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可動態重組之處理單元於頂點與像素處理 

 
學生：陳逸麒          指導教授：鍾崇斌 博士 

 
國立交通大學資訊科學與工程研究所 碩士班 

 

摘  要 

 
在頂點與像素的處理中，頂點與像素的工作量，在執行過程中有大量的變化。然而

在固定的硬體資源分配下，頂點處理器以及像數處理器經常有一方閒置，而另一方則發

生資源不足的情況。為此，我們提出了一個新的 shader unit: DR-shader unit，可針對工

作量的變化，動態分配處理器於頂點或像素處理之數量，以提升硬體資源之使用率，並

縮短執行時間。 

 

在本論文中，首先分析處理器的架構，決定可動態重組處理器中，各元件是否能讓

兩種組態所共用。其中我們利用最小繞線代價、最多共用邏輯以及最佳面積與時間三種

演算法，幫助我們決定運算邏輯是否應作共用設計，以組合成運算單元。並且設計工作

量監測邏輯，根據工作量的變化控制各可動態重組處理器之組態。最後得到於速度上有

60%之提昇，以及 30%使用率提昇。 
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A dynamically reconfigurable shader unit for vertex and pixel 

processing 
 

Student：Yi-Chi Chen       Advisor：Dr. Chung-Ping Chung 
 

Institute of Computer Science and Engineering  
College of Computer Science 

 

Abstract 
In vertex and pixel processing, the workloads of vertices and pixels vary greatly during 

run time. However, in fixed resource allocation between vertex shaders and pixel shaders, 

many vertex or pixel shaders may be idle while the other type of shaders are insufficient. 

Therefore, we propose a dynamically reconfigurable shader unit (DR-shader unit) which can 

distribute shaders for vertex and pixel processing according various workloads during run 

time. By the way, shader utilization can be upgraded, shortening execution time 

 

 

In this thesis, we firstly analyze the architecture of shaders and determine shared units 

between vertex and pixel shader type in DR-shader. We use three algorithms: minimum 

routing overhead, maximum sharing logic, and optimal area-time to determine how logics 

be shared and complete sharable computation unit. Besides, we design workload monitor 

logic to control the configuration of each DR-shader by workloads. Finally we gain 60% 

upgrade in speed and 30% upgrade in utilization 
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Chapter 1 Introduction 
 

 

Programmable graphics pipeline is the most popular type of graphics hardware nowadays. 

The program lengths and execution time of vertex and pixel processing may vary from scene 

to scene. However, this kind of variation in the execution time will lower the utilization of 

graphics hardware. In this thesis, we propose a dynamically reconfigurable shader unit 

(DR-shader unit) for vertex and pixel processing. DR-shader unit can dynamically allocate its 

hardware resources to harmony with the computation requirements of vertices and pixels at 

runtime. By this kind of flexibility, we can increase the utilization of graphics hardware and 

shorten the execution time of scenes. 

 

1.1 Vertex and pixel shaders 
In vertex and pixel processing, there are number of vertex and pixel shaders, which are in 

the form of programmable processors. The function of the two shaders is to execute the entire 

vertex or pixel shader codes respectively on each individual vertex or pixel and shader codes 

vary from pass to pass. However, the workloads of vertices and pixels for the two shaders 

may be very various during run-time. Number of pixels will be produce by each primitive 

(composed of three vertices) may have a range from zero to whole pixels in a scene, 

according to its position. In different situations the execution time of each vertex and pixel 

may be very diverse 

The workloads of vertices and pixels for the vertex and pixel shaders may be very 

various during run time. Traditionally, number of vertex and pixel shaders are fixed and the 

various workloads are partially be adapted by pixel queue, which is a buffer in front of pixel 

processing and stores pixels for the inputs of pixel shaders. However, the problem is that the 



 

 2

degrees of variation during run time often exceed the adaptability of pixel queue. When pixel 

queue is full, there is no space to store the result of vertex processing and all stages in vertex 

processing will be idle, including vertex shaders. When pixel queue is empty, there is no input 

for pixel processing and all stages in pixel processing will be idle, including pixel shaders. 

When both of these two situations happen too frequently, the utilization loss of graphics 

processing unit will be very low. 
 

1.2 Dynamically reconfigurable system 
We can basically classify reconfigurable systems into two different categories: 

dynamically reconfigurable system and static reconfigurable system. The most important 

difference between the two systems is that dynamically reconfigurable system can change its 

configuration during runtime. Dynamically reconfigurable system not only can be used for 

reducing the requirement of hardware in a design, but also can be used for circuit 

specialization based on the information known only during runtime. This feature does not 

exist in both static reconfigurable system and ASIC design. Moreover, by means of 

dynamically reconfiguration, we can optimize the resource allocations in hardware to meet the 

computation requirements at runtime. 

 

1.3 Motivation 
 The workloads of vertices and pixels for vertex and pixel shaders may be very various 

during run time. It is difficult for any architecture with fixed resource allocation between 

vertex shaders and pixel shaders to deal with such a big variation. If there are some 

multi-function shaders which can change their functions between vertex shader and pixel 

shader, we can easily distribute hardware resource according to the workloads of vertices and 

pixels. Besides, the architectures of vertex shader and pixel shader are very the same and lots 
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of the hardware resources can be shared to each other. It gives us a very good chance to use 

reconfigurable architecture to design them 

 

1.4 Objective 

Design a dynamically reconfigurable shader unit (DR-shader unit) to adapt various 

workloads between vertices and pixels 

VSs (Vertex 
shaders) Vertex shader farm 

 

Fig.1-1 The architecture of DR-shader unit 

 

1.5 Organization of this thesis 
 The organization of this thesis is as follow:  

In Chapter 2, the background about graphics pipeline is presented. 

In Chapter 3, we analyze the architecture of vertex and pixel shaders with their 

 computation requirement and design DR-shader with workloads monitor logic 

In Chapter 4, we show our simulation result with environment and decide a proper 

PSs (Pixel 
shaders)

DR-shader unit

Interconnection 
and routing path

Vertex / pixel workloads 
monitor logic 

DRSs
(DR-shaders)

DR-shader farm
Vertices 
and/or 
pixels

Coordinated 
vertices and/or 
colored pixels

Pixel shader farm 
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proportion within vertex, pixel and dynamically reconfigurable shaders. 

