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Summary This paper presents a new analytical solution to describe the hydraulic head
distribution and flow system in an anisotropic unconfined aquifer with a sloping bed and
arbitrarily located multiwells under transient recharge. Unlike the existing analytical solu-
tions for delineating the capture zones, the solution presented in this study is easy and
convenient to calculate flow field in some complicated systems, and it can provide useful
information for the pump-and-treat design. In addition, the presented solution may have
the possible application in evaluating the sensitivity of hydrogeological parameters, or
estimating the hydraulic parameters when coupled with an optimization approach to ana-
lyze the aquifer data.
ª 2007 Elsevier B.V. All rights reserved.
Introduction

The pump-and-treat method is a commonly applied technol-
ogy for the remediation of contaminated groundwater
plumes since it can be used to exert hydraulic control over
predictable aquifer extents and can capture and treat the
dissolved contaminants. Optimal design of a contaminated
groundwater capture system is crucial to the success of
the pump-and-treat effort. Therefore, analytical solutions
for determining capture zones and stagnation points have
been suggested by many researchers (Javandel and Tsang,
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1986; Lerner, 1992; Grubb, 1993; Faybishenko et al.,
1995; Schafer, 1996; Shan, 1999; Zlotnik, 1997). These ana-
lytical solutions provide useful tools for delineating the cap-
ture zone easily; yet, Yeo and Lee (2003) indicated that
these analytical solutions have some limitations. For exam-
ple, they are applicable only to extraction wells situated in
homogeneous aquifers that are isotropic in the horizontal
plane. Additionally, they cannot be applied to the situations
in which water is reinjected into the aquifer through injec-
tion wells after treatment.

Daly and Morel-Seytoux (1981) developed analytical solu-
tions to calculate the head distribution in a heterogeneous
rectangular aquifer with source and sink. Amadei and Illang-
asekare (1992) adopted their solutions to model fluid flow in
a fractured rock. Their solutions can deal with complexities
.
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Nomenclature

W length of the aquifer [L]
L width of the aquifer [L]
D mean depth of saturation [L]
Sy specific yields
h variable groundwater head [L]
Kx, Ky hydraulic conductivity in x and y direction (L/T)
R(t) transient recharge rate (L/T)
q slope of the aquifer base in percentage
r decay constant (1/T)
t time of observation (T)

p number of injection/extraction wells
x, y coordinate axes
xi, yi coordinates of the injection/extraction of the

ith well
x2 � x1 length of the recharge basin [L]
y2 � y1 width of the recharge basin [L]
Qi injection/extraction rate of the ith well [L3/T]
d(x) Dirac delta function [1/L]
a q/2D [1/L]
j D/Sy [L]
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such as heterogeneity and a large number of arbitrarily lo-
cated wells at different rates. However, the existing solu-
tions for delineating capture zones are very complicated
to use in calculating the flow field if compared with the sim-
ple analytical or numerical approaches. Thus, this fact lim-
its the use of those solutions in pump-and-treat design. Yeo
and Lee (2003) provided a simple steady state solution for a
confined aquifer which is homogeneous and anisotropic with
arbitrarily located multiwells. Their solution is easy and
convenient to use for head calculation in complicated mul-
tiwells aquifer systems. However, an analytical solution for
head distribution in unconfined aquifers with arbitrarily lo-
cated extraction and/or injection wells is still not available.

In unconfined aquifers, groundwater may be replenished
by natural precipitation, irrigation, or artificial recharge.
Most of the analytical solutions available in literature at-
tempt to describe the water table fluctuations between
equally spaced drains located on flat land in response to a
uniform recharge or a recharge rate varying exponentially
or linearly with time. However, there are problem areas of
sloping lands in many parts of the world. Ram and Chauhan
(1987) derived an analytical solution for unsteady state
groundwater flow in a homogeneous, isotropic, unconfined
aquifer lying over a sloping impermeable bed and receiving
time-varying recharge. Singh et al. (1991) extended their
work to more general transient recharge functions using
the method of eigenvalue–eigenfunction expansion. Raman-
a et al. (1995) investigated the problem of water table fluc-
tuation in a 2-D finite aquifer system with inclined base.

