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Abstract

A convertible bond is one of the important type of corporate bonds that
attract investors by allowing them to convert the bond into the issuing firm’s
stock to share the profit and the growth of the firm. Developing an accurate
method for pricing convertible bonds can be intractable due to convertible
bond’s hybrid attributes of both fixed-income securities and equities, and their
complex relations to firm’s default risk. This project develop a two-factor tree
model (stock prices and interest rates) for evaluating the hybrid features of
convertible bonds. I follow the structural credit risk model by viewing the
stock price as a contingent claim on the firm’s asset. Therefore, the evolution
of the firm value process and in consequence the default probability can be
endogenous derived from the stock price process. In addition, both the dilution
effect (due to bond conversions) and the recovery rate (if the firm defaults)
can also be derived endogenously in my model. Numerical results and sensitive
analysis are given to verify the robustness of my model.

Keywords: convertible bond, credit risk, structural model, tree.



1 Preface

A convertible bond is a kind of corporate bond that allows a bond holder to share
the profit and growth of the issuing firm by converting his bond into a predetermined
amount of the firm’s stocks at certain predetermined time points. It can be viewed as
a bond with an embedded call option on the issuer’s stock. With the upside potential
of the embedded call option, the investor would buy a convertible bond even if it is
issued at higher price or carries a lower coupon rate. Thus the firm can raise debt
capital with less interest expense by issuing convertible bonds. Nowadays, convertible
bonds are frequently traded in the financial markets. Developing a robust method
for accurately pricing vulnerable convertible bonds is thus important. However, it
can be intractable due to convertible bond’s hybrid attributes of both fixed-income
securities and equities, and their complex relations among these attributes and the
default risk.

2 The Goal of this Research Project

This project develop a robust method for pricing vulnerable convertible bonds. To
evaluate convertible bond under the consideration of its hybrid attributes of fixed-
income securities and equities, our method simultaneously models the evolutions of
issuing firm’s stock price process and the short-term interest rate process. To si-
multaneously model relation between issuing firm’s default risk and the stock price,
my project incorporate the first-passage model, a structural credit risk model that
allows premature defaults, into our pricing method. Specifically, the stock of issuing
firm is viewed as a down-and-out call option of the firm’s value. Thus the firm’s
asset value and its volatility can be endogenously solved by slightly modifying the
formulas for structural credit risk model proposed in Merton (1974). In addition,
the default probability and the recovery rate can be simultaneously solved under this
framework. Besides, the dilution effect due to bond conversion can be also analyzed
by substituting the firm value endogenously derived in my method into the equations
for capital structure proposed in Brennan and Schwartz (1980). Our numerical ex-
periments suggest that my method not only provides reasonable pricing results, but
also clearly sketch the theoretical relations among the the prices of contingent claims

(like stock and bonds) on firm value and the default event.



3 Literature Review

Brennan and Schwartz (1977) assume that the firm value process follows the lognormal
diffusion process and derive a partial differential equation (PDE) for pricing convertible
bonds. Brennan and Schwartz (1980) incorporate the Vasicek short rate model (see
Vasicek, 1977) into their PDE pricing method. The PDE is solved numerically by the
finite difference method since modeling the optimal convertible and callable strategies
is a free boundary problem which can not be solved analytically. Their methods are
hard to be applied since the firm value can not be directly observed from the real world
markets. That might be why most recent convertible bond pricing methods model
the stock price process instead of firm value process. Besides, premature defaults are
not considered in their methods.

Tsiveriotis and Fernandes (1998) use CRR tree (see Cox et al., 1979) to model the
stock price process and use this tree to price defaultable convertible bonds. Instead of
explicitly analyzing the default event, they decompose the value of convertible bond
into equity and debt components. During the backward induction procedure, the
default risk is considered by discounting the future cash flows of debt component by
the risky rate, as we price defaultable bonds. The equity component is discounted
by the risk-free rate as we price derivatives with risk-neutral variation method. On
the other hand, Hung and Wang (2002) explicitly model the default events by taking
advantage of the reduced model pioneered by Jarrow and Turnbull (1995), and develop
a tree for pricing defaultable convertible bonds. The reduced model is a credit risk
model that directly models the default process of the firm without modeling the firm
value. Hung and Wang (2002) model the term structure of the risk-free interest rate
with BDT interest model (see Black et al., 1990). They assume that the recovery rate
is given exogenously and solve the default probability at each time step of the tree
by calibrating the term structure of the credit spread. These default probabilities
are incorporated into their two-factor (the stock price and the short rate) tree model
to price defaultable convertible bonds. Chambers and Lu (2007) argue that the
correlation between the interest rate and the stock price is not considered in Hung
and Wang (2002) paper. However, the correlation seems to affect convertible bond
prices significantly as suggested in Ho and Pfeffer (1996). Thus they propose a new
pricing method incorporating the correlation factor into the Hung and Wang’s tree
model.

