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The project proposes prediction and analysis of identifying protein
kinase-specific phosphorylation sites based on the features of
physicochemical properties of sequences. This study bases on
improving the existing methods and achieves the project goa by
way of the following fours aspects. 1) The existing prediction tools
to identify protein kinase-specific phosphorylation sites have very
low accuracy for the transmembrane proteins. Design an identifying
transmembrane protein kinase-specific phosphorylation sites
system. 2) Study the special properties of transmembrane proteins
and create an up to date transmembrane protein dataset. 3) The RSA
value plays an important role in developing explicit models for
aiding prediction of the phosphorylation sites. 4) Investigate
informative physicochemical and biochemical properties of protein
sequence to understand the RAS of proteinsthat is helpful in
developing protein kinase-specific phosphorylation sites predicting
method. The goal of this project is achievement conference and
journal papers.
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Abstract

The project proposes prediction and analysis
of identifying protein  kinase-specific
phosphorylation sites based on the features of
physicochemical properties of sequences.
This study bases on improving the existing
methods and achieves the project goal by
way of the following fours aspects. 1) The
existing prediction tools to identify protein
kinase-specific phosphorylation sites have
very low accuracy for the transmembrane
proteins. Design an identifying
transmembrane  protein  kinase-specific
phosphorylation sites system. 2) Study the

special properties of transmembrane proteins
and create an up to date transmembrane
protein dataset. 3) The RSA value plays an
important role in developing explicit models
for aiding prediction of the phosphorylation
sites. 4) Investigate informative
physicochemical and biochemical properties
of protein sequence to understand the RAS of
proteins that is helpful in developing protein
kinase-specific phosphorylation sites
predicting method. The goal of this project is
achievement conference and journal papers.
Keywords:  Physicochemical properties,
kinase-specific  phosphorylation,  genetic
algorithms, relative surface area of solvent
accessibility, protein sequence, prediction
method.
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Ahmad et al.,2003 NN Amino acid composition 18.8 0.48
‘Yuan and Huang,2004 SVR Amino acid composition 18.5 0.52
Adamczak et al.,2004 NN PSSM 15.3 -

Wang et al.,2005 MLR Amino acid composition, PSSM and 16.2 0.64
sequence length
Garg et al.,2005 NN PSSM and secondary structure 15.9 0.65
information
Nguyen and Two-stage SVR PSSM 15.7 0.66
Rajapakse, 2006
Chang et al.,2008 Two-stage SVR enhance PSSM and sequence length 14.8 0.68

ours SVR

PSSM, Aaindex and sequence length 14.11 0.69
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Spec Sen  OAcc MAcc MCC
GPS 0.859 0423 0.848 0.607 0.121
PPSP 0.667 0.299  0.645 0.232 -0.017

KinasePhos ~ 0.006 0.959  0.024 0.503 -0.063

NetPhosK 0.155 0.280  0.157 0.226 -0.183

Spec = specificity ~ Sen = sensitivity ~ OAcc =
Overall accuracy ~ MAcc = Mean accuracy ~ MCC

= Matthews correlation coefficient.
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Spec Sen OAcc MAcc MCC

S T Y Total

100 proteins_positive 169 56 101 326

100 proteins_negative 6934 5199 2862 14995

122 proteins_positive 198 68 115 381
8466 6244 3495

122 proteins_negative 18205
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DISPHOS 0.958 0.141 0.941 0.455 0.069
PHOSIDIA  0.318 0.735 0.326  0.548 0.016
MusSite 0.837 0.165 0.787  0.170 0.001

NetPhos 0.016 0.938 0.034  0.548 -0.049
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DNAset

Mining mformative Rule-based knowledge Analysis of binding
PCPs of DNA-binding mechanism
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No._ FeatwelD _ AAindexNo.Property

20 HB88 FAUJ880111  Positive charge
12 P80 FAUJ880103  normalized Van Der Waals Volume
3 A237 PALJRI0L15  Secondary structure
2 A97 GEIMB00101  Secondary structure
1 H252 PRAM900101 Hydrophobicity
1 H355 ROSMS880101  Side chain hydropathy
1 H398 ZIMJ680101  Hydrophobicity
1 H4382 KUHL950101 Solvent accessibility

A: Alpha and tum propensities. B: Beta propensity. C: Composition. H:
Hydrophobicity. P: Physicochemical properties. O: Other properties
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2% 7. FHZREETT model HY feature set

amino acid  feature number

Best feature set

=

31
21
34
25
30
33
28
3
28
34
26
23
29
30
21
26
27
26
31
12
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12,18,39,89,102,114,141,164,169,199,206,209,210,251,266,267,294,305,309,333,338,352,356,364,369,373,403 415,447,481,523,
10,41,93,105,113,152,194,259,287,317,327,334,352,358,381,387,398,404,408,400.,451,
11,31,41,60,99,100,102,124,126,172,175,176,231,253,260,262,264,265,274,310,321,322,323,336,351,385,410,412,414,419,483 512,521,523,
23,94,95,113,124,146,178,179,196,210,221,257,274,275,285,295,300,318,340,352,404,442,481,490,531,
12,18,29,41,54,61,95,102,106,151,169,221,242,245,249,278,296,306,379,391,405,420,447,473 477 ,491,492,497,503,522,
78,86,101,102,106,161,166,178,198,201,219,238,294,295,300,315,328,342,343,352,362,376,381,389,398,403,419,423,434,450,452,461 481,
13,44,66,71,79,108,199,200,209,211,221,247,289,302,318,332,355,371,381,387,399,404,410,414,446,501,521,522,
21,31,42,66,82,110,114,165,196,200,233,262,267,268,295,304,306,320,333,364,371,372,416,420,423,432,442, 454,455,461 469,530,
3,6,18,30,69,75,83,108,113,126,200,230,252,286,300,373,374,376,402,419,420,423 447 462,467,497 515,530,
14,26,28,29,30,45,74,79,88,92,107,165,187,218,235,237,252,255,266,267,268,280,290,322,323,334,341,386,415,418,446,452.453,526,
3,10,61,69,113,168,176,194,200,236,239,305,315,318,322,323,339,349,356,370,390,419,480,508,512,518,
27,32,64,114,140,163,179,186,219,223,235,258,267,273,284,322,330,414,443,480,488,495,515,
71,90,144,147,149,151,185,221,222,272,279,284,285,294,319,348,349,352,357,386,410,422,477 481 483,484 ,488,516,529,
10,39,46,54,93,149,169,174,193,215,223,238,275,277,327,331,336,369,371,384,419,432,443,446,450,488,503,508,527,528,
22,40,53,61,63,80,83,110,209,228,259,260,299,300,351,361,404,418,424,443 521,
12,25,71,96,103,114,168,175,189,200,221,345,351,376,389.,405,400,440.450,452,474 477,514,516,522,531,
10,11,57,58,60,98,105,106,115,159,194,224,229,231,296,309,318,339,352,362,380,383,392,400,409,422.,433,
34.37,80,114,124,178,186,190,206,228,229,274,276,277,285,304,308,333,336,352,381,387,483,510,525,
18,28,40,53,140,173,206,209,211,218,231,238,324,328,333,352,364,387,391,414,416,422,436 477 481,497,506,510,516,522,531,
26,117,153,235,303,316,403,447,448,450,452,509,

