks. The paths
starting from the reset state have the constahset, and then each other path can compute
the constanin set from an intersection of the constanit sets of all possible preceding
r-walks. LetWp be the set consisting of those possible preceding r-walks for a path.

Let 11 be a loop and a8 be anin set ofll. Let’'s passB throughll and compute theut
setB' of 11 with the rule (3.1). Clearly, as passiBg) B’ throughll for any number of runs,
even infinite, we always compute the same condarih other words, leWf be a subset of
W)p and each walk, called rf-walk, \0ff has either no loop or only one. The intersection of the
out set of all walks ilWp is same as it iWf. Therefore, the constaint set of each path is an
intersection of the constant cagts of finite walks.

Sincellp is the initial path cover sorted by BFS, after the first run of pp-while-loop, each
path has an initiah set of an r-walk or an intersection of some r-walks. After a finite runs of
change-while loop, the constamit sets of all preceding r-walks containing no loop for a path
are computed. (An r-walk containing no loop may have reverse order because of BFS; for
example, let an r-walk bplp2p3, and after BFS, the order @3 is prior top2 in llp.

41

Therefore, the r-walk needs at most 2 runs of change-while loop to compute the coustant
set.) Similarly, all preceding r-walks of a path containing only one loop can compute the
constantout sets after finite runs of change-while loop. Since there are finite r-walks,
change-while-loop can terminate.

2 (Correctness)

Since a path has only finite preceding rf-walks and each rf-walk can compute the constant
out set after finite runs of change-while loop, all available statements of a state can be
computed. Assume, for the purpose of contradiction, that there is a stagtnvbith is not
available at the start state of a ppthbut is.in thdan set ofp. It means that some preceding
rf-walks don’t have sbr a variable of St redefined in a preceding rf-walk. In the former case,
theout sets of some rf-walks don’t contashand the process in line 19 or line 21 will remove
it. In the latter case; st will be killed by line 22 as compute theetstof the paths defining st
If their original outsets has sthangewill be set to TRUE. As a result, all statements in the in

set of p are available at the start state of p.

Complexity of FAS Algorithm

n = the number of states bf
e = the number of edges of M
Ki = the largest indegree of all states of M

An iteration of pp-while-loop take®(ki) and pp-while-loop has at mostiterations.
Change-while-loop depends on the largest number of the reverse order of all r-walks and the

longest loop; it has @) runs. Therefore, the complexity of FAS Algorithm ige®ki).

42

4.3 Our Algorithm

According to the Theorem 2 and Definition Mg is containedVl, if there exists a path

coverPg={ pgo, ... ,pm} of Mg and a set of patR,= { pao, ... ,Pan} Of Mg such thapg =

Pei for alli, Osi<n. If a set of patlP, of M is also a path cover ®fl,, it implies thatMg =
Mg.

Lemma 2 Mg= My, if there exists a path cove;= { pgo, ... ,pm} of Mg and a path

cover Ry={pgo, ..., pn} of My such that g = p, foralli, 0 <i<n.

Since extending a_path means to find a new path cover, we insert the cutpoints into not
only Mg but also M ;‘then, we obtain initial path coverg 8nd B, of Mg and M;, respectively.
For each patlf of Pz, our algorithm attempts to find an-equivalent patMinby finding all
possible paths iM4-depending on CSP. Léfind an equivalent path" of M, wheread" =
ala? and al and a2 are initial paths. In-this case; at firgt,can't find an equivalent path
from the initial path cover dfl,,and then our algorithm extendd to find a new path cover,
P.. ThereforeS can find an‘equivalent pathZaZfrom P,. If each path of the final Fhas an

equivalent path of the fin&, and each path of the finB}, has an equivalent path of the final
Pﬁ, M/g = M,.

