

國 立 交 通 大 學

資訊科學與工程所

碩 士 論 文

可動態重組之 shader unit 於頂點與像素處理

A dynamically reconfigurable shader unit for vertex and pixel

processing

研 究 生：陳 逸 麒

指導教授：鍾 崇 斌 博士

中 華 民 國 九 十 五 年 九 月

可動態重組之處理單元於頂點與像素處理

A dynamically reconfigurable shader unit for vertex and pixel processing

研 究 生：陳 逸 麒 Student：Yi-Chi Chen

指導教授：鍾 崇 斌 教授 Advisor：Dr. Chung-Ping Chung

國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master

In

Computer Science and Information Engineering

September 2006

Hsinchu, Taiwan, Republic of China

中華民國 九十五 年 九 月

 ii

可動態重組之處理單元於頂點與像素處理

學生：陳逸麒 指導教授：鍾崇斌 博士

國立交通大學資訊科學與工程研究所 碩士班

摘 要

在頂點與像素的處理中，頂點與像素的工作量，在執行過程中有大量的變化。然而

在固定的硬體資源分配下，頂點處理器以及像數處理器經常有一方閒置，而另一方則發

生資源不足的情況。為此，我們提出了一個新的 shader unit: DR-shader unit，可針對工

作量的變化，動態分配處理器於頂點或像素處理之數量，以提升硬體資源之使用率，並

縮短執行時間。

在本論文中，首先分析處理器的架構，決定可動態重組處理器中，各元件是否能讓

兩種組態所共用。其中我們利用最小繞線代價、最多共用邏輯以及最佳面積與時間三種

演算法，幫助我們決定運算邏輯是否應作共用設計，以組合成運算單元。並且設計工作

量監測邏輯，根據工作量的變化控制各可動態重組處理器之組態。最後得到於速度上有

60%之提昇，以及 30%使用率提昇。

 iii

A dynamically reconfigurable shader unit for vertex and pixel

processing

Student：Yi-Chi Chen Advisor：Dr. Chung-Ping Chung

Institute of Computer Science and Engineering
College of Computer Science

Abstract
In vertex and pixel processing, the workloads of vertices and pixels vary greatly during

run time. However, in fixed resource allocation between vertex shaders and pixel shaders,

many vertex or pixel shaders may be idle while the other type of shaders are insufficient.

Therefore, we propose a dynamically reconfigurable shader unit (DR-shader unit) which can

distribute shaders for vertex and pixel processing according various workloads during run

time. By the way, shader utilization can be upgraded, shortening execution time

In this thesis, we firstly analyze the architecture of shaders and determine shared units

between vertex and pixel shader type in DR-shader. We use three algorithms: minimum

routing overhead, maximum sharing logic, and optimal area-time to determine how logics

be shared and complete sharable computation unit. Besides, we design workload monitor

logic to control the configuration of each DR-shader by workloads. Finally we gain 60%

upgrade in speed and 30% upgrade in utilization

 iv

誌 謝

首先感謝我的指導老師 鍾崇斌教授，在老師的諄諄教誨、辛勤指導與勉勵下，我

得以順利完成此論文，並且順利通過畢業口試。同時感謝我的口試委員 單智君教授、 蕭

勝夫教授以及 周賜福教授，由於他們的指導與建議，讓這篇論文更加完整和確實。

此外，感謝實驗室的學長姊、以及學弟妹們，經常在各種問題上給予我不同的意見，

並且不斷的鼓勵我，得以持續地努力下去，也給予我心情上的抒發。特別感謝的是我唯

一的同學汪威定，從大二起就不斷的支持我，並在各種時候給予我任何幫助，同時也鼓

勵我提早入學，最後也陪我一起提早畢業。

 在此，我必須向我的女朋友說聲道歉。在忙碌的時候，我並沒有很多時間陪她，在

她生日的這天，我必須先跟她說聲生日快樂，同時也說聲抱歉，因為我有太久沒有好好

陪她了。

最後感謝我的家人，謝謝你們在背後全心全意地支持我，讓我在這研究的路上走得

更順利，進而能無後顧之憂的學習，讓我追求自己的理想。

謹向所有支持我、勉勵我的師長與親友，奉上最誠摯的祝福，謝謝你們。

陳逸麒

2006. 9. 7

 v

Table of contents
中文摘要 …………………………………………………………………………… ii

Abstract …………………………………………………………………………… iii

誌謝 …………………………………………………………………………… iv

Table of contents …………………………………………………………………………… v

List of Figures …………………………………………………………………………… vii

List of Tables …………………………………………………………………………… ix

Chapter 1 Introduction ……………………………………………………………… 1

1.1 Vertex and pixel shaders ………………………………………………… 1

1.2 Dynamically reconfigurable system …………………………………….. 2

1.3 Motivation ………………………………………………………………. 2

1.4 Objective ………………………………………………………………… 3

1.5 Organization of this thesis..……………………………………………… 3

Chapter 2 Background ……………………………………………………………… 5

2.1 Graphics pipeline…………... …………………………………………… 5

2.2 Vertex processing…………... …………………………………………… 6

2.2.1 Model-view transformation……………………………………………… 7

2.2.2 Projection transformation...……………………………………………… 9

2.2.3 Clipping…………………...……………………………………………… 10

2.2.4 Perspective division….…...……………………………………………… 11

2.2.5 Viewport matrix….….…...……………………………………………… 11

2.3 Programmable graphics pipeline....................…………………………… 12

Chapter 3 Design …………………………………………………………………… 13

 3.1 Analysis of shaders…… ………………………………………………… 14

 3.2 Analysis of Computation requirements…..……………………………… 15

 3.3 Design of computation unit…………… ………………………………… 19

 3.3.1 Sharing all units within nin-fpSUM……………………………………… 20

 3.3.2 Algorithm1 & 2 to choose nodes………………………………………… 23

 3.3.3 Algorithm3-optimal area-time…………………………………………… 26

 3.3.4 Comparison within algorithms….. ……………………………………… 29

 3.4 Architecture of DR-shader……………………………………………… 31

 3.5 Design of workloads monitor logic……………………………………… 32

 vi

Chapter 4 Simulation…………. …………………………………………………… 34

 4.1 Simulator of DR-shader… ……………………………………………… 34

 4.2 Simulation1……………………………………………………………… 35

 4.3 Simulation2……………………………………………………………… 37

Chapter 5 Conclusion……………………. ………………………………………… 41

 5.1 Discussion…. …………………………………………………………… 41

 5.2 Future Work …………………………………………………………….. 41

 5.3 Conclusion ……………………………………………………………… 41

Reference …………………………………………………………………………….. 43

Appendix A. Reducing for second order Taylor formula (reference from SiS)...……….. 45

 vii

List of Figures
Fig. 1-1 The architecture of DR-shader unit …………………………………………… 1

Fig. 2-1 Four steps of graphics pipeline ………………………………………………... 5

Fig. 2-2 The steps of vertex processing ………………………………………………... 6

Fig. 2-3 Formula1 ……………………………………………... ……………………… 7

Fig. 2-4 The relations between (u, v, n) ………………………………………………... 8

Fig. 2-5 Formula2 ……………………………………………………………………… 8

Fig. 2-6 Formula3… …………………………………………………………………… 9

Fig. 2-7 Formula4……………… ……………………………………………………… 9

Fig. 2-8 Formula5 ……………………………………………………………………… 10

Fig. 2-9 Formula6…………………… ………………………………………………… 10

Fig. 2-10 Formula7…………………… ………………………………………………… 11

Fig. 2-11 Formula8…………………… ………………………………………………… 12

Fig. 3-1 The architecture of vertex/pixel shader...……………………………………… 13

Fig. 3-2 Trees of computation requirements …………………………………………… 19

Fig. 3-3 How three 2in-fpSUM32s be reconfigured to one 4in-fpSUM32 …..………… 20

Fig. 3-4 How three 2in-fpSUM32s be reconfigured to one 4in-fpSUM32………………… 21

Fig. 3-5 The solution of problem1……………………………………………………… 22

Fig. 3-6 The solution of problem2……………………………………………………… 22

Fig. 3-7 The solution of problem3……………………………………………………… 23

Fig. 3-8 Different sets of computation trees….………………………………………… 24

Fig. 3-9 The result of minimum routing overhead……………………………………… 25

Fig. 3-10 The result of maximum sharing logic.………………………………………… 26

Fig. 3-11 Cost function of search by integer programming …………...………………… 27

Fig. 3-12 The computation trees for integer programming……………………….…….. 27

 viii

Fig. 3-13 An example for Reqs reducing ……...………………………………………… 28

Fig. 3-14 The result of optimal area-time algorithm…………………………….. ……… 29

Fig. 3-15 The architecture of DR-shader………………………………………………… 31

Fig. 3-16 Flowchart of workloads monitor logic…………………... …………………… 33

Fig. 4-1 The cycle based simulator base on SiS………………………...……………… 35

Fig. 4-2 The pie chart of the pixels’ workload in every cycle..………………………… 36

Fig. 4-3 The relation between the size of pixel queue and execution time...…………… 37

Fig. 4-4 The relation within the size of intervals, number of DR-shaders, and

execution time………………………………………………………………….

