

國 立 交 通 大 學

電機學院 IC 設計產業研發碩士班

碩碩碩碩 士士士士 論論論論 文文文文

高階合成中使用臆測編碼轉換技術之排程等效驗證高階合成中使用臆測編碼轉換技術之排程等效驗證高階合成中使用臆測編碼轉換技術之排程等效驗證高階合成中使用臆測編碼轉換技術之排程等效驗證

Equivalence Checking of Scheduling with Speculative

Code Transformations in High-Level Synthesis

研 究 生：李季慧

 指導教授：周景揚 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 九九九九 年年年年 一一一一 月月月月

高階合成中使用臆測編碼轉換技術之排程等效驗證

Equivalence Checking of Scheduling with Speculative Code

Transformations in High-Level Synthesis

 研 究 生：李季慧 Student：Chi-Hui Lee

指導教授：周景揚 教授 Advisor：Prof. Jing-Yang Jou

國 立 交 通 大 學

電機學院 IC 設計產業研發碩士班

碩 士 論 文

A Thesis

Submitted to College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Industrial Technology R & D Master Program on

IC Design

January 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年一月

i

高階合成中使用臆測編碼轉換技術之排程等效驗證高階合成中使用臆測編碼轉換技術之排程等效驗證高階合成中使用臆測編碼轉換技術之排程等效驗證高階合成中使用臆測編碼轉換技術之排程等效驗證

學生：李季慧 指導教授：周景揚 教授

國立交通大學電機學院產業研發碩士班

摘摘摘摘 要要要要

高階合成是一個將演算法層次的描述轉換成暫存器轉移層次設計的程序，它可以提

昇生產力。然而這轉換程序容易錯誤。排程，高階合成的子工作，是驗證高階合成中最

大的挑戰，因為排程會改變原來的執行順序。這篇論文的研究主題是排程驗證。我們提

出一個正規方法可用來驗證排程前後的描述是否相等。排程前後的描述由包含資料路徑

的有限狀態機所表示。它們一開始先被分解成有限條路徑；接著，在這些路徑中找到相

等的路徑。兩個包含資料路徑的有限狀態機的相等和兩條路徑的相等在這篇論文中被定

義。提出的方法不只適合驗證保留控制架構的排程，也適合驗證會改變控制架構的排

程。排程改變控制架構藉由合併連續的路徑或將某些程式碼在不同的基本塊中移動。由

驗證高階合成的測試程式的實驗結果顯示我們演算法可以有效地驗證排程。

ii

Equivalence Checking of Scheduling with Speculative
Code Transformations in High-Level Synthesis

Student：Chi-Hui Lee Advisors：Prof. Jing-Yang Jou

Industrial Technology R & D Master Program of
Electrical and Computer Engineering College

National Chiao Tung University

ABSTRACT

High-level synthesis (HLS) is a process of generating a register-transfer level design from

an algorithm level description. It can increase the design productivity. However, this

translation process can be buggy. Scheduling, a sub-task of HLS, makes the major challenge

of the HLS verification since it usually changes the original cycle-by-cycle behavior. This

thesis focuses on the scheduling verification. A formal method for checking equivalence

between the descriptions before and after scheduling is described. Finite state machine with

datapaths (FSMDs) are used to represent both descriptions. Two FSMDs are both decomposed

into finite paths, and the method finds equivalent paths between them. The equivalence of

FSMDs and paths are also defined. The proposed method is suited to verify not only the

scheduling preserving the control structure but also the scheduling changing the control

structure by merging some consecutive paths or moving some codes across the boundaries of

the basic blocks. The experimental results on several HLS benchmarks show the effectiveness

of the proposed algorithm.

iii

Acknowledgements

I greatly appreciate my advisors, Dr. Jing-Yang Jou and Dr. Juinn-Dar Huang, for their

patient guidance, valuable suggestion, and encouragement during these years. I am also

grateful to Che-Hua Shih and Wan-Hsien Len for their discussion and help on my research.

Specially thank to all member of EDA Lab and Adar Lab for their friendship and company.

Finally, I would like to express my sincerely acknowledgements to my family and my friends

for their patient and support.

iv

Contents
摘 要 ...i

ABSTRACT ...ii

Acknowledgements ...iii

Contents...iv

List of Figures..vi

List of Tables ..vii

Chapter 1 Introduction..1

1.1 Scheduling in HLS ...2

1.2 Related Works...8

Chapter 2 Preliminaries .. 11

2.1 Finite State Machine with Data-path (FSMD) ... 11

2.1.1 Paths ...13

2.1.2 Characterization of a Path...15

2.1.3 Computational Equivalence of Paths..16

2.2 FSMD Equivalence ..17

2.2.1 Assumptions ...17

2.2.2 Computations of an FSMD...17

2.2.3 Path Covers of an FSMD..18

2.2.4 Verification Method..20

Chapter 3 Motivation..23

3.1 An Example of Speculation..23

3.2 An Example of CSE ...24

Chapter 4 Our Proposed Method..26

4.1 Solution for Speculation ...26

v

4.1.1 Equivalence of Paths ..27

4.1.2 Notion ...30

4.1.3 CE Algorithm..31

4.2 Solution for CSE...33

4.2.1 Available Statement ..34

4.2.2 Notion ...36

4.2.3 Compute Available Statements...37

4.2.4 FAS Algorithm..39

4.3 Our Algorithm ..43

Chapter 5 Experimental Results ...48

Chapter 6 Conclusion & Future Works ..53

References ..55

vi

List of Figures

Fig. 1 An Overview of HLS ...2

Fig. 2 An Example of BB-based Scheduling..4

Fig. 3 An Example of Path-based scheduling...5

Fig. 4 Code Motions ...7

Fig. 5 An Example of Common Subexpression Elimination ...8

Fig. 6 An FSMD ...12

Fig. 7 Paths ...13

Fig. 8 Compute Rβ and rβ ...15

Fig. 9 Path Covers of M..19

Fig. 10 Verification Flow..22

Fig. 11 An Example of Speculation..24

Fig. 12 An Example of Safe-speculation & CSE ...25

Fig. 13 An Example of an Effective Variable ...28

Fig. 14 A Example of Speculation..31

Fig. 15 An Example of an Available Statement..34

Fig. 16 An Example of Lemma 1 ...36

Fig. 17 A Solution for CSE...37

Fig. 18 Compute Available Statements...39

Fig. 19 A Overview of Our Algorithm..45

Fig. 20 Our Proposed Algorithm ..46

Fig. 21 An Example of Loop Invariant...53

Fig. 22 An Example of Copy Propagation..54

vii

List of Tables

Table I Characteristics of Equivalent Cases 1 ..50

Table II Results of Equivalent Cases 1...50

Table III Characteristics of Equivalent Cases 2..51

Table IV Result of Equivalent Cases 2 ...51

Table V Characteristics of Not Equivalent Cases...52

Table VI Results of Not Equivalent Cases ...52

1

Chapter 1
Introduction

High-level synthesis (HLS), also called behavioral synthesis, is a process that converts a

behavior or algorithm description into an RTL (register-transfer level) circuit [1]-[3]. It is

helpful to gain much higher productivity than RTL or logic synthesis. In Fig. 1, HLS consists

of the following sub-tasks:

- Intermediate description generation

This task compiles a behavior description into an internal representation such as a control

data flow graph (CDFG) which captures all the control and data-flow dependencies of the

given behavioral description [1].

- Scheduling

Scheduling assigns operations of the behavior description to specific control steps or clock

cycles under data-dependencies and constraints.

- Allocation and binding

Allocation and binding specify operations to functional units, and assign data to storage

elements and interconnect units.

- Architecture generation

This task builds a controller (a finite state machine, FSM) to control the data-path,

depending on the information of scheduling, allocation and binding.

2

Behavior

Description

Intermediate Description

Generation

Scheduling

Allocation & Binding

Architecture Generation

RTL

Description

Algorithm Level

Register-Transfer Level

Physical Level

Layout Synthesis

Logic Level

Logic Synthesis

High-Level Synthesis

System Synthesis

System Level

Fig. 1 An Overview of HLS

Obviously, the correctness of the HLS process is very important for the development of

HLS. In HLS, scheduling usually changes the original cycle-by-cycle behavior. Moreover,

many scheduling techniques may even change the control structure. Hence, most of scheduled

results can not be one-to-one mapped to their original structures. Therefore, scheduling

becomes the main challenge in the HLS verification. As a result, we focus on the scheduling

verification. The following sections give an overview of the scheduling methodologies in

HLS and a review of many previous researches of the scheduling verification.

1.1 Scheduling in HLS

Scheduling is an important task of HLS. It assigns operations of a behavior description to

control steps or clock cycles under some given constraints on area or delay. Thus it impacts

the tradeoff between the design cost and the performance. Scheduling algorithms, traditionally,

3

can be classified into two categories: data-flow-based and control-flow-based algorithms.

Most of early scheduling algorithms are data-flow-based (DF-based) or basic-block-based

(BB-based) algorithms. BB-based algorithms focus on taking advantage of parallelism among

sequences of operations in a basic block (BB); a BB is a straight-line sequence of statements

containing no branches or internal entrances or exit points. In other words, they do not change

the control structure. That is, the branch states (the states have more than one outgoing edge)

and the merge states (the states have more than one incoming edge) of the scheduled result

can be one-to-one and onto mapped to those of the behavior description. A BB-based

algorithm is either to minimize the total number of control steps under resource constraints or

to minimize the resources requirement in a given number of control steps under timing

constraints. List scheduling [4][5] and force-directed scheduling [6] are two well-known

BB-based algorithms.

Fig. 2 shows two FSMDs, Mβ and Mα , representing the descriptions before and after

BB-based scheduling. In an FSMD, a node is a state and an edge is a control step. Each edge

of an FSMD consists of status and assignment statements; a status consists of predicates. A

slash separates the statuses and assignment statements; “-” denotes that no status needs to be

satisfied. A branch state or a merge state is depicted as a gray node. Obviously, the branch

state and the merge state of Mβ have a bijective mapping to those of Mα . That is, Mβ and Mα

have the same control structure.