Fig. 19 illustrates the overview of our algorithm and the detail is depicted in Fig. 20. Our
algorithm reads two FSMD#)z andM,, as the inputs and produces a set of equivalent paths,
E, as an output. Initially, the set of equivalent pdths empty and the set of working lilst
contains no path waiting to find an equivalent patiMin. Let “(0s,000)" be the only one
member of corresponding state pair set, GC8Ps,={(gs,0a0)}. After the initialization, our
algorithm inserts the cutpoints into bd#y andM,. Subsequently, it finds initial path cover

Pso of Mg and P4 of M,. Next, it finds all possible available statements, i.e.ithgets of

43

each cutpoint in both pland M,. Hence, it is ready for finding equivalent paths.
First, our algorithm finds 8= qs=0qg" from P, depending on Yz,qam)” Which is in
CSBs,, and then it finds an equivalent path, starting figm, of Psoin M. If an equivalent

path “a=qm=qm" is found, it records the equivalent path paigB &)’ in E and adds
“(05,9an)” to CSPs,. Subsequently, it removes from Pgp and a from Pgo. Checking two

paths are equivalent or not may have three situations. In the first situation, they are exactly
equivalent. In the second situation, if they are not equivalent because of some final values of
variables, our algorithm checks those variables by CE Algorithm. If all of them are not
effective variablesg finds an equivalent path. Otherwise, in the third situation, according to
Lemma 1, our algorithm_generat@sby concatenatingn(qz) and S, and it also generates
each d by concatenatingn(g,m) and eachain M,. It .comparesf with eacha'. If the
equivalent path ofg.is not found, it extendg?(go. to step-11). Otherwisg? finds an

equivalent path (goto step 10). Our algorithm repeats the process (GetEquivalentPath) until

all paths ofPs finding an equivalent path iN,. Finally, check ifP4o is empty. If it is, it

implies that all paths in Eonstitute path covers-of Mind M,. Hence, M= M,.

44

InsertCutpoint in Mg and M,
Y
FindAvaiableStatements

v
GetEquivalentPath

findEqlPath

AddAvaiableStatement

CheckEffect

ExtendPath

Y
CheckPathCover of M,

i

Fig. 19 An Overview of Our Algorithm

45

1 Insert cutpoints into Mz and M,
P = nitial cutpoint paths of My
P, = initial cutpoint paths of M,
CSPs.=Lcsp < (qpqan), Lp=9, E=O

2 FindAvaiableStatements in
Mpgand M,
v 3 13
=0 Y " Pro? N
PN
Y 4 N Y
P ﬂ: 0?
5 7
(49) = Pop(Lesp) p = Pop(Lp)
6 , 8
Ly - a Exit (Pass)
- findEglPath(f,q4:,P
getAllPath(Pjgp) QRe AP)
AddAvaiableStatment
Lesp = Lesp U(endfenda)
| if (endBenda)not in CSP, CheckEffect
CSPs, = CSP,, U(endf,end@)
E-E U(Ba) Y 11
10 t Y9 Find o2 ™| Extend 8 in M,

Fig. 20 Our Proposed Algorithm

Proof of our algorithm

Obviously, the termination of our algorithm depends on the number of paths needed to be
checked and the number of CSPCEP;,. Since there are finite cutpoints and finite initial
paths in bothMg andM,, the combinations of CSPs are finite and our algorithm can only
extend finite times to generate finite concatenated paths. Therefore, our algorithm can always

46

terminate.

Since step 8, 9 and 10 of our algorithm in Fig. 20 ensureBlaintains only pairs of
equivalent paths d?z andP, and as extending a path, our algorithm concatenates all relevant
paths to build a new path cover and removes the relevant cutpoint and patlis Rgnand
P.; therefore, all paths d has no cutpoint be an internal state and all are the paths starting
from a cutpoint and ending at a cutpoint. As a result, as our algorithm executes successfully,

all equivalent paths are contained iafd they constitute the path covers gfavid M, .