The objective of this paper is to develop a new analytical
solution that is applicable for delineating the flow field in
anisotropic and sloping unconfined aquifers with exponen-
tially varying recharge and arbitrarily located multiwells.
This solution contains double infinite summations of trigo-
nometric functions that are difficult to accurately evaluate
due to their oscillatory nature and slow convergence. The
Levin transform method (Levin, 1973), is proposed to accel-
erate the convergence of evaluation of the solution. The
presented analytical solution can be used to deal with the
complex flow field generated by large number of multiinjec-
tions and/or extraction wells operating at different rates in
a sloping unconfined aquifer that receives an exponentially
varying recharge. Unlike existing solutions, this solution is
applicable to a wide range of field situations. This can sim-
plify the design of pump-and-treat system in unconfined
sloping aquifers. Two examples are given to illustrate the
use of this new solution.
Mathematical model

Governing equation and related boundary and
initial conditions

Surface and cross-sectional views along the x- and y-axes
illustrate the zone of recharge and sloping aquifer for the
case considered (Fig. 1a–c). The wells can be injected
and pumped at multiple arbitrary points. The aquifer is
receiving localized time varying recharge from a rectangular
basin, and the impervious base of the aquifer is inclined
along the x-axis. Assume that the aquifer is homogeneous
and anisotropic in the horizontal plane and the rate of re-
charge compared to the hydraulic conductivity being so
small that the vertically added water to the water table
flows almost horizontally. Furthermore, the Dupuit’s
assumptions are applicable in this aquifer that the vertical
hydraulic gradient is small and negligible (Schwartz and
Zhang, 2003). The equation governing the groundwater
flows with multiple injection–extraction wells is formulated
as

Kx
o2H

ox2
þ Ky

o2H

oy2
� 2aKx

oH

ox
þ 2RðtÞ

¼ 1

j
oH

ot
þ
Xp
i¼1

Qidðx � xiÞdðy � yiÞ ð1Þ

where H = h2, h is the variable groundwater head, W and L
are the width and length of the aquifer, Kx and Ky are the
hydraulic conductivity in the x and y direction, respectively,
xi and yi are the coordinates of the injection or extraction
wells, p is the number of wells, d is the Dirac delta function,
Qi is the injection or extraction rate of the ith well, a = q/2D
and q is the slope of the impervious barrier overlain by aqui-
fer, D is the mean depth of saturation, j = D/Sy, Sy is the
specific yield, t is the time of observation, and R(t) is the
time varying rate of recharge. Since the rate of recharge de-
pends on many hydrological conditions. For simplicity, the
rate of recharge is defined as (Ramana et al., 1995)

RðtÞ ¼
R1 þ R0 expð�rtÞ; x1 6 x 6 x2; y1 6 y 6 y2

0 6 x 6 x1; 0 6 y 6 y1

0; x2 6 x 6 W ; y2 6 y 6 L

8><
>:

ð2Þ

where r is the decay constant. Eq. (2) implies that the re-
charge rate exponentially decreases from an initial value



Figure 1 (a) A top view for an unconfined aquifer with the recharge scheme and the injection or extraction wells at arbitrary
location. (b) The vertical section in x-direction of the aquifer system. (c) The vertical section in y-direction of the aquifer system.
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R1 + R0 to a lower value R1 and thereafter remains constant.
The initial and boundary conditions are respectively de-
scribed as

Hðx; y; 0Þ ¼ 0 ð3Þ

and

Hð0; y; tÞ ¼ HðL; y; tÞ ¼ Hðx; 0; tÞ ¼ Hðx;W ; tÞ ¼ 0 ð4Þ

Since the governing equation, the initial condition and
boundary conditions are specified, the solution of hydraulic
head in a homogeneous, anisotropic, and sloping unconfined
aquifer with transient recharge and arbitrarily located mul-
tiwells can be obtained via the finite sine transform and
eigenvalue–eigenfunction method for Eqs. (1)–(4). De-
tailed derivations for the solution are given in Appendix
and the result is