28, BB o IR BAoAR BAT L 2ok v R

MAE
. , pssm + + +

no.  amino acid i

aaindex + - - + Chang(2008) Nguyen(2006  Wang(2005)

sequence length + - + +

1 A 122199 13.4740 13.4723 18.8132 13.3 14.4 15.6
2 R 16.8119 16.8845 17.318 24.3333 17 17 17.1
3 N 18.4971  20.3228 20.446 25.0654 19.6 20.2 21
4 D 18.0767 202810 20.2245 24.5231 19.2 19.5 20.8
5 C 8.87168 10.0537 10.0537 9.61839 8.9 9.9 14.2
6 Q 162366 17.7834 22.1026 21.6074 17.2 17.6 18
7 E 15.9341 18.1813 18.2301 22.2619 17.8 18.3 19.3
8 G 18.0293 19.7634 19.7632 24.0462 19.5 19.6 21.1
9 H 15.8715 15.8185 20.5737 19.8794 15.1 15.4 15.7
10 I 8.09382 89793 8.9742 10.2656 8.7 9.7 10.6
11 L 9.79063 12.5323 10.2074 11.8409 9.8 10.8 11.6
12 K 15.7747 15.7908 15.8488 18.4192 15.8 16.4 16.3
13 M 11.3245 11.3839 11.3408 13.7533 11.3 12.1 12.9
14 F 10.0539  9.9997 9.99919 11.0815 10.2 11.2 11.9
15 P 16,6900 179133 17.9515  21.0484 174 177 182
16 S 16.0847 18.2228 18.8323 23.5514 18.3 18.8 19.8
17 T 15.8687 16.5704 16.5863 21.049 16 16.7 17.1
18 W 121712 124307 12.3633 13.4755 11.8 12.4 13.2
19 Y 115132 121179 12.1725 13.8647 13 12.9 13.3
20 V 9.89251 " 10.187 10.1642 12.1627 9.6 10.7 11.2

average 13.742981 15.7183133 15.3312295 18.0430245  14.475 15.065 15.945
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DNA-Binding
accepted by Protein and Peptide Letters,
2011. (SCI)

Domains/Proteins,”

2 H.-L. Huang, I-C. Lin, Y.-F. Liou, C.-T.

Tsai, K-T. Hsu, W.-L. Huang, S.-J. Ho,
and S.-Y. Ho*, “Predicting and analyzing
DNA-binding domains using a systematic
approach to identifying a set of
informative physicochemical and
biochemical properties”, BMC
Bioinformatics, 12(Suppl 1):547,
2011.(SCI)
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I.  ABSTRACT

A. Background

Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support
vector machine (SVM) based classifiers. Selection of physicochemical properties and determination of their corresponding
feature vectors rely mainly on known properties and experience of designers. However, there exists a troublesome problem
for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and closely
related physicochemical properties in the same group have dissimilar vectors.

B. Methods

This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and
biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding
domains/proteins. Auto-IDPCPs consists of 1) clustering 531 vectors in AAindex into 20 classes using a fuzzy c-means
algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative set of
feature vectors of representing sequences from the viewpoint of machine learning, and 3) analyzing the selected feature
vectors to identify the related physicochemical properties which may affect the binding mechanism of DNA-binding
domains/proteins.

C. Results

The proposed Auto-IDPCPs identified m=22 features of properties belonging to five classes for predicting DNA-binding
domains with a five-fold cross-validation accuracy of 87.12%. If m=5 that one representative property is selected from each
class, the accuracy of 83.59% is also promising compared with the accuracy of 82.07% of the existing method PSSM-400
using 400 features. For predicting DNA-binding sequences, three additional classes (totally eight classes) were needed, and
the accuracies of 75.50% and 73.24% were obtained using m=28 and 8 features, respectively, where PSSM-400 has the
accuracy of 74.22%. When applied on an independent test data set of DNA-binding domains, Auto-IDPCPs and PSSM-400
have accuracies of 80.73% and 82.81%, respectively. Some typical physicochemical properties discovered are
hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der Waals volume,
pK (pK-C, pK-N, pK-COOH and pK-a(RCOOH)), etc.

D. Conclusions

The proposed approach Auto-IDPCPs would help designers to investigate informative physicochemical and biochemical
properties by considering both prediction accuracy and analysis of binding mechanism simultaneously. The approach Auto-
IDPCPs can be also applicable to predict and analyze other protein functions from sequences.

II.  BACKGROUND

DNA-binding domains/proteins are functional proteins in a cell, which plays a vital role in various essential biological
activities, such as DNA transcription, replication, packaging, repair and rearrangement [1]. The computational methods using
support vector machine (SVM) in conjunction with evolutionary information of amino acid sequence in terms of their
position-specific scoring matrices (PSSMs) for predicting DNA-binding sites were successfully developed [2]. Several
methods of using machine learning approaches were developed to predict DNA-binding domains/proteins from given
sequences of variable lengths [3-7], shown Table 1. Due to different design aims and data sets used, it is difficult to assess
which feature type is the most informative cooperated with SVM by comparing with prediction accuracies only. The PSSM is
an effective feature type of representing DNA-binding sequences, but its ability of interpretability is not satisfactory enough
in analyzing the binding mechanism [5]. Besides PSSMs, the physicochemical properties with the characteristics of high
interpretability were commonly used [3-4, 6-7]. Some issues are concerned in designing prediction methods, described below.
1) Selection of physicochemical properties: Generally, effective physicochemical properties of amino acids are selected as

prediction features by using known properties of DNA-binding mechanism and knowledge of related binding mechanism
[3-4, 6-7]. However, it is desirable to explore undiscovered properties by machine learning approaches to further
advance the prediction accuracy and understand the binding mechanism.

2) Representation of sequences: How to effectively represent sequences of variable lengths as a feature vector using

physicochemical properties play an important role in advancing prediction accuracy. The pseudo-amino acid



composition (PAAC) is an efficient representation method of coupling physicochemical properties, which was used to
represent a sequence as a 40-dimensional feature vector for discriminating DNA-binding proteins from non-binding
proteins [3]. The combined descriptor was proposed using amino acid composition and a series of associated
physicochemical properties to form a 132-dimensional feature vectors [7]. The conjoint triad descriptor of 343-
dimensional feature vector was proposed that 20 amino acids were clustered into seven classes according to their dipoles
and volumes of side chains [6].

3) Values of amino acids for specific physicochemical properties: The AAindex database [8-9] collected 531
physicochemical properties (ignoring 13 properties without available values) with corresponding values of amino acids.
Recently, some computational methods of predicting protein functions were successfully developed by mining
informative physicochemical properties from AAindex [10-11].