In Chapter 5, there are discussion, future work and conclusion. 
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Chapter 2 Background 
 

 

2.1 Graphics pipeline 
 We can simply see graphics pipeline as separable into four distinct and sequential steps: 

vertex processing, rasterization, pixel processing, and writeback. In below, we will use a table 

to show inputs, output and explain their operations of these four steps and to give a mainly 

explanation. 

Vertex 
Processing

WritebackPixel 
Processing

Rasteriz-
ation

Memory Scene

 

Fig.2-1 Four steps of graphics pipeline 

 

 Input Output Operation 

Vertex processing Vertices with 3D 
coordinates 

Vertices positioned in 
the 2D scene 

Transforms each 3D 
vertex in world space 
to 2D vertex on scene

Rasterization Primitives (triangles) 
assembled by vertices

Fragments Interpolations each 
primitives into 
numbers of fragments

Pixel processing Fragments ‘Finalized’ pixel with 
final color value 

Colors each fragment 
according to its 
information  

Writeback ‘Finalized’ pixel with 
final color value 

Image composed of 
‘finalized’ pixel 

Uses frame buffer 
storing pixels to 
assemble a frame 

Table.2-1 Input, output and operation in each step of graphics pipeline 

 

In the following sections, we will completely descript the details in vertex and pixel 
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processing. 

 

2.2 Vertex processing 
 At the input of vertex processing step, each primitives consists of three vertex 

coordinates, vertex normal values and other information, such as lighting and texture 

coordinates. At the beginning, all vertices are represented in the 3D coordinates with three 

dimension values {x, y, z}. In order to using a uniform matrix representation to represent 

affine transformation, we convert the Cartesian coordinates (3D coordinates) to the 

homogeneous coordinates, which are quadruples of the form {X, Y, Z, W}, where {X, Y, Z, W} 

= {xW, yW, zW, W} and in most case W is 1. After the conversion, we can use a sequence of 

matrix operations easily to transform the coordinates of vertices. Figure3 shows the steps of 

vertex processing in a typical graphics pipeline which consists of the following stages: 

Model-view Transformation

Projection Transformation

Perspective Division

Viewport Mapping

Vertex information

Homogeneous 
coordinates

eye coordinates

clip coordinates

normalize device coordinates

window coordinates

Clipping
view coordinates

Vertex information

Rasterization

Dehomogenize

world coordinates

Vertex processing

 

Fig.2-2 The steps of vertex processing 
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2.2.1 Model-view transformation 
 Modeling transformation may reshape and move primitives with respect to the position 

of viewer (eye position: {eyex, eyey, eyez}) because the position of the viewer often does not 

locate at the origin of the world coordinates. Therefore, we must use move the position of the 

viewer to the origin and also move all the vertices with the movement of the origin. Formula 1 

shows the matrix that we use to transform the position of viewer to the origin. 

 

 

Fig.2-3 Formula1 

 

Besides the movements of the position, we must change the directions of x-axis y-axis 

and z-axis with respect to the orthogonal direction (u), the up-direction vector (v), and the 

viewing direction (n) of the viewer. Fig4 shows the relations of u, v and n. Formula2 shows 

the matrix that we use to do the transformation. 
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Fig.2-4 The relations between (u, v, n) 
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Fig.2-5 Formula2 

 

This new orthogonal coordinate system usually is called as the viewing-coordinate system or 

the u-v-n system. Because these two transformations are both multiplications with a 4×4 

matrix in the homogenous coordinates, they can be combined into a single multiplication 

(Formula 3), which is implemented by 16 floating point multiplications and 12 floating point 

additions. As the result, the model-view transformation carries us to eye coordinates, where 

the viewer is at the origin and the directions of the x-axis, y-axis, and z-axis have changed. In 

the model-view transformation, we translate all vertices from the world coordinates to the eye 

coordinates. Then, we need to project all vertices on the view plan. 
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Fig.2-6 Formula3 

 

2.2.2 Projection transformation 
  Like a real camera, once we decide the position and the directions of the viewer, all the 
objects (consist of vertices) will be projected on a plane (view plane, which is defined by 
{xmax, xmin, ymax, ymin, zmax, zmin} six numbers) to show what we see. There are also near plane 
and far near to limit the space we can see and we usually call the limited space as view 
volume. Here we have two types of projections: orthogonal (orthographic) projection and 
perspective projection.  

The orthogonal projection is a simple projection, in which the projector is perpendicular 
to the view plane. In this projection, the z values of objects just define the depth of objects. 
The only thing we must do is to normalize the view volume and let the view volume to be a 
cube with ranges from -1 to 1 (canonical view volume). The projection transformation will be 
like Formula 4. 
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Fig.2-7 Formula4 

 The perspective projection is a more complicated transformation than the orthogonal 
projection but it can produce more realistic images by changing the sizes of objects according 
to their distances. Therefore, an object far away will be smaller than in the near. In this 
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projection, the x value and y value of an object may be divided by its z value. In the 
homogeneous coordinates, this kind of divisions can be implemented by just change the w 
value. Formula 5 shows the perspective projection matrix. This matrix also can translate the 
view volume to canonical view volume. 
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 Fig.2-8 Formula5 
 

 Each of these projection transformations are both consist of a 4×4 matrix multiplication. 
Therefore, we also can combine the projection transformation with the model-view 
transformation. At this time, we have a canonical view volume (clip coordinates), and then we 
can easily to check whether objects are in the eyesight of the viewer. 
 