4

Fig. 2 An Example of BB-based Scheduling

Control-flow-based (CF-based) algorithms focus on taking the advantage of the mutual

exclusion of operations in the description by analyzing the conditional constructs. These

algorithms may modify the control structure. The only goal of CF-based algorithms is to

minimize the number of control steps in all sequences of operations under resource constraints.

Path-based scheduling (PBS) is the main algorithm of CF-based scheduling [7]. Fig. 3 shows

that PBS changes the control structure. The FSMD before PBS, Mβ , has two branch states and

the FSMD after PBS, Mα , has only one.

5

Fig. 3 An Example of Path-based scheduling

In practice, designs tend to use significant amounts of the control flow as well as the data

flow. To increase the performance and the resource utilization, many code transformation

techniques such as speculation – derived from the compiler – have been employed by

scheduling [8]-[15].

This thesis only discusses the global code transformation techniques. A transformation is

local if it only looks at the statements in a BB; otherwise, it is global. Here, two kinds of the

global code transformation techniques are introduced, code motions and common

subexpression elimination (CSE).

Fig. 4 illustrates code motions. Code motions attempt to extract the inherent parallelism in

designs and increase the resource utilization. They move operations across the boundaries of

BBs. Each square block is a BB and the node having circular shape is a branch state or a

merge state. A BB between the branch state and the merge state is called a branch BB. The

solid lines represent the control flow and the dotted lines represent the direction of code

motions. Fig. 4 contains following code motions:

6

- Duplicating down (DD): It moves operations from the BB preceding a branch state into all

branch BBs. This is shown by arcs marked 1.

- Duplicating up (DU): It moves operations from the BB succeeding a merge state into all

branch BBs. This is shown by arcs marked 2.

- Merging up (MU): If all branch BBs have the same operations, it moves these operations

from all branch BBs to the BB preceding the branch state. This is shown by arcs marked

3.

- Merging down (MD): If all branch BBs have the same operations, it moves these

operations from all branch BBs to the BB succeeding the merge state. This is shown by

arcs marked 4.

- Useful move (UM): Move operations from the BB succeeding the merge state into the BB

preceding the branch state as these operations are independent to all branch BBs; or vice

versa. Arc 5 indicates this. It moves operations from BB3 to BB0 or from BB0 to BB3 if

these operations are independent to BB1 and BB2.

- Speculation (Sp): Move operations from one of branch BBs into the BB preceding the

branch state if the outputs of the system are the same. It is shown as arc 6.

- Reverse speculation (RSp): Move operations from the BB preceding a branch state into

some of branch BBs if the outputs of the system are the same. It is shown as arc 7.

7

BB0

BB3

BB1 BB2

Control flow

Code motion

Branch

state

Merge

state

BB0

BB3

BB1 BB2

Branch

state

Merge

state

1 1

3 3

5

2 2

44

6 7

Fig. 4 Code Motions

Fig. 5 gives an example of CSE. Gupta et al. [15] have shown that CSE can often expose

opportunities for optimizations. The original FSMD is Mβ . Mα is the result of CSE. qβ0 and

qα0 are the initial states where the system starts from. In Mβ , the statements st2(e’⇐a+b) and

st3(e⇐a+b) compute the same expression “a+b”. Obviously, st2 always executes prior to st3

and no statement redefines a, b and e' between them. Therefore CSE replaces “a+b” of st3

with e' in Mα. Note that although statement st6(g⇐a+b) has “a+b”, “ a+b” of st6 can not be

replaced. st2 and st6 do not compute the same expression because statement st5(b⇐a+f)

redefines b between st2 and st6.

8

Fig. 5 An Example of Common Subexpression Elimination

1.2 Related Works

Ernst et al [16] and Bergamaschi et al [17] propose a simulation-based verification method

of HLS verification. Unfortunately, simulation is becoming inadequate with the increasing in

system complexity.

Chiang et al [18] propose a model checking technique by using Petri Net model as the

formal description to check the correctness of BB-based algorithms. Narasimhan et al [19]

prove the correctness of the force-directed list scheduler (FDLS) [28] algorithm in PVS [27]

and insert invariant properties as program assertions in the implementation of the FDLS

algorithm. Radhakrishnan et al [20][21] propose a method based on the precondition-based

correctness of register transfer split (RTS) [29] and on the completeness of RTS

transformations to perform the scheduling task with the schedule table generated by the

scheduling algorithm. However, those methodologies are difficult to identify properties or

9

complete transformations in a large and complex scheduling task.

Recently, equivalence checking technique is used to prove the functional equivalence of

two designs. Equivalence checking can be directly applied to the scheduling verification. It

reads descriptions before and after scheduling as inputs. If two descriptions are functionally

equivalent, it works successfully; otherwise, it gives a counter example for diagnosis. Neither

the knowledge of scheduling nor the creation of properties or transformations is needed.

Mansouri et al [22] introduce the critical states to define the critical path. The equivalence

between critical paths of behavior description and those of scheduled description was proved

using the PVS theorem prover. Kim et al [23] define the functional equivalence between two

FSMDs representing the descriptions before and after scheduling and proved the equivalence

with PVS. The break-points are introduced to decompose an FSMD into a set of path

predicates. Both [22] and [23] assume that the control structure is not modified during

scheduling. The aforementioned methodologies, [18]-[23], are only well suited to BB-based

scheduling.

Eveking et al [24] represent the behavioral description and the scheduled description in

LLS (language of labeled segments) language and give basic transformations to prove the

computational equivalence of LLS. If the behavioral description can be transformed to the

scheduled result according to the basic transformations, they are computationally equivalent.

However, the completeness of basic transformations is hard to define and the transformation

from the behavioral LLS to the scheduled LLS is tough and tedious. Kim et al [25] extend the

equivalence checking method of [23] to handle the scheduling employing MU and DD by

concatenating the critical paths. However, the paths affected by the code motions need to be

identified. Karfa et al [26] propose an equivalence checking method suited to PBS as well as

BB-based scheduling. FSMDs are used to represent the descriptions before and after

scheduling and they are characterized by a finite set of paths. The equivalence of FSMDs is

transformed into the equivalence of paths. However, it does not support some code

10

transformation techniques, such as Sp and CSE.

The rest of this thesis is organized as follows. In Chapter 2, the theoretical concepts of the

equivalent checking method proposed by Karfa et al [26] are discussed. Chapter 3 presents

two motivational examples, and Chapter 4 describes our proposed method in details. The

experimental results and analyses are provided in Chapter 5. Followed Chapter 6 gives a

conclusion and identifies some directions for future works.

11

Chapter 2
Preliminaries

Here, we discuss a verification method and its theoretic conceptions proposed by Karfa et

al [26]. Our approach is based on those conceptions and their verification method. The notion

of computations, paths, and a path cover of an FSMD and the transformations between them

are defined. The equivalence of two FSMDs is also derived.

2.1 Finite State Machine with Data-path (FSMD)

An FSMD was proposed by Gajski et al. in [1]. It can trivially implement the descriptions

of algorithm level (or behavior level) and RT-level. FSMDs are used to represent the

descriptions before and after scheduling with an additional initial state. An initial state is also

called a reset state. The FSMD was defined as a 7-tuple, M = <Q, q0, I, O, V, f, h>, where

1) Q is the finite set of states,

2) q0 is the reset state,

3) I is the finite set of inputs,

4) O is the finite set of outputs,

5) V is the finite set of variables,

6) f: Q × S → Q is the state transition function,

� S is the set of status expressions consisting of arithmetic predicates over I∪V,

7) h: Q × S → U is the update function of the outputs and variables, where

� U = {x⇐e | x∈O∪V and e is an arithmetic predicate or expression over I∪V} is a

set of variables or output assignment statements.

12

An FSMD is inherently deterministic. For any state q, if the status expressions s1 = s2, it

implies that f(q,s1) = f(q,s2) and h(q,s1) = h(q,s2). In an FSMD, the concept of time can be

thought of as the order in which the statements are executed. An example of a behavioral

description and its FSMD are shown in Fig. 6. A behavior description E1 using C language is

described in (b). An FSMD M in (a) represents E1 and the detail of M is shown in (c).

(a) An FSMD model M for E1

int yout;

void E1(P0,P1){

 int x = P0;

 int y = P1;

 int r = 1;

 while(x){

 if(y) y = y/2;

 else{

 x = x/2;

 r = r+1;}

}//endwhile

r = r * 2;

yout = r;

}//endofE1

(b) The behavior E1 in C

M = <Q, q0, I, O, V, f, h>

Q = {q0, q1, q2, q3}; I = {P0,P1}; O = {yout}; V = {x,y,r}

f(q0,TRUE) = q1 ,

f(q1,!x) = q2 , f(q2,TRUE) = q0 ,

f(q1,x) = q3 , f(q3,y)=q1 , f(q3,!y) = q1 ;

h(q0,TRUE) = {x⇐P0, y⇐P1, r⇐1},

h(q1,!x) = {r ⇐ r*2}, h(q2,TRUE) = {yout⇐r},

h(q1,x) = Ø, h(q3,y) = {y⇐y/2}, h(q3,!y) = {x⇐x/2, r⇐ r +1}.

(c) The details of M

Fig. 6 An FSMD

13

In an FSMD, a walk represents a sequence of transitions.

Definition 1 [26] Walk ω of M from qi to qj

A walk ω from a start state qi to an end state qj is a transition sequence of the states. It is

formulated as
1 11 ...

i i i ni i i n jC C C
q q q q

+ + −+ +→ → → = where qk∈Q for all k, i≤k≤i+n and

there exits ck∈S and transition functions fk such that fk(qk, ck) = qk+1 for all k, i≤k≤i+n-1. For

short, qi⇒qj .

A state of a walk is called an internal state if it is neither the start state nor the end state.

2.1.1 Paths

A path is a finite walk. Its definition and characteristic formula are described here.

Definition 2 [26] Path β of M from qi to qj

A path β from qi to qj is a finite walk where all the states are distinct or the end state is

only identical to the start state of β.

