¥ & i € 22 shader unit *t 78 gh¥ i % AT
A dynamically reconfigurable shader unit for vertex and pixel

processing

FopoA o s
TR H Y g B

FTEOALE 2 BT H AR BLY (fF AT

|

A dynamically reconfigurable shader unit for vertex and pixel processing

Moy i Student - Yi-Chi Chen

gy 4 F ¢ K#E Advisor : Dr. Chung-Ping Chung

AL R A
Y T
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National'Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
In

Computer Science and Information Engineering
September 2006

Hsinchu, Taiwan, Republic of China

CRYAY B N
Wt 52 R fE £ Pt
MmN ORXZEEGEECS
A AMAZRIE O AEA Bk z

FIT 42 3 X
o] $ A& & %A 4% 2 shader unit N TAZE #1412 & K 32

A dynamically reconfigurable shader unit for vertex and pixel

processing
SRBEERAKE S ERARAFZT B GFFRT -

2 X 2 @%xﬁ

Q

vy2rREAFE S L AL B

B X % &8 K %2

HAEALRXSXETFREIHHHEE

(R AR T RARXELRZIKRAR)

A IR ZEMG 0 BAAPNBRITBARAE TAHEHIE ZAT

Lupmitm o Atw Z2HEEE - PHRGFBEIEMZEGX -

By e THEEAZREEANTBELAEERE

BRI SR

B 5
AANBBEARES LERE - BEBHERIRE ARLHRLBUALSARLLHEEZ
b R En R THRAEET L RAME 2HA ANHETHESATZ

Bey) B X@BRLREEHARERAETETRMRMGE - FEERE - 2
A R AL ESE T RS ERAAA S REAECERAEERN
FEFwAARERE ME - THRRIIF -

X4 U R e s o B 2 86 B &8

ARREEBBERELREBRER eGP
Ko s B S

B A>T THERARE e
¥ o A R :

v . Bl
weps ik BA .
vERE C# T A

—
m

B ¥ %X § K %

HaEtaX 8 ArEThHEREE

(R AEITA X ETHRHEEXIRER)

AEH IS BB AAANBRITBARE BMALHEIE LA

Akt Atw SEEE — FHRFALEMHMZHm
IWXFEE EHETAT REESUNTEREGERE

RSO SR 2T

| G
AAEFAEA SRR BEEER L RAAL AR BHEAN T H RS
“HARA | ZEL SEHAACRSHMAEZ B BLRBRERZHES

LU AN EEEA R N BEMR S EE R RE N REF BT LRI

WX AANGERLEEHPHENN (R EXZAEEIEARATES)OHMAZ
— BEHEXRA P B R R # A B A&

NI

B H A %%ﬁh :
ﬁ%%z-!z1k¢>%§E
vy#rm 1% T8 /)8

B X E %
BRAXEFHELAZMHT

ID:GT009323622

ARG EMBEHZBHE O AREAPVRILITRAARE THAHLHIE LA

Ao e Adw RFEEF = PHBREMALIEMZHX

XA TR TaZRAEEANTESEGEEERE

FEHF EER

ME BB HREARAEZ R Z LRI (AHE) FER - RERHEER
Bl 548 0 AR~ SRR SR B A ~ R R RS T X% L%
XEH BAFFEMICZ IR IRAXETFHRALBEARY X REFLER
BAEFMEZR ExE -~ BE > TRRFEP -

M ORAANFEAME 2R ek BE - TRAFIEP L2530 BAAREE#RER R M -

o A R
5%

RERL LS *x.: 2L
v ERBIS £ T A ”? z

.1&_

Bofl E 2 R TR BRI R AT

£ 0 kR BB A gL

2l - FFApFE g8 7 “T/ L5

G Bt Gk SORIE Y T BRS fh hd i

JFls
F_&
o
-
&
B
ArS
=i
A-
|t
3
Ak
E=tl

BT AHMETRAfT 0 TEAIEE M E GEARILESTF - S FE A ¥ - 3R
4 FRA KR o 5ot o A gk 5 2 LiERTER shader unit: DR-shader unit » ¥ 4441
FR AR > BRAF L B REA R i fed > MRIHMT R I 1

$EH TR o

Gk d o FASPAE B AT FEE L AR R L AR LT AR
AABEGEEE T o B Y AP Bl RMAE B s £ BIEE B G R

AR FBAPAELRELT TR R e AEY
A

60%2 # B » 112 30%i * F# B o

A dynamically reconfigurable shader unit for vertex and pixel

processing

Student : Yi-Chi Chen Advisor : Dr. Chung-Ping Chung

Institute of Computer Science and Engineering
College of Computer Science

Abstract

In vertex and pixel processing, the workloads of vertices and pixels vary greatly during
run time. However, in fixed resource allocation between vertex shaders and pixel shaders,
many vertex or pixel shaders may be idle while the other type of shaders are insufficient.
Therefore, we propose a dynamically reconfigurable shader unit (DR-shader unit) which can
distribute shaders for vertex and pixel processing according various workloads during run

time. By the way, shader utilization'can be upgraded, shortening execution time

In this thesis, we firstly analyze the architecture of shaders and determine shared units
between vertex and pixel shader type in DR-shader. We use three algorithms: minimum
routing overhead, maximum sharing logic, and optimal area-time to determine how logics
be shared and complete sharable computation unit. Besides, we design workload monitor
logic to control the configuration of each DR-shader by workloads. Finally we gain 60%

upgrade in speed and 30% upgrade in utilization

FARMA R B B VP HE s b EFOREIGE s 3B RESLRET > A

\\

EEPRUE T AR IR)llg?l]1§3§i# Bop R WA 2L B OB AR K- ;'1:7%?
PRI R ARCR d TR il R B REh WY U R ERT

PHORBRHRFTOE LY N EE S S ALY LA AT g Lo
¥ A m;};@n\ P ENEFE YA T L B3 A R o S u R i el
SRl - Sk N S - ﬂ&ﬁ.}fﬂr $rend FA L T A LBRFIFELA AT FREL B

BAES O F o R BA- ARk S R Y

fub o Al A P AR o AP B A E R RSB E 0 &
AP g s AR A B e PR S R TR G X ARG
SRR

Bt A

[
3
*
[
=
L3S
g
b
9
e
ol
P
%
4
-3
o
4
-3
o
kG
a\
=

gmgﬂ » B g‘;gf;}ﬁigﬁqgaﬁa VA P L I

W st LA BRI R B 0 B BB B AR B

Pt 1 B
2006. 9. 7

Table of contents

2 i
N 0L = o ii
5 P \Y;
Table Of COMTENTS et e e e e e e e e e e %
LISt Of FIgUIES et e e e e e e e e e e e vii
LISt Of TabIES o e IX
Chapter 1 L1 00 10X 1 o} P |
1.1 Vertex and pixel shaders ..o 1
1.2 Dynamically reconfigurable systemcooo i 2
1.3 0] A7 4] o
1.4 OB JBCLIVE .ttt et e e e 3
15 Organization of this thesis..............cocco i 3
Chapter 2 Backgroundot e ee e e et e e e 5
2.1 Graphics PIPEling. ;s «oivte e et e e e e 5
2.2 VerteX ProCesSSIGm ettt Bo eveveee e ceeenee e e e ene e 6
221 Model-view transformation.........o......ccoveviiiiiii i 1
222 Projection tranSformation...... . i oo 9
2.2.3 ClPPING e e e e 10
2.2.4 Perspective diVISION.o e e e e e e e e e 11
2.2.5 VIEWPOIt MALFiX.....veeeii e e e e e e e v e e e e e e eneene e 11
2.3 Programmable graphics pipeling.........cccooevvnie i oo, 12
Chapter 3 DTG ettt e 13
3.1 Analysis 0f Shaders...... ..o 14
3.2 Analysis of Computation requirements...............c.ceeveeviveiveeeennenn.. 15
3.3 Design of computation unit.............c.. oo 19
3.3.1 Sharing all units within nin-fpSUM............oo i, 20
3.3.2 Algorithml & 2 t0 ch00Se NOAES.... ... vvuiieiie i e 23
3.3.3 Algorithm3-optimal area-time.............ooooe i e 26
3.34 Comparison within algorithms..... ... 29
3.4 Architecture of DR-Shader...o e e 31
3.5 Design of workloads monitor 10gicC...........c.covieiiiiiiii e 32

Chapter 4
4.1
4.2
4.3

Chapter 5
5.1
5.2
53

Reference

Appendix A.