2.2.3 Clipping 
 Although we transform all objects from world coordinates to the clip coordinates, there 
are many objects which are outside of the canonical view volume and won’t be showed on the 
scene. Therefore, we must clip those objects to reduce the workloads of behind stages. 
Clipping in the homogenous coordinates isn’t completely necessary, but it makes the clipping 
clean, fast, and simple. Besides, after dehomogenizing, the signs of the x value, y value, z 

value and w value will be lost { ( ) ⎟
⎠
⎞

⎜
⎝
⎛=

W
Z

W
Y

W
Xzyx ,,,,, }. Therefore, we can’t know 

whether objects are in front of or behind the viewer. 
 We first ignore the objects with w values smaller than zero because they are behind the 
viewer. Then, we can apply Cyrus-Beck clipping to test if a vertex V in the canonical view 
volume. Formula 6 shows the testing. By this testing, we clean some vertices out of the sight 
and others will continue into next steps. 

)6(},,{0)(1,0)(1 −−∈>−⇒<>+⇒−> zyxiaa
a
aaa

a
a

xw
w

i
iw

w

i
 

Fig.2-9 Formula6 
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2.2.4 Perspective division 
 Finally, all vertices have been transform from world coordinates to eye coordinates, and 

some vertices out of the sight have also been clean. At this step, we try to transform objects 

from 3D- coordinates to 2D-coordinates and decide the position of each vertex on scene. In 

projection transformation, we have defined how vertices be projected on 2D coordinates and 

the information has been store in w value. Therefore, the function of perspective division is 

just to divide (x, y, z) by w value and discard w value. So, we dehomogenize each vertex using 

the Formula7. 
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Fig.2-10 Formula7 

 

2.2.5 Viewport matrix 
 Finally, we decide the positions of each vertex on scene and the position of each vertex 

will be scaled by resolution of scene. Therefore, we transform the normalized (x, y) position 

of each vertex to scene position. Assume that the resolution of scene is w x h, then we will 

transform (x, y) from (-1, -1) to (0, 0) and from (1, 1) to (w, h). We use Formula8 to do this 

transformation. 
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Fig11. Formula8. 

 

  

2.3 Programmable graphics pipeline 
Programmable graphics pipeline is the most popular solution for the requirements of 

both performance and flexibility in computer graphics nowadays. With the rapidly 

development of computer graphics, such as 3D games, virtual realities and digital lives, the 

requirements of computer graphics in effects and performance become higher. To meet all 

kinds of users’ requirements, programmable graphics pipeline have been introduced into 

graphics hardware and many complicated function units have been put in. Different from 

fixed-functionality (non-programmable) graphics pipeline, programmable graphics pipeline 

has new graphics processing units: vertex shader unit and pixel shader unit. These two new 

processing units give graphics pipeline the flexibility to deal with all kinds of computation 

requirements while retaining the capability of complicated computation.  
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Fig.3-1 The architecture of vertex/pixel shader 

There are several units in both vertex shader and the pixel shader, which are: 

 

it which contains all inputs and outputs of any computations 

ple computation unit which can swizzle or negate 

ain computation unit which process complex operation  (ex. 

Chapter 3 Design 
 

 

3.1 Analysis of shaders 
The architecture of vertex/pixel shader in DirectX(spec. of GPU) is below: 

 

 

Destination 
register modifierInstruction slot

PC

1. Program counter: a register which stores the address of the instruction being executed.

2. Instruction slot: a storage unit which stores all shader codes for vertex/pixel shader(s). 

3. Instruction decoder: a combinational circuit to translate an instruction into the control 

signals of the data path. 

4. Register file: a storage un

for each vertex or pixel.  

5. Source register modifier: a sim

source data. 

6. Computation unit: the m

add, mul, mad …). 

Instruction
Decoder

Computation
Unit

Source register 
modifier

Register file
Storage Logic
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er modifier: a simple computation unit which is similar to source 

DR-s pes to be a multi-function shader. 

 shared between vertex shader type 

and p   

ed.  

Under these policies, we decide source register modifier, computation unit, and               

. 

 we deliberate upon how to design those sharable units for both two shader 

types tex 

xel 

m of data 

 nit are i*v bits in vector form, 

7. Destination regist

register modifier, but its target is destination register. 

hader must support all functions in both two shader ty

Therefore, it also contains those units and it must have to double the units which can’t be 

shared between vertex shader type and pixel shader type. 

Firstly, we consider which units in DR-shader can be

ixel shader type to reduce the hardware overhead of DR-shader. The sharing policies are:

1. If and only if a storage unit must store data, which may be states, instructions or 

temporary results, for vertex shader and pixel shader simultaneously, it can’t be shar

2. All logic units are sharable. 

destination register modifier are sharable units because all of them are logic units. Instruction 

slot is non-sharable unit, for it must store vertex shader codes and pixel shader codes in the 

same time. Besides, we can’t decide whether program counter and register file can be shared

We will make the decision for them when we discuss the architecture and flexibility of 

DR-shader.  

Secondly,

. In those sharable units, source modifier and destination modifier are the same in ver

shader type and pixe shader type. Therefore, we will focus on how to design a sharable 

computation unit in the following sections. There are some assumptions of vertex and pi

shaders’ architecture for us to design a sharable computation unit, listed below: 

 Single issue and single execution: because shaders expose the parallelis

better than the parallelism of instructions for single issue and multi-shaders 

respectively execute instead of multi-execution 

The widths of all operations in the computation u

where i is currently 32 (most probable), and v may be 1 or 4: for the precision 
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.2 Analysis of Computation requirements 
, 

we n

ta 

mputes four fields (x, y, z, w) of source registers and 

2. a computation on one field of a source register and produces 

3. us without any 

In the be ow what instructions are in the three types with their operations and 

struction Belong Operations Requirements 

requirement described in DirectX. 

3
Before design a sharable computation unit for vertex shader type and pixel shader type

eed to understand using data, function units and processing flow in all vertex and pixel 

instructions individually to decide how to design the computation unit in DR-shader. We 

divide all vertex and pixel shader instructions in DirectX into three types by their using da

and processing flows, which are: 

1. Vector type: separately co

produces four results. 

Scalar type: only does 

one result. In this type of instructions we use a changed second Taylor formula to 

reduce the complexity of their computations. (See Appendix A) 

Non-computation type: only send the data of source register to b

computation. 

low, we will sh

computation requirements. 