In these reduced-form based models, the endogenously modeled stock price process
is irrelevant to the default probabilities in their model. However, a higher stock price
should imply that the firm is in a better financial status and has lower default risk,

and vice versa. On the other hand, the tree model proposed in Bandreddi et al. (2007)

3



suggests that the default probability can be described as a function of the stock price.
But their function can not be well explained theoretically. To address this problem,
my method take advantage of the structural model, which view the stock price as
a call option on firm’s value (see Merton, 1974). The relation between the default

probability and the stock price can be theoretically explained.

4 Preliminaries

4.1 Modeling the Stock Price Process
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Figure 1: The Structure of CRR Tree and the Trinomial Structure. A
two-time-step CRR tree is illustrated in panel (a). u and d denote the upward and
downward multiplication factors of the CRR tree. The log-price between two adjacent
nodes at the same time step is 20v/At. The trinomial structure is illustrated in panel
(b). fi + 20V At, i, i — 20v/At denote the v(X)-log-prices for nodes A, B, and C,
respectively. u denotes the conditional expectation of v(X)-log-price at time t + At.
||, | 8], and |y| denote the log distance between p and nodes A, B, and C|, respectively.
In both panels, the branching probability for each branch is listed next to the branch.

If the firm is solvent, the stock price of the issuing firm at time ¢, 5;, is assumed

to follow the lognormal diffusion process

dSt :TtStdt+Us StdZS, (].)



where 1, denotes the risk-free short rate at time ¢, o, denotes the stock price volatility,
Z is a Brownian motion. Otherwise, the stock price is zero once the firm defaults.
Note that r; is assumed to be a constant r in my one-factor tree.

To model the stock price process of a defaultable firm, I use a modification version
of the CRR tree (see Cox et al., 1979) illustrated in panel (a) of Fig. 1 with occasional
insertion of trinomial structure (see Dai and Lyuu, 2010) illustrated illustrated in
panel (b) to keep my tree structure valid. In the CRR tree structure, the stock
price S can move upward to Su with probability p and move downward to Sd with
probability 1 — p, where At denotes the length of a time step, u = e"s\/&, d=1/u,
and p = %l. Define the V-log-price of stock price V" as In(V’/V') for convenience.
Then the log-distance between the S-log-prices of any two adjacent nodes at the same
time step of the CRR lattice is 20v/At.

Dealing with the default events with the CRR tree might result in invalid branch-
ing probabilities as discussed later. The trinomial structure illustrated in Fig. 1 (b)
will be inserted (if necessary) into the CRR tree to deal with this problem. Denote
the stock price of node Z as v(Z) for convenience. By the lognormality of stock price,
the mean p and the variance Var of the v(X)-log-price of the stock price at time
t + At, Siiat, given S; = v(X) are

p = (r—o°/2) At (2)
Var = o2At.

The outgoing trinomial branches from node X to node A, B, and C' should match u
and variance Var with feasible branching probabilities; that is, the branching proba-
bilities py, pm, and pg must be between 0 and 1 to keep the trinomial structure valid.
Recall that the log distance between any two adjacent nodes at the time ¢t + At is
20v/At due to the nature of CRR lattice. Therefore, at time ¢ + At, there must exist
a unique node B whose v(X)-log-price /i lies in the interval [ — ov/At, u + o/ At).
We select node B and its two adjacent nodes A and C' to construct a trinomial struc-
ture from node X. The branching probabilities from node X (i.e., pu, pm, pa) can be
obtained by solving

