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Abstract

The honeycomb rectangular torus is an attractive alternative to existing networks such as mesh-connected networks in
parallel and distributed applications because of its low network cost and well-structured connectivity. Assume that m and n
are positive even integers with n > 4. It is known that every honeycomb rectangular torus HReT(m, n) is a 3-regular bipar-
tite graph. We prove that in any HReT(m, n), there exist three internally-disjoint spanning paths joining x and y whenever
x and y belong to different partite sets. Moreover, for any pair of vertices x and y in the same partite set, there exists a
vertex z in the partite set not containing x and y, such that there exist three internally-disjoint spanning paths of
G — {z} joining x and y. Furthermore, for any three vertices x, y, and z of the same partite set there exist three inter-
nally-disjoint spanning paths of G — {z} joining x and y if and only if n = 6 or m =2.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Network topology is a crucial factor for an interconnection network since it determines the performance of
the network. One of the most popular network architectures is mesh-connected computers [7]. Each processor
is placed into a square or rectangular grid and connected by a communication link to its neighbors in up to
four directions. Some computer and communication networks have been built based on the mesh-connected
structure. The honeycomb rectangular torus, introduced by Stojmenovic [11], is an alternative to existing net-
works such as mesh-connected networks in parallel and distributed computing because of its low network cost
and well-structured connectivity. Network topology is usually represented by a graph where the vertices rep-
resent processors and the edges represent the links between processors. In this paper, for the graph definitions
and notations we follow Harary [4]. Let G = (V,E) be a graph if V is a finite set and E is a subset of
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{(u,v)|(u,v) is an unordered pair of V}. We say that V'is the vertex set and E is the edge set of G. Two vertices
u and v are adjacent if (u,v) € E. A path P of length k from x to y is a finite set of distinct vertices represented
by (v, v1, 02, ..., 1) Where x = vy, y = vy, and (v;_1,v;) is an edge of E for all 1 < i < k. We use P~ to denote
(Vky Vk—1, - .., U1, Uo). A path is a hamiltonian path if its vertices are distinct and span V. A graph G is hamiltonian
connected if there exists a hamiltonian path joining any two vertices of G. A hamiltonian cycle of G is a cycle
that traverses every vertex of G exactly once. A graph G is hamiltonian if there exists a hamiltonian cycle in G.
The hamiltonian properties are important aspects of designing an interconnection network. Many related
works have appeared in the literature [3,6,8,12,13].

A k-container Ci(x,y) in a graph G is a set of k internally vertex-disjoint paths between x and y. A k*-
container Cy-(x,y) in a graph G is a k-container such that every vertex of G is on some path in Cy(x,y). Let
G be a k-connected graph, it follows from Menger’s theorem [9] that there exists a k-container between any
two different vertices of G. A graph G is k™-connected if there exists a k*-container between any two distinct
vertices in G. Obviously, a graph G is 17-connected if and only if it is hamiltonian connected. Moreover, a
graph G is 2*-connected if it is hamiltonian. The study of k*-connected graph is motivated by the 3*-con-
nected graphs proposed by Albert et al. [1]. In [1], Albert et al. first studied those cubic 3-connected graphs
such that there exists a 3*-container between any pair of vertices. Such graphs are called globally 3*-con-
nected graphs.

Since every globally 3*-connected graph is cubic, it contains an even number of vertices. Assume that
G=(ViUV,E) is a cubic 3-connected bipartite graphs with bipartition ¥; and ¥V, such that
[Vi] = |Va| = 2. Let x and y be two distinct vertices in ¥V,. Assume that there exists a 3*-container
Cy(x,y) = {P1,P>,P3} in G. Suppose that there are a; vertices of V7 in P; for i = 1,2,3. Obviously, there
are a; + 1 vertices of V5 in P; for i = 1,2,3. Hence, there are a; + a, + a3 vertices of V7 incidence with
Py UP,UP; and there are (a; + 1)+ (a2 + 1)+ (a3 + 1) —4 = a; + a, + a3 — 1 vertices of V), incidence with
P U P, U Ps. Therefore, any cubic 3-connected bipartite graph is not globally 3*-connected.

For this reason, we say that a cubic bipartite graph G = (V1 U V5, E) is globally bi-3*-connected if there
exists a 3"-container between any pair of vertices of the different partite sets. Obviously, |V|| = |V| in any
globally bi-3"-connected with bipartition ¥; and V,. Furthermore, a globally bi-3*-connected graph is hyper
if there exists a C3-(x,y) in G — {z} for any three vertices x,y, and z of the same partite set of G. A globally bi-
3*-connected graph is strong if for any x and y in the same partite set of G, there exists a vertex z of the same
partite set as the one that contains x and y such that G — {z} has a Cj:(x,y). Obviously, any globally bi-3*-
connected is strong if it is hyper. The concept of globally bi-3*-connected, hyper globally bi-3*-connected,
and strong globally bi-3"-connected was proposed by Kao et al. [5]. Tt is proved that G — {e} is hamiltonian
for any e € E(G) if G is globally bi-3"-connected. Moreover, G — {x,y} is hamiltonian for any x € ¥, and
y € V, if G is hyper globally bi-3"-connected.