 

In

add 

sub 

VS, PS Dst.x = Src0.x + Src1.x 

 

Dst.y = Src0.y + Src1.y 

Dst.z = Src0.z + Src1.z 

Dst.w = Src0.w + Src1.w

2in-fpSUM32 ＊4  

cmp PS 1.x : Src2.x 

Dst.y = (Src0.y >= 0)? Src1.y : Src2.y 

2in-MUX32 ＊4  Dst.x = (Src0.x >= 0)? Src
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Dst.z = (Src0.z >= 0)? Src1.z : Src2.z 

Dst.w = (Src0.w >= 0)? Src1.w : Src2.w

dp2add VS fpMULDst = Src0.x ＊ Src1.x + Src0.y ＊ Src1.y 

+ Src2.w 

32 ＊2 

3in-fpSUM32 ＊1 

dp3 (vs) VS Dst = Src0.x ＊ Src1.x + Src0.y ＊ Src1.y

+ Src0.w 

 fpMUL

＊ Src1.w 

32 ＊3 

3in-fpSUM32 ＊1 

dp3 (ps) 

dp4 

PS 

 Src0.w ＊ Src1.w 

VS, Dst = Src0.x ＊ Src1.x + Src0.y ＊ Src1.y

+ Src0.w ＊ Src1.w +

 fpMUL32 ＊4 

4in-fpSUM32 ＊1 

max VS, PS Dst.x = (Src0.x > Src1.x)? Src0.x : Sr

Dst.y = (Src0.y > Src1.y)? Src0.y : Src1.y 

c1.x 

w

Dst.z = (Src0.z > Src1.z)? Src0.z : Src1.z  

Dst.w = (Src0.w > Src1.w)? Src0.w : Src1.  

2in-fpSUM32 4 

32

 ＊

2in-MUX  ＊4  

min VS, PS 

w

2in-fpSUMDst.x = (Src0.x < Src1.x)? Src0.x : Src1.x 

Dst.y = (Src0.y < Src1.y)? Src0.y : Src1.y 

Dst.z = (Src0.z < Src1.z)? Src0.z : Src1.z  

Dst.w = (Src0.w < Src1.w)? Src0.w : Src1.  

32 ＊4  

32 ＊4  2in-MUX

mul VS, PS 

 

fpMULDst.x = Src0.x ＊ Src1.x 

Dst.y = Src0.y ＊ Src1.y 

Dst.z = Src0.z ＊ Src1.z 

Dst.w = Src0.w ＊ Src1.w

32 ＊4 

mad VS, PS  Src2.x 

rc2.y 

 

fpMULDst.x = Src0.x ＊ Src1.x +

Dst.y = Src0.y ＊ Src1.y + S

Dst.z = Src0.z ＊ Src1.z + Src2.z 

Dst.w = Src0.w ＊ Src1.w + Src2.w

32 ＊4  

2in-fpSUM32 ＊4 
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sge VS  

Dst.y = (Src0.y >= Src1.y)? 1.0f : 0.0f 

Dst.z = (Src0.z >= Src1.z)? 1.0f : 0.0f 

Dst.w = (Src0.w >= Src1.w)? 1.0f : 0.0f 

2in-fpSUMDst.x = (Src0.x >= Src1.x)? 1.0f : 0.0f 32 ＊4  

2in-MUX32 ＊4  

slt VS Dst.x = (src0.x < src1.x)? 1.0f : 0.0f 

Dst.y = (src0.y < src1.y)? 1.0f : 0.0f 

Dst.z = (src0.z < src1.z)? 1.0f : 0.0f 

Dst.w = (src0.w < src1.w)? 1.0f : 0.0f;  

2in-fpSUM32 ＊4  

2in-MUX32 ＊4  

sgn VS Dst.x = (Src0.x > 0)? 1.0f : (Src0.x = 0)? 

0.0f : -1.0f 

Dst.y = (Src0.y > 0)? 1.0f : (Src0.y = 0)? 

0.0f : -1.0f 

Dst.z = (Src0.z > 0)? 1.0f : (Src0.z = 0)?

 0.0f : -1.0f 

Dst.w = (Src0.w > 0)? 1.0f : (Src0.w = 0)? 

0.0f : -1.0f 

Compare to 032 ＊4 

2in-MUX32 ＊8 

Table.3-1 Requirements for vector type instructions 

 

Instruction Belong Operations Requirements 

add 

sub 

VS, PS Dst.x = Src0.x + Src1.x 

Dst.y = Src0.y + Src1.y 

Dst.z = Src0.z + Src1.z 

Dst.w = Src0.w + Src1.w 

2in-fpSUM32 ＊4  

cmp PS Dst.x = (Src0.x >= 0)? Src1.x : Src2.x 

Dst.y = (Src0.y >= 0)? Src1.y : Src2.y 

2in-MUX32 ＊4  
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Dst.z = (Src0.z >= 0)? Src1.z : Src2.z 

Dst.w = (Src0.w >= 0)? Src1.w : Src2.w

dp2add VS fpMULDst = Src0.x ＊ Src1.x + Src0.y ＊ Src1.y 

+ Src2.w 

32 ＊2 

3in-fpSUM32 ＊1 

dp3 VS Dst = Src0.x ＊ Src1.x + Src0.y ＊ Src1.y 

+ Src0.w ＊ Src1.w 

fpMUL32 ＊3 

3in-fpSUM32 ＊1 

dp4 VS, PS 

 Src0.w ＊ Src1.w 

Dst = Src0.x ＊ Src1.x + Src0.y ＊ Src1.y 

+ Src0.w ＊ Src1.w +

fpMUL32 ＊4 

4in-fpSUM32 ＊1 

max VS, PS Dst.x = (Src0.x > Src1.x)? Src0.x : S

Dst.y = (Src0.y > Src1.y)? Src0.y : Src1.y 

rc1.x 

w

Dst.z = (Src0.z > Src1.z)? Src0.z : Src1.z  

Dst.w = (Src0.w > Src1.w)? Src0.w : Src1.  