PuC+ pmB+pay = 0, (3)
Pu(@)® + p(B)? + pa(y)? = Var, (4)
pu+pm+pd - 17 (5)

where the conditional mean and the variance are matched in Egs. (3) and (4), respec-
tively, « = i+ 20V At —p, f = fi—p, and v = 1 — 20V At — p. Dai and Lyuu (2010)
suggest that Egs. (3)—(5) yield valid branching probabilities.
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5 Pricing Convertible Bonds with a Novel One-
Factor Tree Model

Survive at At

Defau&ior to At
Default boundary

| |
At As

Default in time [At,2At]
Default in time [0,At]

(a) (b)

Figure 2: The Stock Tree and Its Linkage to Firm Value and Default Risk. A
two-time-step one-factor tree for modeling the evolution of stock price is illustrated
in panel (a). The stock prices and the corresponding firm values for nodes A, B,
and C are listed above the node. The probability for each branch is listed on the
branch. A4, Ag, and A¢ denotes the default probabilities for nodes A, B, and C,
respectively. The outgoing trinomial structure (given the firm survives during time
[At,2At]) follows the construction method discussed in Fig. 1 (b). Panel (b) explain
how to calculate the default probability under the first passage model.

To keep discussion easy, I will first introduce a simplified version of the pricing
method, the one-factor tree (see Fig. 2 (a)), that simulates the evolution of stock
price process without considering the interest rate risk. The relation between the
stock price and the default risk can be modeled by taking advantage of the first-
passage model. The vulnerable convertible bond without considering interest rate
risk can be evaluated under this one-factor tree.

The equity value can be viewed as a contingent claim on the firm value in the
first-passage model proposed in Black and Cox (1976). Specifically, the firm defaults
and equity holders receive nothing once its value hits the exogenously given default
boundary. The default boundary at time ¢, B,, is set as De="T= where D denotes

the amount of debt due at maturity date T', v denotes exogenously defined variable.
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Thus, the equity value at time ¢, F;, can be viewed as a down-and-out call option on

the firm value V; since the payoff of the equity at time 7' is

{(VT—D)+ if Vi>B, 0<t<T,
Ep =

0 otherwise,

where V; and B; denotes the firm value at time ¢. Thus the equity value can be
evaluated by the down-and-out call option pricing formula as follows:

E, = ViN(z) - De”""N(z = 0,VT) = Vi(Biy;)*N(y) + De™ " (Bejy )* *N(y — 0, VT),  (6)

where N denotes the cumulative distribution function of standard normal random
variable,
In W In Bt
r = M+Aavﬁ, y = M+onﬁ,A =(r—o2/2)/o?.
ooV/T oVT
Besides, the relation between the equity value, equity value’s volatility (which is equal
to the stock price volatility o), the firm value V;, and firm value’s volatility o, can

be derived by Ito’s lemma as suggested in Black and Cox (1976) as follows.
o.Ey = N(z)o,V, (7)

Note the equity value F; can be estimated by multiplying the stock price by the
number of outstanding shares, and the stock price volatility o, can be estimated by
either the implied volatility derived by the stock’s options or the historical volatility
derived by the historical stock prices. Thus the firm’s value at time ¢, V;, and its

volatility o, can be solved by substituting E; and oy into Egs. (6) and (7).

With above procedure, we can obtain the firm value for each node of one-factor
tree as illustrated in Fig. 2 (a). Then we can estimate the default probability A*, the
conditional probability for the firm defaults within a time step At given the stock
price begins at node X. Take Fig. 2 (b) for example. A\* denotes the probability that
the firm value begins at V' and hits the default boundary within a time step At. This
default probability can be calculated by taking advantage of the reflection principle
(see Shreve, 2004). Specifically, define the first hitting time 7 as inf{t > 0: V; < B,}.
The probability to hit the default boundary prior to time s given the information up
to time t ,F}, as follows:

N (ln(Bt/Vt) —(r—k—~-050%) (s—t)>

P(r<s|F) = (8)