Complexity
n = the number of states bF
e = the number of edges of M
ki = the largest indegree-of all states.in M
ko =the largest outdegree of all states in'M

The complexities of FAS Algorithm tak@(ez*ki). Let the complexity of comparing two
statements to b&|} As findEglPath, a path ikl can extend at most times and each path
extension needs to concatenat€k) paths. Therefore, the complexity of findEqlPath is
O(n*ki*ko*|F|). Note that H| usually takes -much longer time than CheckEffect and
AddAvailableStatement. When check if the new CSP is inCtBBs,, it has then? possible
combinations. In the worst case, one path is extemdéidhes. There ard&i*ko*(n-1) +
ki*ko*(n-1)*(n-2) + ... +ki*ko™*(n-1)*(n-2)...2.1 = ki*ko™*(n-1Y"Y number of paths.
Therefore, the complexity of our algorithm igrfki %ko ™| F|).

In the best case, each pathNip can directly find an equivalent path .. No path

extension and CheckEffect are needed. Therefore, the complexi®(efski+n*|F|) =

O(n*|F)).

47

Chapter 5
Experimental Results

Our equivalence checking algorithm and Karfa’s algorithm [26] have been implemented in
C. We compare two paths with symbolic execution. All benchmarks have been run on a 1.86
GHz Intel Core 2 CPU PC with 2 GB RAM. The run time of all benchmarks is less than 2
seconds. One benchmaukffeq, is data intensive; some are control intensive, sudt@s
barcaodetlc andlru ; some are control.and.data intensive, suam@deandkalman [32][33].
testl andest2, which are built by ourselves, are control and data intensive. The results shown
in tables are sorted by our run time.

Table I, Table Ill.and Table-V-list the characteristics of the benchmarks in terms of the
number of states iMg, states irM,, variables invzMV,, statements iMz, and statements
in M,. Table I, Table IV and Table VI show the verification results. They list in terms of the
number of initial cutpoints Mg, initial paths inMg;-initial cutpoints inM,, initial paths in
M, path extensions in Mwith the iterations back to step3, and equivalent paths and in terms
of the employed scheduling technigues for each case, the run time of our algorithm, and the
run time of Karfa’s algorithm.

Table | and Table Il are the benchmarks where those cases are all equivalent cases and
scheduled by PBS or SPARK [15] with removing the SSp in manually. Therefore, our
algorithm and Karfa’s can handle the cases. Table Ill and Table IV are the equivalent cases
scheduled by SPARK excepéestl andtest2 which are transformed manually. Karfa’'s
algorithm does not support Sp, RSp, SSp and CSE; therefore, it fails to all the cases in Table
IV. The cases in Table V and Table VI are not equivalent. Each case is added error manually.
barcode_err and kalman_err are transformed fronbarcode and kalman by adding an

improper MU;mode_errremoves one operation from,; Iru_err changes the end state of a

48

path of M,; test2_errhas an improper CSE. Our algorithm can find that they are not
equivalent.

For most cases, run time depends mainly on the numbers of iterations and path extensions.
The run time otest2_erris larger tharkalman_errbecause the algorithms extend 80 paths in
kalman_erras they extend 524 pathsté@st2_err The number of iterations contained in a pair
of braces is the number of paths compared by the algorithms. The number of path extensions
is the number of failed paths as finding equivalent paths. Since our algorithm only runs one
pass, our run time dfarcodeof Table Il is less than Karfa’s. However, if two paths are not
equivalent in findEquivalentPath,. our _ algorithm performs CheckEffect or/and
AddAvaiableStatement, and then compares..again.. Besides, FindAvaiableStatement also
consumes time. Therefore, our average run time is lager than Karfa’s about 2 times.

The experimental results,-including one high complexity: ¢adean, indicate that our

algorithm is usablefor verifying BB-based scheduling, PBS, code motions and CSE.

Abbreviations of each scheduling technique:

PBS: Path-based scheduling,

MU: Merging up, MD: Merging down
DU: Duplicating up, DD: Duplicating down, UM: Useful move,
Sp: Speculation, RSp: Reverse speculation, SSp: Safe-speculation,

CSE: Common subexpression elimination.