2in-fpSUM32 4 

32

 ＊

2in-MUX  ＊4  

min VS, PS 

w

2in-fpSUMDst.x = (Src0.x < Src1.x)? Src0.x : Src1.x 

Dst.y = (Src0.y < Src1.y)? Src0.y : Src1.y 

Dst.z = (Src0.z < Src1.z)? Src0.z : Src1.z  

Dst.w = (Src0.w < Src1.w)? Src0.w : Src1.  

32 ＊4  

32 ＊4  2in-MUX

Tabl ns 

Instruction Belong 

e.3-2 Requirements for scalar type instructio

 

Operations Requirments 

branch VS PC = (Src0 !=0)?PC+1 : Src1 Bus to program counter 

texld PS Dst = Mem#Src1(Src0) emory Bus to texture m

Table.3-3 R

From above tab ith maximum 

quirements for each kind to execute any instruction, as shown in the following tables: 

equirements for non-computation type instructions 

 

les, we conclude that there are only five kinds of computations w

re
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Computation fpMUL 2in-fpSUM 3in-fpSUM 4in-fpSUM Compare to 0

Maximum 
4 4 1 1 4 

requirement 

Table.3-4 Maximum requirement of each computation 

3.3 Design
In this section, we want to implement the computation unit with its area as small as 

ign of computation unit is 

st 

 

 

 of computation unit 
 

possible while keeping one-cycle execution. The tradeoff in the des

that the more sharing we want the more routing overhead we may have. Therefore, we mu

carefully decide whether functions of any computation unit can be shared by others. To solve 

this problem, we divide each computation into sub-function nodes with requirement of each 

node individually to discover potential sharing possibility and then use an algorithm to choose

nodes covering all computations. The computations we divide are called the tree of 

computation requirements.  

fpMUL32
4

2in-fpSUM32 4

4

CMP
&SWAP

4

CMP
&SWAP 2in-adder24 normalize25

ALIGN
+INV

4

ALIGN
+INV

4 4
4

2
3in-fpSUM32 1

1

3in-
partial sort

ALIGN
+INV 3in-adder24 normalize26

2 1 1

CMP
&SWAP 2

2in-adder24
2

3
4in-fpSUM32 1

1

4in-
partial sort

ALIGN
+INV 4in-adder24 normalize26

3 1

CMP
&SWAP 3 2in-adder24

3

Compare
to 0 32 4

multiply24
8 4

adder8

normalize26 normalize251 3

2in-fpSUM32 2in-fpSUM32

1

A node can be divided into sub-function nodes 
Another way to be divided

Logic
Maximum 
requirement  

Fig.3-2 Trees of computation requirements 
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The meaning of covering is that if we choose a node in the tree of computation requirements, 

we can say the node has been covered. Besides, if all children of a node have been covered, 

the node also is covered. We will compare the average and maximum area requirement of all 

vertex and pixel instructions and choose the one with smallest average and maximum area 

requirement. 

 

3.3.1 Sharing all units within nin-fpSUM 
 In nin-fpSUM, we find that there are some possible sharing logics when we divide 

nin-fpSUM into many sub-function nodes. There are two possible partitions of nin-fpSUM , 

which are: 1. partition 3 or 4in-fpSUM to several 2in-fpSUMs 

Src1
2in-fpSUM32

Src2

2in-fpSUM322in-fpSUM32 Result

Src3
2in-fpSUM32

Src4

4in-fpSum

Fig.3-3 How three 2in-fpSUM s be reconfigured to one 4in-fpSUM  

 

32  

32 32

  2. Sharing all units of nin-fpSUM within each other 
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normalize25

normalize25

normalize26 Result

normalize25

normalize25

normalize26 Result

CMP
&SWAP

CMP
&SWAP

CMP
&SWAP

Src1

Src2

Src3

Src4

CMP
&SWAP

CMP
&SWAP

CMP
&SWAP

CMP
&SWAP

CMP
&SWAP

CMP
&SWAP

Src1

Src2

Src3

Src4

2in-
adder24

2in-
adder24

2in-
adder25

2in-
adder24

2in-
adder24

2in-
adder24

2in-
adder24

2in-
adder25

2in-
adder25

ALIGN
+INV

ALIGN 
+INV

ALIGN 
+INV

Largest for fpadd4

ALIGN
+INV

ALIGN 
+INV

ALIGN 
+INV

Largest for fpadd4

 

Fig.3-4 How three 2in-fpSUM32s be reconfigured to one 4in-fpSUM32  

 

Although “CMP&SWAP”, “ALIGN+INV”, “normalize” can be easily shared within 

nin-fpSUM , the problem is in adders, especially at we use three 2in-adders to form a 

4in-adder. In these three 2in-adders, two adders will be carry-save adders and the last one will 

be normal adders to add the carry and sum of the second carry-save. However, there are three 

problems we need to get over for this kind of design, which are: 

1. We need to add four 24-bit numbers by two 24-bit carry save adder and one 24-bit 

normal adder. Is there any extension in adder? 

2. After “ALIGN + INV”, there may be three carry-ins from the inverters. How do we 

add the three carry-ins by existent adders 

3. The result has 24+2 bits and the sources may be minus from inverters. How do we 

solve the sign-extensions of minuses? 

In prob N + lem1, the first carry-save adder adds three 24-bit summands from “ALIG
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V”, so it doesn’t need to extend. Besides, the normal adder must give 26-bit result, so it 

to 

hest bit 

1 

In problem carry-in to adder for the negation of 2’s 

comp

-in 

 

Fig.3-6 The solution of problem2 

 In problem3, the final solution is 26 bits and summands may be minus. Therefore, we 

must add compensation, which we call sign-com

IN

must be extend to 25-bit adder. However, in the second carry-save adder, do we need 

extend it to 25-bit adder? The answer is no because we doesn’t need to process the hig

of the carry from first carry-save adder. The figure below can give us more carefully concept: 

Fig.3-5 The solution of problem

 

2, “ALIGN + INV” may send 1-bit 

lement. How can we sum carry-ins, which are at most three, to summands without any 

additional logics? To solve this problem, we use the vacant position in the carries of the two 

carry-save adder to add two carry-ins. Then, the last carry-in will be added as normal carry

by the normal adder.  