38

Fig. 4-5 The relation between the number of DR-shaders and area-time product……… 39

Fig. 5-1 The proposed architecture to reduce utilization loss in texture load misses...… 42

 ix

List of Tables
Table 2-1 Input, output and operation in each step of graphics pipeline…..…………… 5

Table 3-1 Requirements for vector type instructions……...…………………………… 17

Table 3-2 Requirements for scalar type instructions…………………………………… 18

Table 3-3 Requirements for non-computation type instructions..……………………… 18

Table 3-4 Maximum requirement of each computation……….. ……………………… 19

Table 3-5 Average and maximum area requirement of three algorithms….…………… 29

Table 4-1 The time, area, and area-time product…..…………………………………… 39

Table 4-2 The utilization of each shader type …………………….…………………… 39

 1

Chapter 1 Introduction

Programmable graphics pipeline is the most popular type of graphics hardware nowadays.

The program lengths and execution time of vertex and pixel processing may vary from scene

to scene. However, this kind of variation in the execution time will lower the utilization of

graphics hardware. In this thesis, we propose a dynamically reconfigurable shader unit

(DR-shader unit) for vertex and pixel processing. DR-shader unit can dynamically allocate its

hardware resources to harmony with the computation requirements of vertices and pixels at

runtime. By this kind of flexibility, we can increase the utilization of graphics hardware and

shorten the execution time of scenes.

1.1 Vertex and pixel shaders
In vertex and pixel processing, there are number of vertex and pixel shaders, which are in

the form of programmable processors. The function of the two shaders is to execute the entire

vertex or pixel shader codes respectively on each individual vertex or pixel and shader codes

vary from pass to pass. However, the workloads of vertices and pixels for the two shaders

may be very various during run-time. Number of pixels will be produce by each primitive

(composed of three vertices) may have a range from zero to whole pixels in a scene,

according to its position. In different situations the execution time of each vertex and pixel

may be very diverse

The workloads of vertices and pixels for the vertex and pixel shaders may be very

various during run time. Traditionally, number of vertex and pixel shaders are fixed and the

various workloads are partially be adapted by pixel queue, which is a buffer in front of pixel

processing and stores pixels for the inputs of pixel shaders. However, the problem is that the

 2

degrees of variation during run time often exceed the adaptability of pixel queue. When pixel

queue is full, there is no space to store the result of vertex processing and all stages in vertex

processing will be idle, including vertex shaders. When pixel queue is empty, there is no input

for pixel processing and all stages in pixel processing will be idle, including pixel shaders.

When both of these two situations happen too frequently, the utilization loss of graphics

processing unit will be very low.

1.2 Dynamically reconfigurable system
We can basically classify reconfigurable systems into two different categories:

dynamically reconfigurable system and static reconfigurable system. The most important

difference between the two systems is that dynamically reconfigurable system can change its

configuration during runtime. Dynamically reconfigurable system not only can be used for

reducing the requirement of hardware in a design, but also can be used for circuit

specialization based on the information known only during runtime. This feature does not

exist in both static reconfigurable system and ASIC design. Moreover, by means of

dynamically reconfiguration, we can optimize the resource allocations in hardware to meet the

computation requirements at runtime.

1.3 Motivation
 The workloads of vertices and pixels for vertex and pixel shaders may be very various

during run time. It is difficult for any architecture with fixed resource allocation between

vertex shaders and pixel shaders to deal with such a big variation. If there are some

multi-function shaders which can change their functions between vertex shader and pixel

shader, we can easily distribute hardware resource according to the workloads of vertices and

pixels. Besides, the architectures of vertex shader and pixel shader are very the same and lots

 3

of the hardware resources can be shared to each other. It gives us a very good chance to use

reconfigurable architecture to design them

1.4 Objective

Design a dynamically reconfigurable shader unit (DR-shader unit) to adapt various

workloads between vertices and pixels

VSs (Vertex
shaders) Vertex shader farm

Fig.1-1 The architecture of DR-shader unit

1.5 Organization of this thesis
 The organization of this thesis is as follow:

In Chapter 2, the background about graphics pipeline is presented.

In Chapter 3, we analyze the architecture of vertex and pixel shaders with their

 computation requirement and design DR-shader with workloads monitor logic

In Chapter 4, we show our simulation result with environment and decide a proper

PSs (Pixel
shaders)

DR-shader unit

Interconnection
and routing path

Vertex / pixel workloads
monitor logic

DRSs
(DR-shaders)

DR-shader farm
Vertices
and/or
pixels

Coordinated
vertices and/or
colored pixels

Pixel shader farm

 4

proportion within vertex, pixel and dynamically reconfigurable shaders.

In Chapter 5, there are discussion, future work and conclusion.

 5

Chapter 2 Background

2.1 Graphics pipeline
 We can simply see graphics pipeline as separable into four distinct and sequential steps:

vertex processing, rasterization, pixel processing, and writeback. In below, we will use a table

to show inputs, output and explain their operations of these four steps and to give a mainly

explanation.

Vertex
Processing

WritebackPixel
Processing

Rasteriz-
ation

Memory Scene

Fig.2-1 Four steps of graphics pipeline

 Input Output Operation

Vertex processing Vertices with 3D
coordinates

Vertices positioned in
the 2D scene

Transforms each 3D
vertex in world space
to 2D vertex on scene

Rasterization Primitives (triangles)
assembled by vertices

Fragments Interpolations each
primitives into
numbers of fragments

Pixel processing Fragments ‘Finalized’ pixel with
final color value

Colors each fragment
according to its
information

Writeback ‘Finalized’ pixel with
final color value

Image composed of
‘finalized’ pixel

Uses frame buffer
storing pixels to
assemble a frame

Table.2-1 Input, output and operation in each step of graphics pipeline

In the following sections, we will completely descript the details in vertex and pixel

 6

processing.

2.2 Vertex processing
 At the input of vertex processing step, each primitives consists of three vertex

coordinates, vertex normal values and other information, such as lighting and texture

coordinates. At the beginning, all vertices are represented in the 3D coordinates with three

dimension values {x, y, z}. In order to using a uniform matrix representation to represent

affine transformation, we convert the Cartesian coordinates (3D coordinates) to the

homogeneous coordinates, which are quadruples of the form {X, Y, Z, W}, where {X, Y, Z, W}

= {xW, yW, zW, W} and in most case W is 1. After the conversion, we can use a sequence of

matrix operations easily to transform the coordinates of vertices. Figure3 shows the steps of

vertex processing in a typical graphics pipeline which consists of the following stages:

Model-view Transformation

Projection Transformation

Perspective Division

Viewport Mapping

Vertex information

Homogeneous
coordinates

eye coordinates

clip coordinates

normalize device coordinates

window coordinates

Clipping
view coordinates

Vertex information

Rasterization

Dehomogenize

world coordinates

Vertex processing

Fig.2-2 The steps of vertex processing

 7

)1(

1000
100
010
001

1
0
0
0

1

−−−−−−−−−−−−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

=⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

z

y

x

z

y

x

eye
eye
eye

T
eye
eye
eye

T

2.2.1 Model-view transformation
 Modeling transformation may reshape and move primitives with respect to the position

of viewer (eye position: {eyex, eyey, eyez}) because the position of the viewer often does not

locate at the origin of the world coordinates. Therefore, we must use move the position of the

viewer to the origin and also move all the vertices with the movement of the origin. Formula 1

shows the matrix that we use to transform the position of viewer to the origin.

Fig.2-3 Formula1

Besides the movements of the position, we must change the directions of x-axis y-axis

and z-axis with respect to the orthogonal direction (u), the up-direction vector (v), and the

viewing direction (n) of the viewer. Fig4 shows the relations of u, v and n. Formula2 shows

the matrix that we use to do the transformation.