Throughout this paper, we assume that m and n are positive even integers with n > 4. For any two positive
integers r and s, we use [r], to denote »(mods). We use the brick drawing, proposed in [11], to define the hon-
eycomb rectangular torus. The honeycomb rectangular torus HReT(m, n) is the graph with the vertex set
{6, )0 <i<m0<j<n} such that (i,j) and (k,/) are adjacent if they satisfy one of the following
conditions:

li=kandj=[/+1];
2. j=1land k=[i+1], if i +/ is odd; and
3.j=1land k=1[i—1],if i+ is even.

For example, the graph HReT(6,8) is shown in Fig. 1. It is easy to see that HReT(m, n) is a bipartite graph
with bipartition V, and V; where Vo= {(i,j)|i+jiseven} and V, = {(i, )i+ is odd}. Moreover,
Vol = [V1].

There are many studies on the properties of the honeycomb rectangular torus [3,8,11]. Stojmenovic [11]
showed that the network cost of the honeycomb rectangular torus, which is defined as the product of degree
and the diameter, is better than the other families based on mesh-connected computers and tori. Megson et al.
[8] established the hamiltonian property of honeycomb torus. In particular, Cho and Hsu [3] proved that
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Fig. 1. The honeycomb rectangular torus HReT(6,8).

HReT(m, n) — e is hamiltonian for any edge e € E(HReT(m, n)). Furthermore, HReT(m,n) — {x,y} is hamil-
tonian for any x € Voand y € V' if n > 6.

Based on Menger’s Theorem [9], the 3-connected property of the honeycomb rectangular torus HReT (m, n)
can be derived. In this paper, we study the globally bi-3*-connected property of the honeycomb rectangular
torus HReT(m, n). We prove that any honeycomb rectangular torus HReT(m, n) is strongly globally bi-3*-con-
nected. Moreover, HReT(m, n) is hyper globally bi-3"-connected if and only if n = 6 or m =2.

2. A basic algorithm

In this section, we present an algorithm. The purpose of this algorithm is to extend a 3"-container
Cy(x,y) = {P1, P2, P3} of HReT(m,n) to a 3"-container of HReT (m + 2, n).

Algorithm 1. For 0 <i <m — 1, let f; : V(HReT(m,n)) — V(HReT(m + 2,n)) be a function so assigned

: (k,1) fizk=20
fi(k7 Z) = .
(k+2,1) otherwise.

For 0<i<m-—1 and 0<jk<n—1, let Q,j,[j+4k|,) denote the path ((i,[/],),([j+1],),
(G, j+2,),...,j+k],)) in HReT(m,n). Suppose that Cs(x,y) is a 3-container of HReT(m,n) containing
at least one edge joining vertices of column i to vertices of column [i+ 1] ; ie., ((i,/),([i+1],,/)) in
E(C3(x,y)) for some 0<j<n—1. Let 0<ky<k <---<k <n—1 be the indices such that ((i,%;),
(i +1,k;)) € E(Cs(x,y)). We construct C5(x,y) as follows:

Let Cs,(x, y) be the image of C3(x,y) — {((i,k;), (i + 1,k;))|0 < k; < n — 1} under f;. We set jr = [j],,,, and
define 4; as

<(i, [kj}n)’ ([l + 1]m+27 [kj]n)7 Q[i+1]m+z([kj]n7 [kj’ - 1]n)7 ([Z + 1]m+27 [k/” - 1],,)7
(1 + 200 by = 10,), Oty (Wl [y = 10,), ([ + 20, (K], ([ 3,40 )

Obviously, 4/ is a path joining (i, [k;],) and (i + 3, [k;],) for 0 < j < ¢. It is easy to see that edges of C;;(x,y)
together with edges of 4, with 0 < j < ¢ form a 3-container Cj,(x,y) of HReT(m + 2,n). For example, a 3"-
container C3-((0,0), (2,2)) of HReT(4,12) — {(1,7)} is shown in Fig. 2a. The corresponding C%,((0,0), (2,2))
is shown in Fig. 2b. We have the following lemma. '

Lemma 1. Suppose that Cs(x,y) is a 3-container of HReT(m,n) containing at least one edge joining vertices of
column i to vertices of column [i + 1], Then C},(x,y) forms a 3-container of HReT(m + 2,n) containing at least
one edge joining the vertices of column [ to the vertices of column [l + 1], for any I € {i,[i+1],,[i+2],}
Moreover, Ci. (x,y) is a 3"-container of HReT(m+2,n) if Cy(x,y) is a 3"-container of HReT(m,n).
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Fig. 2. Illustrations for Algorithm 1.

Furthermore, Cy ;(x,y) is a 3"-container of HReT(m+2,n)—{fi(2)} if Cy(x,y) is a 3"-container of
HReT(m,n) — {z}.

Lemma 2. Suppose that C;(x,y) is a 3-container of HReT(2,n) containing at least one edge in
{((0,), (1,/))1j is odd} and at least one edge in {((0,),(1,7))|j is even}. Then C;,(x,y) with i € {0,1} forms
a 3-container of HReT(4,n) containing at least one edge joining the vertices of column I to the vertices of column
[+1 for any I € {0,1,2,3}. Moreover, C. (x,y) is a 3*-container of HReT(m + 2,n) if Cy(x,y) is a 3"-con-
tainer of HReT(m,n). Furthermore, Cy. ,(x,y) is a 3"-container of HReT(m +2,n) — {f;(z)} if Cx(x,y) is a
3*-container of HReT(m,n) — {z}. '

With Lemmas 1 and 2, we say a 3-container C3(x,y) of HReT (2, n) is regular if C5(x,y) contains at least one
edge in {((0, ), (1,7))|j is odd} and at least one edge in {((0, /), (1,/))|jis even}. Assume that m > 4. We say a
3-container Cs(x,y) of HReT(m, n) is regular if C3(x,y) contains at least one edge joining vertices in column i
to vertices in column [i + 1], for 0 <i < m — 1. We have the following lemma.