 

pensation, to temporary result and get correct 

＋

Normal adder
24+1 bits

Sum2
Carry2

Result 
(24+2 bits)

＋

Carry save adder 1

Src1

Carry1

24 bits

Src3

Sum1

Src2
＋

Carry2

Carry save adder 2
24 bits

Sum1
Carry1
Src4

Sum2

Carryin3 
as normal carry-in

＋

Normal adder
24+1 bits

Sum2
Carry2

Result
(24+2 bits) 

Carryin2＋

Carry2

Carry save adder 2
24 bits

Sum1
Carry1
Src4
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Carryin1
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2
01Sign-compensat

30Number of minuses

result.  

11 1000ion

1
11 1000ion

1 2
01Sign-compensat

30Number of minuses

＋

Src2

24 bits

Src3
Src4

Result
(24+2 bits)

Src11

1
1

11
11
11

24 bits

＋

Src2
Src3
Src4

Temp result
(24+2 bits)

Src11
1
1

01＋

Real result
(24+2 bits)

 

Fig.3-7 The solution of problem3 

s to choose node covering all computations: 

 Algorithm1- minimum routing overhead: use the fewer choices to cover all 

computation requirements. The advantage of this algorithm is that there may be 

fewer routing overhead with enough sharing logic. However, the disadvantage is 

that it may loss some possible sharing opportunity for smaller area requirement. The 

steps of the algorithm are described in below: 

Step1: collect nodes with the same logic (sharable nodes) and indicate the most 

maximum requirement. 

Step2: group nodes into several sets and let there are no links or the same nodes 

within different sets and ignore the sets which only have one computation. See 

below: 

 

3.3.2 Algorithm1 & 2 to choose nodes  
Here, we propose two algorithm
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Compare
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24-bit8-bit
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Fig.3-8 Different sets of computation trees 

 

Step3: For each set we do that, we firstly choose a sharable node in the highest 

level and see if all computations have been covered. If there are computations 

haven’t been covered, delete chosen nodes with all their children and choose 

another sharable node in highest level. Recursively, all computation requirements 

have been covered or no sharable node. 



 

 25

 

Fig d 

 

 

 most 

 

.3-9 The result of minimum routing overhea

Algorithm2-Maximum sharing logics: find more sharing choices to cover all 

computation requirements. The advantage of this algorithm is that there are the

sharing logics. However, the routing overhead may become more serious. 

Step1.2: the same as step1 and step2 in minimum routing overhead to group nodes

into several sets. 

Step3: For each set we do that, we firstly choose a sharable node in the lowest level 

and see if all computations have been covered. If there are computations haven’t 

been covered, delete chosen nodes with all their children and choose another 

sharable node in lowest level. Recursively, all computation requirements have been 

covered or no sharable node. 
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The following figures show how three 2in-fpSUM32s be reconfigured to one 4in-fpSUM32 in 

these two algorithms as an example: 

 

3.3.3 Algorithm3-optimal area-time:  

 In minimum routing overhead and maximum sharing logic, we find that some factors for 

sharing logic haven’t been considered. In these two algorithms, we choose nodes as basic unit 

but we don’t consider about different proportions within nodes. Besides, the silicon area is not 

the same in all nodes. Therefore, we use a new algorithm. 

 Search by integer programming: weight each sharable node with hardware cost and 

use integer programming to minimize total cost. Here, we estimate hardware cost of

each node by num

cases. If one sharable node with the most maximum requirement it means that logic 

without routing overhead divided by area of 

Fig.3-10 The result of maximum sharing logic 

 

ber of multiplexer area it may need. The cost function has two 

of the node will be shared to other nodes which needed the same logic. Therefore, 

the cost will be its implementation area 
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a multiplexer. Except those nodes, other sharable nodes will have a cost equal to 

ultiplexers and one output three meaning the routing overhead on two input m

multiplexer. 

⎪
⎪

⎪
⎨

⎧

=
 3

 
rmultiplexe a of area
tionimplementaan  of area

 cost

randomly choose one nodes with 

otherw
(meaning rout⎩

⎪ the most maximum requirement 

ise 
ing overhead)

 

Fig.3-11 Cost function of search by integer programming 

 

The advantage of this algorithm both consider sharing logic and routing overhead. 

However, the disadvantage is that the qualities of results depend on the precision of 

cost. For the integer programming, we change the display of computation trees and 

give more information. 
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Fig.3-12 The computation trees for integer programming 
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Step1.2: the same as step1 and step2 in minimum routing overhead to group nodes 

into several sets. 

Step3: To find optimal result using integer programming, we set 

 Variables 
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Fig.3-13 An example for Reqs reducing 
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  Step5: apply integer programming and get the result with minimum cost 

The result of optimal area-time is in below: 

fpMUL32 
(1) 50.7 4

2in-fpSUM32
(1) 48 4
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normalize25
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Fig.3-14 The result of optimal area-time algorithm 

 Then, we compare the result of three 

algorithms 

 

3.3.4 Comparison within algorithms 
Firstly, we show the comparison within three algorithms 

 

We find that the result of optimal area-time algorithm is the same as minimum routing 

overhead because of too few possible solution.

2,000,547.5

2,105,722.5986,095.4688Maximum 
sharing logic

2,000,547.5

Maximum area 
requirement (um2)

985793.5938

Average area 
requirement (um2)

Minimum routing 
overhead

Optimal ar 985793.5938ea-time

2,000,547.5

2,105,722.5986,095.4688Maximum 
sharing logic

2,000,547.5

Maximum area 
requirement (um2)

985793.5938

Average area 
requirement (um2)

Minimum routing 
overhead

Optimal ar 985793.5938ea-time

 
Table.3-5 Average and maximum area requirement of three algorithms 
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the 

rage and maximum area requirements. To compare the two kinds of result in 

etail, we find they only differ in the choices of how to reconfigure 2in-fpSUM32s to 

haring logics between 

2in-fpSUM  is in the routing overhead. 