SIMUIALION. ..o e
Simulator of DR-sShader...cooiiiiiii e
SIMUIALIONL. .. e e e e e e e e aen s
SIMUIALIONZ.. . e e e e e e e e e e e e e eae e aes
CONCIUSION. .. e e e e e
9S00 U1 [o
FULUIE WOTK et et e e e e e e e e e e e

CONCIUSION .o e

Vi

List of Figures

Fig. 1-1 The architecture of DR-shader unit ..o,
Fig. 2-1 Four steps of graphics pipeling ...,
Fig. 2-2 The steps Of VErteX ProCESSINGvueen et e e e e ee e ee e e,
Fig. 2-3 FOrmMUIAL ..o e e e et e
Fig. 2-4 The relations between (U, V, N) ..o e e,
Fig. 2-5 FOMMUIAZ ... e e e e e e e e
Fig. 2-6 FOrMUIA. .. o
Fig. 2-7 FOrMUIA.o e e e e e e e
Fig. 2-8 FOrMUIAS ... e e
Fig. 2-9 0] 10] - T PP
Fig. 2-10 Formula7............. 80 SR M- - o
Fig. 2-11 Formula8........... S8 N tlr (B,
Fig. 3-1 The architecture of vertex/pixelshader:.....................cooiiiii i,
Fig. 3-2 Trees of computation reqUITEMENTSooviuitiie it et
Fig. 3-3 How three 2in-fpSUM32s be reconfigured to one 4in-fpSUM32
Fig. 3-4 How three 2in-fpSUM3,s be reconfigured to one 4in-fpSUMsz.ovvveneen .
Fig. 3-5 The solution of problemL..........ccoooi i
Fig. 3-6 The solution of Problem2....... ... e
Fig. 3-7 The solution of problem3..........ccoo i
Fig. 3-8 Different sets of cOmputation trees.c.vvviie it e e,
Fig. 3-9 The result of minimum routing overhead................ccooiiiiiiiiiii e
Fig. 3-10 The result of maximum sharing 10giC...........covviii i,
Fig. 3-11 Cost function of search by integer programmingcccoooeiviiiiiinnnnn.
Fig. 3-12 The computation trees for integer programming..........ccoooueeereernnenneneaens

vii

Fig. 3-13
Fig. 3-14
Fig. 3-15
Fig. 3-16
Fig. 4-1
Fig. 4-2
Fig. 4-3

Fig. 4-4

Fig. 4-5

Fig. 5-1

An example for Reqs reduCingcoovvniiieii i e e
The result of optimal area-time algorithm..................oooii i,
The architecture of DR-Shader..........cccooviiiiiiie e
Flowchart of workloads monitor [0gicC............cooviiiiis i
The cycle based simulator base on SiS...........ccoo i,
The pie chart of the pixels’ workload in every cycle............ccoooiiiiiinnnnn.
The relation between the size of pixel queue and execution time..................
The relation within the size of intervals, number of DR-shaders, and

BXECULION TIMIE. .. ettt e e e e e e e e e e e e e ren e enn
The relation between the number of DR-shaders and area-time product.........

The proposed architecture to reduce utilization loss in texture load misses......

viii

33

35

36

37

38

39

42

Table 2-1

Table 3-1

Table 3-2

Table 3-3

Table 3-4

Table 3-5

Table 4-1

Table 4-2

List of Tables

Input, output and operation in each step of graphics pipeline.................... 5

Requirements for vector type inStructions.........c..ooeve v vii i, 17
Requirements for scalar type instructions...................coccoevveiieeeneee... 18
Requirements for non-computation type instructions............................. 18
Maximum requirement of each computation...........ccoviiiiiiinnenn .. 19
Average and maximum area requirement of three algorithms................... 29
The time, area, and area-time product..............ccooeiiiiiii i i 39
The utilization of each shader type ..o, 39

Chapter 1 Introduction

Programmable graphics pipeline is the most popular type of graphics hardware nowadays.
The program lengths and execution time of vertex and pixel processing may vary from scene
to scene. However, this kind of variation in the execution time will lower the utilization of
graphics hardware. In this thesis, we propose a dynamically reconfigurable shader unit
(DR-shader unit) for vertex and pixel processing. DR-shader unit can dynamically allocate its
hardware resources to harmony with the computation requirements of vertices and pixels at
runtime. By this kind of flexibility, we can increase the utilization of graphics hardware and

shorten the execution time of scenes.

1.1 Vertex and pixel shaders

In vertex and pixel processing, there are number-0f vertex and pixel shaders, which are in
the form of programmable processors. The function of the two shaders is to execute the entire
vertex or pixel shader codes respectively on each individual vertex or pixel and shader codes
vary from pass to pass. However, the workloads of vertices and pixels for the two shaders
may be very various during run-time. Number of pixels will be produce by each primitive
(composed of three vertices) may have a range from zero to whole pixels in a scene,
according to its position. In different situations the execution time of each vertex and pixel
may be very diverse

The workloads of vertices and pixels for the vertex and pixel shaders may be very
various during run time. Traditionally, number of vertex and pixel shaders are fixed and the
various workloads are partially be adapted by pixel queue, which is a buffer in front of pixel

processing and stores pixels for the inputs of pixel shaders. However, the problem is that the

degrees of variation during run time often exceed the adaptability of pixel queue. When pixel
queue is full, there is no space to store the result of vertex processing and all stages in vertex
processing will be idle, including vertex shaders. When pixel queue is empty, there is no input
for pixel processing and all stages in pixel processing will be idle, including pixel shaders.
When both of these two situations happen too frequently, the utilization loss of graphics

processing unit will be very low.

1.2 Dynamically reconfigurable system

We can basically classify reconfigurable systems into two different categories:
dynamically reconfigurable system and static reconfigurable system. The most important
difference between the two systems is that dynamically reconfigurable system can change its
configuration during runtime. Dynamically reconfigurable system not only can be used for
reducing the requirement of hardware in a design, but alsa can be used for circuit
specialization based on the information known'only during runtime. This feature does not
exist in both static reconfigurable system and/ASIC design. Moreover, by means of
dynamically reconfiguration, we can optimize the resource allocations in hardware to meet the

computation requirements at runtime.

1.3 Motivation

The workloads of vertices and pixels for vertex and pixel shaders may be very various
during run time. It is difficult for any architecture with fixed resource allocation between
vertex shaders and pixel shaders to deal with such a big variation. If there are some
multi-function shaders which can change their functions between vertex shader and pixel
shader, we can easily distribute hardware resource according to the workloads of vertices and

pixels. Besides, the architectures of vertex shader and pixel shader are very the same and lots

of the hardware resources can be shared to each other. It gives us a very good chance to use

reconfigurable architecture to design them

1.4 Objective

Design a dynamically reconfigurable shader unit (DR-shader unit) to adapt various

workloads between vertices and pixels

Vertices
and/or
pixels

Interconnection

and routing path

1.5 Organization of this thesis

-

- == >

Ty

S

’Y’Y
B
&
55
£
&
doteiele
5
badale!