Besides pursuit of high prediction accuracy, discovering potential properties to further understand the binding mechanism are
also taken into account in this study. We present a troublesome problem in using the AAindex database and propose an
effective method to solve. We found that some different physicochemical properties have similar vectors of representing the
20 amino acids and the closely related physicochemical properties in the same group have dissimilar vectors. For example,
the determination of values of the 20 amino acids to represent a sequence by coupling the hydrophobicity property is highly
related to prediction performance. Similarly, if a different property with a similar vector replaces the known one without
significantly degrading prediction performance, it means that the replaced property may be also important to the binding
mechanism from the viewpoint of machine learning. The detailed explanation by using a real quantization example is
described below.

Figure 1 shows an illustration example. The 402 properties in AAindex were classified into six groups according to their
biological meanings classified by Tomii et al. [9], as shown in Fig. S1 [see additional file]. According to the vectors of amino
acids for 531 properties, we clustered them into 20 clusters by a fuzzy c-means algorithm [12] based on normalized
Euclidean distances. The properties H88 and A392 are two different properties but their distance 0.0178 is small belonging to
the same cluster 7. On the other hand, H88 and H178 belonging to the same group Hydrophobicity in AAindex have a large
distance 0.0877 belonging to clusters 7 and 18, respectively. Although H88 and H151 (used in [3]) are in the same group
Hydrophobicity, their distance 0.0299 is larger than that between H88 and A392.

For the aim of designing accurate prediction methods, the major concern is to identify feature vectors with high
discrimination abilities for classifying positive and negative samples. This task can be done well for computational methods
by an optimization approach to feature selection. If the feature vectors were identified by predetermined properties based on
prior knowledge, the selected vectors of representing amino acids may be not the best. Considering the other aim of
discovering potential properties to further look insight the binding mechanism, we proposed a systematic, optimization
approach (named Auto-IDPCPs) to automatically identifying a set of feature vectors and analyzed the feature vectors to find
properties of affecting the DNA-binding mechanism.

The proposed approach Auto-IDPCPs can identify a small number m of feature vectors and discover the related
hydrophobicity properties with comparable performance, compared with the PSSM feature. Auto-IDPCPs would help
designers to investigate informative physicochemical and biochemical properties by considering both prediction accuracy and
analysis of binding mechanism simultaneously. Auto-IDPCPs can be also applicable to predict and analyze other protein
functions from sequences.

[II. METHODS

The system flowchart of the proposed approach Auto-IDPCPs is shown in Fig. 2. The input of the method comprises the
AAindex database and three data sets, including DNA-binding domains and sequences, and one independent test data set.
The output has two parts: 1) a predictor of DNA-binding domains/proteins with a set of m informative feature vectors and the



parameter setting of SVM by an efficient feature selection algorithm IBCGA, and 2) a set of physicochemical and
biochemical properties in the AAindex database for analyzing the DNA-binding mechanism.

A. Data sets

To evaluate effectiveness of the identified physicochemical properties by comparing with the famous PSSM features, we
used the benchmark data sets used in the PSSM-400 method [5], as shown in Table 2. The data set DNAset has 146 DNA-
binding domains (or protein chains) and 250 non-DNA-binding domains. No two domains have the similarity more than 25%.
The data set DNAaset consists of 1153 DNA-binding proteins and 1153non-binding proteins. 3) An independent data set
DNAiset is additionally used, having 92 DNA-binding domains and 100 non-DNA-binding domains [5].

B. Feature vector representation

All the domains/sequences have a variable length /. A sequence forms an /-dimensional profile where
the value of each amino acid is obtained from the specified property in the AAindex database. The /-
dimensional profiles are transformed into vectors with the same constant length L for utilizing SVM.
The transformation can be any known effective representation [3-4, 6-7] provided that the L features can
effectively classify the /-dimensional profiles of positive and negative sequences. The simplest feature is
the mean of the profile that L=1 [10-11]. Therefore, the sequences with m properties are represented as
an m-dimensional feature vectors. Finally, all values of the feature vectors are normalized into [-1, 1] for

applying SVM.

C. Feature selection by IBCGA
Selecting a minimal number of informative features while maximizing prediction accuracy is a bi-

objective 0/1 combinatorial optimization problem. An efficient inheritable bi-objective combinatorial
genetic algorithm IBCGA [13] is utilized to solve this optimization problem. IBCGA bases on an
intelligent genetic algorithm IGA [14] with an inheritable mechanism. The IGA algorithm uses a divide-
and-conquer strategy and an orthogonal array crossover to efficiently solve large parameter optimization
problems. In this study, the IGA algorithm can efficiently explore and exploit the search space of C(n, r),
where n=531 in this study. IBCGA can efficiently search the space of C(n, »+ 1) by inheriting a good
solution in the space of C(n, r) [13]. Therefore, IBCGA can economically obtain a complete set of high-
quality solutions in a single run where r is specified in an interesting range such as [10, 30]. The

chromosome encoding scheme of IGA consists of both binary genes for feature selection and parametric



genes for tuning SVM parameters y and C [10]. The performance of selected properties associated with
the parameter values of SVM is measured by five-fold cross-validation (5-CV) for comparing with the

method PSSM-400 [5].

IBCGA with the fitness function f{X) can simultaneously obtain a set of solutions, X,, where r=rgqm,
Fsarttl, ..., Fena In @ single run. In this study, the parameter settings 7sare =10, 7end =30, Npop =50, p. =0.8
and p,, =0.05. The output contains a set of m selected properties from AAindex and an SVM classifier
with associated parameter settings. The IBCGA algorithm is given in Fig. 3. The best one of R solutions
can be determined by considering the accurate one S, with the highest accuracy or the robust one with

the highest score S; for identifying informative properties.

D. Designing SVM classifiers
For evaluating the effectiveness by comparing with the commonly used feature sets, we implemented

the predictor using the same single-classifier SVM with the feature types, amino acid composition (AAC)
and PSSM [5]. Additionally, the selected physicochemical properties (PCPs) combined with AAC and

PSSM were also evaluated.

E. Clustering properties by the FCM method
The application of cluster approaches is to partition 531 vectors of physicochemical properties into

clusters, where similar vectors are assigned to the same cluster. An index vector of amino acids is a set
of 20 numerical values representing some physicochemical property of amino acids. All data were
normalized in such a way that every physicochemical property had an average profile value of zero and

a standard deviation equal to 1.

The fuzzy derivative of k-means, known as fuzzy c-means (FCM) [12], has an objective functional of

K n
the form, J(X;U,V)ZZZu;d 2(vl.,xj) , where n=531 is the number of data vectors, K is the number of

i=l j=1

clusters to be found, u;;€[0,1] is the membership degree of ;™ data vector x; in the i" cluster, the i



cluster represented by the cluster prototype v;, s€[1,0) is a weighting exponent called the fuzzifier and
d(vi, x;) 1s the distance of x; from the cluster prototype v, Dembélé¢ and Kastner [15] suggested the

parameters setting s=1.12 and K=20 clusters, adopted in this study.