Lemma 3. Suppose that Cs(x,y) is a regular 3"-container for HReT(m,n). Then Cg*vi(x,y) is a regular 3*-
container for HReT(m + 2,n) for every 0 < i < m. Moreover, suppose that Cs-(x,y) is a regular 3*-container
for HReT(m,n) —{z}. Then C% (x,y) is a regular 3"-container for HReT(m+2,n) —{fi(z)} for every
0<i<m

3. The globally bi-3"-connected properties of HReT(2,n)

For h={0,1} and 0<j,k<n—1, let R,(j,[j+k],) denote the path ((h,[j],),(h [j+1],),([h+1],,
U 1,)s (10, 5+ 2L), (G +2,)s o (e + 1, [+ k= 11,), (B [+ & = 10,), (A, [/ + £,)) in HReT(2, n).

Lemma 4. Let x and y be any two vertices of HReT(2,n) = (Vo U V1,E) withx € Vy and y € V. Then there
exists a regular 3*-container Cs+(x,y) of HReT(2,n). Hence HReT(2,n) is globally bi-3"-connected.

Proof. Without loss of generality, we may assume that x = (0,0) and y = (i, /). In order to prove this lemma,
we will construct a regular 3*-container Cs-(x,y) = {Py, P», P} in HReT(2,n). We have the following cases:

Case 1: i=0 and j is odd. The corresponding paths are:

Py = <(0’0)’Q0(0>])7(0a])>7
P, <(07])7R0(J>0)7(070)>,
P3 <(070)7(170)?Q1(07j)ﬂ(15.])?(03.])>
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Case 2: i=1 and j is even.
Case 2.1: j=0. The corresponding paths are:

P1={(0,0),0(0,n = 2),(0,n=2),(1,n=2),07"(0,n = 2),(1,0));
Py = ((0,0),(1,0));
P; ={(0,0),(0,n—1),(1,n—1),(1,0)).
Case 2.2: j > 0. The corresponding paths are:
Pr = ((0,0),0(0,), (0,), (1,.));
Py =((1,),(1,j+1),(0,j 4+ 1), Ro(j + 1,0), (0,0));
P53 =((0,0),(1,0),0,(0,)), (1,/))-

Hence HReT(2,n) is globally bi-3"-connected. See Fig. 3 for illustrations. [

Lemma 5. Let x,y, and z be any three different vertices of HReT(2,n) = (Vo U V1, E) in V. Then there exists a
regular 3"-container Cy-(x,y) of HReT(2,n) — {z}. Hence HReT(2,n) is hyper globally bi-3*-connected.

Proof. Without loss of generality, we may assume that x = (0,0), y = (i, j), and z = (k, /). In order to prove
this lemma, we will construct a regular 3*-container Cs-(x,y) = {Pl,Pg,P3} in HReT(2,n) — {z}. We have the
following cases:

Case 1: i=0. Then j is even.
Case 1.1: k=0. Then / is even. By the symmetric property of HReT(2,r), we may assume that / < j. The
corresponding paths are:

P =((0,/),0(/,0), (0,0));
P2:<(0a0)vR0(07l ) (O I - ) ( l_l) (171)7(1’l+1)7(071+1)7R0(Z+laj>’(0,j)>§
Py = <(07j)7 (17j)7Q1(ij)7 (170)’ (070)>

Case 1.2: k=1. Then / is odd. By the symmetric property of HReT(2,#), we may assume that / < j. The
corresponding paths are:

?—(--0
via—? f----@
¥ i -
----¢ ----@
S
X o— xo—y x —
Case 1 Case 2.1 Case 2.2

Fig. 3. Illustrations for Lemma 4.
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Fig. 4. Illustrations for Lemma 5.

((0,/),0,(4,0), (0,0));
= <(0 ) RO(Oa 1)7(07 l)aRO(lvf)v(ovf»a

<(0 ) (17])7 Ql(ja 0)7 (17 0)7 (07 0)>
Case 2: i=1. Then j is odd. k =0. Then / is even. By the symmetric property of HReT(2,n), we may
assume that / < j. The corresponding paths are:

Py =((1,)),(0,),00(/,0),(0,0));
:<(O 0) RO(O [— 1) (0 l_1)7(171_1)7(171>7(171+1)7(Ovl+1)7R0(l+1’j_1)7(Ovj_1)7(17j_1)7(1’j)>§

P :<( 7]) Ql( ) ) (170)7(070)>

Hence HReT(2,n) is hyper globally bi-3*-connected. See Fig. 4 for illustrations. [

4. The globally bi-3"-connected properties of HReT(4,n)
In this section, we need the following path patterns. For 0 <i<m—1and 0 < j,k <n—1, we set