3
<
e
SR
.
2

g
S
S

Sk
000 ‘::) :,%”‘}0000’

<)

ot:r

i

03

03

S

%
* T 4
BN IALa et

L,
o
:’
o

’Y
&
S

T
a5 505)
505005

S

0
[
5
e
5

e
o

@
D

G
AR
SIS

G555

SRS
SIS

fotatuletolelutetolulele’

S
SN

7 s
G
o

!
)
iR
)
S
S
Fatetet
S
Sttty
e

!

S

o
e

4

\

b

¢

PSs (Pixel
shaders)

Vertex shader farm

DR-shader farm

Coordinated
vertices and/or
colored pixels

Pixel shader farm

)
.

The organization of this thesis is as follow:

DR-shader unit

<// Vertex / pixel workloads

monitor logic

Fig.1-1 The architecture of DR-shader unit

In Chapter 2, the background about graphics pipeline is presented.

In Chapter 3, we analyze the architecture of vertex and pixel shaders with their

computation requirement and design DR-shader with workloads monitor logic

In Chapter 4, we show our simulation result with environment and decide a proper

proportion within vertex, pixel and dynamically reconfigurable shaders.

In Chapter 5, there are discussion, future work and conclusion.

2.1 Graphics pipeline

Chapter 2 Background

We can simply see graphics pipeline as separable into four distinct and sequential steps:

vertex processing, rasterization, pixel processing, and writeback. In below, we will use a table

to show inputs, output and explain their operations of these four steps and to give a mainly

explanation.

Vertex
Processing

Rasteriz-
ation

Pixel
Processing

Wiiteback

2\
| \
[=

Fig.2-1 Four steps of graphics pipeline

Input

Output

Operation

Vertex processing

Vertices with 3D
coordinates

\ertices positioned in
the 2D scene

Transforms each 3D
vertex in world space
to 2D vertex on scene

Rasterization

Primitives (triangles)
assembled by vertices

Fragments

Interpolations each
primitives into
numbers of fragments

Pixel processing

Fragments

‘Finalized’ pixel with
final color value

Colors each fragment
according to its
information

Writeback

‘Finalized’ pixel with
final color value

Image composed of
“finalized’ pixel

Uses frame buffer
storing pixels to
assemble a frame

Table.2-1 Input, output and operation in each step of graphics pipeline

In the following sections, we will completely descript the details in vertex and pixel

5

processing.

2.2 \ertex processing

At the input of vertex processing step, each primitives consists of three vertex
coordinates, vertex normal values and other information, such as lighting and texture
coordinates. At the beginning, all vertices are represented in the 3D coordinates with three
dimension values {x, y, z}. In order to using a uniform matrix representation to represent
affine transformation, we convert the Cartesian coordinates (3D coordinates) to the
homogeneous coordinates, which are quadruples of the form {X, Y, Z, W}, where {X, Y, Z, W}
= {xW, yW, zZW, W} and in most case W is 1. After the conversion, we can use a sequence of
matrix operations easily to transform the coordinates of vertices. Figure3 shows the steps of

vertex processing in a typical graphics pipelinewhich consists of the following stages:

Vertex information

world coordinates

([Model-view Transformation]
eye coordinates
| Projection Transformation | > Homogeneous
clip coordinates coordinates
Vertex processing < [Clipping]

! view coordinates)
[Perspective Division | Dehomogenize
normalize device coordinates

\[Viewport‘ Mapping]

window coordinates
Rasterization

Fig.2-2 The steps of vertex processing

2.2.1 Model-view transformation

Modeling transformation may reshape and move primitives with respect to the position
of viewer (eye position: {eyey, eyey, eye;}) because the position of the viewer often does not
locate at the origin of the world coordinates. Therefore, we must use move the position of the
viewer to the origin and also move all the vertices with the movement of the origin. Formula 1

shows the matrix that we use to transform the position of viewer to the origin.

eye, | [0 1 0 0 —eye
eye 0 0 1 0 -eye
T y y = :}T = y N (1)
eye, 0 0 0 1 -—eye,
1] 1) 0 00 1]

Fig.2-3:Formulal

Besides the movements of the position, we-must change the directions of x-axis y-axis
and z-axis with respect to the orthogonal direction'(u), the up-direction vector (v), and the
viewing direction (n) of the viewer. Fig4 shows the relations of u, v and n. Formula2 shows

the matrix that we use to do the transformation.

4 —
u
Fig.2-4 The relations between (u, v, n)

‘u, v, n 0] [1 O ,0.70] u, u, u, O]

u, v, n, 0 0 S1SE0 v, v, v, O
B y y y — :>B= X y z __(2)
u, v, n, 0| |0 0 170 n, n n 0

(0 0 0 1| |0 07 0nd 0 0 0 1]

Fig.2-5 Formula2

This new orthogonal coordinate system usually is called as the viewing-coordinate system or
the u-v-n system. Because these two transformations are both multiplications with a 4x 4
matrix in the homogenous coordinates, they can be combined into a single multiplication
(Formula 3), which is implemented by 16 floating point multiplications and 12 floating point
additions. As the result, the model-view transformation carries us to eye coordinates, where
the viewer is at the origin and the directions of the x-axis, y-axis, and z-axis have changed. In
the model-view transformation, we translate all vertices from the world coordinates to the eye

coordinates. Then, we need to project all vertices on the view plan.

uo u, u, 01 0 0 -—eye|
v, v, v, 0|0 1 0 -—eye
BT =| * ¥ ¢ Yoy | (3)
n, n, n, 0J0 0 1 -eye
0 0 0 10 0 O 1

Fig.2-6 Formula3

2.2.2 Projection transformation

Like a real camera, once we decide the position and the directions of the viewer, all the
objects (consist of vertices) will be projected on a plane (view plane, which is defined by
{Xmax:s Xminy Ymax, Ymin,» Zmax» Zmin} SIX NumMbers) to show what we see. There are also near plane
and far near to limit the space we can see and we usually call the limited space as view
volume. Here we have two types of projections: orthegonal (orthographic) projection and
perspective projection.

The orthogonal projection is a Simple projection, in which the projector is perpendicular
to the view plane. In this projection; the z values of.objects just define the depth of objects.
The only thing we must do is to normalize the view volume and let the view volume to be a
cube with ranges from -1 to 1 (canonical view-volume). The projection transformation will be
like Formula 4.

2 0 0 _ Xmax + Xmix
Xmax ~ Xmin Xmax ~ Xmin
0 2 0 _ ymax + ymix
P= Ymax — Ymin Yoax = Ymin | T T T T (4)
0 0 2 _ Zmax + Zmix
Zrnax — Lmin Znax — Lmin
0 0 0 1

Fig.2-7 Formula4
The perspective projection is a more complicated transformation than the orthogonal
projection but it can produce more realistic images by changing the sizes of objects according
to their distances. Therefore, an object far away will be smaller than in the near. In this

9

projection, the x value and y value of an object may be divided by its z value. In the
homogeneous coordinates, this kind of divisions can be implemented by just change the w
value. Formula 5 shows the perspective projection matrix. This matrix also can translate the
view volume to canonical view volume.

2% 0 Kimax F Xix 0
Xmax ~ Xmin Xmax — Xmin
0 szin Yimax T Ymix 0
"= Yimax = Yomin Ymax = Ymin |7 T T T T T (5)
0 0 _ ZmaX + Zmin _ szaxzmax
Znax ~ Zmin Zmax — Lmin
0 0 -1 0 |

Fig.2-8 Formula5

Each of these projection transformations are both consist of a 4 x4 matrix multiplication.
Therefore, we also can combine the projectiontransformation with the model-view
transformation. At this time, we have a canonical viewvolume (clip coordinates), and then we
can easily to check whether objects are inthe eyesight of the viewer.