F. Identifying physicochemical properties
It is not easy to discover related physicochemical properties for analyzing DNA-binding mechanism by

computational methods with a relatively small size of data sets. Therefore, we present a hybrid method
by combining evidences from the viewpoints of both machine learning and biological meanings. Auto-
IDPCPs identifies m properties belong to ¢ of 20 clusters. We examine all properties P1 by considering
the identified m properties P2 if they satisfying the criteria, P1 is a promising property to be further
investigated: 1) P1 and P2 have a small distance and 2) if P2 is replaced with P1 one at a time, the

prediction accuracy is not significantly decreased.

Only 402 of 531 properties were classified into six groups, (A): Alpha and turn propensities, (B): Beta
propensity, (C): Composition, (H): Hydrophobicity, (P): Physicochemical properties, and (O): Other
properties. We classified the other 129 properties into the six groups according their distance of vectors
using a nearest-neighbor rule. The mapping of 531 feature numbers and AAindex identity and their
classified result into six groups are given in Tables S1 and S2, respectively, and their statistic result is
given in Table S3 [see additional file]. The statistical results of property distribution in the six groups for

531 and 402 amino acid indices are given in Fig. S2 [see additional file].

IV. RESULTS

A. Identified properties by IBCGA

The statistical result of S; in selecting property sets from R =30 independent runs on DNAset and DNAaset are given in Fig. 4.
The 18" and 6™ runs for DNAset and DNAaset, respectively, are selected, and their prediction accuracies for various
numbers of selected properties are given in Fig. 5. The m=22 and 28 properties selected for DNAset and DNAaset,
respectively, are given in Tables S4 and S5 [see additional file] in which the AAindex identity numbers and their property
description are provided. An efficient way to study the effects of several factors simultaneously is to use the main effect
difference (MED) that the most effective property has the largest value of MED. The m properties are ranked by using MED
is shown in Fig. 6. The properties of rank 1 are feature numbers 86 (FAUJ880109, Localized electrical effect) and 39
(CHOP780202, Normalized frequency of beta-sheet) for DNAset and DNAaset, belonging to groups Hydrophobicity and
Beta propensity in the six groups, respectively.



B.  Prediction performance evaluation

To evaluate the effectiveness of the identified m informative feature vectors (PCPs), three feature types were additionally
evaluated, as shown in Table 3. AAC is a 20-dimensional vector of amino acid composition, PSSM is the feature
representation [5] of 400 features. PCPs +AAC and PCPs +PSSM are two hybrid feature types by adding individual feature
vectors. Considering the DNA-binding domain data set DNAset, the set of m=22 informative properties (PCPs) identified by
Auto-IDPCPs performs best where the robust solution S, with accuracy of 87.12%, compared with ACC, PSSM, PCPs+AAC
and PCPs+PSSM are 80.30%, 82.07%, 81.82% and 86.62%, respectively. For the DNA-binding protein data set DNAaest,
the method with PCPs and m=28 informative properties (75.50%) is slightly worse than that with PSSM (76.58%). However,
PCPs+PSSM can improve the accuracy to 80.27%. When the predictor trained by DNAset (S, with m=22 informative
properties) were evaluated by the independent test data set DNAiset, the accuracy is 80.73% (=155/192), slightly worse than
82.81% (=159/192) of PSSM-400. A small, high-performance features set of size ¢ from c clusters is given in Table 4. The
properties and their descriptions are given in Tables S6 and S7 [see additional file] where ¢=5 and 8 for DNAset and
DNAaset, respectively.

The experimental results reveal that the identified small set of m physicochemical properties with a simple representation
performs equally well, compared with the PSSM feature type. However, the identified physicochemical properties are
interpretable for further understanding the DNA-binding mechanism.

C. Analyzing binding mechanism by physicochemical properties

The 30 sets of m properties belonging to the 20 clusters from the results of 30 runs are shown in Fig. S3 [see additional file].
From the statistic result, the clusters 7, 9, 10, 16 and 18 with very high selection frequencies are more important for
predicting DNA-binding domains and proteins. The m=22 properties (Table S4) belong to five clusters which are the same as
the five clusters 7, 9, 10, 16 and 18. For predicting DNA-binding proteins, the m=28 properties (Table S5) belong to eight
clusters with additional three clusters 3, 14 and 17.

An illustration example is given in Fig. 7. The both feature sets S1 (H88, H86, H67, C209, H178) and S2 (A392, A303, A307,
C440, H178) are selected for predicting DNA-binding domains in DNAset that one properties selected from one of five
clusters 7, 9, 10, 16 and 18. The identified properties H88 and A392 belong to hydrophobicity, and alpha and turn
propensities groups but they belong to the same cluster 7 with a relatively small distance 0.0178. The prediction accuracy of
S3 by replacing H88 with H151 is 81.05 %. On the other hand, H151 belonging to the cluster 7 and Hydrophobicity group
used in [3] can be inferred from feature sets S1 and S2. After carefully analyzing all properties, we identify some properties
in the five identified clusters for analyzing DNA-binding domains, shown in Table 5. Some typical physicochemical
properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized
Van Der Waals volume, pK (pK-C, pK-N, pK-COOH and pK-a(RCOOH)), etc. Most of identified properties were used in
previous works [3-4, 6-7] but a few properties such as the flexibility property H§ BHAR880101 in cluster 7 “Average
flexibility indices (Bhaskaran-Ponnuswamy, 1988)” are not utilized yet in existing method of predicting DNA-binding
domains. The correlation between protein flexibility and protein function suggests a link between DNA-binding activity and
the conformational freedom of the DNA-binding domain [16].

V. DISCUSSION

To avoid from overfitting the small-scale data sets in identifying physicochemical properties using an optimization approach,
this study proposes a hybrid method of combining evidences from computational methods of considering robust factors and
biological experiments from literature. The future work is to further verify these discovered properties in predicting and
analyzing the DNA-binding mechanism.

VI. CONCLUSIONS

This study has proposed a systematic approach Auto-IDPCPs to automatically identify an informative set of physicochemical
and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-
binding domains/proteins.
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FIGURES
0.0299 His: Six region feature ID  AAindex ID Description
/ Aszgy H88 FAUJ880111 Positive charge (Fauchere et al.1988)
0 / H178 MEEJ800101  Retention coefficient in HPLC, pH7.4
(Meek, 1980)

Cluster 7 0.091 H151 KYTJ820101 Hydropathy index (Kyte-Doolittle, 1982)
0.087 0.0801 A392 WOLS870103  Principal property value z3 (Wold et al.,
1987)

Cluster 18 Hizs

Figure 1 - Illustration example. The properties H88 and A392 are two different properties but their distance 0.0178 is
small. On the other hand, H88 and H178 belonging to the same group Hydrophilicity in AAindex have a large distance
0.0877. H88 and H151 in the same group have a larger distance 0.0299 than that between H88 and A392.
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Figure 2 -The system flowchart of the proposed approach Auto-IDPCPs.

Step 1) (Initiation) Randomly generate an initial population of N,,, individuals. All the » binary genes have  1’s and n-r 0’s
where r = rygn.

