Full metadata record
DC FieldValueLanguage
dc.contributor.authorShih, CWen_US
dc.date.accessioned2014-12-08T15:44:24Z-
dc.date.available2014-12-08T15:44:24Z-
dc.date.issued2001-01-01en_US
dc.identifier.issn0218-1274en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0218127401002055en_US
dc.identifier.urihttp://hdl.handle.net/11536/29990-
dc.description.abstractThis work investigates a class of lattice dynamical systems originated from cellular neural networks. In the vector field of this class, each component of the state vector and the output vector is related through a sigmoidal nonlinear output function. For two types of sigmoidal output functions, Liapunov functions have been constructed in the literatures. Complete stability has been studied for these systems using LaSalle's invariant principle on the Liapunov functions. The purpose of this presentation is two folds. The first one is to construct Liapunov functions for more general sigmoidal output functions. The second is to extend the interaction parameters into a more general class, using an approach by Fiedler and Gedeon. This presentation also emphasizes the complete stability when the equilibrium is not isolated for the standard cellular neural networks.en_US
dc.language.isoen_USen_US
dc.titleComplete stability for a class of cellular neural networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0218127401002055en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF BIFURCATION AND CHAOSen_US
dc.citation.volume11en_US
dc.citation.issue1en_US
dc.citation.spage169en_US
dc.citation.epage177en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000167608400013-
dc.citation.woscount14-
Appears in Collections:Articles


Files in This Item:

  1. 000167608400013.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.