2.2.3 Clipping

Although we transform all objects from world coordinates to the clip coordinates, there
are many objects which are outside of the canonical view volume and won’t be showed on the
scene. Therefore, we must clip those objects to reduce the workloads of behind stages.
Clipping in the homogenous coordinates isn’t completely necessary, but it makes the clipping
clean, fast, and simple. Besides, after dehomogenizing, the signs of the x value, y value, z
X Y Z
woow'w
whether objects are in front of or behind the viewer.

We first ignore the objects with w values smaller than zero because they are behind the
viewer. Then, we can apply Cyrus-Beck clipping to test if a vertex V in the canonical view
volume. Formula 6 shows the testing. By this testing, we clean some vertices out of the sight
and others will continue into next steps.

value and w value will be lost {(x, Y, z,) = (j}. Therefore, we can’t know

i>_1:> (a, +a) >O,:—i<l:> (a,—-a,)>0 ie{xy,z}——(6)

Fig.2-9 Formula6

10

2.2.4 Perspective division

Finally, all vertices have been transform from world coordinates to eye coordinates, and
some vertices out of the sight have also been clean. At this step, we try to transform objects
from 3D- coordinates to 2D-coordinates and decide the position of each vertex on scene. In
projection transformation, we have defined how vertices be projected on 2D coordinates and
the information has been store in w value. Therefore, the function of perspective division is
just to divide (x, y, z) by w value and discard w value. So, we dehomogenize each vertex using

the Formula?.

e ﬁ

X W

Y Y
= y = — W =0

Z : W

W 4 z

- T W

Fig.2-10 Formula7

2.2.5 Viewport matrix

Finally, we decide the positions of each vertex on scene and the position of each vertex
will be scaled by resolution of scene. Therefore, we transform the normalized (X, y) position
of each vertex to scene position. Assume that the resolution of scene is w x h, then we will
transform (x, y) from (-1, -1) to (0, 0) and from (1, 1) to (w, h). We use Formula8 to do this

transformation.

11

W
—(x+1
W 2()

h
y —(y+1
2(y)

Figll. Formula8.

2.3 Programmable graphics pipeline

Programmable graphics pipeline is the most popular solution for the requirements of
both performance and flexibility in computer graphics nowadays. With the rapidly
development of computer graphics, such as 3D.games, virtual realities and digital lives, the
requirements of computer graphics in‘effects and-performance become higher. To meet all
kinds of users’ requirements, programmable graphics pipeline have been introduced into
graphics hardware and many complicated function-units-have been put in. Different from
fixed-functionality (non-programmable) graphics pipeline, programmable graphics pipeline
has new graphics processing units: vertex shader unit and pixel shader unit. These two new
processing units give graphics pipeline the flexibility to deal with all kinds of computation

requirements while retaining the capability of complicated computation.

12

Chapter 3 Design

3.1 Analysis of shaders

The architecture of vertex/pixel shader in DirectX(spec. of GPU) is below:

. Destination
Instruction slot) register modifier
PC
N | Instruction || Computation [
Decodet 3 Unit
Source register
modifier
; Reagister file
Storage Logic

Fig.3-1 Thearchitecture of vertex/pixel shader

There are several units in both vertex shader and the pixel shader, which are:
1. Program counter: a register which stores the address of the instruction being executed.
2. Instruction slot: a storage unit which stores all shader codes for vertex/pixel shader(s).
3. Instruction decoder: a combinational circuit to translate an instruction into the control
signals of the data path.
4. Register file: a storage unit which contains all inputs and outputs of any computations
for each vertex or pixel.
5. Source register modifier: a simple computation unit which can swizzle or negate
source data.
6. Computation unit: the main computation unit which process complex operation (ex.
add, mul, mad ...).

13

7. Destination register modifier: a simple computation unit which is similar to source

register modifier, but its target is destination register.

DR-shader must support all functions in both two shader types to be a multi-function shader.
Therefore, it also contains those units and it must have to double the units which can’t be
shared between vertex shader type and pixel shader type.

Firstly, we consider which units in DR-shader can be shared between vertex shader type
and pixel shader type to reduce the hardware overhead of DR-shader. The sharing policies are:

1. If and only if a storage unit must store data, which may be states, instructions or

temporary results, for vertex shader and pixel shader simultaneously, it can’t be shared.

2. All logic units are sharable.

Under these policies, we decide source register modifier, computation unit, and

destination register modifier are sharable units because.all of them are logic units. Instruction
slot is non-sharable unit, for it must-store vertex shader codes and pixel shader codes in the
same time. Besides, we can’t decide-whether program counter and register file can be shared.
We will make the decision for them whenwe discuss the architecture and flexibility of
DR-shader.

Secondly, we deliberate upon how to design those sharable units for both two shader
types. In those sharable units, source modifier and destination modifier are the same in vertex
shader type and pixe shader type. Therefore, we will focus on how to design a sharable
computation unit in the following sections. There are some assumptions of vertex and pixel
shaders’ architecture for us to design a sharable computation unit, listed below:

€ Single issue and single execution: because shaders expose the parallelism of data
better than the parallelism of instructions for single issue and multi-shaders
respectively execute instead of multi-execution

€ The widths of all operations in the computation unit are i*v bits in vector form,
where i is currently 32 (most probable), and v may be 1 or 4: for the precision

14

requirement described in DirectX.

3.2 Analysis of Computation requirements

Before design a sharable computation unit for vertex shader type and pixel shader type,
we need to understand using data, function units and processing flow in all vertex and pixel
instructions individually to decide how to design the computation unit in DR-shader. We
divide all vertex and pixel shader instructions in DirectX into three types by their using data
and processing flows, which are:

1. Vector type: separately computes four fields (X, y, z, w) of source registers and

produces four results.

2. Scalar type: only does a computation on.one field of a source register and produces

one result. In this type of instructions:we use a changed second Taylor formula to
reduce the complexity of their computations. (See Appendix A)
3. Non-computation type: only-send the data-of source register to bus without any
computation.
In the below, we will show what instructions are in the three types with their operations and

computation requirements.

Instruction |Belong Operations Requirements
add VS, PS [Dst.x = Src0.x + Srcl.x 2in-fpSUM3, * 4
sub Dst.y = Src0.y + Srcl.y

IDst.z = Src0.z + Srcl.z

IDst.w = SrcO.w + Srcl.w

cmp PS [Dst.x = (Src0.x >= 0)? Src1.x : Src2.x 2in-MUX3, %4

Dst.y = (Src0.y >=0)? Srcl.y : Src2.y

15

|Dst.z = (Src0.z>=0)? Srcl.z : Src2.z

IDst.w = (Src0.w >=0)? Srcl.w : Src2.w

dp2add

VS

IDst = Src0.x * Srcl.x+ SrcO.y * Srcl.y,

+ Src2.w

fpMUL3, *2

3|n-fpSU M32 %1

dp3 (vs)

VS

IDst = Src0.x % Srcl.x+ SrcO.y s Srcly

+ SrcO.w x Srcl.w

foMUL3, *3

3in-fQSUM32 *1

dp3 (ps)

dp4

VS, PS

IDst = SrcO0.x % Srcl.x+ SrcO.y s Srcly

+ SrcO.w x Srcl.w + SrcO.w % Srcl.w

foMUL3, x4

4in-fQSUM32 *1

max

VS, PS

[Dst.x = (Src0.x > Src1.x)? Src0.x : Srcl.x
[Dst.y = (SrcQ.y > Srcl.y)? Src0.y : Srcl.y
[Dst.z = (Src0.z >;Srel:z)? Src0.z : Srcl.z

IDst.w = (Sre0w-> Srel.w)? SrcO.w : Srcl.w

2in-fQSUM32 *4
2in-MUX3, %4

min

VS, PS

[Dst.x = (Src0.x < Sre1:x)? SrcO.x : Srcl.x
IDst.y = (SreQ.y < Srcl.y)? Src0.y : Srcl.y
[Dst.z = (Src0.z < Srcl.z)? Src0.z : Srcl.z