Hðx; y; tÞ ¼ 16

KxLp

X1
m¼1

X1
n¼0

1

m
sin

mpðy1 þ y2Þ
2W

� �

� sin
mpðy2 � y1Þ

2W

� �
a1X1 �

4

KxWL

X1
m¼1

X1
n¼0

a2X2

ð5Þ

where

a1 ¼
1

a2 þ k2
n

fexpð�ax2Þ½�a sinðknx2Þ � kn cosðknx2Þ�

� expð�ax1Þ½�a sinðknx1Þ � kn cosðknx1Þ�g ð6Þ

a2 ¼
Xp
i¼1
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mpyi

W

� �
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npxi
L

� �
expð�axiÞ ð7Þ
X1 ¼ eax R0
e�rt � e�jKxða2þb2mþk2nÞt

ða2 þ b2
m þ k2

nÞ � r
jKx
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X2 ¼ eax 1� e�jKxða2þb2mþk2nÞt
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( )
sin

npx
L
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bm ¼

ffiffiffiffiffi
Ky

Kx

s
mp
W

ð10Þ

and

kn ¼
np
L

ð11Þ
Special cases

Ramana et al.’s solution (Ramana et al., 1995)
By substituting Kx = Ky = K and Qi = 0 into Eq. (5), the solu-
tion for isotropic aquifer without extraction and/or injec-
tion wells is obtained as

Hðx; y; tÞ ¼ 16
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where
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e�rt � e�jKða2þb2

0
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ð13Þ
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with

b0m ¼
mp
W

ð14Þ

Note that Eq. (12) is given in Ramana et al. (1995); thus,
their solution can be considered as a special case of our
solution, Eq. (5).

Rao and Sarma’s solution (Rao and Sarma, 1981)
By substituting Kx = Ky = K, Qi = 0, R0 = 0 and a = 0 into Eq.
(5), the solution for isotropic horizontal aquifer with con-
stant recharge can be obtained as following:

Hðx; y; tÞ ¼ 16

KLp
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X1
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� sin
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where

X001 ¼ R1
1� e�jKðb20mþk2nÞt

ðb20

m þ k2
nÞ

( )
sin

npx
L

� �
sin

mpy
W

� �
ð16Þ

Eq. (13) is the same as the solution of Rao and Sarma (1981),
thus, Rao and Sarma’s solution can be also considered as a
special case of our solution.

Numerical evaluation

The solution includes double infinite series and is laborious
to directly evaluate due to the nature of alternate oscilla-
tion and slow convergence. The value of D was calculated
as hmax/2, where hmax/2 is the maximum height of water ta-
ble at midpoint between the drains for a particular experi-
ment (Ram and Chauhan, 1987). Fig. 2 demonstrates the
plots of the summation of Eq. (5) versus n 0 for x = 150 m,
y = 350 m, Kx = Ky = 50 m/day, Sy = 0.05, q = 4%, and con-
stant recharge rate R1 = 0.005 m/day in the whole aquifer
Figure 2 The summation of Eq. (5) versus the argument n 0.
without injection or extraction wells, where n 0 is the new
term for summation of continuous positive or negative val-
ues for n. This figure shows the oscillatory nature of the
summation and also displays that the summation will con-
verge slowly for large m. In addition, the value of the sum-
mation of Eq. (5) approaches zero when m is large. This
curve demonstrates persistent oscillations over many cy-
cles, and the amplitude of oscillation decreases with the
horizontal axis. In addition, these formulas are essentially
composed of infinite series and may also converge slowly.
Thus, the Levin transform (Levin, 1973) is employed to
accelerate the convergence when evaluating the infinite
series.