 8

Fig.2-4 The relations between (u, v, n)

)2(

1000
0
0
0

1000
0100
0010
0001

1000
0
0
0

−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

zyx

zyx

zyx

zzz

yyy

xxx

nnn
vvv
uuu

B
nvu
nvu
nvu

B

Fig.2-5 Formula2

This new orthogonal coordinate system usually is called as the viewing-coordinate system or

the u-v-n system. Because these two transformations are both multiplications with a 4×4

matrix in the homogenous coordinates, they can be combined into a single multiplication

(Formula 3), which is implemented by 16 floating point multiplications and 12 floating point

additions. As the result, the model-view transformation carries us to eye coordinates, where

the viewer is at the origin and the directions of the x-axis, y-axis, and z-axis have changed. In

the model-view transformation, we translate all vertices from the world coordinates to the eye

coordinates. Then, we need to project all vertices on the view plan.

 9

)3(

1000
100
010
001

1000
0
0
0

−−−−−−−−−−−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
z

y

x

zyx

zyx

zyx

eye
eye
eye

nnn
vvv
uuu

BT

Fig.2-6 Formula3

2.2.2 Projection transformation
 Like a real camera, once we decide the position and the directions of the viewer, all the
objects (consist of vertices) will be projected on a plane (view plane, which is defined by
{xmax, xmin, ymax, ymin, zmax, zmin} six numbers) to show what we see. There are also near plane
and far near to limit the space we can see and we usually call the limited space as view
volume. Here we have two types of projections: orthogonal (orthographic) projection and
perspective projection.

The orthogonal projection is a simple projection, in which the projector is perpendicular
to the view plane. In this projection, the z values of objects just define the depth of objects.
The only thing we must do is to normalize the view volume and let the view volume to be a
cube with ranges from -1 to 1 (canonical view volume). The projection transformation will be
like Formula 4.

)4(

1000

200

020

002

minmax

max

minmax

minmax

max

minmax

minmax

max

minmax

−−−−−−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
+

−
−

−
+

−
−

−
+

−
−

=

zz
zz

zz

yy
yy

yy

xx
xx

xx

P
mix

mix

mix

Fig.2-7 Formula4

 The perspective projection is a more complicated transformation than the orthogonal
projection but it can produce more realistic images by changing the sizes of objects according
to their distances. Therefore, an object far away will be smaller than in the near. In this

 10

projection, the x value and y value of an object may be divided by its z value. In the
homogeneous coordinates, this kind of divisions can be implemented by just change the w
value. Formula 5 shows the perspective projection matrix. This matrix also can translate the
view volume to canonical view volume.

)5(

0100

200

020

002

minmax

maxmax

minmax

minmax

minmax

max

minmax

min

minmax

max

minmax

min

−−−−−−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−
+

−

−
+

−

−
+

−

=

zz
zz

zz
zz

yy
yy

yy
z

xx
xx

xx
z

P
mix

mix

 Fig.2-8 Formula5

 Each of these projection transformations are both consist of a 4×4 matrix multiplication.
Therefore, we also can combine the projection transformation with the model-view
transformation. At this time, we have a canonical view volume (clip coordinates), and then we
can easily to check whether objects are in the eyesight of the viewer.

2.2.3 Clipping
 Although we transform all objects from world coordinates to the clip coordinates, there
are many objects which are outside of the canonical view volume and won’t be showed on the
scene. Therefore, we must clip those objects to reduce the workloads of behind stages.
Clipping in the homogenous coordinates isn’t completely necessary, but it makes the clipping
clean, fast, and simple. Besides, after dehomogenizing, the signs of the x value, y value, z

value and w value will be lost { () ⎟
⎠
⎞

⎜
⎝
⎛=

W
Z

W
Y

W
Xzyx ,,,,, }. Therefore, we can’t know

whether objects are in front of or behind the viewer.
 We first ignore the objects with w values smaller than zero because they are behind the
viewer. Then, we can apply Cyrus-Beck clipping to test if a vertex V in the canonical view
volume. Formula 6 shows the testing. By this testing, we clean some vertices out of the sight
and others will continue into next steps.

)6(},,{0)(1,0)(1 −−∈>−⇒<>+⇒−> zyxiaa
a
aaa

a
a

xw
w

i
iw

w

i

Fig.2-9 Formula6

 11

2.2.4 Perspective division
 Finally, all vertices have been transform from world coordinates to eye coordinates, and

some vertices out of the sight have also been clean. At this step, we try to transform objects

from 3D- coordinates to 2D-coordinates and decide the position of each vertex on scene. In

projection transformation, we have defined how vertices be projected on 2D coordinates and

the information has been store in w value. Therefore, the function of perspective division is

just to divide (x, y, z) by w value and discard w value. So, we dehomogenize each vertex using

the Formula7.

0 ≠

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

W

W
Z
W
Y
W
X

z
y
x

W
Z
Y
X

Fig.2-10 Formula7

2.2.5 Viewport matrix
 Finally, we decide the positions of each vertex on scene and the position of each vertex

will be scaled by resolution of scene. Therefore, we transform the normalized (x, y) position

of each vertex to scene position. Assume that the resolution of scene is w x h, then we will

transform (x, y) from (-1, -1) to (0, 0) and from (1, 1) to (w, h). We use Formula8 to do this

transformation.

 12

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+
=⎥

⎦

⎤
⎢
⎣

⎡

)(yh

)(xw

w
w

y

x

1
2

1
2

Fig11. Formula8.

2.3 Programmable graphics pipeline
Programmable graphics pipeline is the most popular solution for the requirements of

both performance and flexibility in computer graphics nowadays. With the rapidly

development of computer graphics, such as 3D games, virtual realities and digital lives, the

requirements of computer graphics in effects and performance become higher. To meet all

kinds of users’ requirements, programmable graphics pipeline have been introduced into

graphics hardware and many complicated function units have been put in. Different from

fixed-functionality (non-programmable) graphics pipeline, programmable graphics pipeline

has new graphics processing units: vertex shader unit and pixel shader unit. These two new

processing units give graphics pipeline the flexibility to deal with all kinds of computation

requirements while retaining the capability of complicated computation.

 13

Fig.3-1 The architecture of vertex/pixel shader

There are several units in both vertex shader and the pixel shader, which are:

it which contains all inputs and outputs of any computations

ple computation unit which can swizzle or negate

ain computation unit which process complex operation (ex.

Chapter 3 Design

3.1 Analysis of shaders
The architecture of vertex/pixel shader in DirectX(spec. of GPU) is below:

Destination
register modifierInstruction slot

PC

1. Program counter: a register which stores the address of the instruction being executed.

2. Instruction slot: a storage unit which stores all shader codes for vertex/pixel shader(s).

3. Instruction decoder: a combinational circuit to translate an instruction into the control

signals of the data path.

4. Register file: a storage un

for each vertex or pixel.

5. Source register modifier: a sim

source data.

6. Computation unit: the m

add, mul, mad …).

Instruction
Decoder

Computation
Unit

Source register
modifier

Register file
Storage Logic

 14

er modifier: a simple computation unit which is similar to source

DR-s pes to be a multi-function shader.

 shared between vertex shader type

and p

ed.

Under these policies, we decide source register modifier, computation unit, and

.

 we deliberate upon how to design those sharable units for both two shader

types tex

xel

m of data

 nit are i*v bits in vector form,

7. Destination regist

register modifier, but its target is destination register.

hader must support all functions in both two shader ty

Therefore, it also contains those units and it must have to double the units which can’t be

shared between vertex shader type and pixel shader type.

Firstly, we consider which units in DR-shader can be

ixel shader type to reduce the hardware overhead of DR-shader. The sharing policies are:

1. If and only if a storage unit must store data, which may be states, instructions or

temporary results, for vertex shader and pixel shader simultaneously, it can’t be shar

2. All logic units are sharable.

destination register modifier are sharable units because all of them are logic units. Instruction

slot is non-sharable unit, for it must store vertex shader codes and pixel shader codes in the

same time. Besides, we can’t decide whether program counter and register file can be shared

We will make the decision for them when we discuss the architecture and flexibility of

DR-shader.