IDst.w = (Src0.w < Src1.w)? SrcO.w : Srcl.w

2in-fQSUM32 *4
2in-MUX32 *4

mul

VS, PS

IDst.x = Src0.x k Srcl.x
IDst.y = SrcO.y % Srcly
IDst.z = Src0.z % Srcl.z

IDst.w = SrcO.w k Srcl.w

foMUL3, *4

mad

VS, PS

IDst.x = Src0.x sk Srcl.x + Src2.x
IDst.y = SrcO0.y * Srcl.y + Src2.y

IDst.z = Src0.z % Srcl.z + Src2.z

Dst.w =SrcO.w % Srcl.w + Src2.w

foMUL3, x4

2in-fQSUM32 *4

16

|Dst.x = (Src0.x >= Srcl.x)? 1.0f : 0.0f

sge /S 2in-fpSUM3z, * 4
[Dst.y = (Src0.y >= Srcl.y)? 1.0f : 0.0f 2in-MUXj3, %4
Dst.z = (Src0.z >= Srcl.z)? 1.0f : 0.0f
[Dst.w = (Src0.w >= Srcl.w)? 1.0f : 0.0f
slt /S [Dst.x = (src0.x < srcl.x)? 1.0f : 0.0f 2in-fpSUM3, * 4
[Dst.y = (src0.y < srcl.y)? 1.0f : 0.0f 2in-MUX3, %4
[Dst.z = (src0.z < srcl.z)? 1.0f : 0.0f
Dst.w = (srcO.w < srcl.w)? 1.0f : 0.0f;
sgn /S [Dst.x = (Src0.x > 0)? 1.0f : (Src0.x =0)? |Compare to 03, k4
0.0f : -1.0f 2in-MUX3, %8
[Dst.y = (Src0.y > 0)? 1.0f : (Src0.y =0)?
0.0f : -1.0f
IDst.z = (Src0:z > 0)? 1.0f : (Src0.z = 0)?
0.0f ©-1.0f
IDst.w = (SrcO.w >:0)2:1.0f : (SrcO.w = 0)?
0.0f : -1.0f
Table.3-1 Requirements for vector type instructions
Instruction |Belong Operations Requirements
add /S, PS [Dst.x = Src0.x + Srcl.x 2in-fpSUM3, *4
sub [Dst.y = Src0.y + Srcl.y
IDst.z = Src0.z + Srcl.z
IDst.w = SrcO.w + Srcl.w
cmp PS IDst.x = (Src0.x >= 0)? Src1.x : Src2.x 2in-MUX3, %4

Dst.y = (Src0.y >=0)? Srcl.y : Src2.y

17

|Dst.z = (Src0.z>=0)? Srcl.z : Src2.z

IDst.w = (Src0.w >=0)? Srcl.w : Src2.w

dp2add /S IDst = SrcO.x * Srcl.x+ SrcO.y * Srcl.yffpMUL3, %2

+ Src2.w 3in-fpSUM3, * 1
dp3 VS [Dst = Src0.x s Srcl.x+ SrcO.y * SrclyffpMULs, *3

+ SrcO.w >k Srcl.w 3in-fpSUM3, * 1
dp4 VS, PS IDst = SrcO.x * Srcl.x+ SrcO.y * Srcl.yffpMUL3, *4

+ SrcO.w * Srcl.w + SrcO.w * Srclw Hin-fpSUM3, %1

max VS, PS IDst.x = (Src0.x > Src1.x)? Src0.x : Srcl.x J2in-fpSUM3> * 4
IDst.y = (Src0.y > Src1.y)? Src0.y : Srcly [Rin-MUX3, *4
[Dst.z = (Src0.z >.Srel:z)? Src0.z : Srcl.z

IDst.w = (Sre0.w-> Srel.w)? SrcO.w : Srcl.wi

min VS, PS IDst.x = (Src0.x < Sre1.x)? Src0.x : Srcl.x [2in-fpSUM3, * 4
[Dst.y = (Sre0.y < Src1.y)? Src0.y : Srcly [J2in-MUX3, *4

Dst.z = (Src0.z < Srcl.z)? Src0.z : Srcl.z

|Dst.w = (SrcO.w < Srcl.w)? SrcO.w : Srcl.w

Table.3-2 Requirements for scalar type instructions

Instruction |Belong Operations |Requirments
branch VS PC = (Src0 '=0)?PC+1: Srcl |Bus to program counter
texld PS |Dst = Mem#Src1(Src0) |Bus to texture memory

Table.3-3 Requirements for non-computation type instructions

From above tables, we conclude that there are only five kinds of computations with maximum

requirements for each kind to execute any instruction, as shown in the following tables:

18

Computation foMUL 2in-fpSUM | 3in-fpSUM | 4in-fpSUM | Compare to 0

Maximum
requirement

Table.3-4 Maximum requirement of each computation

3.3 Design of computation unit

In this section, we want to implement the computation unit with its area as small as
possible while keeping one-cycle execution. The tradeoff in the design of computation unit is
that the more sharing we want the more routing overhead we may have. Therefore, we must
carefully decide whether functions of any computation unit can be shared by others. To solve
this problem, we divide each computation into sub-function nodes with requirement of each
node individually to discover potential sharing possibility and then use an algorithm to choose
nodes covering all computations. The computations we divide are called the tree of

computation requirements.

— A node can be divided into sub-function nodes
Maximum

- - - » Another way to be divided requirement

Fig.3-2 Trees of computation requirements

19

The meaning of covering is that if we choose a node in the tree of computation requirements,
we can say the node has been covered. Besides, if all children of a node have been covered,
the node also is covered. We will compare the average and maximum area requirement of all
vertex and pixel instructions and choose the one with smallest average and maximum area

requirement.

3.3.1 Sharing all units within nin-fpSUM

In nin-fpSUM, we find that there are some possible sharing logics when we divide
nin-fpSUM into many sub-function nodes. There are two possible partitions of nin-fpSUM ,

which are: 1. partition 3 or 4in-fpSUM to several 2in-fpSUMs

£, D

Srcl

e e e -
Src?2

2in-fpSUM32 Result

Src3

2in-fpSUM @y -
Src4

4in-fpSum,,

Fig.3-3 How three 2in-fpSUM3,s be reconfigured to one 4in-fpSUM3;

2. Sharing all units of nin-fpSUM within each other

20

Srcl

Src2

Src3

Src4

L0H) B /aLieN/ |
_ &SWAP HINV./

2in-
adder,;

2in-
adder,,

I || ;
CMP ALIGN
— &SWAP HINV /
RALEY
Largest for fpadd4
} cMP ALIGN
- &SWAP +INV

2in-
adder,;

normalize,, Result

Fig.3-4 How three 2in-fpSUMgs,S be reconfigured to one 4in-fpSUMs;,

Although “CMP&SWAP”, “ALIGN+INV”; “normalize” can be easily shared within

nin-fpSUM , the problem is in adders, especially at we use three 2in-adders to form a

4in-adder. In these three 2in-adders, two adders will be carry-save adders and the last one will

be normal adders to add the carry and sum of the second carry-save. However, there are three

problems we need to get over for this kind of design, which are:

1. We need to add four 24-bit numbers by two 24-bit carry save adder and one 24-bit

normal adder. Is there any extension in adder?

2. After “ALIGN + INV”, there may be three carry-ins from the inverters. How do we

add the three carry-ins by existent adders

solve the sign-extensions of minuses?