Fig. 7 illustrates paths that p1 and p2 are paths and p3 is NOT a path.

Fig. 7 Paths

14

Definition 3 [26] Condition Rβ of a path β

The condition Rβ of β is a logical expression over I∪V which should be satisfied before

executing β.

Definition 4 [26] Result rβ of a path β

The result rβ of β is an ordered pair consisting of an updated variable set ϖ and an

updated output list ο after executing β and is denoted as <ϖβ,οβ>.

1) Updated variable set ϖβ is an ordered tuple <ei> of arithmetic predicates or

expressions over I∪V for all variables in V and each ei represents the final value of

the variable vi∈V at the end state qj.

2) Updated output list οβ is a list of the output assignment statements with the order in

which the outputs occur in β.

For a path β, its condition Rβ and its result rβ can be computed by substitution.

Substitution is a symbolic execution and based on the rule: If a predicate c(y) is true after

assignment statement y⇐g(y), the predicate c(g(y)) is true before y⇐g(y) [30].

Fig. 8 describes an example of how to compute Rβ and rβ of β in M by substitution. Let V

= {a, b, c, d, x}, I = {i1, i2}, and O = {o1, o2} of M. At first, the initial values are {a, b, c, d, x}

for each variable of V. Hence, at the start state qβ1 , Rβ = Ø, ϖβ = <a, b, c, d, x> and οβ = Ø.

The first transition from qβ1 to qβ2 has only one status, thus, the condition becomes “Rβ = a ≤

x” ; it also has only one assignment statement “c⇐a+d ”, thus, “a+d ” substitutes for “c” and

ϖβ becomes “<a, b, a+d, d, x>”. Then, the initial values for the next transition, “qβ2 → qβ3”,

become {a, b, a+d, d, x}. Similarly, after executing “qβ2 → qβ3 ”, the updated variable set

becomes “ϖβ = <a*b, b, a+d, d, x>” and the updated output list becomes “[o1⇐⇐⇐⇐a]”. Therefore,

the initial values of “qβ3 → qβ4” are {a*b, b, a+d, d, x}. Finally, after “qβ3 → qβ4”, “ Rβ =

15

(a ≤ x) & (x < a+d)” and “rβ = <ϖβ, οβ> = <<a*b, b, a+d, d, a*b+a+d>, [o1⇐a, o2⇐⇐⇐⇐a*b]>”

at qβ4 are computed. Note that since the status is always prior to the assignment statements of

a transition, the execution of “x⇐a+c” will not redefine the “x” of “ x < c”. And only the

initial value “a + d ” substitutes for “c” of “ x < c” in “ qβ3 → qβ4”.

q 3

q 2

q 1

a ≤ x / c ⇐ a + d

x < c / x ⇐ a + c, o2 ⇐ a

q 4

- / a ⇐ a * b, o1 ⇐ a

R = (a ≤ x) & (x < a+d)

r = <s , O > = <<a*b, b, a+d, d, a*b+a+d>, [o1 ⇐ a, o2 ⇐ a * b]>

R : a ≤ x

r : <<a, b, a+d, d, x>, - >

R : a ≤ x

r : <<a*b, b, a+d, d, x>, [o1 a]>

R : (a ≤ x) & (x < a+d)

r : <<a*b, b, a+d, d, a*b+a+d>, [o1⇐a, o2 a*b]>

R : Ø

r : <<a, b, c, d, x>, - >

Fig. 8 Compute Rβ and rβ

2.1.2 Characterization of a Path

Depending on the aforementioned definitions and the substitution method, a path can be

characterized as “Rβ (v) & rβ (v)” or “Rβ (v) & (vf =ϖβ (v)) & οβ (v)” where v∈I∪Vβ and vf ∈

Vβ .

A concatenation of a sequence of paths can also be characterized. Let “β = qi⇒qk” and

“α = qk⇒qj” are paths of an FSDM M and β is a preceding path of α ; their characteristic

formulas are “Rβ(v)&(vf=ϖβ(v))&οβ(v)” and “Rα(v)&ϖα(v)&οα(v)”, respectively. Then β and

16

α can be concatenated, denoted as βα , and the characteristic formula of βα is “Rβ (v) & Rα (vf)

& ϖα (vf) & (οβ (v)οα (vf))”.

2.1.3 Computational Equivalence of Paths

Mβ = <Qβ , qβ0 , Iβ , Oβ , Vβ , fβ , hβ > and Mα = <Qα , qα0 , Iα , Oα , Vα , fα , hα > are two

FSMDs.

Definition 5 [26] Computational equivalence of paths (β ≃α)

Let β and α be paths of Mβ and Mα , respectively. β and α are computationally equivalent,

denoted as β ≃α , if Rβ = Rα and rβ = rα over Vβ∩Vα .

Notice that the equivalence of paths is restricted to Vβ∩Vα . That is, it is not allowed if R

and r have some variables not in the intersection and the final values of variables which are

not in the intersection are ignored. An example of equivalent paths is given below.

Example 1: Let Vβ = {a, b} and Vα = {a, b, x}, then Vβ∩Vα = {a, b}. Let β and α be two

paths of Mβ and Mα , respectively. Assume Rβ = Rα and both have no output assignment

statements.

1. If rβ = <<a*b, b>, - > and rα = <<a*b, b, a*b + a >, - >, ignore the value of x∉Vβ∩

Vα .

⇒ β ≃α .

2. If rβ = <<a*b, b>, - > and rα = <<a*x, b, a*b+a >, - >, clearly, the final value of a

uses x∉Vβ∩Vα in rα .

⇒ β ≄α .

17

2.2 FSMD Equivalence

Let Mβ = <Qβ , qβ0 , Iβ , Oβ , Vβ , fβ , hβ > and Mα = <Qα , qα0 , Iα , Oα , Vα , fα , hα > be two

FSMDs representing the descriptions before and after scheduling, respectively. The objective

is to verify whether Mβ behaves exactly as Mα . That is, whether they produce the same output

sequences for all possible input sequences.

2.2.1 Assumptions

Since the design synthesized by HLS is usually applied to a component of a system, the

interface should be unchanged after scheduling. Therefore, we have the Assumption 1.

Assumption 1:

The input set and output set of two FSMDs are identical. That is, Iβ = Iα and Oβ = Oα.

Assumption 2:

The system works in an infinite outer loop. That is, an FSMD represents a system, and

every walk of an FSMD starting from the reset state can always go back to the reset state.

More specifically, every inner loop of an FSMD must have at least one exit point.

Assumption 2 is reasonable since a hardware design is usually designed to have a reset

state to prevent the dead lock. According to Assumption 2, all inner loops of an FSMD can be

cut by a cutpoint introduced in a latter section.

2.2.2 Computations of an FSMD

Based on Assumption 2, a walk of an FSMD from the reset state to the reset state can be

seen as a complete computation. In other words, revisiting the reset state implies a termination

of a computation and a beginning of a new computation. Hence, an FSMD can be thought of

18

as a set of computations. Then the equivalence of FSMDs can transform to the equivalence of

computations.

Definition 6 [26] Computation µ

A computation µ is a finite walk from the reset state q0 to q0 and it has no intermediary

occurrence of q0 .

Definition 7 [26] Computational equivalence of walks

Two walks ωβ of Mβ and ωα of Mα are computationally equivalent, denoted as ωβ ≃ωα , if

R ωβ = R ωα and r ωβ = r ωα over Vβ∩Vα .

Definition 8 [26] Mβ is computationally contained in Mα (Mβ⊆Mα)

Mβ is computationally contained in Mα , denoted as Mβ⊆Mα , if, for each computation µβ

of Mβ , there exists a computation µα of Mα such that µβ ≃µα .

Definition 9 [26] Computational equivalence of FSMDs (Mβ ≅ Mα)

Mβ and Mα are computationally equivalent, denote as Mβ ≅ Mα , if Mβ⊆Mα and Mα⊆Mβ .

2.2.3 Path Covers of an FSMD

Since an FMSD may have inner loops, there may be infinite computations of an FSMD.

According to Section 2.1.2, a walk is a concatenation of a sequence of paths; a computation

can be a concatenation of a set of paths.

Definition 10 [26] A path cover P of an FSMD M

19

A path cover P of M is a finite set of paths, if, for each computation of M, it can be

composed of the paths of P.

Notice that a path cover of an FSMD is not unique. Fig. 9 illustrates path covers of an

FSMD M. M has only two computations, one is “µ1= q0 → q1 → q2 → q3 →

q4 → q6 → q0 ” and another is “µ2 = q0 → q1 → q2 → q5 →

q6 → q0 ”. P1 = {p1, p2, p3} is a path cover of M since µ1 can be composed of p1 and p2

by concatenating them and µ2 can be composed of p1 and p3. P2 = {µ1, µ2} is also a path

cover of M.

Fig. 9 Path Covers of M

Therefore, following Theorem 1 is derived and it has been proved by Karfa et al [26].

20

Theorem 1 [26] Mβ⊆Mα if there exists a path cover Pβ = {pβ0 , ... , pβn} of Mβ and a set

of path Pα = {pα0 , ... , pαn} of Mα such that pβi ≃ pαi for all i, 0≤i≤n.

Theorem 1 transforms the problem of equivalent FSMDs to the problem of equivalent

paths. To find an equivalent path pαi in Mα for each pβi of Mβ , we define the corresponding

states where the comparison of two paths starting from.

Definition 11 [26] Corresponding state (CS)

1) The reset states qβ0∈Qβ and qα0∈Qα are native corresponding states and

2) qβm∈Qβ and qαn∈Qα are corresponding states if qβi∈Qβ and qαj∈Qα are

corresponding states and there exist paths β = qβi ⇒ qβm and α = qαj ⇒ qαn , such

that β ≃α .