S () = ([l 1), (= 15 [0, (= 10, [+ 10,), (= 20,0 [ 4 10,0, (1 = 21, [+ 20,), ([ = 31,0 [+ 21,),
(=3, +31,), ([ =4, [ +31,), ([F = 4],,, [/ +21,));
SEG) = (s U1 (4 10, U1 (410, B+ 10,0, (1 + 20, [ 4 10, (420, [+ 20,),
([ +3],,, [/+2] ) ([i+31,, 1 +31,), ([l+4] U431, ([ + 4, U+ 20,))
S0, k) = ([, [1,): 8, O ([ = 4, [+ 21,), Sy, (U +21,), ([ = 8],,. [+ 4],), -
(I =20k = j = 2)),,» [k = 21,), S sy, (e = 21,), ([ = 2(k = ))),,, [K], )>;

and

St G k) = (([1],0: 1) S, (), ([ 4 41,00 U 4 21,0, S, (U +20), ([ 48, [ 41, -+
([ 420k = j = 2)) [k = 21,), S ooy, (K = 21,), ([ + 20k = ))],,» [K],)-

See Fig. 5 for illustrations.
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Fig. 5. The path patterns Q,(4,2), Ro(4, 1), S5(3), S5(0,4), S¥(2), and S5(1,5).

Lemma 6. Let x and y be any two vertices of HReT(4,n) = (Vo UV, E) withx € Vo and y € V. Then there
exists a regular 3"-container Cs(x,y) of HReT(4,n). Hence HReT(4,n) is globally bi-3*-connected.

Proof. Without loss of generality, we may assume that x = (0,0) and y = (i, /). In order to prove this lemma,
we will construct a regular 3"-container Cs:(x,y) = {Py, P,, P;} in HReT(4, n). By the symmetric property of
HReT(4,n), we may assume that i € {0,1,2}. Hence we have the following cases:

Case 1: Suppose that i € {0,1}. By Lemma 4, there exists a regular 3"-container Cs((0,0),(i,)) of
HReT(2,n). By Lemma 3, C%. ,((0,0), (i,/)) forms a 3"-container of HReT(4, n).
Case 2: i=2. Then j is odd.

Case 2.1: Suppose that j = 1. The corresponding paths are:
Py =((0,0),(0,n —1),(1,n = 1),0;'(0,n - 1),(1,0),(2,0), (2, 1));
Py ={(0,0),05(0,n —2),(0,n —2),(3,n = 2), 05" (1,n = 2),(3,1), (2, 1));
Py = {(0,0),(3,0),(3,n—1),(2,n —1),0," (1,n — 1), (2, 1)).
Case 2.2: Suppose that j # 1. The corresponding paths are:
P =((0,0),0,(0,j = 1),(0,j = 1),(3,j = 1), (3 N2, ')>'
= (0, ) (3,00, 05(0./ — 2),(3,/ = 2),(2,j = 2), 05 (0, — 2),(2,0),(1,0), 0, (0, - 1),
(Lj=1),(2,/ = 1),(2,)
= {(0,0), (0, — 1),8,"(j +3,n = 1),(0,/ +3), (0, +2), (1, +2), (1,j + 1), (1, ), (0,/), (0, + 1),
(B.J+1), (37j+2),(2,j+2)»(2,j+ 1),(2,/))-

Hence HReT (4, n) is globally bi-3"-connected. See Fig. 6 for illustrations. [

Lemma 7. Let x,y, and z be any three different vertices of HReT(4,6) = (Vo UV, E) in V. Then there exists a
regular 3"-container Cy-(x,y) of HReT(4,6) — {z}. Hence HReT(4,6) is hyper globally bi-3"-connected.

Proof. Without loss of generality, we may assume that x = (0,0), y = (i, ), and z = (k, /). The corresponding
regular 3*-container Cs-(x,y) = {Py, P2, P;} in HReT(4,6) — {z} are listed below.

Hence HReT(4,6) is hyper globally bi-3*-connected. [
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Case 2.2

Case 2.1

Fig. 6. Illustrations for Lemma 6.
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y z Cy(x,)

(1.3) (2.0) ((0,0), (0, 1), (1,1),(1,0),(1,5),(1,4),(1,3))

((0,0),(3,0), (3,1),(2,1),(2,2),(1,2),(1,3))
((0,0),(0,5),(0,4),(3,4),(3,5),(2,5),(2,4),(2,3),(3,3),(3,2),(0,2),(0,3),(1,3))

(1.3) (2.2) ((0,0),(0,5),(1,5), (1,4),(1,3))
((0,0),(3,0),(3,5),(2,5),(2,4),(2,3),(3,3),(3,4),(0,4), (0,3), (1,3))
((0,0),(0,1),(0,2),(3,2),(3,1), (2, 1),(2,0), (1,0), 0,(0,3), (1,3))

(1.3) (2.4) ((0,0),(0,5),(1,5), (1,4),(1,3))
((0,0),(3,0),(3,5),(2,5),(2,0),(1,0),0,(0,3),(1,3))
((0,0),(0,1),(0,2),(3,2),(3,1),(2,1),(2,2),(2,3),(3,3),(3,4),(0,4), (0,3), (1,3))

(2,0) (0.2) ((0,0),(3,0), 05(0,3),(3,3), (2,3),(2,4),(1,4),(1,3),(0,3),(0,4),(3,4), (3,5), (2,5), (2, 0))
((0,0),(0,5),(1,5),(1,0), (2,0))