Step 2) (Evaluation) Evaluate the fitness values of all individuals using {X).

Step 3) (Selection) Use the traditional tournament selection that selects the winner from two randomly selected individuals
to form a mating pool.

Step 4) (Crossover) Select p.-N,, parents from the mating pool to perform orthogonal array crossover on the selected pairs
of parents where p, is the crossover probability.

Step 5) (Mutation) Apply the swap mutation operator to the randomly selected p,, N, individuals in the new population
where p,, is the mutation probability. To prevent the best fitness value from deteriorating, mutation is not applied to
the best individual.

Step 6) (Termination test) If the stopping condition for obtaining the solution X, is satisfied, output the best individual as X,.
Otherwise, go to Step 2).

Step 7) (Inheritance) If r < 7y, randomly change one bit in the binary genes for each individual from 0 to 1; increase the
number 7 by one, and go to Step 2). Otherwise, stop the algorithm.

Step 8) (System uncertainty) Perform Steps 6 and 7 for R=30 independent runs to obtain the best of R solutions, X,,, and the
associated parameter setting of the SVM classifier. The best solution considers both high prediction accuracy and
high mean of appearance frequency ratio, described as the following procedure APPF.

The procedure APPF is given as the following steps:

Step 1) Calculate the appearance frequency f(p;) of each selected properties p; from the R=30 sets of m;-dimensional feature
vectors, where i=1, ..., 30.

Step 2) Calculate score S, for each of R solutions, where properties p; are in the 7" setand =1, ..., R

S, = f(p))im,

where f(p;) denotes the frequencies of the property p;, m, is the number of the selected feature in dependent run 7.
Figure 3 - The algorithm IBCGA used in the proposed approach Auto-IDPCPs.
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Figure 4 - The statistical result of S, in selecting property sets from R =30 independent runs on DNAset and DNAaset.
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Figure 6 - The effectiveness of properties are ranked by using the main effect difference (MED) (a) m=22 and (b) m=28.
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Figure 7 - An illustration example for exploring properties. H151 can be inferred from feature
sets S1 and S2.




Tables
Table 1 - Related works of predicting DNA-binding domains/proteins from sequences

Reference Protein type  Identity Feature Representation Feature type Classifier
number

Shao et al. 2009[6] sequence 25% 343  Seven class Conjoint triad PCP SVM

Fang et al. 2008[4] sequence 35% 40 Pseudo-AA composition PCP SVM

Yu et al. 2006 [7] sequence 25% 132 Combined descriptors PCP SVM

Cai et al 2003 [3] sequence 40% 40 Pseudo-AA composition PCP SVM

Kumar et al. 2007 [S] Domain and 25% 400 PSSM PSSM SVM

sequence

Ours Domain and 25% m*  Mean value of sequence # PCP and SVM

sequence BCP

PCP: physicochemical property, BCP: biochemical property
*: a small number of feature vectors selected from 531 vectors
# : The averaged value of amino acids in a sequence for one property

Table 2 - The statistic of the three data sets

Datasets Protein No. of DNA-binding No. of non-DNA-binding
DNAset domain 146 250
DNAaset sequence 1153 1153
DNAiset domain 92 100

Table 3 - The overall accuracies (%) of 5-CV using three types of feature representations and their combination types with
SVM.

Dataset Sen. Spe. MCC PCPs AAC PSSM* | PCPs +AAC  PCPs +PSSM
S, 8889 9120 0.76 88.89 81.57 83.59
DNAset — ¢ 19 90.00 053 §7.12 2030 8207 81.82 86.62
S, 8274 70.08 0.72 7641 74.20 79.88
DNA a 2.4 .
NAgest = ¢ 06 69.04 0.51 7550 >0 7638 73.59 80.27

S,: accurate solution, S,: robust solution, Sen.: sensitivity,  Spe.: specificity, MCC: Matthew’s correlation
coefficient, PCPs: the m informative properties, PSSM*: obtained from [5] without additional fine tune of SVM
Table 4 - A small, high-performance features set of size ¢ from ¢ clusters. The feature number ¢c=5 and 8 for DNAset and
DNAaset, respectively

ACC Cluster ID C Cy Cuo Cis Cis
83.59%  FeatureID  HS88 H86 H67 H209 HI78

ACC Cluster ID C7 Cg C10 C16 Clg C3 C14 C17
73.24%  FeatureID P159  H87 A99 Cl197 P63 HIl H396  H451

DNAset

DNAaset

Table 5 - Some typical properties in the five identified clusters for analyzing DNA-binding domains

Ciqy AAindexID PCP & BCP Ciy AAindexID  PCP & BCP
7 BHAR880101 Flexibility 10 FASG760105 pK-C
7 BURA740101 Secondary structure 10 JOND750102 pk- (-COOH)
7 CHOC760103 Solvent accessibility 10 RADAS880108 Polarity
7 HOPT810101 Hydrophilicity 16 PRAM900101 Hydrophilicity
7 FAUJ880111 Charge 16 FUKS010104 Solvent accessibility
9 KARP850101 Flexibility 16 KUMS000103 Secondary structure
9 PALJ810115 Secondary structure 18 PONP800107 Solvent accessibility
9 ROSM880101 Hydrophilicity 18 GRAR740102 Polarity
9 KUHL950101 Solvent accessibility 18 FASG760104 pK-N
10 ZIMJ680101 Hydrophilicity 18 FAUJ880113 pK-a(RCOOH)
10 EISD860101 Solvent accessibility 18 FAUJ880103 Normalized van der
10 GEIMS800101 Secondary structure Waals volume

Ciq: FCM cluster ID PCP & BCP: physicochemical and biochemical property
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This paper proposes an interpretable physicochemical property classifier (named iPPC) with an accurate and
compact fuzzy rule base using a scatter partition of feature space for DNA binding data analysis. The topic is
interesting and has a practical value. But | would recommend extending it a little bit; especially comparing

the experimental result with related works.



Acquisition of rule-based knowledge for predicting
and analyzing DNA-binding domains
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Abstract—DNA-binding domains are functional proteins in a cell,
which plays a vital role in various essential biological activities. It
is desirable to predict and analyze novel proteins from protein
sequences only using machine learning approaches. Numerous
prediction methods were proposed by identifying informative
features and designing effective classifiers. The support vector
machine (SVM) is well recognized as an accurate and robust
classifier. However, the block-box mechanism of SVM suffers
from low interpretability for biologists. It is better to design a
prediction method using interpretable features and prediction
results. In this study, we propose an interpretable physicochemical
property classifier (named iPPC) with an accurate and compact
fuzzy rule base using a scatter partition of feature space for
DNAbinding data analysis. In designing iPPC, the flexible
membership function, fuzzy rule, and physicochemical properties
selection are simultaneously optimized. An intelligent genetic
algorithm IGA is used to efficiently solve the design problem with
a large number of tuning parameters to maximize prediction
accuracy, minimize the number of features selected, and minimize
the number of fuzzy rules. Using benchmark datasets of DNA-
binding domains, Ippc obtains the training accuracy of 81% and
test accuracy of 79% with three fuzzy rules and two
physicochemical properties. Compared with the decision tree
method with a training accuracy of 77%, iPPC has a more compact
and interpretable knowledge base. The two physicochemical
properties are Number of hydrogen bond donors and Helix-coil
equilibrium constant in the AAindex database.