It is hard to find a path cover constituting all possible computations of an FSMD because

of the loops of an FSMD. Therefore, Karfa et al [26] introduce the cutpoints. Each loop of an

FSMD can be cut by at least one cutpoint and the set of paths between cutpoints without any

intermediary occurrence of cutpoint is a path cover. According to Assumption 2, each inner

loop of an FSMD must have an exit point, i.e. a branch state; hence, the reset state and the

branch states are selected to be the initial cutpoints. The set of paths between the initial

cutpoints without any intermediary occurrence of initial cutpoint is named an initial path

cover and a path of the initial path cover is named an initial path.

2.2.4 Verification Method

Based on Theorem 1, for each path of the initial path cover Pβ of Mβ , we want to find an

21

equivalent path in Mα . Because scheduling may change the control structure, a path “β =

qβi⇒qβj” of Pβ in Mβ may not find a computationally equivalent path in Mα . The path

extension method, proposed by Karfa et al [26], is a solution to handle this situation. It

extends a path to build a new path cover. The path extension method extends β with

following steps:

1. Find the path sets ps and pe.

1) ps is the set of all paths of Pβ ending at qβj .

2) pe is the set of all paths of Pβ starting from qβj .

2. For each path βs of ps, concatenate βs and each path in pe. Bm is the set of all such

concatenated paths and qβj is not a cutpoint now.

3. Remove each path, which is a path of ps or a path of pe, from Pβ .

4. Add all paths of Bm into Pβ .

After the process, Pβ becomes a new path cover of Mβ . A path extension is invalid if it

becomes a loop or it needs to extend via the reset state.

Fig. 10 illustrates the verification flow of [26]. Two FSMDs, which are Mβ and Mα

representing the descriptions before and after the scheduling, are the inputs of the algorithm.

At first, the algorithm inserts the cutpoints only into Mβ and finds initial path cover Pβ of Mβ .

Then, it starts from the reset states to find a computationally equivalent path from Mα for

each path of Pβ . First, it finds “β = qβi⇒qβj” from Pβ depending on the corresponding states

(qβi , qαm), and then it find a computationally equivalent path in Mα . If a computationally

equivalent path “α = qαm⇒qαn” is found, it records the paths (β,α) as the computationally

equivalent paths and their end states (qβj , qαn) as the corresponding states. But if a

computationally equivalent path is not found, extend path β to build a new path cover, Pβ .

Note that, if β is not extensible, the algorithm fails; otherwise, it repeats the process until all

paths of Pβ finding their computationally equivalent paths in Mα . Hence, Mβ⊆Mα is proved.

Then, it interchanges Mβ and Mα and repeats the process to prove Mα⊆Mβ . As both Mβ⊆Mα

22

and Mα⊆Mβ have been proved, Mβ ≅ Mα .

<M , M > <M , M >

InsertCutpoint in M

GetEquivalentPath

Fail

ExtendPath

InsertCutpoint in M

GetEquivalentPath

ExtendPath

Pass Fail

CheckEquivalence CheckEquivalence

Fig. 10 Verification Flow

Obviously, Karfa’s algorithm has the ability to cope with BB-based scheduling. Since

BB-based scheduling does not change the control structure, the bijective mapping of cutpoints

are preserved. It means that for each path of one FSMD , the algorithm can straightly find the

computationally equivalent path of another one without any extension.

Karfa’s algorithm is also capable of verifying PBS. PBS only merges some consecutive

paths; it doesn’t move the operations across the BB boundaries after merging the paths.

Therefore, the algorithm with path extension method is strong enough to handle PBS.

Karfa’s algorithm obviously supports some code motions: DD, DU, MU, MD, and UM

through path extension; since moving the operations from one path to another path can be

thought of as merging these consecutive paths. Note that a merge state is not a cutpoint, the

algorithm without path extension inherently handles DD and MU.

23

Chapter 3
Motivation

Although Karfa’s algorithm discussed in Chapter 2 can verify the BB-based and PBS, it is

still weak in handling some code transformation techniques, such as Sp, RSp, and CSE.

Following sections give two such examples and we proposed the solutions for these cases in

the next chapter.

3.1 An Example of Speculation

The equivalence of two paths defined by Karfa et al can not handle the result of

scheduling employing Sp or RSp. An example of Sp is shown in Fig. 11. Mβ is the original

FSMD, and it is functionally equivalent to Mα . Two systems are functionally equivalent if

they produce the same output sequences for all possible input sequences. Let Vβ∩Vα = {a, b,

c, d}, I = {x, y} and O = {out}. The scheduler moves “b⇐x+y” from “qβ1 → qβ3” to

“qβ0 → qβ1” and generates Mα . The left computations are “µβl = qβ0 → qβ1 c
→

qβ2 → qβ4 → qβ0 ” of Mβ and “µαl = qα0 → qα1 c
→ qα2 → qα3 → qα0 ”

of Mα shown in bold lines. Their characteristic formulas are “(x<y) & <x–y, b, x<y, x–y+1> &

[out⇐x–y+1]” and “(x<y) & <x–y, x+y, x<y, x–y+1> & [out⇐x–y+1]”, respectively.

Obviously, µβl and µαl are not computationally equivalent because <x–y, b, x<y, x–y+1> ≠

<x–y, x+y, x<y, x–y+1>; µβl is not extensible. Therefore, Mβ and Mα are not computationally

equivalent. However, the conditions and outputs of µβl and µαl are equivalent; the different

values won’t affect the outputs of all computations of Mβ and Mα . That is, µβl and µαl produce

the same output values for any input. Thus, µβl and µαl should be equivalent. Therefore, a

24

definition of equivalence between paths that captures the notion of functional equivalence is

needed.

Fig. 11 An Example of Speculation

3.2 An Example of CSE

Fig. 12 illustrates an example of safe-speculation (SSp) and CSE. SSp is a method to

realize Sp [15]. It attempts to move se(e⇐a+b) from “qβ1 c
→ qβ2” to “qβ0 → qβ1”. Unlike

Sp, it introduces a new variable “e' ” to store the value of “a+b”, and then assigns “e' ” to “e”.

After SSp, all walks starting from the reset state qα0 to sg(g⇐a+b) have se'(e'⇐ a+b) and

there is no statement redefining “a”, “b” or “e' ” between se' and sg ; therefore, CSE replaces

sg with “g⇐e' ”.

Karfa’s algorithm fails in this case. At first, it calculates that “qβ0 → qβ1 ≃

qα0 → qα1”. Then it compares the paths, denoted in bold lines, starting from qβ1 and qα1 .

25

Because the expression of se is replaced in Mα , the final values of “e” are not equivalent;

therefore, the bold paths are not equivalent. However, if se'(e'⇐ a+b) is recorded in this case,

both paths have the same final value “a+b” of “e”.

q 0

q

- /

g ⇐ a + b

q 0

q

- /

c ⇐ a < b

c /

e a + b,

d ⇐ a + d

q q

!c /

d ⇐ a + f

- /

c ⇐ a < b,

e' a + b

c /

e e',

d ⇐ a + d

!c /

d ⇐ a + f

- /

g e'

Fig. 12 An Example of Safe-speculation & CSE

Sp, Rsp, SSp, and CSE are common techniques in scheduling. None of the formal

verification methods proposed in Section 1.2 can handle all of them. This thesis proposes an

equivalence checking method for scheduling to support them, and our method is extended

from Karfa’s method [26]. Following chapter describes the detail of our method.

26

Chapter 4
Our Proposed Method

This chapter has three sections; first one defines equivalence of paths to cope with Sp and

RSp; second one gives a solution to handle CSE; the last one is the detail of our proposed

algorithm. The purpose of this thesis is to check whether two FSMDs, which are used to

represent the descriptions before and after scheduling, produce the same output sequences for

all possible input sequences. Our assumptions and the basic theoretical conceptions, which are

proposed by Karfa et al [26], are described in Chapter 2.

In the rest of this thesis, Mβ = <Qβ , qβ0 , Iβ , Oβ , Vβ , fβ , hβ > and Mα = <Qα , qα0 , Iα , Oα ,

Vα , fα , hα > are the behavior FSMD and the scheduled FSMD, respectively. A gray node

depicted in a figure represents an initial cutpoint.

4.1 Solution for Speculation

The rest thesis will use the terminologies: a statement, a used variable, and a defined

variable; therefore, we give their definitions below.

Definition 12 Statement, Use, and Define

A statement “st:d⇐e” assigns an arithmetic predicate or expression (e) to a variable (d).

Then st is said to use all variables occurring in e and to define “d ”.

Example 2: A statement “s:x⇐a+b” is said to define “x” and to use “a” and “b”. In this

example, “a”, “b” and “x” are the variables of s where “a” and “b” are called used variables

and “x” is called defined variable.

27

4.1.1 Equivalence of Paths

Assume two paths which are β of Mβ and α of Mα have the same condition and the same

outputs, but their final values of some variables are not equivalent. If these final values will

not be used in both Mβ and Mα , the outputs will not be affected; hence, β and α can be

thought of as two equivalent paths.

Definition 13 Effective variable v of a path β

A variable v∈Vβ is an effective variable of a path β = qβi⇒qβj of an FSMD Mβ if there

exists a walk which starts from qβj and uses “v” before any defined “v”.

In Fig. 13, β = 2 4 5q q q→ → is a path of an FSMD M, depicted in bold line. “d ”

is an effective variable of β because “d ” is used by the walk “5 6!b
q q→ ” starting from the

end state q5 of β . On the contrary, “v” is NOT an effective variable of β . Since for all

possible walks starting from q5 , only the walks containing the path β have a statement

“d⇐a+v” uses “v”. Others have no statement having “v” as a used variable. However,

“d⇐a+v” is always executed after the statement “v⇐a+1” redefining v. Therefore, there

exists no walk starting from q5 and using “v” before any defined “v”.

28

q0

q2

q4

M

q5

!t /

v ⇐ a + 1t /

d ⇐ a + 1

- / a ⇐ in1,

b ⇐ in2

- / d ⇐ a + v

- / out ⇐ d

q6

!b /

d ⇐ d + 1

b / -

Fig. 13 An Example of an Effective Variable

Definition 14 Equivalence of two paths (β ≈α)

Two paths, β of Mβ and α of Mα , are equivalent if

1) Rβ =Rα, over Vβ∩Vα and

2) οβ =οα, over Vβ∩Vα and

3) ∀vi∈Vβ∩Vα and its final value in updated variable set are eβ∈ϖβ and eα∈ϖα ,

� eβ = eα, over Vβ∩Vα or

� “vi” is NOT an effective variable of β in Mβ and of α in Mα.