The result has 24+2 bits and the sources may be minus from inverters. How do we

In problem1, the first carry-save adder adds three 24-bit summands from “ALIGN +

21

INV”, so it doesn’t need to extend. Besides, the normal adder must give 26-bit result, so it
must be extend to 25-bit adder. However, in the second carry-save adder, do we need to
extend it to 25-bit adder? The answer is no because we doesn’t need to process the highest bit

of the carry from first carry-save adder. The figure below can give us more carefully concept:

Carry save adder 1 Carry save adder 2
24 bits 24 bits Normal adder
/—/% /—/% H
e Scl ——— S M1 24+1 bits
e Sc? Carry]_ ———— S M2
+ ————— Sc3 + | ——— Srcd - —— Carryz

—eeesss——— SUm1 L

Sum?2 ——— R osult

Carry2 (24+2 bits)

Fig.3-5 The solution of problem1l

In problem2, “ALIGN + INV” may send:1=bit.carry-in to adder for the negation of 2’s
complement. How can we sum carry-ins, which are at most three, to summands without any
additional logics? To solve this problem, we use the vacant position in the carries of the two
carry-save adder to add two carry-ins. Then,'the last carry-in will be added as normal carry-in
by the normal adder.

Carry save adder 2

24 bits Normal adder
—_—— H
Suml I 24+l bItS

Carryl == Carryinl Sum2 ——
Src4d 4 | ——————— Carryz 4+ —— Carryin2
== Carryin3

_L as normal carry-in
Sum?2 Result I ————
Carry2 (24+2 bits)

Fig.3-6 The solution of problem2

In problem3, the final solution is 26 bits and summands may be minus. Therefore, we

must add compensation, which we call sign-compensation, to temporary result and get correct

22

result.

24 bits 24 bits
11 1 ——— Srcl 1 — Srcl
11 1 —— Syc? 1 ——— Spc?
11| 1 —— Src3 1 —— Sc3
+ ———— o + | — S

_ Temp result
(24+2 bits) 01 (24+2 bits)
eesssssssss——— Real result
(24+2 bits)
Number of minuses 0 1 2 3
Sign-compensation 00 | 11 | 10 | 01

Fig.3-7 The solution of problem3

3.3.2 Algorithm1 & 2 to choose nodes

Here, we propose two algorithms.te choose node covering all computations:

» Algorithm1- minimum routing overhead: use the fewer choices to cover all
computation requirements. The advantage of this algorithm is that there may be
fewer routing overhead with enough sharing logic. However, the disadvantage is
that it may loss some possible sharing opportunity for smaller area requirement. The
steps of the algorithm are described in below:

Stepl: collect nodes with the same logic (sharable nodes) and indicate the most
maximum requirement.

Step2: group nodes into several sets and let there are no links or the same nodes
within different sets and ignore the sets which only have one computation. See

below:

23

Compare
to 0 4

Fig.3-8 Different sets of computation trees

Step3: For each set we do that, we firstly choose a sharable node in the highest
level and see if all computations have been covered. If there are computations
haven’t been covered, delete chosen nodes with all their children and choose
another sharable node in highest level. Recursively, all computation requirements

have been covered or no sharable node.

24

Fig.3-9 The result of minimum routing overhead

Algorithm2-Maximum sharing logies:find more sharing choices to cover all
computation requirements. The advantage of this algorithm is that there are the most
sharing logics. However, the routing.overhead-may become more serious.

Stepl.2: the same as stepl and step2 in‘minimum routing overhead to group nodes
into several sets.

Step3: For each set we do that, we firstly choose a sharable node in the lowest level
and see if all computations have been covered. If there are computations haven’t
been covered, delete chosen nodes with all their children and choose another
sharable node in lowest level. Recursively, all computation requirements have been

covered or no sharable node.

25

Fig.3-10 The result of maximum sharing logic

The following figures show how threg 2in-fpSWMsss be reconfigured to one 4in-fpSUM3; in

these two algorithms as an example:

3.3.3 Algorithm3-optimal area-time:

In minimum routing overhead and maximum sharing logic, we find that some factors for
sharing logic haven’t been considered. In these two algorithms, we choose nodes as basic unit
but we don’t consider about different proportions within nodes. Besides, the silicon area is not
the same in all nodes. Therefore, we use a new algorithm.

» Search by integer programming: weight each sharable node with hardware cost and
use integer programming to minimize total cost. Here, we estimate hardware cost of
each node by number of multiplexer area it may need. The cost function has two
cases. If one sharable node with the most maximum requirement it means that logic
of the node will be shared to other nodes which needed the same logic. Therefore,

the cost will be its implementation area without routing overhead divided by area of

26

a multiplexer. Except those nodes, other sharable nodes will have a cost equal to
three meaning the routing overhead on two input multiplexers and one output

multiplexer.

(area of an implementation randomly choose one nodes with
area of a multiplexer the most maximum requirement

cost =<
3 otherwise
(meaning routing overhead)

Fig.3-11 Cost function of search by integer programming

The advantage of this algorithm both consider sharing logic and routing overhead.
However, the disadvantage is that the qualities of results depend on the precision of

cost. For the integer programming, we change the display of computation trees and

give more information.

normalize,q normalize,g
5. 3.4
4in-fpSUM;,
> ! ~1)76.1 1

—> A function node be divided into several sub-function nodes
— = » A function node has several kinds of design Rj) cost

Fig.3-12 The computation trees for integer programming

27

Stepl.2: the same as stepl and step2 in minimum routing overhead to group nodes
into several sets.
Step3: To find optimal result using integer programming, we set

e Variables

|. =#of implementation from node; VI, >0
e Constraints from

if node, has real lines linking to children

L, +Ri* Req, > Req; foreach node, e children of node,

c

iIf node, has dot lines linking to children

l. +2Ri* Req. > Req; for all node, € children of node,

C
e Objective

minimize Z I, costof node '-vnode,

Step4: reduce all Reqgs from leaves to rootsand get all constraints for integer
programming.

|, +Req,, +Req,, >4—--node,

1
Al +- 2 Rqu Req Al
——node

1
Rqu1 Rqu2 Al +— 4 Reqc > Req Al

1
ReqC ,, Reqn A2 +— Rqu 2 RquZ nOdeAz

I+ Req o1 + Req,, = Req, ——node,
Req Rqu2

l,+Req, +Req,, >4
1
L+ 1s 2 ReQy |A+|A1+%|B+|A2+%(|D+|D1+|Dz)z4

IA1+%ICZRqul - 1

IAH’“ZI +|A2+%(|D+|m+|w)z4

c

1
IA2+Z(ID+ID1+ID2)2Rqu2

Fig.3-13 An example for Regs reducing

28

Step5: apply integer programming and get the result with minimum cost

The result of optimal area-time is in below:

4in-fpSUM,
= / ~ (1) 761

3in-partial sort
(1) 184

CMP&SWAP
23

Fig.3-14 The result.of optimal.area-time algorithm

We find that the result of optimal area-time algorithm is the same as minimum routing
overhead because of too few possible‘solution. Then, we compare the result of three

algorithms

3.3.4 Comparison within algorithms

Firstly, we show the comparison within three algorithms

Average area Maximum area
requirement (um?) requirement (um?)
Minimum routing | 985793.5938 2,000,547.5
overhead
Maximum 986,095.4688 2,105,722.5
sharing logic
Optimal area-time | 985793.5938 2,000,547.5