The Levin transforms

Levin transform is a nonlinear acceleration method. Let{Sn,
n = 1,2, . . .} be an infinite sequence of real numbers tending
to a limit S. The corresponding approximation Tk,n for S can
be expressed by the sequence transform

Tk;n ¼ Sn þ gk;nDSn ð17Þ

where Tk,n is the approximation of order k for the nth term
of the transformed sequence, gk,n is approximation of order
k for the nth term of an associated sequence and
DSn = Sn+1 � Sn. Bhowmick et al. (1989) presented a form
for the Levin transform, which is more convenient for
numerical computations. The expression for the Levin trans-
form provided by Bhowmick et al. (1989) can be expressed
as

Tk;nðfSngÞ ¼

Pk
j¼0ð�1Þ

j k

j

� �
ðnþ jÞk�2SnþjðDSnþjÞ�1

Pk
j¼0ð�1Þ

j k

j

� �
ðnþ jÞk�2ðDSnþjÞ�1

ð18Þ

It is necessary to set a certain convergence criterion
when applying the Levin transform to evaluate a given ser-
ies. Accordingly, one may define a convergence factor, ERR,
as

jTkþ1;nðfSngÞ � Tk;nðfSngÞj 6 ERR ð19Þ
Results and discussion

To test the performance of the analytical solution for a
hypothetical problem, a groundwater flow system for slop-
ing bed without injection–extraction wells was considered
with the length and width of the aquifer are both 500 m,
and the hydraulic conductivities in x and y direction are
both 50 m/day. The specific yield is 0.05, and an exponen-
tially decreasing recharge pattern represented by
R = 0.0371e�0.571t (Ramana et al., 1995) was assumed,
where R is the recharge rate in meters per day and t is
the time in days. The aquifer is receiving localized time
varying recharge in the range of 125 m < x,y < 375 m.
Fig. 3 shows the water table profiles at y = 250 m with the
above exponential decreasing recharge at t = 1 day in an
aquifer with slopes of 0%, 4%, and 8%. This figure demon-
strates that the water surface tends to shift toward the
downslope as the slope of the impermeable bed increases.
Fig. 4 illustrates the water table profiles at y = 250 m in



Figure 4 Water table profiles at different times for sloping
bed with localized recharge (a) rising, (b) decaying (y = 250 m,
K x = Ky = 50 m/day, slope = 8% and R = 0.0371e�0.571t).

Figure 3 Water table profiles for different slope of the
aquifer with localized recharge (y = 250 m, Kx = Ky = 50 m/day,
t = 1 day and R = 0.0371e�0.571t).
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the aquifer with slope of 8% for different periods of water
table rise. As shown in Fig. 4a, the water table rises at fas-
ter rate in the recharge region at the beginning. Yet, on the
third day it starts decaying towards the upslope but still
rises in the region away from the upslope. Thereafter, as
shown in Fig. 4b, it starts decaying with time homoge-
neously in the entire region. It is clear from the figure that
the point maximum growth is shifted with time towards
downslope. Fig. 5 plots the hydraulic head distribution with
the slope of 8% for different ratio of hydraulic conductivity
in x direction to y direction for uniform recharge with the
rate R = 0.0371e�0.571t for 1 day within the whole domain
of the aquifer. These figures demonstrate that the water ta-
ble is steeper in y direction than in x direction as the ratio of
hydraulic conductivity in x-direction to y-direction
increases.

The following examples are presented to describe the
hydraulic head distribution and flow system in an aniso-
tropic unconfined aquifer with a sloping or horizontal bed
and arbitrarily located multiwells under transient recharge.

Example 1. Fig. 6 shows that an aquifer with an area of
500 m · 500 m, two real extraction wells are located at
(400 m, 200 m) and (400 m, 300 m), and one real injection
well is placed at (150 m, 250 m) for example 1-1. The
hydraulic conductivities Kx and Ky are 0.5 and 0.25 m/day,
respectively. The boundary heads at x = 0 and x = L are
respectively kept at h1 = 10 m and h2 = 5 m, and no-flow
boundaries are imposed on the sides of y = 0 and y = W in the
first example. Since the hydraulic head in Eq. (5) is derived
from the condition that H = 0 at x = 0 and x = L, the new
head distribution can be expressed as