Secondly,

. In those sharable units, source modifier and destination modifier are the same in ver

shader type and pixe shader type. Therefore, we will focus on how to design a sharable

computation unit in the following sections. There are some assumptions of vertex and pi

shaders’ architecture for us to design a sharable computation unit, listed below:

 Single issue and single execution: because shaders expose the parallelis

better than the parallelism of instructions for single issue and multi-shaders

respectively execute instead of multi-execution

The widths of all operations in the computation u

where i is currently 32 (most probable), and v may be 1 or 4: for the precision

 15

.2 Analysis of Computation requirements
,

we n

ta

mputes four fields (x, y, z, w) of source registers and

2. a computation on one field of a source register and produces

3. us without any

In the be ow what instructions are in the three types with their operations and

struction Belong Operations Requirements

requirement described in DirectX.

3
Before design a sharable computation unit for vertex shader type and pixel shader type

eed to understand using data, function units and processing flow in all vertex and pixel

instructions individually to decide how to design the computation unit in DR-shader. We

divide all vertex and pixel shader instructions in DirectX into three types by their using da

and processing flows, which are:

1. Vector type: separately co

produces four results.

Scalar type: only does

one result. In this type of instructions we use a changed second Taylor formula to

reduce the complexity of their computations. (See Appendix A)

Non-computation type: only send the data of source register to b

computation.

low, we will sh

computation requirements.

In

add

sub

VS, PS Dst.x = Src0.x + Src1.x

Dst.y = Src0.y + Src1.y

Dst.z = Src0.z + Src1.z

Dst.w = Src0.w + Src1.w

2in-fpSUM32 ＊4

cmp PS 1.x : Src2.x

Dst.y = (Src0.y >= 0)? Src1.y : Src2.y

2in-MUX32 ＊4 Dst.x = (Src0.x >= 0)? Src

 16

Dst.z = (Src0.z >= 0)? Src1.z : Src2.z

Dst.w = (Src0.w >= 0)? Src1.w : Src2.w

dp2add VS fpMULDst = Src0.x ＊ Src1.x + Src0.y ＊ Src1.y

+ Src2.w

32 ＊2

3in-fpSUM32 ＊1

dp3 (vs) VS Dst = Src0.x ＊ Src1.x + Src0.y ＊ Src1.y

+ Src0.w

 fpMUL

＊ Src1.w

32 ＊3

3in-fpSUM32 ＊1

dp3 (ps)

dp4

PS

 Src0.w ＊ Src1.w

VS, Dst = Src0.x ＊ Src1.x + Src0.y ＊ Src1.y

+ Src0.w ＊ Src1.w +

 fpMUL32 ＊4

4in-fpSUM32 ＊1

max VS, PS Dst.x = (Src0.x > Src1.x)? Src0.x : Sr

Dst.y = (Src0.y > Src1.y)? Src0.y : Src1.y

c1.x

w

Dst.z = (Src0.z > Src1.z)? Src0.z : Src1.z

Dst.w = (Src0.w > Src1.w)? Src0.w : Src1.

2in-fpSUM32 4

32

 ＊

2in-MUX ＊4

min VS, PS

w

2in-fpSUMDst.x = (Src0.x < Src1.x)? Src0.x : Src1.x

Dst.y = (Src0.y < Src1.y)? Src0.y : Src1.y

Dst.z = (Src0.z < Src1.z)? Src0.z : Src1.z

Dst.w = (Src0.w < Src1.w)? Src0.w : Src1.

32 ＊4

32 ＊4 2in-MUX

mul VS, PS

fpMULDst.x = Src0.x ＊ Src1.x

Dst.y = Src0.y ＊ Src1.y

Dst.z = Src0.z ＊ Src1.z

Dst.w = Src0.w ＊ Src1.w

32 ＊4

mad VS, PS Src2.x

rc2.y

fpMULDst.x = Src0.x ＊ Src1.x +

Dst.y = Src0.y ＊ Src1.y + S

Dst.z = Src0.z ＊ Src1.z + Src2.z

Dst.w = Src0.w ＊ Src1.w + Src2.w

32 ＊4

2in-fpSUM32 ＊4

 17

sge VS

Dst.y = (Src0.y >= Src1.y)? 1.0f : 0.0f

Dst.z = (Src0.z >= Src1.z)? 1.0f : 0.0f

Dst.w = (Src0.w >= Src1.w)? 1.0f : 0.0f

2in-fpSUMDst.x = (Src0.x >= Src1.x)? 1.0f : 0.0f 32 ＊4

2in-MUX32 ＊4

slt VS Dst.x = (src0.x < src1.x)? 1.0f : 0.0f

Dst.y = (src0.y < src1.y)? 1.0f : 0.0f

Dst.z = (src0.z < src1.z)? 1.0f : 0.0f

Dst.w = (src0.w < src1.w)? 1.0f : 0.0f;

2in-fpSUM32 ＊4

2in-MUX32 ＊4

sgn VS Dst.x = (Src0.x > 0)? 1.0f : (Src0.x = 0)?

0.0f : -1.0f

Dst.y = (Src0.y > 0)? 1.0f : (Src0.y = 0)?

0.0f : -1.0f

Dst.z = (Src0.z > 0)? 1.0f : (Src0.z = 0)?

 0.0f : -1.0f

Dst.w = (Src0.w > 0)? 1.0f : (Src0.w = 0)?

0.0f : -1.0f

Compare to 032 ＊4

2in-MUX32 ＊8

Table.3-1 Requirements for vector type instructions

Instruction Belong Operations Requirements

add

sub

VS, PS Dst.x = Src0.x + Src1.x

Dst.y = Src0.y + Src1.y

Dst.z = Src0.z + Src1.z

Dst.w = Src0.w + Src1.w

2in-fpSUM32 ＊4

cmp PS Dst.x = (Src0.x >= 0)? Src1.x : Src2.x

Dst.y = (Src0.y >= 0)? Src1.y : Src2.y

2in-MUX32 ＊4

 18

Dst.z = (Src0.z >= 0)? Src1.z : Src2.z

Dst.w = (Src0.w >= 0)? Src1.w : Src2.w

dp2add VS fpMULDst = Src0.x ＊ Src1.x + Src0.y ＊ Src1.y

+ Src2.w

32 ＊2

3in-fpSUM32 ＊1

dp3 VS Dst = Src0.x ＊ Src1.x + Src0.y ＊ Src1.y

+ Src0.w ＊ Src1.w

fpMUL32 ＊3

3in-fpSUM32 ＊1

dp4 VS, PS

 Src0.w ＊ Src1.w

Dst = Src0.x ＊ Src1.x + Src0.y ＊ Src1.y

+ Src0.w ＊ Src1.w +

fpMUL32 ＊4

4in-fpSUM32 ＊1

max VS, PS Dst.x = (Src0.x > Src1.x)? Src0.x : S

Dst.y = (Src0.y > Src1.y)? Src0.y : Src1.y

rc1.x

w

Dst.z = (Src0.z > Src1.z)? Src0.z : Src1.z

Dst.w = (Src0.w > Src1.w)? Src0.w : Src1.

2in-fpSUM32 4

32

 ＊

2in-MUX ＊4

min VS, PS

w

2in-fpSUMDst.x = (Src0.x < Src1.x)? Src0.x : Src1.x

Dst.y = (Src0.y < Src1.y)? Src0.y : Src1.y

Dst.z = (Src0.z < Src1.z)? Src0.z : Src1.z

Dst.w = (Src0.w < Src1.w)? Src0.w : Src1.