The critical path of minimum routing overhead/optimal area-time is: 

Delay time = CMP&SWAP  ALIGN+INV  2in-add24  normalize25  MUX

 

Finally choose the result of minimum routing overhead/optimal area-time because of 

smallest ave

d

3in-fpSUM32 or 4in-fpSUM32. In addition, we analyze the s

32S and 4in-fpSUM32 and find out the failure of result2

32  

CMP&SWAP  ALIGN+INV  2in-add24  normalize25 

= 3.93 + 6.14 + 4.47 + 4.72 + 0.76 + 3.87 + 6.01 + 2.54 + 7.56 (ns) 

= 40ns with time overhead 0.76ns (1.9%) 

The area requirement of minimum routing overhead/optimal area-time is: 

Area = 2in-fpSUM32*3 + MUX32*2 

= 313425 + 8837.5 (um2) 

2 2= 332027.5um  with area overhead 8837.5um  (2.66%) 

The critical path of maximum sharing logic is: 

Delay time = MUX32  CMP&SWAP  MUX32  CMP&SWAP  MUX32 

CMP&SWAP  ALIGN+INV  2in-add24  MUX

 

32  2in-add24  MUX32  

2in-add25  normalize26 

= 0.6 + 3.9 + 0.75 + 3.59 + 0.77 + 5.08 + 6.24 + 1.15 + 0.86 + 1.42 + 0.85 + 

The area requirem

 Area = 2in-

9.31 + 6.63 (ns) 

= 43.86ns with time overhead 2.12ns (4.83%) 

ent of maximum sharing logic is: 

fpSUM32 * 3 + MUX32* 6 

= 108972.5 + 106872.5 + 107345.0 + 18882.5 (um ) 2

= 332307.5um2 with area overhead 18882.5 um2 (5.68%) 
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Beca ead of maximum sharing logic are much more than 

those ove overhead/optimal area-time, we finally choose the result 

of minimu he computation unit. 

3.4
 

DR-shader is below: 

 

Fig.3-15 The architecture of DR-shader 

in the sharable computation unit to support all vertex and pixel 

instructions with routing overhead 

 Context memory to store the configuration of  each instruction 

 One more instruction slot to store vertex and pixel shader codes simultaneously 

Therefore, the area of DR-shader may be larger than the area of vertex shader or pixel shader 

use the time overhead and area overh

rhead of minimum routing 

m routing overhead/optimal area-time as our design of t

 

 Architecture of DR-shader 
After finish the computation unit, we can build DR-shader. The architecture of 

Configuration 
signal

 

In the architecture, there are some necessary hardware overheads: 

 More logic 

Instruction
Decoder

Computation
Unit

Instruction slot
(pixel shader)

Destination 
register modifier

Register file

Instruction slot
(vertex shader) Context 

memory

PC

Source register 
modifier

Storage Logic
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for the ability to reconfigure between vertex shader type and pixel shader type. However, we 

will find whether its flexibility deserve be added to upgrade shader utilization in our 

simulations. 

 

3.5 Design of workloads monitor logic 
In this section, we firstly descript the properties of DR-shader and the hardware overhead. 

Then, we will descript the design of vertex/pixel workloads monitor logic. There are two 

assumptions of reconfigure property for DR-shader: 

1. Order of processing: In the beginning, all DR-shaders will be reconfigure to vertex 

shader type because of no workload in pixels. Then, DR-shaders will be often 

reconfigured to vertex sh rding to the various in the 

workloads between vertices and pixels until all vertices have been processed. Finally, 

aining pixels. 

Reconfiguring tim

after it finis eeding one more register file for temporary 

results. 

The purpose of the workloads m

shaders with pixel shader type is equal to number of used 

intervals in pixel queue. (the size of intervals will be determined later) 

ad monitor 

ader type or pixel shader type acco

all DR-shaders will be reconfigured to pixel shader type for rem

2. ing: The configuration of each DR-shader only can be changed 

h a vertex/pixel to avoid n

onitor logic is to control number of DR-shaders with pixel 

shader type in DR-shader unit and let stall cycles of all shaders as few as possible. To achieve 

this goal, we base on three kinds of information to control number of DR-shaders with pixel 

shader type, which are: 

 Expected number of DR-

 Current number of DR-shaders with pixel shader type is recorded in worklo

logic. 

 Job end signal is sent by each DR-shader, telling workload monitor logic which 
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At ev  

with pix  

finishing

change f

Fig.3-16 Flowchart of workloads monitor logic 

 

v

DRp: DR-shader with pixel shader type 
el

el 

DR-shaders finish their job. 

ery cycle, we count the difference between expected and current number of DR-shaders

el shader type. If the expected number is bigger than current number, we change

 DR-shaders with vertex shader type to other type by the difference. Otherwise, we 

inishing DR-shaders with pixel shader by the difference. 

            shader type 

DR : DR-shader with vertex shader type 

EDRP: expected number of DR-shaders with pix
           shader type 
CDRP: current number of DR-shaders with pix

EDR < CDR ? P P

Find and mark 
finishing DRp(s)

Find and mark 
finishing DR (s)v
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no

Change (CDRP - EDRP)
finishing DR (s) to DR (s)P V

Chan
finishing DRV(s) to DRP(s)

ge (EDRP - CDRP)
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 Vertex shader

he output of simulator is the execution time from vertex processing to pixel processing of a 

frame with the information about shader utilization. There are also some parameters we can 

set for different environments we want, listed below: 

 Clip information 

 Throughput of the clipping unit 

 PreZ information 

 Throughput of the PreZ unit 

 Shader information 

 Throughput of the vertex input 

 Size of pixel queue 

 Numbers of DR-shader, vertex shaders and pixel shaders 

 Number of batches in each shader 

 Latencies of each instruction 

 Texture information 

Chapter 4 Simulation 
 

 

4.1 Simulator of DR-shader 
 For this thesis, we build a cycle-based simulator referenced from SiS. The input of the 

simulator is 3Dmark05, we consider about information which is listed below: 

 If a primitive is clipped (culled) or pass 

 Number of tiles produced from each primitive 

 If a tile is blocked by preZ or not 

 Number of pixels can be produced from each pass tile  

 codes and pixel shader codes 

T
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 Textur

 Miss rate of the texture memory 

 Miss penalty 

 
lator base on SiS 

 

4.2 S
 decide a proper proportion between vertex shaders and pixel 

shaders and the size of pixel queue. For the goal, we assume number of vertex shaders is three, 

and o r ed below: 

 

ipping unit = unlimited 

 

mited 

 

e vertex input = unlimited 

e unit access cycles 

 Throughput of texture units 

Fig.4-1 The cycle based simu

imulation1 
In this section, we will 

the  parameter setting list

Clip information 

 Throughput of the cl

PreZ information 

 Throughput of the PreZ unit = unli

Shader information 

 Throughput of th

Triangle 
SetupClip

V.S.   
Prog.