h0ðx; y; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðx; y; tÞ þ h2

2 � h2
1

L
x þ h2

1

s
ð20Þ

where h1 and h2 are the boundary heads at x = 0 and x = L,
respectively. The hydraulic gradient at (x,y) can be deter-
mined by taking partial derivatives of Eq. (20) with respect
to x and y, respectively. The field is extended for image
wells, and the shaded area shown in Fig. 6a represents the
concerned field with real wells and other dotted squares
are for image wells. The number of image wells is infinite
in theory, but it is known that pairs of image wells closest
to real well yield an acceptable head change because others
have a negligible influence on the head change (Yeo and
Lee, 2003). The exponentially recharge rate is
0.0371e�0.571t for 100 days, the slope of aquifer is 8% and
the specific yield is 0.05. The image extraction and injection
wells have the same rates as real wells.

These two real extraction wells with an extraction rate
of 8.64 m3/day and the injection well with a rate of
4.32 m3/day are imposed for example 1-2 as shown in
Fig. 6b. Fig. 6c illustrates the head distribution and gradient
for the same scenario in example 1-1, but with a extraction
rate of 25.92 m3/day and closer extraction wells. The real
extraction wells with a rate of 25.92 m3/day in example 1-2
shown in Fig. 6c are located at (400 m, 225 m) and (400 m,
275 m). The extraction rates captured in Fig. 6b is not
achieved; however, the contaminated groundwater, if
happened, can be restrained in the central area indicated
in Fig. 6c by the new arrangement of wells and higher
extraction rates.

Example 2. The analytical solution derived in this study can
be applied to the situation that the no-flow boundaries are
at y faces; however, for the no-flow boundaries at x faces,
this solution gives only an approximate evaluation for the
flow field due to the dipping direction of the image aquifer.
Thus, Example 2 simulates the head distribution and gradi-
ents with the no-flow boundaries at x and y faces in horizon-
tal base (no sloping) of the aquifer. Fig. 7 illustrates the
geometry of real and images wells for the aquifer of
500 m · 500 m with two no-flow boundaries intercepted at
a right angle for Example 2. The conductivities Kx and Ky
are 0.5 m/day, and one real extraction well with the rate
of 8.64 m3/day are located at (400 m, 400 m), and three
real injection wells with the same rate are placed at
(200 m, 250 m), (100 m, 400 m), and (300 m, 150 m). Simi-
larly, the exponentially recharge rate is 0.0371e�0.571t m/
day for 100 days, and the specific yield is 0.05. Fig. 7 shows



Figure 5 Water table profiles for different ratio of hydraulic conductivity: (a) Kx/Ky = 1.0, (b) Kx/Ky = 2.0 and (c) Kx/Ky = 5.0
(slope = 8%, t = 1 day and R = 0.0371e�0.571t).
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head distributions and gradients for horizontal base of the
hypothetical aquifer with time varying recharge, which
illustrates a good containment of contaminated groundwa-
ter by the multiwells.

These two examples demonstrate that this new analyti-
cal solution is useful for the easy calculation of the hydrau-
lic distribution and gradient in a complex flow field by
multiwells and time varying recharge in a sloping uncon-
fined aquifer. Consequently, this solution can be a useful
tool to quickly delineate the capture zone and aid in the
design the pump-and-treat system for groundwater
remediation.
Conclusions

A mathematical model for representing the groundwater
flow system in a homogeneous, anisotropic, and sloping
unconfined aquifer with transient recharge and multiple
injection and/or extraction wells is presented. The solution
of the model derived via the Fourier finite sine transform
and separation of variables consists of an infinite series
which has poor convergence. Thus, the Levin method is em-
ployed for efficiently evaluating the analytical solutions.
The results demonstrate that the water table profiles are
significantly influenced by the transient recharge, the



Figure 6 (a) Geometry of real and image wells, (b) head distributions and gradients of the aquifer for example 1-1, and (c) head
distributions and gradients of the aquifer for example 1-2.
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anisotropy, and the slope of the aquifer. Furthermore, the
results also illustrate the hydraulic head distributions and
gradients for the sloping unconfined aquifer with transient
recharge and multiple wells.