((0,0), (0, 1), (1,1),(1,2),(2,2), (2, 1), (2,0))
(2.2) (0.2) ((0,0), (0, 1), (1,1),(1,0),(2,0), (2, 1), (2,2))
((0,0),(3,0),05(0,3),(3,3), (2,3),(2,2))
((0,0),(0,5),(1,5), (1,4),(2,4),(2,5), (3,5),(3,4),(0,4),(0,3),(1,3), (1,2),(2,2))

2.2) (0.4) ((0,0),(0,5), (1,5), (1,0), (2,0), (2,5), (3,5), 05" (2.5, (3,2), (0,2), (0,3),(1,3), (1,4), (2,4), (2,3),(2,2))

((0,0),(0,1),(1,1),(1,2),(2,2))
((0,0),(3,0), (3,1),(2,1),(2,2))

(2.2) (L1) ((0,0),(0,5),(1,5),(1,0),(2,0), (2, 1), (2,2))
<(O/O)’(3~0)Q3(073)7(373)7(23)7(272)>
((0,0),0(0,4),(0,4), (3,4), (3,5), (2,5), (2,4), (1,4), (1,3), (1,2), (2,2))

Lemma 8. Assume that n > 8. Let x,y, and z be any three different vertices of HReT(4,n) = (VoU V|, E) in V.
Then there exists a regular 3*-container Cs-(x,y) of HReT(4,n) — {z}. Hence HReT(4,n) is hyper globally bi-3*-
connected.

Proof. Without loss of generality, we may assume that x = (0,0), y = (i, ), and z = (k, /). In order to prove
this lemma, we will construct a regular 3*-container Cs-(x,y) = {P, P, P3} in HReT(4,n) — {z}. By the sym-
metric property of HReT(4,n), we may assume that i € {0, 1,2}. We have the following cases:

Case 1: Suppose that i€ {0,1} and z€{0,1}. By Lemma 5, there exists a regular 3*-container
C3((0,0), (7,/)) of HReT(2,n) — {(k,1)}. By Lemma 3, C5 ((0,0), (i,/)) forms a 3"-container of
HReT(4,n) — {(k,])}.

Case 2: i=0 and k=2. Then j and / are even. By the symmetric property, we have the following
subcases.

Case 2.1: Suppose that j =4 and /= 2. The corresponding paths are:

P,

((0,0),04(0,4),(0,4));
Py =((0,0), (0,7 — 1), (0,7 —2),(3,n—2),05'(4,n - 2),(3,4),(0,4));
P; = ((0,4),0y(4,n—3),(0,n—3),(1,n—3),0,'(0,n —3),(1,0), (1,n — 1), (1,n — 2),(2,n — 2),
0,'(3,n—2),(2,3),(3,3),(3,2),(3,1),(2,1),(2,0),(2,n — 1), (3,n — 1), (3,0), (0,0)).
Case 2.2: Suppose that n —4 > j > 2 and [/ = j + 2. The corresponding paths are:

P = <(O’O)’QO(07J)a (07])>7
Py, = <(O’O)’ (3’0)’Q3(07j)7 (35])’ (O,]»,
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Py =((0,),00(/,j +4),(0,j+4),(3,/+4),3,j+5),(2,/+5),(2,) +4),(2,/ +3),
(3j+3),(3,+2), 3,7+ 1,2, +1),0,'(0,j +1),(2,0),(1,0),0,(0,/ + 5),
(1,j+5),(0,j+5),(0,j+6),(3,/+6),3,/ +7),(2,/ +7),(2,j + 6),
SE(j4+6,n—2),(2,n—2),(1,n—2),(1,n—1),(0,n—1),(0,0)).

Case 2.3: Suppose thatn —6 > j > 2 and n —4 > [ > j + 2. The corresponding paths are:
((0,0),00(0,), (0,/));

((0,0),(3,0), 05(0,/), (3,1, (0,/));

(

1

(L), (L +1), (1, +2), (3,7 +2), (3, + 1), (2, +1),0,'(0,j + 1), (2,0),
,0),01(0,j+2),(1,j+2),(2,j+2),(2,j+3),(3,j+3), (3,7 +4),(0,j + 4),
0,j43),86(+3,1-3),(0,1=3),(1,1=3),(1,1 —2),(2,1 - 2),(2,1 - 1),
31-1),3,0),3,14+1),(2,1+1),(2,1+2),(2,1+3),(3,]+3),(3,1 + 2),

0,14+2),0,' (1 —1,14+2),(0,1—1),(1,1—1),0,(1 — 1,1+ 3),(1,1+3),
0,71+3),(0,/+4),3,1+4),S5(I+4,n—2),2,n—2),(1,n—=2),(1,n - 1),
0,n—1),(0,0)).