Table.3-5 Average and maximum area requirement of three algorithms

29

Finally choose the result of minimum routing overhead/optimal area-time because of the
smallest average and maximum area requirements. To compare the two kinds of result in
detail, we find they only differ in the choices of how to reconfigure 2in-fpSUMs3,s to
3in-fpSUM3; or 4in-fpSUMs,. In addition, we analyze the sharing logics between
2in-fpSUM3,S and 4in-fpSUMs; and find out the failure of result2 is in the routing overhead.
The critical path of minimum routing overhead/optimal area-time is:
Delay time = CMP&SWAP = ALIGN+INV =» 2in-add,, = normalize;s =2 MUX3, =2
CMP&SWAP = ALIGN+INV =>» 2in-add,4 =» normalizezs
=3.93+6.14 + 4.47 + 4.72 + 0.76 + 3.87 + 6.01 + 2.54 + 7.56 (ns)
= 40ns with time overhead 0.76ns (1.9%)
The area requirement of minimum routing overhead/optimal area-time is:
Area = 2in-fpSUM3,*3 + MU X3,*2
= 313425 + 8837.5 (um?)
= 332027.5um? with area overhead 8837:5um? (2.66%)
The critical path of maximum sharing logic is:
Delay time = MUX3;, = CMP&SWAP = MUX3, & CMP&SWAP = MUX3, =
CMP&SWAP = ALIGN+INV = 2in-addy; = MUX3; = 2in-addy, = MUX3,=>
2in-addys =» normalizegs
=06+39+0.75+359+0.77+5.08+6.24 +1.15+0.86 +1.42 + 0.85 +
9.31 + 6.63 (ns)
= 43.86ns with time overhead 2.12ns (4.83%)
The area requirement of maximum sharing logic is:
Area = 2in-fpSUM3; * 3 + MUX3,* 6
= 108972.5 + 106872.5 + 107345.0 + 18882.5 (um?)
= 332307.5um? with area overhead 18882.5 um? (5.68%)

30

Because the time overhead and area overhead of maximum sharing logic are much more than
those overhead of minimum routing overhead/optimal area-time, we finally choose the result

of minimum routing overhead/optimal area-time as our design of the computation unit.

3.4 Architecture of DR-shader

After finish the computation unit, we can build DR-shader. The architecture of

DR-shader is below:

Configuration
signal
Instruction slot ' |
(vertex shader) Context
memory Destination
register modifier
PC
{nstruction .| Computation |
— Decader | Unit
. o Source register
modifier
Instruction slot

(pixel shader)

Register file

Storage Logic

Fig.3-15 The architecture of DR-shader

In the architecture, there are some necessary hardware overheads:
» More logic in the sharable computation unit to support all vertex and pixel
instructions with routing overhead
» Context memory to store the configuration of each instruction
» One more instruction slot to store vertex and pixel shader codes simultaneously

Therefore, the area of DR-shader may be larger than the area of vertex shader or pixel shader

31

for the ability to reconfigure between vertex shader type and pixel shader type. However, we
will find whether its flexibility deserve be added to upgrade shader utilization in our

simulations.

3.5 Design of workloads monitor logic

In this section, we firstly descript the properties of DR-shader and the hardware overhead.
Then, we will descript the design of vertex/pixel workloads monitor logic. There are two
assumptions of reconfigure property for DR-shader:

1. Order of processing: In the beginning, all DR-shaders will be reconfigure to vertex
shader type because of no workload in pixels. Then, DR-shaders will be often
reconfigured to vertex shader type or.pixel shader type according to the various in the
workloads between vertices and pixelswuntil all'vertices have been processed. Finally,
all DR-shaders will be reconfigured to pixel shader type for remaining pixels.

2. Reconfiguring timing: The configuration-of each DR-shader only can be changed
after it finish a vertex/pixel to avoid needing one more register file for temporary
results.

The purpose of the workloads monitor logic is to control number of DR-shaders with pixel
shader type in DR-shader unit and let stall cycles of all shaders as few as possible. To achieve
this goal, we base on three kinds of information to control number of DR-shaders with pixel
shader type, which are:
» Expected number of DR-shaders with pixel shader type is equal to number of used
intervals in pixel queue. (the size of intervals will be determined later)
» Current number of DR-shaders with pixel shader type is recorded in workload monitor
logic.

» Job end signal is sent by each DR-shader, telling workload monitor logic which

32

DR-shaders finish their job.
At every cycle, we count the difference between expected and current number of DR-shaders
with pixel shader type. If the expected number is bigger than current number, we change
finishing DR-shaders with vertex shader type to other type by the difference. Otherwise, we

change finishing DR-shaders with pixel shader by the difference.

no

DR, < CDR,?

A

yes Find and mark
finishing DR (s)

Change (CDR;, - EDRy)
inishing DRy(s) to DR,/(s
v DR,=DR-shader with vertex shader type

Find and mark DR,: DR-shader with pixel shader type
finishing DR, (s)

EDRg:-expected-number of DR-shaders with pixel

v shader type
é_har_\ge (EDR;, - CDRFD CDRp: current number of DR-shaders with pixel
inishing DR,/(s) to DRy(s shader type

Fig.3-16 Flowchart of workloads monitor logic

33

Chapter 4 Simulation

4.1 Simulator of DR-shader

For this thesis, we build a cycle-based simulator referenced from SiS. The input of the

simulator is 3Dmark05, we consider about information which is listed below:

>

YV V VY V¥V

If a primitive is clipped (culled) or pass

Number of tiles produced from each primitive

If a tile is blocked by preZ or not

Number of pixels can be produced from each pass tile

Vertex shader codes and pixel shader codes

The output of simulator is the execution time from vertex processing to pixel processing of a

frame with the information about shader utilization. There are also some parameters we can

set for different environments we want, listed below:

>

Clip information

Throughput of the clipping unit

PreZ information

Throughput of the PreZ unit

Shader information

Throughput of the vertex input

Size of pixel queue

Numbers of DR-shader, vertex shaders and pixel shaders
Number of batches in each shader

Latencies of each instruction

Texture information

34

B Texture unit access cycles
B Miss rate of the texture memory
B Miss penalty
B Throughput of texture units
4 aﬁ =)
V.S. P.S.
o Prog. pixel 09
Queue

Input [> ‘ H‘ Clip H Tg:?uggeHPrezﬂ‘ -~ E> Output
Texture
K Memory

_/

Cycle based Simulation
base on SIS C-model

Fig.4-1 The tycle based simulator base on SiS

4.2 Simulationl

In this section, we will decide a proper proportion between vertex shaders and pixel
shaders and the size of pixel queue. For the goal, we assume number of vertex shaders is three,
and other parameter setting listed below:

» Clip information

B Throughput of the clipping unit = unlimited

» PreZ information

B Throughput of the PreZ unit = unlimited
» Shader information

B Throughput of the vertex input = unlimited

35

B Number of vertex shaders = 3
B Latencies of each instruction = 8
B Number of batchs in each shader = 8
Then, we gather workload statistics of pixels in every cycle. The workload in each cycle is

counted as number of pixels in the cycle product with their execution time. We display the pie

chart of pixels” workload:

O<10
M 10~99
<10 0 100~999
99.37%
100-999 0 1000~9999
0.24% M >10000

1000~9999
0.7%

4
0.63%

Average = 36.353
Standard deviation = 279.114

Fig.4-2 The pie chart of the pixels’ workload in every cycle

We choose the average workload as number of pixel shaders when there are three vertex

shaders. Under 3 vertex shaders with 37 pixel shaders, we simulate the relation between the

size of pixel queue and execution time:

36

31200000 |
31000000 \\
30800000
30600000 \\\\\\\\\\

30400000 (102

30200000 - ?E%__\\~__~___~_____

30000000 _——— === ==
unlimited
0 500 1000 1500 2000 2500

Execution time (cycles)

Size of pixel queue (pixels)

Fig.4-3 The relation between, the size of pixel queue and execution time

By the graph, we choose the size of-pixel queue is 1024 (pixels).

