完整后设资料纪录
DC 栏位 | 值 | 语言 |
---|---|---|
dc.contributor.author | 潘扶民 | en_US |
dc.contributor.author | PAN FU-MING | en_US |
dc.date.accessioned | 2014-12-13T10:47:30Z | - |
dc.date.available | 2014-12-13T10:47:30Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.govdoc | NSC97-2221-E009-016-MY3 | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11536/101063 | - |
dc.identifier.uri | https://www.grb.gov.tw/search/planDetail?id=1758206&docId=300067 | en_US |
dc.description.abstract | 我们拟利用钯(Pd)金属氢化(palladium hydrogenation)法在Pd 电极上产生奈米裂隙 场发射结构,制作出表面传导电子发射(surface conductive electron emission,SCE)元件, 探讨其于表面传导电子场发射平面显示器技术(surface conduction electron emitter display,SED ) 的应用。当氢气溶入Pd 金属薄膜后,造成材料体积的增加,产生应变, 导致薄膜断裂,于是形成了奈米裂隙,裂隙宽度及均匀性与SCE 元件结构设计、氢化 温度与氢气压力有密切关系。本计画的研究重点内容简述如下: (一) SCE 元件的制程 步骤相当简单,利用镀膜,lift-off 微影与氢化制程便可在SCE 元件上形成奈米尺度的 场发射裂隙,但必须适当设计SCE 元件内Pd 电极薄膜结构与控制氢化条件,我们除 设计制作SCE 元件结构,并将探讨最佳化的氢化条件,以形成适当的场发射奈米裂隙。 (二) SED 的显像效能取决发射自闸极的电子数量,表面物化特性会显着影响电子发射 效率,我们将进行Pd 电极表面改质,提升电子发射效率,如沉积非晶质碳与氧化铱披 覆层于Pd 电极上。(三)为了达成前两项工作目标,我们将利用电脑模拟SCE 元件Pd 薄膜电极在氢化条件下的应力分布,及闸极散射电子的发射轨迹,做为SCE 元件结构 设计与制程的参考。(四)为了探讨氢化SCE 元件实际应用于SED 显示器技术的可行 性,我们将进行SCE 元件的电性量测,点亮测试与可靠性研究。 | zh_TW |
dc.description.abstract | We have proposed to fabricate a nanogap on the palladium (Pd) electrode, by means of Pd hydrogenation, as the field emitter of the surface conductive electron emission (SCE) device and evaluate the application potential of the fabrication method for surface conduction electron emitter display (SED) technology. As hydrogen gas dissolves in the Pd electrode, stress is produced in the electrode due to volume expansion leading to the formation of a nanogap in the electrode. The size and uniformity of the nanogap strongly depend on the structure configuration of the SCE device and the Pd electrode temperature as well as the hydrogen pressure during the embrittlememt process. The fabrication method is simple and reproducible. The study is grouped into four subtopics: (1) to fabricate suitable nanosized nanogap for SCE devices by optimizing the hydrogen embrittlememt conditions as well as the electrode thin film structure; (2) to perform surface modification of the Pd gate electrode of the SCE device, including hydrogen and oxygen plasma treatments and electrodeposition of IrO2 coating; (3) to perform computer simulation to study the stress distribution in the Pd electrode during Pd hydrogenation and the emission trajectory of electrons emitted from the gate electrode in the electric field building among the Pd cathode, the gate electrode and the anode; (4) to carry out electric measurement and reliability test so that the application potential of the SCE device fabricated by Pd hydrogenation for SED technology can be evaluated. | en_US |
dc.description.sponsorship | 行政院国家科学委员会 | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | 表面传导电子场发射 | zh_TW |
dc.subject | 钯氢化 | zh_TW |
dc.subject | 奈米裂隙 | zh_TW |
dc.subject | 场发射 | zh_TW |
dc.subject | surface conduction electron emitter | en_US |
dc.subject | SCE | en_US |
dc.subject | palladium hydrogenation | en_US |
dc.subject | nanogap | en_US |
dc.subject | field emission | en_US |
dc.title | 金属氢化法制作奈米裂隙---表面传导电子发射显示技术应用 | zh_TW |
dc.title | Nanogap Fabrication by Hydrogenation---Application of Surface Conduction Electron Emitters Display Technology | en_US |
dc.type | Plan | en_US |
dc.contributor.department | 国立交通大学材料科学与工程学系(所) | zh_TW |
显示于类别: | Research Plans |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.