49

Table | Characteristics of Equivalent Cases 1

case #Qp | #Q, | #variablesin YNV, | #statemenis | #statements

barcode 9 6 4 12 16

gcd 7 3 3 11 11

tic 11 12 5 29 31

modn 6 4 5 11 21

Iru 23 22 13 18 26

kalman 105 101 64 104 112

Table Il Results of Equivalent Cases 1

Case #eutpoints #Pg | #cutpoints| #P, | # of Path | #E | scheduling Ours [26]

in Mg in Mg Extensions P/| Time | P/| Time

(iterations) F | (ms) | F | (ms)

barcode 5| 10 51 10| 2(10) 8/ DD,UMMU |P | 249|P | 318
ged 6| 11 2| 71]4(11) 7| PBS P| 304|P | 274
tlc 10| 19 10| 19| 1(19) 18| DU P| 364 /P | 335
modn 5/ 9 4| 10|2(18) 11| PBS P| 39.8/P | 29.2
Iru 21| 41 21| 41|0(41) 41| DU P 47| P | 449
kalman 101| 202 101 202| 32(202) 170 DU,UM P [481.5| P | 215.5

50

Table Il Characteristics of Equivalent Cases 2

case #Qp | #Q, |#variablesin YNV, | #statemenis | #statements
testl 8 8 8 12 12
diffeq 7 7 12 15 20
gcd 4 5 2 4 9
barcode 9 | 10 4 12 27
tlc 11 12 5 29 44
Iru 23 40 13 18 79
test2 29 | 21 23 43 45
kalman 105 . 150 64 104 279
Table IV Result of Equivalent Cases 2
case #Cp | #Ps | #Cy | #P, | # of Path | #E | scheduling Ours [26]
Extensions P/| Time | P/| Time
(iterations) F | (ms) |F | (ms)
testl 3 5| 3| 5|45 4| Sp,RSp,CSE P| 229|F | 247
diffeq 2| 3| 2| 3|01 3| SSp P| 238|F | 226
ged 40 7| 4| 7(0(7) 7| SSp P| 244|F | 195
barcode, 5| 10 6| 11| 2(10) 8 | SSp,DD,UM,MU P| 381 F | 26.8
tlc 10| 19| 10| 19|1(19) 18 | SSp,DU P| 46.1|F | 295
Iru 21| 41| 21| 41| 2(41) 39| SSp,DU P | 855 F | 40.1
test2 o 17| 9| 17|5(29) 24| Sp,RSp,SSp,CSE, | P | 111.7| F | 553.5
UM,MU,MD,DU,DD
kalman | 101| 202 | 102 | 203 | 34(202) 168 | SSp,DU,UM P | 1437 F | 182.8

51

Table V Characteristics of Not Equivalent Cases

case #Qp | #Q, | #variables in YNV, | #statemenis | #statements
barcode_err 9 6 4 12 15
mode_err 6 7 5 11 26
Iru_err 23 22 13 18 26
kalman_err | 105 | 101 64 104 110
test2_err 28 21 23 43 44
Table VI .Results of Not Equivalent Cases
case #Cp | #Pp| #Cy | #P, | # of Path Ours [26]
Extensiong P/| Time | P/ | Time
(iterations)| F' [«(ms) | F | (ms)
barcode_err 51(.10 5| 11[4(10) F 1 335 F | 283
mode_err 4 8 4| 12| 2(15) F| 392 F | 259
Iru_err 21| 41| 21| 41 3(44) F| 529|F | 384
kalman_err | 101|202 | 101| 203 | 19(56) F| 273|F | 123.6
test2_err 9| 17 91 17]9(9) F| 562|F |257.4

52

Chapter 6
Conclusion & FutureWorks

In this thesis, a formal verification method is proposed for the scheduling verification in
HLS. This method is capable of BB-based scheduling and PBS. It is also well suited to verify
some popular code transformation techniques: DD, DU, MD, MU, UM, Sp, RSp, SSp, and
CSE. But it still not supports some code transformation techniques, such as loop invariant and
copy propagation.