4.3 Simulation2

In this section, we decide the size of intervals in pixel queue and number of vertex
shaders and pixel shaders be changed to DR-shaders. We use the parameters decided above,
listed below:

» Clip information

B Throughput of the clipping unit = unlimited
» PreZ information
B Throughput of the PreZ unit = unlimited

» Shader information
B Throughput of the vertex input = unlimited
B Latencies of each instruction = 8

37

B Number of batchs in each shader = 8

B Number of vertex shaders = 3

B Size of pixel queue = 1024

B Total number of shaders =40 (3 + 37)
» Texture information

B Texture unit access cycles = 8

B Miss rate of the texture memory =0

B Throughput of texture unit = unlimited

Firstly, we simulate the relation between the size of intervals and execution time and get

below graph:
31000000 Tdie=32
— Size =64
@ — Szie =12
< 27000000 Szie = 128
B
e
£ 23000000 |
5
E
219000000 |
M
15000000
0 5 10 15 20 25 30 35
Number of DR-shaders

Fig.4-4 The relation within the size of intervals, number of DR-shaders, and execution time

It is apparent that the size of intervals doesn’t have a great influence on the execution time.
Therefore, we choose the size of intervals is equal to 32 (pixels) for the flexibility.
Secondly, we simulate the relation between the number of DR-shaders and time-area

product with the size of intervals equal to 32:

38

Time*Area

1.45E+16
1.35E+16
1.25E+16
1.15E+16
1.05E+16

9.5E+15

8.5E+15

— DR-shaders

— 3 VS and 37 PS

/ 16 DR-shadres

e —

10

15 20

25 30

Number of DR-shaders

35

Fig.4-5 The relation between the number of DR-shaders and area-time product

The time-area products have a minimum value at number of DR-shaders equal to 16. For the

analysis in detail, we list time, area,-and.utilization of each shader type in below:

Number of each
kind of shader Time (cycles). | Area (Um?) Time*Area
DR 1Vs |ps [Speed up] [Ratio] [Ratio]
0 3 37 30,373,118 | 447,827,831.4 | 13,601,927,566,796,306.56
[1] [1] [1]
16 |0 24 18,474,735 |480,609,124 |8,879,126,204,482,140
[1.644] [1.073] [0.653]
Table.4-1 The time, area, and area-time product
Number of each Stall cycles Stall cycles Stall cycles
kind of shader [Utilization] [Utilization] [Utilization]
DR VS PS (DR-shaders) (Vertex shaders) (Pixel shaders)
0 3 37 45,056,703 544,974,677
[0.50552] [0.515063]
24 0 16 35,664,243 78,431,817
[0.879348] [0.82311]

Table.4-2 The utilization of each shader type

39

We choose 24 DR-shaders with 16 pixel shaders in DR-shader unit and the size of
intervals in pixel queue is 32 pixels as our final result. This kind of design will have a great
improvement in shader utilization and execution time with a few of hardware overhead and

area-time product will be reduced to 65.3 %.

40

Chapter 5 Conclusion

5.1 Discussion

To design hardware by reconfigurable architecture, we need to consider sharable logic,
hardware overhead from routing path, sharing time and usable opportunity, etc. However, this
kind of problem may be very complex and we couldn’t consider all causes at once. The
priorities of those causes must be carefully decided for computation time and better result.
There may be a trade-off between sharable logic and routing overhead. So, how to decide
whether a logic be shared or not will be one of the most important problems in the

reconfigurable architecture.

5.2 Future work

Utilization loss in texture load misses:

In our observation, long texture load miss penalty will cause shader utilization loss
greatly. Although DR-shaders can be reconfigured at finishing, they stalled a long time when
load misses. We may reconfigure those load-miss DR-shaders with pixel shader type to vertex
shader type and try to reduce utilization loss in texture load miss. To solve this problem, we
may need one more register file to buffer its temporary result and one more program counter
for current state as hardware overhead. The reconfigure timing may be changed from an end
of a vertex or pixel to any cycle. The workload monitor logic may need to change the
configuration of load-miss DR-shaders with pixel shader type to vertex shader type. The

proposed architecture is below:

41

Register file ' .
PC (vertex shader) Con;'igl;:;tlon
(vertex shader) _ |ngtryction slot Vo
(vertex shader) Context
. memory Destination
| register modifier

Instruction || Computation | | |
Decoder | Unit

> Source register
modifier

PC Instruction slot
(pixel shader) (pixel shader)

E [:I Register file

Storage Logic (pixel shader)

Fig.5-1 The proposed architecture to reduce utilization loss in texture load misses

5.3 Conclusion

In this thesis, we have prove that besides reducing the hardware cost by sharing logic, the
flexibility of reconfigurable architecture can'be used to adapt various workloads everywhere
and try to upgrade the utilization of whole system. In our design, the execution time has been
greatly shortened with limited hardware overhead.

The level of reconfigurable architecture can be anywhere and used in different levels in
the same time. In our design, besides DR-shader can be reconfigured between vertex shader
type and pixel shader type, the computation unit of DR-shader also can be reconfigured to

execute all vertex and pixel instructions for area saving.

42

Reference

[1] DirectX 9.0 Programmer's Reference © 1995-2002 Microsoft Corporation.

[2] E. Lindholm, M. J. Kilgard, and H. Moreton. A userprogrammable vertex engine. In
Proceedings of ACM SIGGRAPH 2001, pages 149-158, August 2001.

[3] M. D. McCool. SMASH: A next-generation API for programmable graphics accelerators.
Technical report CS-2000-14,Computer Graphics Lab, University of Waterloo,2000.

[4] M. Olano. A Programmable Pipeline for Graphics Hardware .Ph.D. thesis, University of
North Carolina at Chapel Hill, 1998.

[5] Chris J. Thompson Sahngyun Hahn Mark Oskin : Using Modern Graphics Architectures
for General-Purpose Computing : A Framewerk-and Analysis ,International Symposium on
Microarchitecture archive Proceedings of the 35th annual’/ACM/IEEE international
symposium on Microarchitecture table of contents.:Istanbul, Turkey ,Pages: 306 — 317.

[6] Jiawen Chenl Michae 1. Gordon1 William Thies Matthias Zwicker Kari Pulli Frédo
Durand: A Reconfigurable Architecture for Load-Balanced Rendering ,Massachusetts Institute
of Technology ,Nokia Research Center .Graphics Hardware (2005)M. Meissner, B.- O.
Schneider (Editors).

[7] Victor Moya, Carlos Gonzilez, Jordi Roca Agustin Fernindez, Roger Espasa : A Single
(Unified) Shader GPU Microarchitecture

for Embedded Systems , Department of Computer Architecture, Universitat Politecnica de
Catalunya ,HiPEAC 2005

[8] Alireza Shoa and Shahram Shirani Dept. of Electrical and Computer Eng., McMaster
University, Hamilton, Canada : Run-time Reconfigurable Systems For Digital Signal

Processing Applications: A Survey

43

[9] Austin Robison and Abe Winter : An Overview of Graphics Processing Hardware, March

14, 2006

[10] Karl Hillesland and Anselmo Lastra University of North Carolina, at Chapel Hill : GPU

Floating-Point Paranoia

44

Appendix A. Reducing for second order
Taylor formula (reference from SiS)

: f(x,)) 1

f(x) =z f(x)+f (xp)(x—xp)+ i (x—xp) Wherexp :E(X°+X1)

fr(x) , sz)

:T"x +(f'(xp)—xpf"(xp))x+f(xp)—xof'(xp)+7f (X,)

= X =X, +dX

= f“(X")dx dx+2fl(xp)+2(xo—x)}{f(xp)ﬂxo—x) f(x)+(X0_X") f(x,)

f(x,) P P P 2

~ f"(xp) B 2f'(xp) N 2f'(xp) ~

=let, a= o b= x,) +2(% —X)= f”(xp)+2(x0 X.),
(Xo_xp)2

_ X, — X)°
c=f(x,)+ (% —x)f'(x)+ £(x,) = f(xp)+(X°2X1) f‘(xp)+(0 5 J £ (x))
c+dx*a*(b+dx) if a>0andb>0
—dx*a*(b+dx) if Oandb>0
So, f(x)= ¢-dx*a*(b+dx) _I i g wherea'=—-aandb' =-b
c—dx*a*(b-dx) if a=0andbzx0

c+dxxax(b'—dx) if a<Oandb<0

45