This new solution can be used to describe the hydraulic
head distribution and flow system in an anisotropic uncon-
fined aquifer with a sloping bed and arbitrarily located multi-
wells under transient recharge. Since the existing analytical
solutions for delineating the capture zones were complicated
to calculate, the solution presented in this study is easy and
convenient for head calculation in complicated systems,
and it can provide useful information for the pump-and-treat
design. In addition, the presented solution may have the pos-
sible application in evaluating the sensitivity of the hydrogeo-
logical parameters on the predicted capture zones, and
estimating the hydraulic parameters when coupled with an
optimization approach to analyze the aquifer data.
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Appendix. Derivation of (5)

Taking the finite Fourier sine transform to H(x,y,t) in
Eq. (1), it can be obtained as (Andrews and Shivamoggi,
1999)

Fs½Hðx; y; tÞ; y ! m� ¼
Z W

0

Hðx; y; tÞ sin mpy
W

� �
dy

¼ Hðx;m; tÞ ðA:1Þ
The finite Fourier sine transform of the second partial deriv-
atives of H(x, y, t) in Eq. (1) can be expressed as



Figure 7 (a) Geometry of real and image wells and (b) head distributions and gradients of the aquifer for Example 2.
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Z W

0

o
2H

oy2
sin

mpy
W

� �
dy ¼ � mp

W

� �2
Hðx;m; tÞ ðA:2Þ

Following the properties of the Dirac Delta function, the fi-
nite Fourier sine transform of the second terms on the right
hand side of Eq. (1) are evaluated asZ W

0

Xp
i¼1

Qidðx � xiÞdðy � yiÞ sin
mpy
W

� �
dy

¼
Xp
i¼1

Qidðx � xiÞ sin
mpyi

W

� �
ðA:3Þ

Replacing Eq. (1) with Eqs. (A.1)–(A.3) results the following
finite Fourier sine-transformed equation:

Kx
o2H

ox2
� Ky

mp
W

� �2
H � 2aKx

oH

ox
þ 2RðtÞ

¼ 1

j
oH

ot
þ
Xp
i¼1

Qidðx � xiÞ sin
mpyi

W

� �
ðA:4Þ

where RðtÞ, the transformed form of R(t), is

~RðtÞ ¼ RðtÞ W
mp

cos
mpy1

W

� �
� cos

mpy2

W

� �h i
ðA:5Þ

and the associated Fourier-transformed initial and boundary
conditions are

Hðx;m; 0Þ ¼ 0 ðA:6Þ
and

Hð0;m; tÞ ¼ HðL;m; tÞ ¼ 0 ðA:7Þ

For the solution of Eq. (A.4), the following transforma-
tion is devised (Ozisik, 1980):

Hðx;m; tÞ ¼ Gðx; tÞ expðaxÞ exp½�jKxtða2 þ b2
mÞ� ðA:8Þ

with

bm ¼

ffiffiffiffiffi
Ky

Kx

s
mp
W

ðA:9Þ
which transforms Eqs. (A.4)–(A.6) as follows:

o2G

ox2
þ 2RðtÞ

Kx
e�axejKxða2þb2mÞt

¼ 1

jKx

oG

ot
þ
Xp
i¼1

Qidðx � xiÞ sin
mpyi

W

1

Kx
e�axejKxða2þb2mÞt

ðA:10Þ
Gðx; 0Þ ¼ 0 ðA:11Þ
Gð0; tÞ ¼ 0 ðA:12Þ

and

GðL; tÞ ¼ 0 ðA:13Þ

The solution of Eq. (A.10) with the initial and boundary
conditions may then be obtained by the separation of vari-
ables. It is convenient to first solve the homogeneous form
of Eq. (A.10), i.e.,

o2G

ox2
¼ 1

jKx

oG

ot
ðA:14Þ

by substituting

Gðx; tÞ ¼ /ðxÞuðtÞ ðA:15Þ

into Eq. (A.10). Two separate equations may be obtained,
one for space coordinate, x, and other for time, t, i.e.,

o2/
ox2
þ k2/ ¼ 0 ðA:16Þ

and

ou
ot
þ k2jKxu ¼ 0 ðA:17Þ

The corresponding boundary conditions are given as

/ð0Þ ¼ 0 ðA:18Þ

and

/ðLÞ ¼ 0 ðA:19Þ



Analytical solution for groundwater flow in an anisotropic sloping aquifer with arbitrarily located multiwells 151
Thus, the solution of Eq. (A.16) with the corresponding
boundary conditions, Eqs. (A.18) and (A.19), is