Keywords- knowledge acquistion; fuzzy classifier; genetic
algorithm;DNA-binding; physicochemical properties; prediction

X. INTRODUCTION

DNA-binding domains are functional proteins in a cell,
which plays a vital role in various essential biological
activities, such as DNA transcription, replication, packaging,
repair and rearrangement [1]. These transcription factors are
mainly DNA-binding proteins (DNA-BPs) coded by 2~3%
of the genome in prokaryotes and 6~7% in eukaryotes [2].
DNA-BPs play a pivotal role in various intra- and extra-
cellular activities ranging from DNA replication to gene
expression control. These researches reveal that the DNA-

3Department of Automation Engineering, National
Formosa University, Yunlin 632, Taiwan
4Department of Information Management, Overseas
Chinese University, Taichung 40721, Taiwan

syho@mail.nctu.edu.tw

protein recognition mechanism is complicated and there is no
simple rule for this recognition problem [3].

Stawiski et al. found that nucleic acid-binding proteins
could be separated using a neural network trained that
included secondary structure and charged patches, among
others [4]. Ahmad and Sarai using a simple linear predictor
to model a trivial system with few descriptors and they
identified cutoff values for charge and dipole moment at
which binding and non-binding proteins could be
separated[5]. Kumar et al. proposed a method for predicting
DNA-binding proteins using SVM and PSSM profiles [6].
The methods can fairly analyze and predict DNA-binding
proteins, but suffer from obtaining human-interpretable
knowledge.

Ho et al. [7] study aims to analyze DNA-binding
proteins via acquisition of interpretable knowledge which
can accurately predict binding sites in proteins to understand
DNA-protein  recognition mechanism. Their study
investigates a novel feature set consisting of 11 features,
including solvent accessibility, secondary structure, charge
information near the residue, amino acid group and neighbor
property. The derived binding and non-binding rules reveal
that besides the well-known solvent accessibility, the
electric charge distribution near the residue and the amino
acid groups also play important roles in prediction of
binding sites.

We have proposed Auto-IDPCPs [8] which is
investigated the optimal design of predictors for DNA-DBs
from amino acid sequence using both informative features
and an appropriate classifier. Furthermore, we obtain a set
of relevant physicochemical properties can advance
prediction performance. The proposed Auto-IDPCPs
identified m=22 features of properties belonging to five
clusters for predicting DNA-binding domains with a
fivefold cross-validation accuracy of 87.12%. Since the set
of 22 physicochemical properties performs well, we would
apply it to acquit the rule-based knowledge for predicting
and analyzing DNA-binding domains.



In this paper, we propose an interpretable
physicochemical properties classifier (named iPPC) with an
accurate and compact fuzzy rule base using a scatter
partition of feature space for DNA-binding data analysis.
Because physicochemical properties from AAindex
database [9] have the property of natural clustering, fuzzy
classifiers using a scatter partition of feature spaces often
have a smaller number of rules than those using grid
partitions. The design of iPPC has three objectives to be
simultaneously optimized: maximal classification accuracy,
minimal number of rules, and minimal number of used
physicochemical properties. In designing iPPC, the flexible
membership function, fuzzy rule, and physicochemical
properties selection are simultaneously optimized. An
intelligent genetic algorithm IGA is used to efficiently solve
the design problem with a large number of tuning
parameters [10].

XI. MATERIALS AND METHODS

A. Dataset

DNAset

This dataset also called main dataset from Kumar et al.,
2007 [6]. They got 146 non-redundant DNA-BPs in which
no two proteins have the sequence identity of more than
25%. A non-redundant set of 250 non-binding proteins was
obtained from Stawiski et al. [11]. They used following
criteria: 1) no two protein chains have similarity more than
25% and ii) the approximate size and electrostatics are
similar to DNA-BPs. Final dataset called DNAset or main
dataset or domain dataset, consists of 146 DNA-binding and
250 non-binding protein chains or domains.

DNAiset

We used this dataset to evaluate performance of our
models and the also called DNAiset. This dataset from
Kumar et al., 2007 [6] 92DNA-binding protein chains
obtained from PDB and 100 nonbinding proteins picked
from Swiss-Prot.

B. Feature set

Considering the DNA-binding domain data set DNAset,
the set of m=22 informative properties (PCPs) identified by
Auto-IDPCPs performs best where the robust solution with
accuracy of 87.12% 1is used. The Auto-IDPCPs is a
systematic approach to automatically identify a set of
physicochemical and biochemical properties in the AAindex
database to design SVM-based classifiers for predicting and
analyzing DNA-binding domains/proteins. Auto-IDPCPs
consists of 1) clustering 531 vectors in AAindex into 20
classes using a fuzzy c-means algorithm, 2) utilizing an
efficient genetic algorithm based optimization method
IBCGA to select an informative feature set of size m to
represent sequences, and 3) analyzing the selected feature
vectors to identify the related physicochemical properties

which may affect the binding mechanism of DNA-binding
domains/proteins.

The set of m=22 PCPs is identified by Auto-IDPCPs, we
would apply it to acquit the rule-based knowledge for
predicting and analyzing DNA-binding domains. The set of
22 PCPs is described in table 1.

Table 1 - The Auto-IDPCPs indented a set of m=22
physicolchemical properties on DNAset.
Feature AAindex ID Description

ID

53 CHOP780216 Normalized frequency of the 2nd and 3rd residues in

turn (Chou-Fasman, 1978b)
56  CIDH920103 Normalized hydrophobicity scales for alpha+beta-
proteins (Cid et al., 1992)

64 DAYM780101 Amino acid composition (Dayhoff et al., 1978a)

86 FAUJ880109 Number of hydrogen bond donors (Fauchere et al.,
1988)

91  FINA770101 Helix-coil equilibrium constant (Finkelstein-Ptitsyn,
1977)

188 NAGK730103  Normalized frequency of coil (Nagano, 1973)

202 NAKH920101 AA composition of CYT of single-spanning proteins
(Nakashima-Nishikawa, 1992)
227 PALJB10105 Normalized frequency of turn from LG (Palau et al.,

1981)

228 PALJ810106 Normalized frequency of turn from CF (Palau et al.,
1981)

255 PRAM900104 Relative frequency in reverse-turn (Prabhakaran,
1990)

262 QIAN8B0105 Weights for alpha-helix at the window position of -2
(Qian-Sejnowski, 1988)
274  QIANS880117 Weights for beta-sheet at the window position of -3
(Qian-Sejnowski, 1988)
286 QIANBB0129 Weights for coil at the window position of -4 (Qian-
Sejnowski, 1988)
363 SUEMS840101 Zimm-Bragg parameter s at 20 C (Sueki et al., 1984)