Fig. 21 shows an example of loop invariant. Since all variables of the statesnienty”

are not modified in the loopg:.- U U 02 O - qs1), loop invariant technique moves

“cl x+y” out from the loop. Qur-algorithm fails to this situation. Since the path endiyg at
and the path ending atj; are not equivalent, our algorithm needs to extend the path. After
the path extension, i.e. removing the-cutpomisandqs,, it becomes a walk which is not a

path. Therefore, our algorithm fails.

Fig. 21 An Example of Loop Invariant

53

Copy propagation is derived from the compiler. The statementgirn™ form are called
copy statements wherg™and *h” are variables. Copy propagation replacgs with “h” in
all the statements that have flow dependencies wthH". It is illustrated in Fig. 22. Since
“allx+y” and “cl] x+y” have the common subexpression, CSE replaces the expression of
“cld x+y” with “a”. Then, copy propagation findsdflc’ having data dependence with

“cl] at+b” and it replacesc” with “a”. Our approach fails to this case. Since start from the

CSP “@p2,0¢i2)", the final values of @ " of “qg. O 0> 0ggs” and “Qeiz O B> gais” are not

equivalent because % a”.

L/acx+y L/acx+y

-lx<x+1, -/xext 1,
cexty c<a

h/deel (bl "bld<ca | bl

M,

a

=

Fig. 22 An Example of Copy Propagation

54

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

D. D. Gajski, N.D. Dutt, A.C.-H. Wu, and S.Y.-L. Lin, “High-Level Synthesis:
Introduction to Chip and System Design,” Kluwer, 1992.

A. A. Jerraya, H. Ding, P. Kission, and M. Rahmouni, “Behavioral Synthesis and
Component Reuse with VHDL,” Kluwer, 1997.

P. Coussy, D.D. Gajski, M. Meredith, and A. Takach, “An Introduction to High-Level
Synthesis,” IEEE Design & Test of Computers, vol. 26, page 8-17, July-Aug. 2009.

C. Y. Hitchcock and D.E. Thomas, “A Method of Automatic Data Path Synthesis,”
Design Automation Conference, page 484-489, Jun. 1983.

B. M. Pangrle and ‘D.D. ‘Gajski, “Slicer. AState Synthesizer for Intelligent Silicon
Compilation,” IEEE International Conference Computer Design: VLSI in Computers &
Processors, Oct. 1986.

P. G. Paulin and J.P. Knight, “Force-directed Scheduling for the Behavioral Synthesis of
ASIC’s,” IEEE Transactions-on<Computer-Aided Design of Integrated Circuits and
Systems, vol. 8, page 661-679, Jun. 1989.

R. Camposano, “Path-based Schedulingfor Synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 10, page 85-93, Jan.
1991.

G. Lakshminarayana, A. Raghunathan, and N.K. Jha, “Incorporating Speculative
Execution into Scheduling of Control-flow Intensive Behavioral Descriptions,” Design
Automation Conference, page 108-113, Jun. 1998.

L.C.V. dos Santos and J.A.G. Jess, “A Reordering Technique for Efficient Code Motion,”

Design Automation Conference, page 296-299, Jun. 1999.

[10] M. Rim, Y. Fann, and R. Jain, “Global Scheduling with Code-motions for High-level

Synthesis Applications,” IEEE Transactions on VLSI Systems, vol. 3, page 379-392,

55

Sept. 1995.

[11] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Dynamic Conditional Branch Balancing
during the High-level Synthesis of Control-intensive Designs,” Design, Automation and
Test in Europe Conference and Exhibition, vol. 1, page 270-275, Dec. 2003.

[12] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Spark: A High-level Synthesis Framework
for Applying Parallelizing Compiler Transformations,” International Conference on
VLSI Design, page 461-466, Jan. 2003.

[13] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Loop Shifting and Compaction for the
High-level Synthesis of Designs with.Complex Control Flow,” Design, Automation and
Test in Europe Conference and Exhibition;.vol. 1, page 114-119, Feb. 2004.