32 ＊4

32 ＊4 2in-MUX

Tabl ns

Instruction Belong

e.3-2 Requirements for scalar type instructio

Operations Requirments

branch VS PC = (Src0 !=0)?PC+1 : Src1 Bus to program counter

texld PS Dst = Mem#Src1(Src0) emory Bus to texture m

Table.3-3 R

From above tab ith maximum

quirements for each kind to execute any instruction, as shown in the following tables:

equirements for non-computation type instructions

les, we conclude that there are only five kinds of computations w

re

 19

Computation fpMUL 2in-fpSUM 3in-fpSUM 4in-fpSUM Compare to 0

Maximum
4 4 1 1 4

requirement

Table.3-4 Maximum requirement of each computation

3.3 Design
In this section, we want to implement the computation unit with its area as small as

ign of computation unit is

st

 of computation unit

possible while keeping one-cycle execution. The tradeoff in the des

that the more sharing we want the more routing overhead we may have. Therefore, we mu

carefully decide whether functions of any computation unit can be shared by others. To solve

this problem, we divide each computation into sub-function nodes with requirement of each

node individually to discover potential sharing possibility and then use an algorithm to choose

nodes covering all computations. The computations we divide are called the tree of

computation requirements.

fpMUL32
4

2in-fpSUM32 4

4

CMP
&SWAP

4

CMP
&SWAP 2in-adder24 normalize25

ALIGN
+INV

4

ALIGN
+INV

4 4
4

2
3in-fpSUM32 1

1

3in-
partial sort

ALIGN
+INV 3in-adder24 normalize26

2 1 1

CMP
&SWAP 2

2in-adder24
2

3
4in-fpSUM32 1

1

4in-
partial sort

ALIGN
+INV 4in-adder24 normalize26

3 1

CMP
&SWAP 3 2in-adder24

3

Compare
to 0 32 4

multiply24
8 4

adder8

normalize26 normalize251 3

2in-fpSUM32 2in-fpSUM32

1

A node can be divided into sub-function nodes
Another way to be divided

Logic
Maximum
requirement

Fig.3-2 Trees of computation requirements

 20

The meaning of covering is that if we choose a node in the tree of computation requirements,

we can say the node has been covered. Besides, if all children of a node have been covered,

the node also is covered. We will compare the average and maximum area requirement of all

vertex and pixel instructions and choose the one with smallest average and maximum area

requirement.

3.3.1 Sharing all units within nin-fpSUM
 In nin-fpSUM, we find that there are some possible sharing logics when we divide

nin-fpSUM into many sub-function nodes. There are two possible partitions of nin-fpSUM ,

which are: 1. partition 3 or 4in-fpSUM to several 2in-fpSUMs

Src1
2in-fpSUM32

Src2

2in-fpSUM322in-fpSUM32 Result

Src3
2in-fpSUM32

Src4

4in-fpSum

Fig.3-3 How three 2in-fpSUM s be reconfigured to one 4in-fpSUM

32

32 32

 2. Sharing all units of nin-fpSUM within each other

 21

normalize25

normalize25

normalize26 Result

normalize25

normalize25

normalize26 Result

CMP
&SWAP

CMP
&SWAP

CMP
&SWAP

Src1

Src2

Src3

Src4

CMP
&SWAP

CMP
&SWAP

CMP
&SWAP

CMP
&SWAP

CMP
&SWAP

CMP
&SWAP

Src1

Src2

Src3

Src4

2in-
adder24

2in-
adder24

2in-
adder25

2in-
adder24

2in-
adder24

2in-
adder24

2in-
adder24

2in-
adder25

2in-
adder25

ALIGN
+INV

ALIGN
+INV

ALIGN
+INV

Largest for fpadd4

ALIGN
+INV

ALIGN
+INV

ALIGN
+INV

Largest for fpadd4

Fig.3-4 How three 2in-fpSUM32s be reconfigured to one 4in-fpSUM32

Although “CMP&SWAP”, “ALIGN+INV”, “normalize” can be easily shared within

nin-fpSUM , the problem is in adders, especially at we use three 2in-adders to form a

4in-adder. In these three 2in-adders, two adders will be carry-save adders and the last one will

be normal adders to add the carry and sum of the second carry-save. However, there are three

problems we need to get over for this kind of design, which are:

1. We need to add four 24-bit numbers by two 24-bit carry save adder and one 24-bit

normal adder. Is there any extension in adder?

2. After “ALIGN + INV”, there may be three carry-ins from the inverters. How do we

add the three carry-ins by existent adders

3. The result has 24+2 bits and the sources may be minus from inverters. How do we

solve the sign-extensions of minuses?

In prob N + lem1, the first carry-save adder adds three 24-bit summands from “ALIG

 22

V”, so it doesn’t need to extend. Besides, the normal adder must give 26-bit result, so it

to

hest bit

1

In problem carry-in to adder for the negation of 2’s

comp

-in

Fig.3-6 The solution of problem2

 In problem3, the final solution is 26 bits and summands may be minus. Therefore, we

must add compensation, which we call sign-com

IN

must be extend to 25-bit adder. However, in the second carry-save adder, do we need

extend it to 25-bit adder? The answer is no because we doesn’t need to process the hig

of the carry from first carry-save adder. The figure below can give us more carefully concept:

Fig.3-5 The solution of problem

2, “ALIGN + INV” may send 1-bit

lement. How can we sum carry-ins, which are at most three, to summands without any

additional logics? To solve this problem, we use the vacant position in the carries of the two

carry-save adder to add two carry-ins. Then, the last carry-in will be added as normal carry

by the normal adder.

pensation, to temporary result and get correct

＋

Normal adder
24+1 bits

Sum2
Carry2

Result
(24+2 bits)

＋

Carry save adder 1

Src1

Carry1

24 bits

Src3

Sum1

Src2
＋

Carry2

Carry save adder 2
24 bits

Sum1
Carry1
Src4

Sum2

Carryin3
as normal carry-in

＋

Normal adder
24+1 bits

Sum2
Carry2

Result
(24+2 bits)

Carryin2＋

Carry2

Carry save adder 2
24 bits

Sum1
Carry1
Src4

Sum2

Carryin1

 23

2
01Sign-compensat

30Number of minuses

result.

11 1000ion

1
11 1000ion

1 2
01Sign-compensat

30Number of minuses

＋

Src2

24 bits

Src3
Src4

Result
(24+2 bits)

Src11

1
1

11
11
11

24 bits

＋

Src2
Src3
Src4

Temp result
(24+2 bits)

Src11
1
1

01＋

Real result
(24+2 bits)

Fig.3-7 The solution of problem3

s to choose node covering all computations:

 Algorithm1- minimum routing overhead: use the fewer choices to cover all

computation requirements. The advantage of this algorithm is that there may be

fewer routing overhead with enough sharing logic. However, the disadvantage is

that it may loss some possible sharing opportunity for smaller area requirement. The

steps of the algorithm are described in below:

Step1: collect nodes with the same logic (sharable nodes) and indicate the most

maximum requirement.

Step2: group nodes into several sets and let there are no links or the same nodes

within different sets and ignore the sets which only have one computation. See

below:

3.3.2 Algorithm1 & 2 to choose nodes
Here, we propose two algorithm

 24

32-bit
fpMUL 4

Compare
to 0 4

24-bit8-bit
multiply8 4adder

32-bit
fpSUM2 4

4

CMP
&SWAP

4

CMP
&SWAP

2in 24-bit
adder

fpSUM2
normalize

ALIGN
+INV

4

ALIGN
+INV

4 4
4

32-bit
fpSUM2 2

32-bit

1

fpSUM3 1

3in
partial sort

ALIGN
+INV

3in 24-bit
adder

fpSUM3
normalize

3 1 1

CMP
&SWAP 2

2in 24-bit
adder 2

32-bit
fpSUM2 3

32-bit
fpSUM4 1

1

4in
partial sort

ALIGN
+INV

4in 24-bit
adder

fpSUM4
normalize

3 1 1

CMP
&SWAP 3

2in 24-bit
adder 3

fpSUM4
normalize

1

fpSUM4
normalize

fpSUM2
normalize1 3

1

Fig.3-8 Different sets of computation trees

Step3: For each set we do that, we firstly choose a sharable node in the highest

level and see if all computations have been covered. If there are computations

haven’t been covered, delete chosen nodes with all their children and choose

another sharable node in highest level. Recursively, all computation requirements

have been covered or no sharable node.

 25

Fig d

 most

.3-9 The result of minimum routing overhea

Algorithm2-Maximum sharing logics: find more sharing choices to cover all

computation requirements. The advantage of this algorithm is that there are the

sharing logics. However, the routing overhead may become more serious.

Step1.2: the same as step1 and step2 in minimum routing overhead to group nodes

into several sets.

Step3: For each set we do that, we firstly choose a sharable node in the lowest level

and see if all computations have been covered. If there are computations haven’t

been covered, delete chosen nodes with all their children and choose another

sharable node in lowest level. Recursively, all computation requirements have been

covered or no sharable node.

fpMUL32
4

2in-fpSUM32 4

4

CMP
&SWAP

4

CMP
&SWAP 2in-adder24 normalize25

ALIGN
+INV

4

ALIGN
+INV

4 4
4

2
3in-fpSUM32 1

1

3in-
partial sort

ALIGN
+INV 3in-adder24 normalize26

3 1 1

CMP
&SWAP 2

2in-adder24
2

3
4in-fpSUM32 1

1

4in-
partial sort

ALIGN
+INV 4in-adder24 normalize26

3 1

CMP
&SWAP 3 2in-adder24

3

Compare
to 0 32 4

multiply24
8 4

adder8

normalize26 normalize251 3

2in-fpSUM32 2in-fpSUM32

1

 26

The following figures show how three 2in-fpSUM32s be reconfigured to one 4in-fpSUM32 in

these two algorithms as an example:

3.3.3 Algorithm3-optimal area-time:

 In minimum routing overhead and maximum sharing logic, we find that some factors for

sharing logic haven’t been considered. In these two algorithms, we choose nodes as basic unit

but we don’t consider about different proportions within nodes. Besides, the silicon area is not

the same in all nodes. Therefore, we use a new algorithm.