Clearly, if β ≃α, β ≈α . The equivalence of two walks is defined in the similar way.

Definition 15 Equivalence of two walks (ω1 ≈ω2)

Two walks, ω1 of Mβ and ω2 of Mα , are equivalent if

1) Rω1 = Rω2, over Vβ∩Vα and

2) οω1 = οω2, over Vβ∩Vα and

3) ∀vi∈Vβ∩Vα , eω1i and eω2i are the final values of “vi” in ϖω1 and in ϖω2 ,

29

respectively,

� eω1i = eω2i, over Vβ∩Vα or

� “vi” is NOT an effective variable of ω1 in Mβ and of ω2 in Mα.

The equivalence of FSMDs is similar to the computational equivalence of FSMDs defined

in Chapter 2.

Definition 16 Mβ is contained in Mα

Mβ is contained in Mα , if for each computation µβ of Mβ , there exist a computation µα of

Mα , such that µβ ≈µα .

Definition 17 Equivalence of two FSMDs (Mβ ≊ Mα)

Two FSMDs Mβ and Mα are equivalent, denote as Mβ ≊ Mα , if Mβ is contained in Mα and

Mα is contained in Mβ .

Theorem 2 Mβ is contained in Mα if there exists a path cover Pβ = {pβ0 , ... , pβn} of Mβ

and a set of path Pα = {pα0 , ... , pαn} of Mα such that pβi ≈ pαi for all i, 0≤i≤n.

The proof of Theorem 2 is similar to it of Theorem 1.

Definition 18 Corresponding state pair (CSP)

1) The pair of the reset states, qβ0∈Qβ and qα0∈Qα , is a native CSP.

2) The pair of states, qβm∈Qβ and qαn∈Qα , is a CSP if the states, qβi∈Qβ and qαj∈

Qα , is a CSP and there exists paths, β = qβi⇒qβm and α = qαj⇒qαn , such that β ≈α .

30

4.1.2 Notion

An example of two equivalent FSMDs, Mβ and Mα , before and after scheduling

employing Sp is shown in Fig. 14. Sp transforms Mβ to Mα by moving “b⇐x+y” from

“qβ1 → qβ3” to “qβ0 → qβ1”. The reset states are qβ0 and qα0 and the initial path covers

are {“β0 = qβ0 → qβ1 ”, “ β1 = qβ1 c
→ qβ2 → qβ4 → qβ0 ”, “ β2 = qβ1 !c

→

qβ3 → qβ4 → qβ0 ”} and {“ α0 = qα0 → qα1 ”, “ α1 = qα1 c
→ qα2 →

qα3 → qα0 ”, “ α2 = qα1 !c
→ qα3 → qα0 ”}. Our algorithm first compares β0 and α0,

and then computes “ϖβ0 = < a, x+y, x<y, d >” ≠ “ϖα0 = < a, b, x<y, d >”. It is obvious that

only the final values of variable “b” are not equivalent. Since “b” is immediately used in

β2 succeeding β0, it is an effective variable of β0 ; thus, β0 ≉ α0 . Therefore, our algorithm

extends β0 to β0β1 and β0β2, and then compares β0β1 and α0α1 . It results that “ϖβ0β1 = <

x–y, x+y, x<y, x–y+1 > ≠ ϖα0α1 = < x–y, b, x<y, x–y+1 >”. Similarly, our algorithm checks if

“b” is an effective variable of β0β1 and α0α1 . In Mβ , “b” is immediately redefined by

“b⇐x+y” in β0β2 . Therefore, “b” is NOT an effective variable of β0β1 . In Mα , there are

only two computations: α0α1 and α0α2 . Since α0α1 is not used or defined “b” and α0α2

always redefined “b” before using it, therefore, “b” is NOT an effective variable. As a result,

we can conclude that β0β1≈α0α1 .

31

q 1

q 2

!c /

d ⇐ b + x

c / a ⇐ x - y

M

q 0

- / c ⇐ x < y,

b x + y

q 3

- / d ⇐ a + 1

- / out ⇐ d

q 1

q 2

!c / b x + yc / a ⇐ x - y

M

q 0

- / c ⇐ x < y

q 4

- / d ⇐ a + 1

q 3

- / d ⇐ b + x

- / out ⇐ d

Fig. 14 An Example of Speculation

4.1.3 CE Algorithm

CE Algorithm checks whether a variable v is an effective variable of a path β of a path

cover P in an FSMD M. Note that, it searches paths in M by breadth-first search (BFS)

method. A state q is reachable from a state qs means that there exists a walk starting from qs

and ending at q. Then BFS can discover all reachable states from qs in M [31]. That is, BFS

can discover all paths in M from the end state qβ of β .

CE Algorithm

Input: A variable v of a path β in a path cover P

Output: TRUE (v is NOT an effective variable of β) or FALSE

CheckEffect(v,β,P){

1 qβ = EndState(β);

32

2 // qβ is the source state where BFS starts from

3 llp = all paths starting from qβ in P;

4 tp = llp;

5 p = Pop(llp);

6 while(p){

7 if (p uses v) return(FALSE);

8 else if(p defines v) p = Pop(llp);

9 else{

10 qp = EndState(p);

11 pset = all paths starting from qp in P but not contained in tp;

12 tp = tp∪pset;

13 llp = llp∪pset;

14 p = Pop(llp);

15 }//endelse

16 }//endwhile

17 return(TRUE);

}//endCheckEffect

Proof of CE Algorithm

We prove CE Algorithm in two parts. The first part is for the termination and the second

part is for the correctness.

1 (Termination)

CE Algorithm has only one loop, named p-while-loop. The termination of p-while-loop

depends on the number of paths in tp. Since tp is a subset of P, CE Algorithm can always

terminate.

2 (Correctness)

33

As line 7 returns FALSE, there exists a walk starting from qβ and using “v” before any

defined “v”. Therefore, “v” is an effective variable of β.

Assume, for the purpose of contradiction, that there exists a walk ω starting from qβ and

using “v” before any defined “v” as CE Algorithm returns TRUE. Without loss of generality,

let ω has only one path using “v”, say pv . Since line 7 is not executed, pv is not in tp.

Therefore, we can let p0 p1… pi be the first part of ω where each pk is contained in tp for all k

from 0 to i and let the succeeding path pi+1 of pi is not in tp. According to line 8, pi must

define “v”; otherwise pi+1 should be in tp. Then we can conclude that “v” is not an effective

variable as return TRUE.

Complexity of CE Algorithm

n = the number of states of M

e = the number of edges of M

ko = the number of outgoing edges of a state of M

In the worst case, p travels all edges; therefore, p-while-loop iterates at most e times. Line

11 scans all outgoing paths of a state and checks whether each path is contained in tp, it

devotes O(ko*e). Therefore, the complexity of CE Algorithm is O(e2*ko).

4.2 Solution for CSE

The equivalent problem introduced by CSE can be solved if we can record all possible

available statements.

34

4.2.1 Available Statement

Definition 19 Available statement st of a state q

A statement st:v⇐e is available at a state q if

1) all possible walks from the reset state to q has st and

2) “v” and all used variables in e are not defined between the last st and q.

Fig. 15 illustrates an available statement of a state. q0 is the reset state. “q0 →

q1 → q2 → q3 → q4 ” is the only one walk from q0 to q4 . Since “b” of

“s1:a⇐b+c” is redefined in “q1 → q2 ”, s1 is NOT an available statement of the state q2.

On the contrary, “s2:a⇐b+c” is available at the state q4 since the walk from q0 to q4 has s2

and between s2 and q4 , all variables of s2 are not redefined.

Fig. 15 An Example of an Available Statement

An available statement st of a state q holds a main property: all variables of st are

35

preserved the values from the last occurrence of st to q. Therefore, a system produces the

same outputs as it re-computes st again between the last occurrence of st and q. The following

lemma is derived.

Lemma 1

Let statement st be available at a state q in M. M' is transformed from M by two steps:

1. Add a new paths “q → q' ” in M where “q → q' ” has only a copy st' of st.

2. Change the start states of all path starting at q to q'.

Then M ≊ M'.

We give a brief proof of Lemma 1. Since st is available at the state q, the values of all

variables of st are preserved from the last occurrence of st to q for each possible computation

µ having q. Therefore, let µ' of M' be the corresponding computation of µ . Clearly, they

compute the same condition and the same result. Therefore, ∀computation µ ∈M, ∃µ'∈

M' such that µ ≈µ', and vice versa. As the result, M ≊ M'.

Fig. 16 gives an example of Lemma 1. M' is generated from M having an available

statements “e'⇐a+b”. Then, M ≊ M'.

36

Fig. 16 An example of Lemma 1

Let Mβ' and Mα' be transformed by Lemma 1 from Mβ and Mα , respectively; then, Mβ ≊

Mβ' and Mα ≊ Mα'. Therefore, if Mβ' ≊ Mα', Mβ ≊ Mα .

4.2.2 Notion

Fig. 17 shows a solution for CSE. Mβ and Mα are partial FSMDs. Vβ∩Vα={c, d, e, e', f },

I={a, b}. qβ0 and qα0 are the reset states of Mβ and Mα , respectively. Before finding all

equivalent paths, our algorithm computes all available statements of each cutpoint of Mβ and

Mα . in(qβ1) = {“ c⇐a<b”, “ e'⇐a+b”} and in(qα1) = {“ c⇐a<b”, “e'⇐a+b”} are the set of

statements available at qβ1 and qα1 , respectively. After computing all available statements, our

algorithm compares β0 and α0 and computes that “ϖβ0 = < a<b, d, e, a+b, f > = ϖα0”. Then it

compares paths β1 and α1 and computes that “ϖβ1 = < c, a+d, a+b, a+b >”≠ “ϖα1 = < c, a+d,

e', e' >”. According to Lemma 1, in(qβ1) and in(qα1) are thought of as paths; we concatenate

37

in(qβ1) and β1 and concatenate in(qα1) and α1. As the result, ϖβ1 = < c<b, a+d, a+b , a+b > =

ϖα1 and β1 ≃α1.