Case 2.4: Suppose that n > 8 and j =/ > 2. The corresponding paths are:

P = ((0.0).0,(0.)). (0.7):

Py=((0,0),(3,0),05(0,j = 1),(3,/ = 1),(2,j = 1),0;(0,/ = 1),(2,0), (1,0),
010,/ + 1), (1, +1), (0,7 + 1), (0,/));

Py =((0,),(3,/), 3, +1),(2,j+1),(2,j+2),(1,j+2),(1,j+3),(1,j +4),(2,j + 4),
(2,/43),3,/+3),3,/+2),(0,j+2),(0,j+3),(0,j +4), 3,/ +4), 3,/ + 3),
(2,j+5),(2,j+6),(1,j+6),(1,j+5),8(j+5n-75),(1,n—5),(0,n = 5),

( —4),3,n—4),(3,n—-3),2,n—3),2,n—2),2,n—1),3,n—1),(3,n —2),
(0,n=2),(0,n—3),(l,n—3),(1,n—=2),(l,n—1),(0,n — 1),(0,0)).
Case 2.5: Suppose that n =8, j =2, and /= 2. The corresponding paths are:
= ((0,0),(0,1),(0,2));
=((0,2),(0,3),(0,4),(3,4),05(4,7),(3,7),(2,7),(2,0), (2,
=((0,2),(3,2),(3,3),(2,3),0,(3,6),(2,6),(1,6), (1,7), (1,
(1,5),(0,5),(0,6),(0,7), (0,0)).
Case 2.6: Suppose that n =38, j=4, and / = 4. The corresponding paths are:
P ={(0,0),0(0,4),(0,4));
= ((0,0),(0,7),(1,7), (1,0), 0,(0,6),(1,6),(2,6), (2,5),(3,5), (3,4), (0,4));

Py = ((0,0),(3,0),05(0,3), (3,3), (2,3), 03" (0,3), (2,0), (2,7), (3,7), (3,6), (0,6),

(0,5),(0,4)).

,.\AAA,_\,.\

1),(3,1),(3,0),(0,0));
O)>Q1<Oa S)a

Case 3: i=1 and k=2. Then j is odd and / is even. By the symmetric property, we have the following
subcases.
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Case 3.1: Suppose thatn —5>j > 1 and n —4 > [ > j+ 2. The corresponding paths are:

((0,0), 05(0, ). (0,/), (1. /));

((0,0),(3,0),05(0,), (3,), (2,), 0 (0, ), (2,0), (1,0), 0,(0, /), (1, /)):

(L), (1,4 1), (2, 4+ 1), (2, +2), (3, +2), 3,/ + 1),85(/ + 1,1 = 2), (3,1 = 2),
0,1—2),(0,1—1),(1,1=1),(1, 1), (1, 1+ 1), (1,1 +2),(2,1+2), (2,1 +1),(3, [ + 1),
3,1),(0,1), (0,14 1),(0,1+2), (3,1+2),(3,1+3),(2,1+3), (2,1 +4), (1,1 + 4),

1,14+3), SL(1+3 n—75),(1,n=5),(0,n—=15),(0,n—4),3,n—4),(3,n—3),
2,n—3),2,n-2),2,n—1),3,n—1),3,n—2),(0,n—2),(0,n—3),(1,n — 3),
I,n—2),(1,n—1),(0,n—1),(0,0)).

Case 3.2: Suppose thatn —5 > j > 1 and / = j + 1. The corresponding paths are:

Pr = ((0,0),0(0,), (0,) (1,.));

Py =((0,0),(3,0),05(0,), (3,)), (2,/), 5" (0., (2,0, (1,0), 0, (0., (1,));

Py =((1,7), Q10,7 +3), (1,7 +3), (2, +3),(2,j +2),3,/+2),3,j +1),(0,j + 1),
(0,/42),(0,j43),3,/+3),3,/+4), (2,7 +4),(2,/+5), (1,j +5), (1,j + 4),
St(j+4,n—5),(1,n—5),(0,n—35),(0,n—4),(3,n—4),(3,n—3),(2,n—3),
2,n—-2),2,n—-1),3,n—1),(3,n—=2),(0,n —2),(0,n—3),(1,n—3),(l,n—2),
(I,n—1),(0,n—1),(0,0)).

Case 3.3: Suppose that n — 5> j > 1 and / = n — 4. The corresponding paths are:
P =((0,0),0(0,/),(0,)), (1,/));
=((0,0),(0,n = 1), (1,n = 1),(1,0),0,(0,), (1,/));

Py=((1.)),(Lj+1),(2.j+1),(2,/+2),(3,/+2).(3,j+ 1),855( + 1,n = 6),(0,n - 6),
(0,n—=5),(1,n—5),0,(n—5n-2),(L,n—2),2,n—2),(2,n—3),(3,n—3),
(3,n—4),(0,n—4),(0,n—3),(0,n—2),3,n—2),(3,n—1),(2,n—1),(2,0),
(2,1),(3,1),(3,0),(0,0)).

Case 3.4: Suppose that j =n — 5 and [/ = n — 4. The corresponding paths are:

(
(
(
(
(

((0,0),04(0,n =5),(0,n = 5),(1,n = 5));
((0,0), (0,n = 1), ( —1),(1,0),0,(0,n = 5),(1,n
((1,n = ) Oi(n—5,n-2),(1,n=2),(2,n=2),(2
(0,n—4),(0,n=3), ( =2),3,n-2),3,n-1)
(2,n=5),(3,n=5),05'(0,n = 5),(3,0),(0,0)).