383 WEBA780101 RF value in high salt chromatography (Weber-Lacey,
1978)

388 WOEC730101 Polar requirement (Woese, 1973)

Normalized positional residue frequency at helix

LS USRI termini N5 (Aurora-Rose, 1998)

430 MUNV940102 Free energy in alpha-helical region (Munoz-Serrano,
1994)

Free energies of transfer of AcWI-X-LL peptides
from bilayer interface to water (Wimley-White,
1996)

Distribution of amino acid residues in the alpha-
helices in mesophilic proteins (Kumar et al., 2000)
486 BASU050102 Interactivity scale obtained by maximizing the mean
of correlation coefficient over single-domain globular
proteins (Bastolla et al., 2005)

Weights from the IFH scale (Jacobs-White, 1989)

434 WIMW960101

443 KUMS000104

513 JACRS890101

C. Acquition the rule-based knowledge method

High performance of iPPC mainly arises from two
aspects. One is to simultaneously optimize all parameters in
the design of iPPC where all the elements of the fuzzy
classifier design have been moved in parameters of a large
parameter optimization problem. The other is to use an
efficient optimization algorithm IGA which is a specific
variant of the intelligent evolutionary algorithm [10]. The



intelligent evolutionary algorithm uses a divide-and-conquer
strategy to effectively solve large parameter optimization
problems. IGA is shown to be effective in the design of
accurate classifiers with a compact fuzzy-rule base using an
evolutionary scatter partition of feature space [10].
1) Flexible membership function
The classifier design of iPPC uses flexible generic
wix) pix})
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parameterized fuzzy regions which can be determined by
flexible generic parameterized membership functions
(FGPMFs) and a hyperbox-type fuzzy partition of feature
space. Each fuzzy region corresponds to a parameterized
fuzzy rule. In this study, each value of gene expression is
normalized into a real number in the unit interval [0,1]. An
FGPMF with a single fuzzy set is defined as
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Figure 1. [lluminations of FGPMF: (a) >0 and d< 1; (b) a<0<b, (¢) b=0; (d) b=0and c= 1.

0 if x<aor x>d
Sl ifa<x<d (1)
pxy=1574
if c<x<d
d —-c
1 if b<x<c

where x € [0, 1] and a<b<c<d. The variables a, b, ¢, and d
determining the shape of a trapezoidal fuzzy set are the
parameters to be optimized. It is well recognized that
confining evolutionary searches within feasible regions is
often much more reliable than penalty approaches for
handling constrained problems [12]. Therefore, five
parameters V7, V7, ..., ¥’ €[0,1] without constraints instead
of a, b, ¢, and d are encoded into a GA-chromosome for
facilitating IGA. Let an additional variable L=F" which
determines the location of the fuzzy set characterizing the

occurrence of training patterns. When 77 are obtained,

variables a, b, ¢, and d can be derived as follows: a=L-
(V+1?), b=L-V*, = L+V4, and d=L+(V*+V°). This

transformation can always make the derived values of a, b, c,

and d feasible and reduce interactions among encoded
parameters of GA chromosomes. Some illuminations of
FGPMF are shown in Fig. 1.

2) Fuzzy rule and fuzzy reasoning method

The following fuzzy if-then rules for n-dimensional
pattern classification problems are used in the design of
iGEC:

R;: Ifx,is Ay and . . . and x, is 4;, then class CL; with CF;,
where R; is a rule label, x; denotes a PCP variable, 4;; is an
antecedent fuzzy set, C is a number of classes, CL; €
{1, . . .,C} denotes a consequent class label, CF;is a certainty
grade of this rule in the unit interval [0, 1], and N is a number of
initial fuzzy rules in the training phase.

To enhance interpretability of fuzzy rules, linguistic
variables in fuzzy rules can be used. Each variable x; has a
linguistic set U= {L, ML, M, MH, H}. Each linguistic value
of x; equally represents 1/5 of the domain [0, 1]. Following
the quantization criterion, we can consider PCPs to be
regulated according to a qualitative level. For example, x; is
Low for down-regulated PCPs; x; is Medium for neutral
PCPs; and x; is High for up-regulated PCPs. An antecedent
fuzzy set 4; € A, where 4" denotes a set of subsets of U.
Examples of linguistic antecedent fuzzy sets are shown in
Fig. 2.

In the training phase, all the variables CL; and CF; are
treated as parametric genes of GA (GA- genes) encoded in
chromosomes of GA (GA-chromosomes) and their values
are obtained using IGA. The following fuzzy reasoning
method is adopted to determine the class of an input pattern
X, = (Xp1, X2, . . ., Xp,) based on voting using multiple fuzzy
if-then rules:

Step 1: Calculate score Sciaes (v =1,

as follows:
2 4,(x,)CF,,

R;eFC
CL;=Class v

/’lj(xp):H/’lji(xpi)i )
i=1

where F'C denotes the fuzzy classifier, the scalar value and
;) represents the membership function of the antecedent
fuzzy set 4.

Step 2: Classify x, as the class with a maximal value of Sci ..
3) Fitness function

We define the fitness function Fif() of IGA for designing
iPPC as follows:

max Fit(FC) = ACC — W,N, — WN; 3)

, C) for each class

SClass Vo
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Figure 2. Examples of an antecedent fuzzy set 4;; with linguistic values (L: low, ML: medium low, M: medium, MH: medium
high, H: high): (a) 4;; represents {ML, M, MH}; (b) 4, represents {ML, M, MH, H}, i.e., not Low; (c) 4;; represents {L, ML,

M, MH, H} or ALL.

where W, and W; are positive weights. In this study, the
fitness function is used to optimize the three objectives in
the following order: to maximize the accuracy rate ACC of
correctly classified training patterns, to minimize the
number N; of fuzzy rules, and to minimize the number N; of
selected PCPs. Generally, the final number of fuzzy rules is
smaller than 10. Therefore, we set W, = 0.1 to ensure that
classification accuracy has the first priority to be optimized.
When the two objectives ACC and N, are simultaneously
optimized for DNA-Binding data, the best number of used
genes is almost determined. Hence, a very small value 0.001
is set to W The sensitive analysis about the different
settings of W, and W; can be referred to [10].

4) GA-chromosome representation

A GA-chromosome consists of control GA-genes for
selecting useful genes and significant fuzzy rules, and
parametric GA-genes for encoding the membership
functions and fuzzy rules. The control GA-genes comprise
two types of parameters. One is parameter 7;, /=1, . . ., N,
represented by one bit for eliminating unnecessary fuzzy
rules. If 7; = 0, the fuzzy rule R; is excluded from the rule
base. Otherwise, R; is included. The other is parameter f;,
=1, .. ., n, represented by one bit for eliminating useless
genes. If f; = 0, the gene xi is excluded from the classifier.
Otherwise, x; is included. The parametric GA-genes consist

of three types: Vj]f e[0, 1], k=1,..., 5, for determining

the antecedent fuzzy set 4;; CL; for determining the
consequent class label of rule R; and CF; € [0, 1] for
determining the certainty grade of rule R;; where j=1,.. ., N
and i=1, . . ., n. A rule base with N fuzzy rules is represented
as an individual. The number of encoding parameters to be
optimized is equal to Np = n+3N+5Nn. A GA-chromosome
representation uses a binary string for encoding control and
parametric GA-genes. There are eight bits for encoding one

of parameters Vj]f and CF;. Since each fuzzy region defines a

fuzzy rule, the initial setting of N is independent of n but
dependent on the number of fuzzy regions. Generally, N is
set to the maximal number of possible fuzzy regions. In this
study, N=3C. The design of an efficient fuzzy classifier is
formulated as a large parameter optimization problem. Once
the solution of IGA is obtained, an accurate classifier with a
compact fuzzy rule base can be derived.