 Search by integer programming: weight each sharable node with hardware cost and

use integer programming to minimize total cost. Here, we estimate hardware cost of

each node by num

cases. If one sharable node with the most maximum requirement it means that logic

without routing overhead divided by area of

Fig.3-10 The result of maximum sharing logic

ber of multiplexer area it may need. The cost function has two

of the node will be shared to other nodes which needed the same logic. Therefore,

the cost will be its implementation area

fpMUL32
4

2in-fpSUM32 4

4

CMP
&SWAP

4

CMP
&SWAP 2in-adder24 normalize25

ALIGN
+INV

4

ALIGN
+INV

4 4
4

2
3in-fpSUM32 1

1

3in-
partial sort

ALIGN
+INV 3in-adder24 normalize26

3 1 1

CMP
&SWAP 2

2in-adder24
2

3
4in-fpSUM32 1

1

4in-
partial sort

ALIGN
+INV 4in-adder24 normalize26

3 1

CMP
&SWAP 3 2in-adder24

3

Compare
to 0 32 4

ad 8

normalize26 normalize251 3

der multiply24
8 4

1

2in-fpSUM32 2in-fpSUM32

 27

a multiplexer. Except those nodes, other sharable nodes will have a cost equal to

ultiplexers and one output three meaning the routing overhead on two input m

multiplexer.

⎪
⎪

⎪
⎨

⎧

=
 3

rmultiplexe a of area
tionimplementaan of area

 cost

randomly choose one nodes with

otherw
(meaning rout⎩

⎪ the most maximum requirement

ise
ing overhead)

Fig.3-11 Cost function of search by integer programming

The advantage of this algorithm both consider sharing logic and routing overhead.

However, the disadvantage is that the qualities of results depend on the precision of

cost. For the integer programming, we change the display of computation trees and

give more information.

fpMUL32
(1) 50.7 4

2in-fpSUM32
(1) 48 4

CMP&SWAP
(1) 2.3

CMP&SWAP
(1) 2.3

2in-adder24
(1) 2.6

normalize25
(1) 3.4

ALIGN+INV
(1) 3.6

ALIGN+INV
(1) 3.6

3in-fpSUM32
(1) 52.7

3in-partial sort
(1) 18.4

ALIGN+INV
(2) 3

3in-adder24
(1) 21.6

normalize26
(1) 3

CMP&SWAP
(2) 3

2in-adder24
(2) 3

4in-fpSUM32
(1) 76.1

4in-partial sort
(1) 27.6

ALIGN+INV
(3) 3

4in-adder24
) 32.4(1

normalize26
(1) 3

CMP&SWAP
(3) 3

2in-adder24
(3) 3

Compare to 0 32
(1) 1.2

normalize26
5.3

normalize25
3.4

adder8
(2) 3.5

Multiply24
(1) 43.7

2in-fpSUM32
(2) 3

2in-fpSUM32
(3) 3

4

3in-fpSUM32
(1) 52.7

4in-fpSUM32
(1) 76.11 1

A function node be divided into several sub-function nodes

A function node has several kinds of design
Logic

(Ri) cost

Fig.3-12 The computation trees for integer programming

 28

Step1.2: the same as step1 and step2 in minimum routing overhead to group nodes

into several sets.

Step3: To find optimal result using integer programming, we set

 Variables

0 node fromtion implementa of# ≥∀= iii II

 Constraints from

icici

i

icic
c

i

i

I

R
I

node ofchildren node allfor Req Req1
children tolinking linesdot has node if

node ofchildren nodeeach for Req Req1
children tolinking lines real has node if

∈≥∗+

∈≥∗+

∑

 Objective

Reqs from leaves to roots and get all constraints for integer

cR

iiiI node node ofcost minimize ∀∗∑
Step4: reduce all

programming.

A
4

A
4

A1 A2
ReReqA1 qA2

B (2)
ReqB

B (2)
ReqB

C (4)
ReqC

C (4)
ReqC

D (4)
ReqD

D (4)
ReqD

D1
ReqD1

D1
ReqD1

D2
ReqD2

D2
ReqD2

DDDDD

AAA

A

A1cA

A1BA

AA2A1A

I

I

I

I

I

nodeReqReqReq

nodeReqReq
4
1

node
ReqReq

4
1

ReqReq
2
1

node4ReqReq

21

22D2

1

1

1

−−≥++

−−≥+

−−
⎪
⎩

⎪
⎨

⎧

≥+

≥+

−−≥+ +

()⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≥+++

≥+

≥+

≥++

2212

1

1

Req
4
1

Req
4
1

Req
2
1

4ReqReq

ADDDA

A1cA

A1BA

A2A1A

IIII

II

II

I

()

()⎪
⎩

⎪
⎨

⎧

≥++++++

≥++++++

4
4
1

4
1

4
4
1

2
1

2121

2121

DDDAcAA

DDDABAA

IIIIIII

IIIIIII

Fig.3-13 An example for Reqs reducing

 29

 Step5: apply integer programming and get the result with minimum cost

The result of optimal area-time is in below:

fpMUL32
(1) 50.7 4

2in-fpSUM32
(1) 48 4

CMP&SWAP
(1) 2.3

CMP&SWAP
(1) 2.3

2in-adder24
(1) 2.6

normalize25
(1) 3.4

ALIGN+INV
(1) 3.6

ALIGN+INV
(1) 3.6

3in-fpSUM32
(1) 52.7

3in-partial sort
(1) 18.4

ALIGN+INV
(2) 3

3in-adder24
(1) 21.6

normalize26
(1) 3

CMP&SWAP
(2) 3

2in-adder24
(2) 3

4in-fpSUM32
(1) 76.1

4in-partial sort
(1) 27.6

ALIGN+INV
(3) 3

4in-adder24
(1) 32.4

normalize26
(1) 3

CMP&SWAP
(3) 3

2in-adder24
(3) 3

Compare to 0 32
(1) 1.2

normalize26
5.3

normalize25
3.4

adder8
(2) 3.5

Multiply24
(1) 43.7

2in-fpSUM32
(2) 3

2in-fpSUM32
(3) 3

4

3in-fpSUM32
(1) 52.7

4in-fpSUM32
(1) 76.1

2 3

Fig.3-14 The result of optimal area-time algorithm

 Then, we compare the result of three

algorithms

3.3.4 Comparison within algorithms
Firstly, we show the comparison within three algorithms

We find that the result of optimal area-time algorithm is the same as minimum routing

overhead because of too few possible solution.

2,000,547.5

2,105,722.5986,095.4688Maximum
sharing logic

2,000,547.5

Maximum area
requirement (um2)

985793.5938

Average area
requirement (um2)

Minimum routing
overhead

Optimal ar 985793.5938ea-time

2,000,547.5

2,105,722.5986,095.4688Maximum
sharing logic

2,000,547.5

Maximum area
requirement (um2)

985793.5938

Average area
requirement (um2)

Minimum routing
overhead

Optimal ar 985793.5938ea-time

Table.3-5 Average and maximum area requirement of three algorithms

 30

the

rage and maximum area requirements. To compare the two kinds of result in

etail, we find they only differ in the choices of how to reconfigure 2in-fpSUM32s to

haring logics between

2in-fpSUM is in the routing overhead.