[14] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Using Global Code Motions to Improve
the Quality of Results for-High-level Synthesis,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems; vol. 23, page 302-312, Feb. 2004.

[15] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau, “Spark: A Parallelizing Approach to the
High-level Synthesis of Digital Circuits,” Kiuwer, 2004.

[16] R. Ernst and J. Bhasker, “Simulation-based Verification for High-Level Synthesis
Applications,” IEEE Design & Test of Computers, vol.8, page 14-20, Mar. 1991.

[17] R. A. Bergamaschi and S. Raje, “Observable Time Windows: Verifying High-Level
Synthesis Results,” IEEE Design & Test of Computers, vol. 14, page 40-50, April-Jun.
1997.

[18] T.-H. Chiang and L.-R. Dung, “Verification Method of Dataflow Algorithms in
High-Level Synthesis,” Journal of Systems and Software, vol. 80, page 1256-1270, Aug.
2007.

[19] N. Narasimhan, E. Teica, R. Radhakrishnan, S. Govindarajan, and R. Vemuri, “Theorem
Proving Guided Development of Formal Assertions in a Resource-Constrained Scheduler
for High-Level Synthesis,” Formal Methods in System Design, vol. 19, page 237-273,

56

Nov. 2001.

[20] R. Radhakrishnan, E. Teica, and R. Vemuri, “An Approach to High-Level Synthesis
Validation using Formally Verified Transformations,” IEEE International High-Level
Design Validation and Test Workshop, page 80-85, August-Oct. 2000.

[21] R. Radhakrishnan, E. Teica, and R. Vemuri, “Verification of Basic Block Schedules using
RTL Transformations,” Lecture Notes in Computer Science, vol. 2144, page 173-178,
Jan. 2001.

[22] N. Mansouri and R. Vemuri, “A Methodology for Automated Verification of Synthesized
RTL Designs and lIts Integration.with.a High-Level Synthesis Tool,” Lecture Notes in
Computer Science, vol. 1522, page 204-221, Jan. 1998.

[23] Y. Kim , S. Kopuri;-and N. Mansouri, “Automated Formal Verification of Scheduling
Process using:Finite State-Machines with Datapath (FSMD),” International Symposium
on Quality Electronic Design, page 110-115, Aug. 2004.

[24] H. Eveking, H. Hinrichsen, and G. Ritter, “Automatic Verification of Scheduling Results
in High-Level Synthesis,” Design, Automation and Test in Europe Conference and
Exhibition, page 59-64, Mar. 1999.

[25] Y. Kim and N. Mansouri, “Automated Formal Verification of Scheduling with
Speculative Code Motions,” Great Lakes symposium on VLSI, page 95-100, 2008.

[26] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar, “An Equivalence-Checking Method for
Scheduling Verification in High-Level Synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27, page 556-569, Mar.
2008.

[27] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A Prototype Verification System,”
Lecture Notes in Computer Science, vol. 607, page 748-752, Jun. 1992.

[28] P. G. Paulin and J. P. Knight, “Scheduling and Binding Algorithms for High-Level
Synthesis,” Design Automation Conference, page 1-6, Jun. 1989.

57

[29] E. Teica and R. Vemuri, “A Mechanical Proof of Completeness for a Set of
Register-Level Transformation,” Technical Report 257/05/01/ECECS, University of
Cincnnati, 2001.

[30] Z. Manna, “Mathematical Theory of Computation,” McGraw-Hill, 1974.

[31] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein,
“Introduction to Algorithms,” McGraw-Hill, 2001.

[32] P. R. Panda and N. D. Dutt, “1995 high level synthesis design repository,” International
Symposium on System Synthesis, page 170-174, Sept. 1995.

[33] http://computing.ece.vt.edu/~mhsiao/hlsyn.html

58

	1_封面.pdf
	Equivalence Check of Scheduling with Speculative Code Transformations in High-Level Synthesis

	2_書名頁
	5_thesis_chloe