Fig. 17 A Solution for CSE

4.2.3 Compute Available Statements

For each path β = qβi⇒qβj of an FSMD M, gen(β), in(β), kill (β) and out(β) are defined.

gen(β) is the set of statements of β which are available at the end state of β. At first, gen(β) is

computed for each path β of M. Therefore, three groups of equations can be created, shown in

(3.1). in(β) is the set of statements which are available at the start state qβi of β taking into

account all the available statements of all possible walks starting from reset state to qβi. It is

the intersection of the sets consisting of possible available statements of all preceding paths of

β. Oppositely, kill (β) is a subset of in(β) and contains all statements having some variables

being redefined in β. out(β) is the set of statements which are available at the end state of β. It

is the union of gen(β) and the statements in in(β) but not in kill(β).

38

1. out(β) = gen(β)∪(in(β) - kill(β))

2. in(β) =∩p is a preceding paths of β out(p) (3.1)

3. in(β0) = Ø where β0 is the path starting from the reset state

Note that, in(β) for the reset state is handled as a special case because nothing is available if

the FSMD has just begun at the reset state. And more important, in(β) uses intersection

because an statement is available at the start state of β only if it is available at the end state of

all preceding paths according to the definition of an available statement. All paths starting

from qβi should have the same in set. Therefore, in(qβi) = in(β) for each β starting at qβi.

Fig. 18 gives an example of how to compute available statements of cutpoints. Mα is a

partial FSMD having three cupoints (qα0, qα2, qα3) and three initial paths (α0 = qα0 → qα1,

α1 = qα1 →
c

qα2 → qα3, α2 = qα1 →
c!

qα2 → qα3). At first, our algorithm compute

gen(α0), gen(α1) and gen(α2). As computing gen(α1), there are two time steps (i.e. two

transitions) needed to be computed. The first transition contains two statements, “e⇐e' ” and

“d⇐a+d ”. Since “d⇐a+d ” redefines “d ” by itself, it is not available at qα3 and can not be

contained in gen(α1). And in the second transition, all its statements are available at qα3 . Our

algorithm cascades statements with their order, and then gen(α1) consists of “e⇐e' ” having

order 1, “c⇐d+e” having order 2, and “g⇐e' ”having same order 2. It is worth to notice that

the time is preserved by recording the order of statements and the statements with the same

order are executed simultaneously. Next, our algorithm computes in and out of each path.

Since α0 starts from reset state, in(qα0) = in(α0) = Ø and out(α0) = gen(α0). Because α0 is

the only preceding path of α1 and α2, this derives that in(qα1) = in(α1) = in(α2) = out(α0). As

calculating out(α1), “c” of statement “c⇐a<b” in in(α1) is redefined in α1; thus, out(α1) is

the union of gen(α1) and the rest statements of in(α1), “e'⇐a+d ”. out(α2) is computed in the

similar way. Finally, our algorithm computes in(qα3). Since there are only two preceding paths

α1 and α2 of qα3, in(qα3) is the intersection of out(α1) and out(α2). From out(α1), we find all

39

equivalent statements in out(α2) in order, then in(qα3) = {“ e'⇐a+b”, “ c⇐d+e”, “ g⇐e' ”}.

q 0

q

q

q

- /

c ⇐ a < b,

e' a + b

c /

e e',

d ⇐ a + d

!c /

d ⇐ a + f

- /

c ⇐ d + e,

g e'

in(q): Ø

in(q):

1.c ⇐ a < b,

1.e' ⇐ a + b

in(q):

1.e' ⇐ a + b,

2.c ⇐ d + e,

2.g ⇐ e'

gen():

1.d ⇐ a + f,

2.c ⇐ d + e,

2.g ⇐ e'

out():

1.e' ⇐ a + b,

2.d ⇐ a + f,

3.c ⇐ d + e,

3.g ⇐ e'

out() = gen():

1.c ⇐ a < b,

1.e' ⇐ a + b

gen():

1.e ⇐ e',

2.c ⇐ d + e,

2.g ⇐ e'

out():

1.e' ⇐ a + b,

2.e ⇐ e',

3.c ⇐ d + e,

3.g ⇐ e'

Fig. 18 Compute Available Statements

4.2.4 FAS Algorithm

The algorithm of computing all available statements in an FSMD M is shown below. Note

that the initial paths have been sorted by BFS and the gen set of each path has been calculated.

FAS Algorithm

Input: An FSMD M with reset state q0 and initial path cover P0

gen(β) has been computed for each initial path

Output: in(β) set for each initial path

40

FindAvailableStatement(M){

1 for(all paths p of P0){

2 p.travel = FALSE;

3 p.oldout = Ø;

4 in(p) = Ø;

5 out(p) = Ø;} //endfor

6 Qp = a queue of paths of P0 sorted by BFS and BFS starts from q0 ;

7 change = TRUE;

8 while(change){

9 llp = Copy(Op);

10 pp = Pop(llp);

11 change = FALSE;

12 while(pp){

13 oldout = out(pp);

14 qs = StartState(pp);

15 if(qs is reset state)

16 out(pp) = gen(pp);

17 else{

18 if(some preceding path are not traveled)

19 in(pp) =∩p is a preceding paths of pp and p.travel is TRUE out(p);

20 else

21 in(pp) = in(pp)∩p is a preceding paths of pp out(p);

22 out(pp) = gen(pp)∪(in(pp) - kill(pp));}//endelse

23 pp.travel = TRUE;

24 if(out(pp) ≠ oldout) change = TRUE;

25 pp = Pop(llp);

41

26 }//endwhile(pp)

27 }//endwhile(change)

}//endFindAvailableStatement

Proof of FAS Algorithm

We prove FAS Algorithm in two parts.

1 (Termination)

FAS Algorithm has only two loops, change-while-loop and pp-while-loop. Pp-while-loop

depends on the number of paths in llp. Since llp is the initial path cover, llp is finite and

pp-while-loop can terminate for each iteration of change-while loop.

Then prove change-while-loop can terminate. A walk starting from the reset set is called

an r-walk. Change-while-loop depends on the number of all possible r-walks. The paths

starting from the reset state have the constant out set, and then each other path can compute

the constant in set from an intersection of the constant out sets of all possible preceding

r-walks. Let Wp be the set consisting of those possible preceding r-walks for a path.

Let l1 be a loop and let B be an in set of l1. Let’s pass B through l1 and compute the out

set B' of l1 with the rule (3.1). Clearly, as passing B∩B' through l1 for any number of runs,

even infinite, we always compute the same constant B'. In other words, let Wf be a subset of

Wp and each walk, called rf-walk, of Wf has either no loop or only one. The intersection of the

out set of all walks in Wp is same as it in Wf. Therefore, the constant in set of each path is an

intersection of the constant out sets of finite walks.

Since llp is the initial path cover sorted by BFS, after the first run of pp-while-loop, each

path has an initial in set of an r-walk or an intersection of some r-walks. After a finite runs of

change-while loop, the constant out sets of all preceding r-walks containing no loop for a path

are computed. (An r-walk containing no loop may have reverse order because of BFS; for

example, let an r-walk be p1p2p3, and after BFS, the order of p3 is prior to p2 in llp.

42

Therefore, the r-walk needs at most 2 runs of change-while loop to compute the constant out

set.) Similarly, all preceding r-walks of a path containing only one loop can compute the

constant out sets after finite runs of change-while loop. Since there are finite r-walks,

change-while-loop can terminate.

2 (Correctness)

Since a path has only finite preceding rf-walks and each rf-walk can compute the constant

out set after finite runs of change-while loop, all available statements of a state can be

computed. Assume, for the purpose of contradiction, that there is a statement st which is not

available at the start state of a path p, but is in the in set of p. It means that some preceding

rf-walks don’t have st or a variable of st is redefined in a preceding rf-walk. In the former case,

the out sets of some rf-walks don’t contain st and the process in line 19 or line 21 will remove

it. In the latter case, st will be killed by line 22 as compute the out sets of the paths defining st.

If their original out sets has st, change will be set to TRUE. As a result, all statements in the in

set of p are available at the start state of p.

Complexity of FAS Algorithm

n = the number of states of M

e = the number of edges of M

ki = the largest indegree of all states of M

An iteration of pp-while-loop takes O(ki) and pp-while-loop has at most e iterations.

Change-while-loop depends on the largest number of the reverse order of all r-walks and the

longest loop; it has O(e) runs. Therefore, the complexity of FAS Algorithm is O(e2*ki).

43

4.3 Our Algorithm

According to the Theorem 2 and Definition 17, Mβ is contained Mα if there exists a path

cover Pβ = { pβ0 , ... , pβn } of Mβ and a set of path Pα = { pα0 , ... , pαn } of Mα such that pβi ≈

pαi for all i, 0≤i≤n. If a set of path Pα of Mα is also a path cover of Mα, it implies that Mβ ≊

Mα .

Lemma 2 Mβ ≊ Mα if there exists a path cover Pβ = { pβ0 , ... , pβn } of Mβ and a path

cover Pα = { pα0 , ... , pαn } of Mα such that pβi ≈ pαi for all i, 0 ≤ i ≤ n.

Since extending a path means to find a new path cover, we insert the cutpoints into not

only Mβ but also Mα ; then, we obtain initial path covers Pβ and Pα of Mβ and Mα , respectively.

For each path β of Pβ , our algorithm attempts to find an equivalent path in Mα by finding all

possible paths in Mα depending on CSP. Let β find an equivalent path α" of Mα where α" =

α1α2 and α1 and α2 are initial paths. In this case, at first, β can’t find an equivalent path

from the initial path cover of Mα , and then our algorithm extends α1 to find a new path cover,

Pα . Therefore, β can find an equivalent path α1α2 from Pα . If each path of the final Pβ has an

equivalent path of the final Pα and each path of the final Pα has an equivalent path of the final

Pβ , Mβ ≊ Mα .