The critical path of minimum routing overhead/optimal area-time is:

Delay time = CMP&SWAP ALIGN+INV 2in-add24 normalize25 MUX

Finally choose the result of minimum routing overhead/optimal area-time because of

smallest ave

d

3in-fpSUM32 or 4in-fpSUM32. In addition, we analyze the s

32S and 4in-fpSUM32 and find out the failure of result2

32

CMP&SWAP ALIGN+INV 2in-add24 normalize25

= 3.93 + 6.14 + 4.47 + 4.72 + 0.76 + 3.87 + 6.01 + 2.54 + 7.56 (ns)

= 40ns with time overhead 0.76ns (1.9%)

The area requirement of minimum routing overhead/optimal area-time is:

Area = 2in-fpSUM32*3 + MUX32*2

= 313425 + 8837.5 (um2)

2 2= 332027.5um with area overhead 8837.5um (2.66%)

The critical path of maximum sharing logic is:

Delay time = MUX32 CMP&SWAP MUX32 CMP&SWAP MUX32

CMP&SWAP ALIGN+INV 2in-add24 MUX

32 2in-add24 MUX32

2in-add25 normalize26

= 0.6 + 3.9 + 0.75 + 3.59 + 0.77 + 5.08 + 6.24 + 1.15 + 0.86 + 1.42 + 0.85 +

The area requirem

 Area = 2in-

9.31 + 6.63 (ns)

= 43.86ns with time overhead 2.12ns (4.83%)

ent of maximum sharing logic is:

fpSUM32 * 3 + MUX32* 6

= 108972.5 + 106872.5 + 107345.0 + 18882.5 (um) 2

= 332307.5um2 with area overhead 18882.5 um2 (5.68%)

 31

Beca ead of maximum sharing logic are much more than

those ove overhead/optimal area-time, we finally choose the result

of minimu he computation unit.

3.4

DR-shader is below:

Fig.3-15 The architecture of DR-shader

in the sharable computation unit to support all vertex and pixel

instructions with routing overhead

 Context memory to store the configuration of each instruction

 One more instruction slot to store vertex and pixel shader codes simultaneously

Therefore, the area of DR-shader may be larger than the area of vertex shader or pixel shader

use the time overhead and area overh

rhead of minimum routing

m routing overhead/optimal area-time as our design of t

 Architecture of DR-shader
After finish the computation unit, we can build DR-shader. The architecture of

Configuration
signal

In the architecture, there are some necessary hardware overheads:

 More logic

Instruction
Decoder

Computation
Unit

Instruction slot
(pixel shader)

Destination
register modifier

Register file

Instruction slot
(vertex shader) Context

memory

PC

Source register
modifier

Storage Logic

 32

for the ability to reconfigure between vertex shader type and pixel shader type. However, we

will find whether its flexibility deserve be added to upgrade shader utilization in our

simulations.

3.5 Design of workloads monitor logic
In this section, we firstly descript the properties of DR-shader and the hardware overhead.

Then, we will descript the design of vertex/pixel workloads monitor logic. There are two

assumptions of reconfigure property for DR-shader:

1. Order of processing: In the beginning, all DR-shaders will be reconfigure to vertex

shader type because of no workload in pixels. Then, DR-shaders will be often

reconfigured to vertex sh rding to the various in the

workloads between vertices and pixels until all vertices have been processed. Finally,

aining pixels.

Reconfiguring tim

after it finis eeding one more register file for temporary

results.

The purpose of the workloads m

shaders with pixel shader type is equal to number of used

intervals in pixel queue. (the size of intervals will be determined later)

ad monitor

ader type or pixel shader type acco

all DR-shaders will be reconfigured to pixel shader type for rem

2. ing: The configuration of each DR-shader only can be changed

h a vertex/pixel to avoid n

onitor logic is to control number of DR-shaders with pixel

shader type in DR-shader unit and let stall cycles of all shaders as few as possible. To achieve

this goal, we base on three kinds of information to control number of DR-shaders with pixel

shader type, which are:

 Expected number of DR-

 Current number of DR-shaders with pixel shader type is recorded in worklo

logic.

 Job end signal is sent by each DR-shader, telling workload monitor logic which

 33

At ev

with pix

finishing

change f

Fig.3-16 Flowchart of workloads monitor logic

v

DRp: DR-shader with pixel shader type
el

el

DR-shaders finish their job.

ery cycle, we count the difference between expected and current number of DR-shaders

el shader type. If the expected number is bigger than current number, we change

 DR-shaders with vertex shader type to other type by the difference. Otherwise, we

inishing DR-shaders with pixel shader by the difference.

 shader type

DR : DR-shader with vertex shader type

EDRP: expected number of DR-shaders with pix
 shader type
CDRP: current number of DR-shaders with pix

EDR < CDR ? P P

Find and mark
finishing DRp(s)

Find and mark
finishing DR (s)v

yes

no

Change (CDRP - EDRP)
finishing DR (s) to DR (s)P V

Chan
finishing DRV(s) to DRP(s)

ge (EDRP - CDRP)

 34

 Vertex shader

he output of simulator is the execution time from vertex processing to pixel processing of a

frame with the information about shader utilization. There are also some parameters we can

set for different environments we want, listed below:

 Clip information

 Throughput of the clipping unit

 PreZ information

 Throughput of the PreZ unit

 Shader information

 Throughput of the vertex input

 Size of pixel queue

 Numbers of DR-shader, vertex shaders and pixel shaders

 Number of batches in each shader

 Latencies of each instruction

 Texture information

Chapter 4 Simulation

4.1 Simulator of DR-shader
 For this thesis, we build a cycle-based simulator referenced from SiS. The input of the

simulator is 3Dmark05, we consider about information which is listed below:

 If a primitive is clipped (culled) or pass

 Number of tiles produced from each primitive

 If a tile is blocked by preZ or not

 Number of pixels can be produced from each pass tile

 codes and pixel shader codes

T

 35

 Textur

 Miss rate of the texture memory

 Miss penalty

lator base on SiS

4.2 S
 decide a proper proportion between vertex shaders and pixel

shaders and the size of pixel queue. For the goal, we assume number of vertex shaders is three,

and o r ed below:

ipping unit = unlimited

mited

e vertex input = unlimited

e unit access cycles

 Throughput of texture units

Fig.4-1 The cycle based simu

imulation1
In this section, we will

the parameter setting list

Clip information

 Throughput of the cl

PreZ information

 Throughput of the PreZ unit = unli

Shader information

 Throughput of th

Triangle
SetupClip

V.S.
Prog.

P.S.
Prog.

Vertex
Shader

Pixel
Shader

Cycle based Simulation
base on SiS C-model

Texture
Memory

PreZI u Output

Pixel
Queue

np t

 36

 3 Number of vertex shaders =

tchs in each shader = 8

Then, we he s in every cycle. The workload in each cycle is

counted as number of pixels in the cycle product with their execution time. We display the pie

chart of pixels’ workload:

 Latencies of each instruction = 8

 Number of ba

gat r workload statistics of pixel

1000~9999

0.7%

100~999

0.24%

>10000

0.3%

<10

99.37%

10~99

0.28%

其他

<10

10~99

100~999

1000~9999

>10000

0.63%

A
Standar

verage = 36.353
d deviation = 279.114

er of pixel shaders when there are three vertex

shaders. Under 3 vertex shaders with 37 pixel shaders, we simulate the relation between the

size of pix u

Fig.4-2 The pie chart of the pixels’ workload in every cycle

We choose the average workload as numb

el q eue and execution time:

 37

30000000

30200000

30400000

30600000

E
xe

ut
io

n
tim

3 0

3 0

3 0

0 500 1000 1500 2000 2500

Size of pixel queue (pixels)

c
e

(c
yc

le
s)

12 0000

10 0000

08 0000

1024

unlimited

Fig.4-3 The relation between the size of pixel queue and execution time

By the graph, we choose the size of pixel queue is 1024 (pixels).

4.3 Simulation2
 In this section, we decide the size of intervals in pixel queue and number of vertex

shaders and pixel shaders be changed to DR-shaders. We use the parameters decided above,

listed below:

 Clip information

= unlimited

 Shader information

 Throughput of the vertex input = unlimited

 Latencies of each instruction = 8

 Throughput of the clipping unit = unlimited

 PreZ information

 Throughput of the PreZ unit

 38

 Number of batchs in each shader = 8

 Number of vertex shaders = 3

 Size of pixel queue = 1024

 Total number of shaders = 40 (3 + 37)

 Texture information

 Texture unit access cycles = 8

 Miss rate of the texture memory = 0

 Throughput of texture unit = unlimited

Firstly, we simulate the relation between the size of intervals and execution time and get

below graph:

15000000

Number of DR-shaders

19000000

E
xe

c

23000000

27000000

310

0 5 10 15 20 25 30 35

ut
io

n
cy

cl
es

)

Size = 32
00000

Size = 64

Szie = 128

tim
e

(

Fig.4-4 The rela ize of intervals, number of DR-shaders, and execution time

It is appar intervals doesn’t have a great influence on the execution time.