[OAVAVE-) —t

BV exp [2 (7" - 7(720.5(;3)} N (ln(Bt/Vt) + (ra—v%— 0.502) (s — t)) |

2
M is obtained by substituting 0, At for ¢ and s into Eq. (8). The default probabilities

for other nodes, says A? and A\°, can be derived in similar ways.
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To keep the stock price grows at the risk-free rate under the consideration of
default possibility, the branching probabilities in the CRR tree must be adjusted.
The default intensity for an arbitrary node X, MX, can be derived from the default
probability as follows:

e NEAL ] \X X —In(1 — )\X).
At

The following derivation shows that the stock price grows at the risk-free rate by
exp((rJr)\’X)At)fd.
u—d :

setting the upward branch probability for node X, p¥X, as

oA [0(1 _ e—A’XAt) X SupXe—XXAt 1 Sd (1 _pX) 6—>\’XAt]
r 1 X A r 1 X A
_ (e Y)a Su—6< PN —d NS i elr)ae
u—d u—d

= S

Take node A in Fig. 2 (a) for example. The stock price will become 0 due to firm
default with probability A\*, move up to Su with probability p*(a — A\*), and move
down to Sd with probability (1 — pA) (1 — )\A).

Note that the branching probabilities might be infeasible if the short rate r; or
the default density \'X is too high. Specifically, the upward branching probability
for node X exceeds one if (rt + XX ) At > ov/At. To address this problem, the
outgoing branches will adopt the trinomial structure introduced in Fig. 1 (b) instead
of binomial one. Take node C' in Fig. 2 (a) for example. The trinomial structure is
constructed by changing the mean of stock return p defined in Eq. (2) as (r + N C) At
to make the conditional growth rate of stock price r+ \¢ given that the firm survives
at time 2At¢. This will ensure that the stock price from node C still grows at the risk

free rate, which can be verified as follows:

e A [0(1 — e_’\/XAt) 4N (Sung + Sp¢ + Sdng)]

N [G—A’XAte(rJrXX)}

= S

Note that in this example, node E and its adjacent nodes C' and E are chosen as
successor nodes connected by the outgoing branches from node C' under the condition
that Sd-log price of node E, i.e., In(S/Sd), is within the range of [(r + X'“ — 02/2) At—
ov/At, (r+ N —0%/2) At + ov/At]. The valid branching probabilities (i.e., p¢, p¢,,
and pj) can be solved by Eqgs. (3)—(5). The default probability within a time step At
can be obtained by Eq. (8).



The recovery rate in each node of my tree model can be endogenously determined.
For an arbitrary node X at time ¢, the bond value contributed from the recovery of
firm’s default during the time interval [t,¢ + At] can be expressed as

t+AL (s
Ji " p(s) [faBs =SB, el

Fp = 9
D NC ) ()

where B, denotes the default boundary at time s, SB; denotes the value required to
repay the bonds senior to convertible bonds at time s, and N¢ denotes the number of
outstanding convertible bonds. The density of default probability p(s) can be derived
by differentiating Eq. (8) with respect to s. Recall that the recovery rate is defined
as the amount recovered in the event of a default as a percentage of the face value.
Thus we have

Fp =) 6" F, (10)

where 0% denotes the recovery rate at node X, and F' denotes the face value of the
bond. §% can be endogenously derived by substituting Fpp obtained from Eq. (9) and
A¥ obtained from Eq. (8) into Eq. (10).

Converting the convertible bonds into stocks would increase the number of out-
standing stocks and dilute the stock value. Without considering the dilution effect,
the conversion value of a convertible bond would be overestimated as ¢S®€, where
SBC denotes the stock value before conversion. To model the dilution effect, we follow
Brennan and Schwartz (1980) assumption that the firm asset is composed of three
securities: straight bonds, convertible bonds, and stocks. Thus the firm value before

the conversion of convertible bonds can be expressed as follows:
V = NB + NoC + NpS®°, (11)

where B denotes the market value of each straight bond, N denotes the number of
straight bonds, C' denotes the value of a convertible bond, Ng denotes the number
of convertible bonds, and Ny denotes the number of stocks. After converting the
convertible bonds into the stock, the firm asset is composed of straight bonds and
stocks:

V = NpB + (No + Ncq) SA°,

where g denotes conversion ratio, Noq denotes the incremental amounts of stocks due

to bond conversion, and SAC denotes the stock price after bond conversion. Thus the