Fig. 19 illustrates the overview of our algorithm and the detail is depicted in Fig. 20. Our

algorithm reads two FSMDs, Mβ and Mα , as the inputs and produces a set of equivalent paths,

E, as an output. Initially, the set of equivalent paths E is empty and the set of working list L

contains no path waiting to find an equivalent path in Mα . Let “(qβ0,qα0)” be the only one

member of corresponding state pair set, i.e. CSPβα ={(qβ0,qα0)}. After the initialization, our

algorithm inserts the cutpoints into both Mβ and Mα . Subsequently, it finds initial path cover

Pβ0 of Mβ and Pα0 of Mα . Next, it finds all possible available statements, i.e. the in sets of

44

each cutpoint in both Mβ and Mα . Hence, it is ready for finding equivalent paths.

First, our algorithm finds “β = qβi⇒qβj” from Pβ0 depending on “(qβi,qαm)” which is in

CSPβα , and then it finds an equivalent path, starting from qαm , of Pα0 in Mα . If an equivalent

path “α =qαm⇒qαn” is found, it records the equivalent path pair “(β,α)” in E and adds

“(qβj,qαn)” to CSPβα . Subsequently, it removes β from Pβ0 and α from Pα0 . Checking two

paths are equivalent or not may have three situations. In the first situation, they are exactly

equivalent. In the second situation, if they are not equivalent because of some final values of

variables, our algorithm checks those variables by CE Algorithm. If all of them are not

effective variables, β finds an equivalent path. Otherwise, in the third situation, according to

Lemma 1, our algorithm generates β' by concatenating in(qβi) and β, and it also generates

each α' by concatenating in(qαm) and each α in Mα. It compares β' with each α'. If the

equivalent path of β' is not found, it extends β (go to step 11). Otherwise, β finds an

equivalent path (go to step 10). Our algorithm repeats the process (GetEquivalentPath) until

all paths of Pβ0 finding an equivalent path in Mα . Finally, check if Pα0 is empty. If it is, it

implies that all paths in E constitute path covers of Mβ and Mα . Hence, Mβ ≊ Mα .

45

Fig. 19 An Overview of Our Algorithm

46

L =

getAllPath(P ,q i)

Y Extend β in MFind ?

Extensible?
Y N

Exit (Pass)

Exit (Fail)

Insert cutpoints into M and M

P = initial cutpoint paths of M

P = initial cutpoint paths of M

CSP =Lcsp ← (q 0,q), L = Ø, E = Ø

M and M

L = Ø &&

Lcsp = Ø?

P = Ø?

N

(q i,q j) = Pop(Lcsp) β = Pop(L)

Lcsp = Lcsp ∪(end ,end)

if (end ,end) not in CSP

CSP = CSP ∪(end ,end)

E = E∪()
N

Y

Y N

P = Ø?

Y

N

FindAvaiableStatements in

M and M

CheckEffect

findEqlPath(β,q j,P)

AddAvaiableStatment

1

2

3

4

5

6

7

8

9
10

11

12

13

Fig. 20 Our Proposed Algorithm

Proof of our algorithm

Obviously, the termination of our algorithm depends on the number of paths needed to be

checked and the number of CSPs of CSPβα . Since there are finite cutpoints and finite initial

paths in both Mβ and Mα , the combinations of CSPs are finite and our algorithm can only

extend finite times to generate finite concatenated paths. Therefore, our algorithm can always

47

terminate.

Since step 8, 9 and 10 of our algorithm in Fig. 20 ensure that E contains only pairs of

equivalent paths of Pβ and Pα and as extending a path, our algorithm concatenates all relevant

paths to build a new path cover and removes the relevant cutpoint and paths from E, Pβ , and

Pα ; therefore, all paths of E has no cutpoint be an internal state and all are the paths starting

from a cutpoint and ending at a cutpoint. As a result, as our algorithm executes successfully,

all equivalent paths are contained in E and they constitute the path covers of Mβ and Mα .

Complexity

n = the number of states of M

e = the number of edges of M

ki = the largest indegree of all states in M

ko = the largest outdegree of all states in M

The complexities of FAS Algorithm takes O(e2*ki). Let the complexity of comparing two

statements to be |F|. As findEqlPath, a path in Mα can extend at most n times and each path

extension needs to concatenate (ki*ko) paths. Therefore, the complexity of findEqlPath is

O(n*ki*ko*|F|). Note that |F| usually takes much longer time than CheckEffect and

AddAvailableStatement. When check if the new CSP is in the CSPβα , it has the n2 possible

combinations. In the worst case, one path is extended n times. There are ki*ko*(n-1) +

ki*ko2*(n-1)*(n-2) + … + ki*ko(n-1)*(n-1)*(n-2)…2.1 ≈ ki*ko(n-1)*(n-1)(n-1) number of paths.

Therefore, the complexity of our algorithm is O(nn*ki 2*ko n*|F|).

In the best case, each path in Mβ can directly find an equivalent path in Mα . No path

extension and CheckEffect are needed. Therefore, the complexity is O(e2*ki+n*|F|) ≈

O(n*|F|).

48

Chapter 5
Experimental Results

Our equivalence checking algorithm and Karfa’s algorithm [26] have been implemented in

C. We compare two paths with symbolic execution. All benchmarks have been run on a 1.86

GHz Intel Core 2 CPU PC with 2 GB RAM. The run time of all benchmarks is less than 2

seconds. One benchmark, diffeq, is data intensive; some are control intensive, such as gcd,

barcaode, tlc and lru ; some are control and data intensive, such as mode and kalman [32][33].

test1 and test2, which are built by ourselves, are control and data intensive. The results shown

in tables are sorted by our run time.

Table I, Table III and Table V list the characteristics of the benchmarks in terms of the

number of states in Mβ , states in Mα , variables in Vβ∩Vα , statements in Mβ , and statements

in Mα . Table II, Table IV and Table VI show the verification results. They list in terms of the

number of initial cutpoints in Mβ , initial paths in Mβ , initial cutpoints in Mα , initial paths in

Mα , path extensions in Mβ with the iterations back to step3, and equivalent paths and in terms

of the employed scheduling techniques for each case, the run time of our algorithm, and the

run time of Karfa’s algorithm.

Table I and Table II are the benchmarks where those cases are all equivalent cases and

scheduled by PBS or SPARK [15] with removing the SSp in manually. Therefore, our

algorithm and Karfa’s can handle the cases. Table III and Table IV are the equivalent cases

scheduled by SPARK except test1 and test2 which are transformed manually. Karfa’s

algorithm does not support Sp, RSp, SSp and CSE; therefore, it fails to all the cases in Table

IV. The cases in Table V and Table VI are not equivalent. Each case is added error manually.

barcode_err and kalman_err are transformed from barcode and kalman by adding an

improper MU; mode_err removes one operation from Mα ; lru_err changes the end state of a

49

path of Mα ; test2_err has an improper CSE. Our algorithm can find that they are not

equivalent.

For most cases, run time depends mainly on the numbers of iterations and path extensions.

The run time of test2_err is larger than kalman_err because the algorithms extend 80 paths in

kalman_err as they extend 524 paths in test2_err. The number of iterations contained in a pair

of braces is the number of paths compared by the algorithms. The number of path extensions

is the number of failed paths as finding equivalent paths. Since our algorithm only runs one

pass, our run time of barcode of Table II is less than Karfa’s. However, if two paths are not

equivalent in findEquivalentPath, our algorithm performs CheckEffect or/and

AddAvaiableStatement, and then compares again. Besides, FindAvaiableStatement also

consumes time. Therefore, our average run time is lager than Karfa’s about 2 times.

The experimental results, including one high complexity case kalman, indicate that our

algorithm is usable for verifying BB-based scheduling, PBS, code motions and CSE.

Abbreviations of each scheduling technique:

PBS: Path-based scheduling,

MU: Merging up, MD: Merging down

DU: Duplicating up, DD: Duplicating down, UM: Useful move,

Sp: Speculation, RSp: Reverse speculation, SSp: Safe-speculation,

CSE: Common subexpression elimination.

50

Table I Characteristics of Equivalent Cases 1

case #Qβ #Qα #variables in Vβ∩Vα #statementsβ #statementsα

barcode 9 6 4 12 16

gcd 7 3 3 11 11

tlc 11 12 5 29 31

modn 6 4 5 11 21

lru 23 22 13 18 26

kalman 105 101 64 104 112

Table II Results of Equivalent Cases 1

Ours [26] Case #cutpoints

in Mβ

#Pβ #cutpoints

in Mα

#Pα # of Path

Extensions

(iterations)

#E scheduling

P/

F

Time

(ms)

P/

F

Time

(ms)

barcode 5 10 5 10 2(10) 8 DD,UM,MU P 24.9 P 31.8

gcd 6 11 2 7 4(11) 7 PBS P 30.4 P 27.4

tlc 10 19 10 19 1(19) 18 DU P 36.4 P 33.5

modn 5 9 4 10 2(18) 11 PBS P 39.8 P 29.2

lru 21 41 21 41 0(41) 41 DU P 47 P 44.9

kalman 101 202 101 202 32(202) 170 DU,UM P 481.5 P 215.5

51

Table III Characteristics of Equivalent Cases 2

case #Qβ #Qα #variables in Vβ∩Vα #statementsβ #statementsα

test1 8 8 8 12 12

diffeq 7 7 12 15 20

gcd 4 5 2 4 9

barcode 9 10 4 12 27

tlc 11 12 5 29 44

lru 23 40 13 18 79

test2 29 21 23 43 45

kalman 105 150 64 104 279

Table IV Result of Equivalent Cases 2

Ours [26] case #Cβ #Pβ #Cα #Pα # of Path

Extensions

(iterations)

#E scheduling

P/

F

Time

(ms)