Case 3.5: Suppose that n —5 > j > 1 and / = n — 2. The corresponding paths are:

Py = <(0’0)5QO(07J)a(07J)a(1’])>7
Py, = <(030)a (370)7 (37'1 - 1)7(27’1 - 1), (2,0)7 (170)7Q1(Ovj)7 (17])>7

= 5))
,n—13),(3,n—3),(3,n—4),
,(2,n=1),(2,0),0,(0,n = 5),
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Py=((1,/),(Lj+1),(1,j+2),(0,j+2),(0,j+1),(3,j+ 1), 05" (1,j + 1),(3,1), (2, 1),
0,(1,j+2),(2,j+2),3,j+2),(3,j+3),(0,j+3),(0,j+4),(1,j +4),(1,j + 3),
S¥G+3,n—6),(1,n—06),(2,n—6),(2,n—15),3,n—5),(3,n —4),(0,n —4),
(0,n—3),(0,n—2),(3,n—2),(3,n=3),(2,n—3),(2,n—4),(1,n —4),
O/ (n—4,n—-1),(1,n—1),(0,n—1),(0,0)).

Case 4: i=2and k =0. Then j and / are even. By the symmetric property, we have the following subcases.
Case 4.1: Suppose that j =0 are / > 0. The corresponding paths are:

= ((0,0),(0,n = 1), (1,n = 1),(1,0), (2,0));
= ((0,0),(0,1),(1,1),(1,2),(2,2), (2, 1), (2,0));
=((0,0),(3,0), (3,1),(3,2),(0,2),(0,3),(1,3),(1,4),(2,4),(2,3),
55(3,1' - 1,2 -1,G=1,3.0), 3+ 1), 2,7+ 1),(2,j+2),(1,j +2),
(1,j+1),8%+1,n=3),(1,n—3),(0,n—3),(0,n—2),(3,n —2),(3,n— 1),
(2,n—1),(2,0)).

Case 4.2: Suppose that / > j > 0. The corresponding paths are:

(0,0),(0,1), (1, 1), Q(1,/), (1,/), (2,/));
(0,0),(3,0), (3, 1), (2, 1), (1,/), (2,/));
={(2,), 2,/ +1),(2,j+2),(1,j+2),(1,j+1),(0,j +1), 05" (2, + 1),
(0,2),(3,2),05(2,j+2),(3,j+2),(0,j+2),(0,j +3), (1,j +3), (1, + 4),
(2,j+4),(2,j+3),85G+3,1-1),2,1 - 1),(3,1-1),(3,1),3,/ + 1),
(2,14 1),(2,1+2),(1,14+2), (1,1 +1),8(I+1,n—1),(1,n—1),(0,n — 1),(0,0)).
Case 4.3: Suppose that j = [ > 0. The corresponding paths are:

(
(

= <(070)’QO(07J_ 1)7(07j_ 1)7 (lvj_ 1)’Q;1(0’j_ l)a (LO)a (270)7Q2(07j)7 (27])>7
<<0 0) (370)7Q3(0a]+ 1), (3',]'+ 1)7 (27j+ 1)7 (27])>7
Py = {(2,/),85(j,n—1),(2,n=2),(1,n—2),(1,n—1),(0,n — 1),(0,0)).

Case 5: i=2 and k= 1. Then j is even and / is odd. By the symmetric property, we have the following
subcases.

Case 5.1: Suppose that j =0 and /= 1. The corresponding paths are:

:<<070 7( n_l) (1 n—l),(l,O),(2,0)>;
=((0,0),(0,1),(0,2),(3,2),(3,1),(2,1),(2,0));
=((0,0

(1a2)7 27 ) ( ) ( ,3),Q3(3,n—3),(3,n—3),(2,n—3),Q;1(4,n—3),
4

)
)
),(3,0),(3,n=1),(3,n = 2),(0,n = 2),0;" (3,1 = 2),(0,3),(1,3),
(
(2,4),(1,4),0,(4,n - 2),(1,n = 2),(2,n - 2),(2,n — 1),(2,0)).
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Case 5.2: Suppose that j=0 and n — 1 > [ > 1. The corresponding paths are:

Py =<(00) (0,2 —1),(1,n—1),(1,0),(2,0));

=((0,0),(3,0), (3,1),(2,1),(2,0));

= ((0,0), (0, 1), (1, 1), (1, ),( 12),(2,3),(3,3),(3,2),85(2,/ = 3),(3,/ = 3), (0, = 3),
(0,7 =2), (1,7 =2),(Lj = 1);(2,7 = 1),(2,/), 2,/ + 1), (1,7 + 1), (1,j +2),

(1,7 +3), (2,7 +3),(2,j+2),(3,j+2),05' (G = 1,j+2),3,j = 1),(0,j = 1),

QU= 1,7+3),(0,j+3),(3,7+3),3,/+4),(2,j+4),(2,/ +5),(1,j +5),
(1,j+4),85( +4,n—3),(1,n = 3),(0,n — 3),(0,n — 2),(3,n — 2),(3,n — 1),
(2,n—1),(2,0)).

Case 5.3: Suppose that n — 1 > [ > j+ 2 and j > 0. The corresponding paths are:

P =((0,0),(0,1), (1, 1), &, (1,/), (1,.), (2,/));

Py =((0,0),(3,0),(3,1),(2,1), 0,(1,) (2,));

Py =((2,),(2,j+1),(3,j+1),(3,/),85(.1 =3),(3,1 = 3),(0,1 = 3),(0,1 = 2), (1,1 = 2),

1

(1,1=1),(2,1—1),(2, )(21+ ), (LI4+1),(1,142),(1,143),(2,1+3),(2,1+2),
(3,1+42),(3,1+1),(3,1),(3,1 = 1),(0,1 = 1),0,(1 — 1,1+ 3),(0,1+3), (3,1 + 3),
(3,1+4),(2,1+4),(2,1+5), (1,l+5),(1,1+4),Sf(l+4,n71),(1,1171),
(0,n—1),(0,0)).