P.S.   
Prog.

Vertex 
Shader

Pixel 
Shader

Cycle based Simulation 
base on SiS C-model

Texture
Memory

PreZI u Output

Pixel 
Queue

np t
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 3 Number of vertex shaders =  

tchs in each shader = 8 

Then, we he s in every cycle. The workload in each cycle is 

counted as number of pixels in the cycle product with their execution time. We display the pie 

chart of pixels’ workload: 

 Latencies of each instruction = 8 

 Number of ba

gat r workload statistics of pixel

1000~9999

0.7%

100~999

0.24%

>10000

0.3%

<10

99.37%

10~99

0.28%

其他

<10

10~99

100~999

1000~9999

>10000

0.63%

A
Standar

verage = 36.353
d deviation  = 279.114  

er of pixel shaders when there are three vertex 

shaders. Under 3 vertex shaders with 37 pixel shaders, we simulate the relation between the 

size of pix u

Fig.4-2 The pie chart of the pixels’ workload in every cycle 

 

We choose the average workload as numb

el q eue and execution time: 
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Fig.4-3 The relation between the size of pixel queue and execution time 

 

By the graph, we choose the size of pixel queue is 1024 (pixels). 

 

4.3  Simulation2 
 In this section, we decide the size of intervals in pixel queue and number of vertex 

shaders and pixel shaders be changed to DR-shaders. We use the parameters decided above, 

listed below:  

 Clip information 

= unlimited 

 Shader information 

 Throughput of the vertex input = unlimited 

 Latencies of each instruction = 8 

 Throughput of the clipping unit = unlimited 

 PreZ information 

 Throughput of the PreZ unit 
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 Number of batchs in each shader = 8 

 Number of vertex shaders = 3 

 Size of pixel queue = 1024 

 Total number of shaders = 40 (3 + 37) 

 Texture information 

 Texture unit access cycles = 8 

 Miss rate of the texture memory = 0 

 Throughput of texture unit = unlimited 

Firstly, we simulate the relation between the size of intervals and execution time and get 

below graph: 
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Fig.4-4 The rela ize of intervals, number of DR-shaders, and execution time 

It is appar  intervals doesn’t have a great influence on the execution time. 

Therefore, we choose the size of intervals is for the flexibility.  

  the number of DR-shaders and time-area 

product with the size of in

tion within the s

 

ent that the size of

 equal to 32 (pixels) 

Secondly, we simulate the relation between

tervals equal to 32:  
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Fig.4-5 The relation between the number of DR-shaders and area-time product 

The time-area products have a minimum value at number of DR-shaders equal to 16. For the 

analysis in detail, we list time, area, and utilization of each shader type in below: 
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Table.4-1 The time, area, and area-time product 

78,431,817 
[0.879348]

160
[0.82311]

35,664,24324

7 
[0.515063]

Stall cycles 
[Utilization]

Stall cycles  
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Number of each
kind of shader

[0.50552]

Stall cycles 
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Table.4-2 The utilization of each shader type 
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 We choose 24 DR-shaders with 16 pixel shaders in DR-shader unit and the size of 

intervals in pixel queue is 32 pixels as our final result. This kind of design will have a great 

improvement in shader utilization and execution time with a few of hardware overhead and 

area-time product will be reduced to 65.3 %. 
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5.1 Discussion 
To design hardware by reconfigurable architecture, we need to consider sharable logic, 

hardware overhead from routing path, sharing time and usable opportunity, etc. However, this 

kind of problem may be very complex and we couldn’t consider all causes at once. The 

priorities of those causes must be carefully decided for computation time and better result. 

There may be a trade-off between sharable logic and routing overhead. So, how to decide 

whether a logic be shared or not will be one of the most important problems in the 

reconfigurable architecture. 

 

5.2 Future work 
Utilization loss in texture load misses:  

 In our observation, long texture load miss penalty will cause shader utilization loss 

greatly. Although DR-shaders can be reconfigured at finishing, they stalled a long time when 

load misses. We may reconfigure those load-miss DR-shaders with pixel shader type to vertex 

shader type and try to reduce utilization loss in texture load miss. To solve this problem, we 

may need one more register file to buffer its temporary result and one more program counter 

for current state as hardware overhead. The reconfigure timing may be changed from an end 

of a vertex or pixel to any cycle. The workload monitor logic may need to change the 

configuration of load-miss DR-shaders with pixel shader type to vertex shader type. The 

proposed architecture is below: 

Chapter 5 Conclusion 
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isses 

at besides reducing the hardware cost by sharing logic, the 

 used to adapt various workloads everywhere 

Fig.5-1 The proposed architecture to reduce utilization loss in texture load m

 

5.3 Conclusion 
In this thesis, we have prove th

flexibility of reconfigurable architecture can be

and try to upgrade the utilization of whole system. In our design, the execution time has been 

greatly shortened with limited hardware overhead.  

The level of reconfigurable architecture can be anywhere and used in different levels in 

the same time. In our design, besides DR-shader can be reconfigured between vertex shader 

type and pixel shader type, the computation unit of DR-shader also can be reconfigured to 

execute all vertex and pixel instructions for area saving. 
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Taylor formula (reference from SiS) 
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