XII.

The parameter settings of IGA from Ho et al. (2004a) are
Npop = 20, P, = 0.7, Py =1-P, P,, = 0.01, and a = 15.
Because the search space of optimal design of iPPC is
proportional to the number N, of parameters to be optimized,
the stopping condition is suggested to use a fixed number
100N, of fitness evaluations (Ho et al., 2004a)

RESULTS

A.  Performance

The dataset all the domains/sequences have a variable
length /. A sequence forms an /-dimensional profile where
the value of each amino acid is obtained from the AAindex
database for encoding a specific physicochemical property.
The /-dimensional profiles are transformed into vectors with
the same constant length L for utilizing classifier. The
transformation can be any known effective representation
provided that the L features can effectively classify the /-
dimensional profiles of positive and negative sequences.
The simplest feature is the mean of the profile that L=1.
Therefore, the sequences with m properties are represented
as an m-dimensional feature vectors.

The training dataset DNAset with m=22 properties are
represented as a 22-dimensional feature vectors. This 22
physicochemical properties is pre-identified by Auto-
IDPCPs. The set of 22 PCPs is described in table 1. The
training accuracy is 87% and the testing accuracy is 70%.
Finally, all values of the feature vectors are normalized into
[0, 1] to apply iPPC.

Because of the non-deterministic characteristic of GA,
the experimental results are the average values of 30
independent runs. In each run, we can obtain a fuzzy
classifier with the accuracy rate ACC, the number N, of
fuzzy rules, and the number N; of selected PCPs. Using the
optimal results, the test dataset DNAiset is applied to
perform. The training results and testing results are shown in
Table 2. The top six of high selected frequency PCPs in the 30
runs are shown in Table 3.

Table 2- The average values of 30 independent runs of the

proposed iPPC.
DNAset DNAiset
Mean Overall Avg. Avg. Mean Overall
ACC% ACC% N N, ACC% ACC%
81.39% 80.88% 2.97 2.57 67.27% 66.08%

Table 3- The top six of high selected frequency PCPs in the 30
runs.



Frequency | Feature No. AAindex No.

26 86 FAUJ880109

10 274 QIANS80117

6 255 PRAM900104
FAUJ880109 (CO9H) | FINA770101(C10A) |Class| CF
RI| : / / \ 0 [0.290
R2 \ / L 1 {0325
R3 / _ /\ | 0 0992

6 286 QIANS80129

6 513 JACR890101

5 91 FINA770101

B.  Comparison with decision tree

We random select one run result from iPPC independent
30 runs. The training ACC is 81%, the number N; of
selected PCPs is 2, the number N; of fuzzy rules is 3, and
testing ACC is 79%. The selected 2 PCPs are FAUJ880109
(86) and FINA770101 (91).

Using J48 in Weka3-6-4, the decision trees are built
form a set 22 PCPs and the selected 2 PCPs (FAUJ880109
(86) and FINA770101 (91)) which are shown in Fig. 3(a)
and Fig.3(b), respectively. The performance of decision
trees, training accuracy of the 22 PCPs is 77.16% and
training accuracy of the 2 PCPs is 77.67%. The decision
value is fixed float value and is not easy to understand.

If FAUJ880109 (C10H) <= 0.39017

| if BASU050102(C90) <= 0.52354

| | if SUEM840101(C7H) <= 0.39935: NonBinding
| | else SUEM840101(C7H) > 0.39935
| | | if PRAM900104(C3H) <=0.5524

| | | | if QIAN880105(C3H) <= 0.50379: NonBinding

| | | | elseQIAN880105(C3H) > 0.50379: Binding

| | | else PRAM900104(C3H) > 0.5524: Binding

| else BASUO50102 (C90) > 0.52354

| | if QIAN880129(C18H) <= 0.58801: NonBinding

| | else QIAN880129(C18H) > 0.58801: Binding

Else FAUJ880109(C10H) > 0.39017

| if PALI810105(C7H) <= 0.6434

| | if PALI810106(C4P) <= 0.44632: Binding

| | else PALJI810106(C4P) > 0.44632

| | | if QIAN880105(C3H) <= 0.42288: Binding

| | | else QIAN880105(C3H)>0.42288

| | | | if DAYM780101(C10H) <= 0.54472: NonBinding
| | | | else DAYM780101(C10H) > 0.54472: Binding

| else PALJI810105(C7H) > 0.6434: NonBinding

Number of Leaves : 11

Size of the tree : 21

(2)

IF FAUJ880109(C9H) <= 0.39017: nonBinding
IF FAUJ880109(C9H) > 0.39017: Binding
If FAUJ880109C9H) <= 0.39017
then non-binding
else hindine.

(b)
Figure 3. The decision trees are built form (a) a set 22 PCPs
and (b) the iPPC selected 2 PCPs. Cid: clustering id, A:
Alpha and turn propensities. B: Beta propensity. C:
Composition. H:  Hydrophobicity. P: Physicochemical
properties. O: Other properties.

Fig. 4 shows an example of iPPC using the 2 PCPs with
3 rules. The classifier has three fuzzy rules using two PCPs
FAUJ880109(C9H) and FINA770101(C10A), where The
training ACC = 81% and testing ACC = 79%.

Figure 4. Fuzzy rules of the selected 2 PCPs, the training
ACC is 81% and testing ACC is 79%. 0: binding, 1: non-
binding.

Using the selected 2 PCPs, the proposed iPPC can obtain
rule-based. The fuzzy rules are linguistically interpretable as
follows:

R1 If FAUJ880109(C9H) is all and FINA770101(C10A) is
all , then DNA is binding.(CF=0.290)

R2 If FAUJ880109(C9H) is {low , medium low , medium }
and FINA770101(C10A) is all , then DNA is non-
binding.(CF=0.325)

R3 If FAUJ880109(C9H) is all and FINA770101(C10A) is
{medium low , medium , medium high , high} , then
DNA is binding.(CF=0.992)

XIII.

This paper proposes an interpretable physicochemical
property classifier (named iPPC) with an accurate and compact
fuzzy rule base using a scatter partition of feature space for
DNA-binding data analysis. In designing iPPC, the flexible
membership function, fuzzy rule, and physicochemical
properties selection are simultancously optimized. The
obtained fuzzy rules are easy to interpret and analyze DNA-
binding domains for biologists.

CONCLUSION
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