Therefore, we choose the size of intervals is for the flexibility.

 the number of DR-shaders and time-area

product with the size of in

tion within the s

ent that the size of

 equal to 32 (pixels)

Secondly, we simulate the relation between

tervals equal to 32:

 39

8.5E+15

9.5E+15

1.05E+16

1.15E+16

1 E

1 E

1 E

0 5 10 15 20 25 30 35

Number of DR-shaders

T
im

e*
A

re
a

DR-shaders
.45 +16

3 VS and 37 PS

.35 +16

.25 +16

16 DR-shadres

Fig.4-5 The relation between the number of DR-shaders and area-time product

The time-area products have a minimum value at number of DR-shaders equal to 16. For the

analysis in detail, we list time, area, and utilization of each shader type in below:

8,879,126,204,482,140
[0.653]

480,609,124
[1.073]

18,474,735
[1.644]

24016

447,827,831.4
[1]

Area (um2)
[Ratio]

Number of each
kind of shader

0
DR

3
VS

13,601,927,566,796,306.56
[1]

30,373,118
[1]

37

Time*Area
[Ratio]

Time (cycles)
[Speed up]

PS

8,879,126,204,482,140
[0.653]

480,609,124
[1.073]

18,474,735
[1.644]

24016

447,827,831.4
[1]

Area (um2)
[Ratio]

Number of each
kind of shader

0
DR

3
VS

13,601,927,566,796,306.56
[1]

30,373,118
[1]

37

Time*Area
[Ratio]

Time (cycles)
[Speed up]

PS

Table.4-1 The time, area, and area-time product

78,431,817
[0.879348]

160
[0.82311]

35,664,24324

7
[0.515063]

Stall cycles
[Utilization]

Stall cycles
[Utilization]

Number of each
kind of shader

[0.50552]

Stall cycles
Utilization]

544,974,67

(Pixel shaders)(DR-shaders)

0
DR

3
VS

45,056,70337

(Vertex shaders)
PS

[

78,431,817 35,664,243
[0.879348]

160
[0.82311]

24

7
[0.515063]

Stall cycles
[Utilization]

Stall cycles
[Utilization]

Number of each
kind of shader

[0.50552]

Stall cycles
Utilization]

544,974,67

(Pixel shaders)(DR-shaders)

0
DR

3
VS

45,056,70337

(Vertex shaders)
PS

[

Table.4-2 The utilization of each shader type

 40

 We choose 24 DR-shaders with 16 pixel shaders in DR-shader unit and the size of

intervals in pixel queue is 32 pixels as our final result. This kind of design will have a great

improvement in shader utilization and execution time with a few of hardware overhead and

area-time product will be reduced to 65.3 %.

 41

5.1 Discussion
To design hardware by reconfigurable architecture, we need to consider sharable logic,

hardware overhead from routing path, sharing time and usable opportunity, etc. However, this

kind of problem may be very complex and we couldn’t consider all causes at once. The

priorities of those causes must be carefully decided for computation time and better result.

There may be a trade-off between sharable logic and routing overhead. So, how to decide

whether a logic be shared or not will be one of the most important problems in the

reconfigurable architecture.

5.2 Future work
Utilization loss in texture load misses:

 In our observation, long texture load miss penalty will cause shader utilization loss

greatly. Although DR-shaders can be reconfigured at finishing, they stalled a long time when

load misses. We may reconfigure those load-miss DR-shaders with pixel shader type to vertex

shader type and try to reduce utilization loss in texture load miss. To solve this problem, we

may need one more register file to buffer its temporary result and one more program counter

for current state as hardware overhead. The reconfigure timing may be changed from an end

of a vertex or pixel to any cycle. The workload monitor logic may need to change the

configuration of load-miss DR-shaders with pixel shader type to vertex shader type. The

proposed architecture is below:

Chapter 5 Conclusion

 42

isses

at besides reducing the hardware cost by sharing logic, the

 used to adapt various workloads everywhere

Fig.5-1 The proposed architecture to reduce utilization loss in texture load m

5.3 Conclusion
In this thesis, we have prove th

flexibility of reconfigurable architecture can be

and try to upgrade the utilization of whole system. In our design, the execution time has been

greatly shortened with limited hardware overhead.

The level of reconfigurable architecture can be anywhere and used in different levels in

the same time. In our design, besides DR-shader can be reconfigured between vertex shader

type and pixel shader type, the computation unit of DR-shader also can be reconfigured to

execute all vertex and pixel instructions for area saving.

Instruction
Decoder

Computation
Unit

Instruction slot
(pixel shader)

Destination
register modifier

Register file
(pixel shader)

Instruction slot
(vertex shader)

Source register
modifier

Register file
(vertex shader) Configur

Storage Logic

PC
(vertex shader)

Context
memory

ation
signal

PC
(pixel shader)

 43

Reference

[1] DirectX 9.0 Programmer's Reference © 1995-2002 Microsoft Corporation.

[2] E. Lindholm, M. J. Kilgard, and H. Moreton. A userprogrammable vertex engine. In

Proceedings of ACM SIGGRAPH 2001, pages 149–158, August 2001.

[3] M. D. McCool. SMASH: A next-generation API for programmable graphics accelerators.

Technical report CS-2000-14,Computer Graphics Lab, University of Waterloo,2000.

[4] M. Olano. A Programmable Pipeline for Graphics Hardware .Ph.D. thesis, University of

North Carolina at Chapel Hill, 1998.

[5] Chris J.

r General-Purpose Computing：A Framework and Analysis ,International Symposium on

dings of the 35th annual ACM/IEEE international

symp

rdware (2005)M. Meissner, B.- O.

Schn

ecture, Universitat Politècnica de

Catalunya ,HiPEAC 2005

[8] Alireza Shoa and Shahram Shirani Dept. of Electrical and Computer Eng., McMaster

University, Hamilton, Canada：Run-time Reconfigurable Systems For Digital Signal

Processing Applications: A Survey

Thompson Sahngyun Hahn Mark Oskin : Using Modern Graphics Architectures

fo

Microarchitecture archive Procee

osium on Microarchitecture table of contents .Istanbul, Turkey ,Pages: 306 – 317.

[6] Jiawen Chen1 Michae I. Gordon1 William Thies Matthias Zwicker Kari Pulli Frédo

Durand：A Reconfigurable Architecture for Load-Balanced Rendering ,Massachusetts Institute

of Technology ,Nokia Research Center .Graphics Ha

eider (Editors).

[7] Victor Moya, Carlos González, Jordi Roca Agustín Fernández, Roger Espasa：A Single

(Unified) Shader GPU Microarchitecture

for Embedded Systems , Department of Computer Archit

 44

[9] Austin Robison and Abe Winter ics Processing Hardware, March

14, 2006

[10] Karl Hillesland and Anselmo Lastra Unive sity of North Carolina, at Chapel Hill：GPU

：An Overview of Graph

r

Floating-Point Paranoia

 45

Taylor formula (reference from SiS)

Appendix A. Reducing for second order

()

()

-bb'aa

badxbadxc
badxbadxc
badxbadxc
badxbadxc

xf

xf
xx

xfxxxfxf
xx

xfxxxfc

xx
xf
xf

xx
xf
xf

b
xf

a

xf
xx

xfxxxfxx
xf
xf

dxdx
xf

dxxx

xf
x

xfxxfxxfxxfx
xf

xxxxx
xf

xxxfxfxf

pppp

p

p

p

pp

pp
p

pp

p
p

ppppp

p

p

p

pp

p

p

ppp

p

pppp

=−=

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<<−∗∗+
<≥−−
≥<+−
≥≥+∗∗+

≅

−
+

−
+=

−
+−+=

−+=−+==⇒

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+−++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−++=

+=⇒

+−+−+=

+=−+−+≅

 and ' where

0 and 0 if ''
0 and 0 if)'(**
0 and 0 if)'*(*
0 and 0 if

)(So,

)(''
8

)(
)('

2
)()()(''

2

)(
)(')()(

),(2
)(''
)('2

)(2
)(''
)('2

 ,
2

)(''
 let,

)(''
2

)(
)(')()()(2

)(''
)('2

2
)(''

)(''
2

)(')())('')('(
2

)(''

)(
2
1 where)(

!2
)(''

))((')()(

2
010

2
0

0

00

2
0

00

0

2

0
2

10
2

1

1