GAC _ aV-N5B)

conversion value is ¢ NoTNoq -



6 Extension to a Two-Factor Pricing Model

Both the stock price process and the Hull-White short-term interest rate process Hull
and While (1990) are simulated in my two-factor tree method. The stock price is
simulated with the CRR tree with the occasional trinomial branches insertions as
illustrated in Fig. 2 (a). The short rate process is simulated by the Hull and White
interest rate tree (see Hull and While, 1996). Our tree is then constructed by merging
these two trees. The correlations between the stock price process and the short rate
process is modeled by the branching probabilities adjustment method proposed in
Brigo and Mercurio (2006); Hull and While (1994).

Briys and De Varenne (1997) propose the bond pricing formula under the Hull-
White term structure model, and this formula is applied to solve the firm value and
its volatility given the equity value and the interest rate term structure in my method.
Specifically, the equity value E can be expressed as the firm value V' minus the debt
valueD(V)

E=V —-D(V), (12)

where the debt value D;(V) can be expressed as as function of the firm value V' as

follows:

Dy =FP(t,T)[1 — Pe(y,1) + Pe (q, l:/q) — (1 — f1)li (N(—=d3) + N(—dy)/q) (13)

—(1 = f2)l (N(d3) — N(d) + N(d4)q: n(d(i))} :

where F' denotes face value, P(t,T) denotes the value at time ¢ of a zero coupon
bond matured at time T', f; and fo denote the liquidation cost at maturity and prior
to maturity. Therefore the firm value at time V; and its volatility o, is obtained
by substituting the equity value E; and its volatility that can be observed from the
market into Eqgs. (12) and (7).

7 Numerical Results

We price the six-year zero-coupon convertible bond issued by Lucent discussed in
Hung and Wang (2002); Chambers and Lu (2007). These two papers are based on
the reduced model and the parameters that can be directly found in their papers
are listed as follows. The initial stock price Sy is 15.006, the stock volatility oy =
0.353836, the time to maturity is 6 years, the number of time steps is 6, the face value
of the convertible bond is 100, the conversion ratio is 5.07524, and the correlation
between the stock and the interest rate is -0.1. The call prices are 94.205, 96.098,
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and 98.030 for the fourth, the fifth, and the sixth year, respectively. The risk-free
zero coupon rates are 5.969%, 6.209%, 6.373%, 6.455%, 6.504%, and 6.554% for the
first, the second, ..., and the sixth year. Other parameters that are not considered in
reduced credit risk models, like the number of outstanding stocks, are derived from
the financial report of Lucent. The numbers of outstanding stocks and convertible
bonds are 642,062,656 and 2,290,000, respectively. The payment of straight bond due
at maturity is estimated by the value of liability minus the face value of convertible
bonds; which is 20,195,000,000 in this example. The pricing results proposed by Hung
and Wang (2002) and Chambers and Lu (2007) are 90.4633 and 90.83511, respectively.
Our pricing result 90.1903, like the results in aforementioned two papers, are close to
the market price 88.706.

8 Conclusions and Self Evaluation of the Project

This research project develop the a convertible bond pricing method based on the
structural model. To evaluate convertible bond under the consideration of its hybrid
attributes of fixed-income securities and equities, our method simultaneously models
the evolutions of issuing firms stock price process and the short-term interest rate
process. The relations among the default probability, the firm value, the stock price,
and the dilution effect are endogenously built. Numerical results verify the robustness
of my model. T am now currently organize the researching results of this project and
submit it to an academic journal. I will try to incorporate the reduced credit risk
model into my pricing method. I will also try to extend this pricing method to price

other vulnerable securities.
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A convertible bond is one of the important type of corporate bonds that attract investors
by allowing them to convert the bond into the issuing firm’s stock to share the profit and
the growth of the firm. The default risk and the dilution effect are key factors in
evaluating convertible bonds. These two factors are simplified or even ignored in
previous pricing frameworks. My pricing model adopts the structural credit risk model
and uses the stock price to derive the implicit firm value and the default probability. Thus
both the debt and equity attributes of convertible bonds and their complex relations to
default risk and dilution effect can be modeled. My pricing model can provide more
realistic analysis than other current existing models.
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