P/

F

Time

(ms)

test1 3 5 3 5 1(5) 4 Sp,RSp,CSE P 22.9 F 24.7

diffeq 2 3 2 3 0(3) 3 SSp P 23.8 F 22.6

gcd 4 7 4 7 0(7) 7 SSp P 24.4 F 19.5

barcode 5 10 6 11 2(10) 8 SSp,DD,UM,MU P 38.1 F 26.8

tlc 10 19 10 19 1(19) 18 SSp,DU P 46.1 F 29.5

lru 21 41 21 41 2(41) 39 SSp,DU P 85.5 F 40.1

test2 9 17 9 17 5(29) 24 Sp,RSp,SSp,CSE,

UM,MU,MD,DU,DD

P 111.7 F 553.5

kalman 101 202 102 203 34(202) 168 SSp,DU,UM P 1437 F 182.8

52

Table V Characteristics of Not Equivalent Cases

case #Qβ #Qα #variables in Vβ∩Vα #statementsβ #statementsα

barcode_err 9 6 4 12 15

mode_err 6 7 5 11 26

lru_err 23 22 13 18 26

kalman_err 105 101 64 104 110

test2_err 28 21 23 43 44

Table VI Results of Not Equivalent Cases

Ours [26] case #Cβ #Pβ #Cα #Pα # of Path

Extensions

(iterations)

P/

F

Time

(ms)

P/

F

Time

(ms)

barcode_err 5 10 5 11 4(10) F 33.5 F 28.3

mode_err 4 8 4 12 2(15) F 39.2 F 25.9

lru_err 21 41 21 41 3(44) F 52.9 F 38.4

kalman_err 101 202 101 203 19(56) F 273 F 123.6

test2_err 9 17 9 17 9(9) F 562 F 257.4

53

Chapter 6
Conclusion & Future Works

In this thesis, a formal verification method is proposed for the scheduling verification in

HLS. This method is capable of BB-based scheduling and PBS. It is also well suited to verify

some popular code transformation techniques: DD, DU, MD, MU, UM, Sp, RSp, SSp, and

CSE. But it still not supports some code transformation techniques, such as loop invariant and

copy propagation.

Fig. 21 shows an example of loop invariant. Since all variables of the statement “c⇐x+y”

are not modified in the loop (qβi1 → qβi2 → qβi1), loop invariant technique moves

“c⇐x+y” out from the loop. Our algorithm fails to this situation. Since the path ending at qβi1

and the path ending at qαj1 are not equivalent, our algorithm needs to extend the path. After

the path extension, i.e. removing the cutpoints qβi1 and qβi2, it becomes a walk which is not a

path. Therefore, our algorithm fails.

q i1

q i2

M M

b /

c x + y,
a ⇐ a + 1

q j1

q j2

- / c x + y

c /

d ⇐ a + c
b /

a ⇐ a + 1

c /

d ⇐ a + c

!c / ... !c / ...

Fig. 21 An Example of Loop Invariant

54

Copy propagation is derived from the compiler. The statements in “g⇐h” form are called

copy statements where “g” and “h” are variables. Copy propagation replaces “g” with “h” in

all the statements that have flow dependencies with “g⇐h”. It is illustrated in Fig. 22. Since

“a⇐x+y” and “c⇐x+y” have the common subexpression, CSE replaces the expression of

“c⇐x+y” with “ a”. Then, copy propagation finds “d⇐c” having data dependence with

“c⇐a+b” and it replaces “c” with “ a”. Our approach fails to this case. Since start from the

CSP “(qβi2,qαj2)”, the final values of “d ” of “ qβi2 → qβi3” and “qαi2 → qαi3” are not

equivalent because “c ≠ a”.

Fig. 22 An Example of Copy Propagation

55

References
[1] D. D. Gajski, N.D. Dutt, A.C.-H. Wu, and S.Y.-L. Lin, “High-Level Synthesis:

Introduction to Chip and System Design,” Kluwer, 1992.

[2] A. A. Jerraya, H. Ding, P. Kission, and M. Rahmouni, “Behavioral Synthesis and

Component Reuse with VHDL,” Kluwer, 1997.

[3] P. Coussy, D.D. Gajski, M. Meredith, and A. Takach, “An Introduction to High-Level

Synthesis,” IEEE Design & Test of Computers, vol. 26, page 8-17, July-Aug. 2009.

[4] C. Y. Hitchcock and D.E. Thomas, “A Method of Automatic Data Path Synthesis,”

Design Automation Conference, page 484-489, Jun. 1983.

[5] B. M. Pangrle and D.D. Gajski, “Slicer: A State Synthesizer for Intelligent Silicon

Compilation,” IEEE International Conference Computer Design: VLSI in Computers &

Processors, Oct. 1986.

[6] P. G. Paulin and J.P. Knight, “Force-directed Scheduling for the Behavioral Synthesis of

ASIC’s,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 8, page 661-679, Jun. 1989.

[7] R. Camposano, “Path-based Scheduling for Synthesis,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 10, page 85-93, Jan.

1991.

[8] G. Lakshminarayana, A. Raghunathan, and N.K. Jha, “Incorporating Speculative

Execution into Scheduling of Control-flow Intensive Behavioral Descriptions,” Design

Automation Conference, page 108-113, Jun. 1998.

[9] L.C.V. dos Santos and J.A.G. Jess, “A Reordering Technique for Efficient Code Motion,”

Design Automation Conference, page 296-299, Jun. 1999.

[10] M. Rim, Y. Fann, and R. Jain, “Global Scheduling with Code-motions for High-level

Synthesis Applications,” IEEE Transactions on VLSI Systems, vol. 3, page 379-392,

56

Sept. 1995.

[11] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Dynamic Conditional Branch Balancing

during the High-level Synthesis of Control-intensive Designs,” Design, Automation and

Test in Europe Conference and Exhibition, vol. 1, page 270-275, Dec. 2003.

[12] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Spark: A High-level Synthesis Framework

for Applying Parallelizing Compiler Transformations,” International Conference on

VLSI Design, page 461-466, Jan. 2003.

[13] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Loop Shifting and Compaction for the

High-level Synthesis of Designs with Complex Control Flow,” Design, Automation and

Test in Europe Conference and Exhibition, vol. 1, page 114-119, Feb. 2004.

[14] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Using Global Code Motions to Improve

the Quality of Results for High-level Synthesis,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 23, page 302-312, Feb. 2004.

[15] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau, “Spark: A Parallelizing Approach to the

High-level Synthesis of Digital Circuits,” Kluwer, 2004.

[16] R. Ernst and J. Bhasker, “Simulation-based Verification for High-Level Synthesis

Applications,” IEEE Design & Test of Computers, vol.8, page 14-20, Mar. 1991.

[17] R. A. Bergamaschi and S. Raje, “Observable Time Windows: Verifying High-Level

Synthesis Results,” IEEE Design & Test of Computers, vol. 14, page 40-50, April-Jun.

1997.

[18] T.-H. Chiang and L.-R. Dung, “Verification Method of Dataflow Algorithms in

High-Level Synthesis,” Journal of Systems and Software, vol. 80, page 1256-1270, Aug.

2007.

[19] N. Narasimhan, E. Teica, R. Radhakrishnan, S. Govindarajan, and R. Vemuri, “Theorem

Proving Guided Development of Formal Assertions in a Resource-Constrained Scheduler

for High-Level Synthesis,” Formal Methods in System Design, vol. 19, page 237-273,

57

Nov. 2001.

[20] R. Radhakrishnan, E. Teica, and R. Vemuri, “An Approach to High-Level Synthesis

Validation using Formally Verified Transformations,” IEEE International High-Level

Design Validation and Test Workshop, page 80-85, August-Oct. 2000.

[21] R. Radhakrishnan, E. Teica, and R. Vemuri, “Verification of Basic Block Schedules using

RTL Transformations,” Lecture Notes in Computer Science, vol. 2144, page 173-178,

Jan. 2001.

[22] N. Mansouri and R. Vemuri, “A Methodology for Automated Verification of Synthesized

RTL Designs and Its Integration with a High-Level Synthesis Tool,” Lecture Notes in

Computer Science, vol. 1522, page 204-221, Jan. 1998.

[23] Y. Kim , S. Kopuri, and N. Mansouri, “Automated Formal Verification of Scheduling

Process using Finite State Machines with Datapath (FSMD),” International Symposium

on Quality Electronic Design, page 110-115, Aug. 2004.

[24] H. Eveking, H. Hinrichsen, and G. Ritter, “Automatic Verification of Scheduling Results

in High-Level Synthesis,” Design, Automation and Test in Europe Conference and

Exhibition, page 59-64, Mar. 1999.

[25] Y. Kim and N. Mansouri, “Automated Formal Verification of Scheduling with

Speculative Code Motions,” Great Lakes symposium on VLSI, page 95-100, 2008.

[26] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar, “An Equivalence-Checking Method for

Scheduling Verification in High-Level Synthesis,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 27, page 556-569, Mar.

2008.

[27] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A Prototype Verification System,”

Lecture Notes in Computer Science, vol. 607, page 748-752, Jun. 1992.

[28] P. G. Paulin and J. P. Knight, “Scheduling and Binding Algorithms for High-Level

Synthesis,” Design Automation Conference, page 1-6, Jun. 1989.

58

[29] E. Teica and R. Vemuri, “A Mechanical Proof of Completeness for a Set of

Register-Level Transformation,” Technical Report 257/05/01/ECECS, University of

Cincnnati, 2001.

[30] Z. Manna, “Mathematical Theory of Computation,” McGraw-Hill, 1974.

[31] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein,

“Introduction to Algorithms,” McGraw-Hill, 2001.

[32] P. R. Panda and N. D. Dutt, “1995 high level synthesis design repository,” International

Symposium on System Synthesis, page 170-174, Sept. 1995.

[33] http://computing.ece.vt.edu/~mhsiao/hlsyn.html

	1_封面.pdf
	Equivalence Check of Scheduling with Speculative Code Transformations in High-Level Synthesis

	2_書名頁
	5_thesis_chloe