/nðxÞ ¼ Cn sinðknxÞ ðA:20Þ

where /n(x)’s are eigenfunctions and kn’s are eigenvalues,
given by

kn ¼
np
L
; n ¼ 0; 1; 2 . . . ðA:21Þ

After applying the orthogonal property of /n(x) on Eq.
(A.20), Cn is obtained as

Cn ¼
ffiffiffi
2

L

r
ðA:22Þ

Thus, Eq. (A.20) becomes

/nðxÞ ¼
ffiffiffi
2

L

r
sin

np
L
x

� �
ðA:23Þ

For these values of /n(x), Eq. (A.15) becomes

Gðx; tÞ ¼
X1
n¼0

/nðxÞunðtÞ ðA:24Þ

Substituting Eq. (A.24) into Eq. (A.10) and multiplying Eq.
(A.10) throughout by Cnsin(knx) and integrating over the
length of the aquifer obtains

dun

dt
þ k2

njKxunðtÞ ¼
ffiffiffi
2

L

r
j exp½jKxða2 þ b2

mÞt�

� ½2RðtÞa1 � a2� ðA:25Þ

where

a1 ¼
1

a2 þ k2
n

fexpð�ax2Þ½�a sinðknx2Þ � kn cosðknx2Þ�

� expð�ax1Þ½�a sinðknx1Þ � kn cosðknx1Þ�g ðA:26Þ

and

a2 ¼
Xp
i¼1

Qi sin
mpyi

W

� �
sin

npxi
L

� �
expð�axiÞ ðA:27Þ

The corresponding initial condition is given by

unðtÞ ¼ 0 ðA:28Þ

The solution of Eq. (A.25) subject to the initial condition,
Eq. (A.28), is

unðtÞ ¼
Cn

Kx

2 R0a1a3

ða2 þ b2
m þ k2

n � r
jKx
Þ

(
expjKx a2 þ b2

m �
r

jKx

� �
t

�

� expð�jKxk
2
nÞt
�
� 2R1a1a3 � a2

ða2 þ b2
m þ k2

nÞ

�
expjKxða2 þ b2

mÞt

� expð�jKxk
2
nÞt
�)

ðA:29Þ

where

a3 ¼
W

mp
cos

mpy1

W

� �
� cos

mpy2

W

� �h i
From Eqs. (A.8) and (A.24), the transformed solution may be
written as
Hðx;m; tÞ ¼
X1
n¼0

/nðxÞunðtÞ expðaxÞ exp½�jKxða2 þ b2
mÞt�

ðA:30Þ

By taking the inverse finite Fourier sine transform of Eq.
(A.30) and substituting the values of /n(x) and un(t) into Eq.
(A.30), the solution of Eq. (1) can then be written as

Hðx; y; tÞ ¼ 16

KxLp

X1
m¼1

X1
n¼0

1

m
sin

mpðy1 þ y2Þ
2W

� �

� sin
mpðy2 � y1Þ

2W

� �
a1X1 �

4

KxWL

X1
m¼1

X1
n¼0

a2X2

ðA:31Þ

where

X1 ¼ eax R0
e�rt � e�jKxða2þb2mþk2nÞt

ða2 þ b2
m þ k2

nÞ � r
jKx

þ R1
1� e�jKxða2þb2mþk2nÞt

ða2 þ b2
m þ k2

nÞ

( )

� sin
npx
L

� �
sin

mpy
W

� �
ðA:32Þ

and

X2 ¼ eax 1� e�jKxða2þb2mþk2nÞt

ða2 þ b2
m þ k2

nÞ

( )
sin

npx
L

� �
sin

mpy
W

� �
ðA:33Þ
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