Case 5.4: Suppose that n —2 > j and [/ = n — 1. The corresponding paths are:
P =((0,0),00(0,j + 1), (0, + 1), (1,j+1),(1,j 4+ 2),(2,j +2),(2,) + 1), (2,)));
=((0,0),(3,0),(3,n = 1),(2,n = 1),(2,0), (1,0), 0,(0,), (1,), (2,/));
Py=((2,/),07" (1)), (2,1),(3,1), 05(1,j +2),(3,j +2), (0, +2), (0, + 3), (1, + 3),
(1,j+4),(2,j+4),(2,j+3),85(+3,n—3),(2,n—3),(3,n—3),(3,n - 2),
(0,n—2),(0,n—1),(0,0)).
Case 5.5: Suppose that j =n — 2 and [/ = n — 1. The corresponding paths are:
P, ={(0,0),(0,n—1),(0,n—2),(0,n—3),(1,n—3),(1,n—2),(2,n — 2));
P, ={(0,0),0,(0,n—4),3,n—4),0;(n—4,n—1),2,n—1),(2,n — 2));
Py = ((0,0),(3,0),05(0,n — 5), (3,1 — 5), (2,1 — 5),0;" (0. — 5),(2,0),0,(0,n — 4),
(Ln—4),2,n—4),(2,n—3),(2,n—2)).
Hence HReT (4, n) is hyper globally bi-3"-connected for n > 8. See Fig. 7 for illustrations. [J

5. The globally bi-3"-connected properties of HReT(m,n)
Lemma 9. Assume that m and n are positive even integers with m,n = 4. Let x and y be any two vertices of

HReT(m,n) = (VoUV,E) with x€Vy and y € V. Then there exists a regular 3"-container Cy(x,y) of
HReT(m,n).



5586 Y.-H. Teng et al. | Information Sciences 177 (2007) 5573-5589

Case 3.5
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Fig. 7. Illustrations for Lemma 8.

Proof. Without loss of generality, we may assume that x = (0,0) and y = (i, /). In order to prove this lemma,
we will construct a regular 3*-container Cs-(x,y) = {P;, P», P3} in HReT(m, n). We prove the lemma by induc-
tion on m. With Lemma 6, our theorem holds for m = 4. Now, we consider the case that m > 6.
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Suppose that i < m — 2. By induction, there exists a regular 3*-container Cs:(x,y) = {P;,P,,P3} in
HReT(m — 2,n). By Lemma 3, C%, ;((0,0),(i,/)) forms a 3"-container of HReT(m,n). Suppose that
i = m — 2. By induction, there exists a regular Cs-(x, (i — 2,/)) = {P1, P2, P3} in HReT(m — 2,n). By Lemma
3, C51((0,0),(3,/)) forms a 3*-container of HReT(m,n). O

Lemma 10. Assume that m and n are positive even integers with m = 4 and n > 6. Let x,y, and z be any three
different vertices of HReT(m,n) = (Vo UV ,E) in V. Then there exists a regular 3*-container Cy(x,y) of
HReT(m,n) — {z}.

Proof. Without loss of generality, we may assume that x = (0,0), y = (i, ), and z = (k, ). In order to prove
this lemma, we will construct a regular 3*-container Cs-(x,y) = {Py, P2, P;} in HReT(m,n) — {z}. We prove
the lemma by induction on m. With Lemmas 7 and 8, our theorem holds for m = 4. Now, we consider the case
that m > 6.

Suppose that i <m —2 and k < m —2. By induction, there exists a regular 3*-container Cj-(x,y) =
{P1,P2,P3} in HReT(m—2,n)—{z}. By Lemma 3, Cj , 5((0,0),(i ) forms a 3"-container of
HReT(m, n) — {z}. Suppose that i < m —2 and k > m — 2. By induction, there exists a regular 3*-container
C3(x,y) = {P1,P2,P3} in HReT(m — 2,n) — (k — 2,1). By Lemma 3, C’. ,((0,0), (i, )) forms a 3"-container of
HReT(m,n) — {z}. Suppose that i = m — 2 and k < m — 2. By induction, there exists a regular 3*-container
Cx(x,(i = 2,/)) = {P1,P2,P3} in HReT(m — 2,n) — {z}. By Lemma 3, C5 ,((0,0), (i, )) forms a 3*-container
of HReT(m,n) — {z}. Suppose that i > m —2 and k > m —2. By induction, there exists a regular 3"-
container Cy: (x, (i — 2, j)) = {P1, P2, P3} in HReT(m — 2,n) — (k — 2,1). By Lemma 3, C- ;((0,0), (i, /)) forms
a 3*-container of HReT(m,n) — {z}. O '

Theorem 1. Assume that m and n are positive even integers withn = 4. Then HReT(m,n) is strongly globally bi-
3*-connected. Moreover, HReT(m,n) is hyper globally bi-3"-connected if and only if n = 6 or m = 2.

Proof. With Lemmas 4 and 9, HReT (m, n) is globally bi-3*-connected if m,n are even integers with n > 4.

By Lemmas 5 and 10, HReT (m, n) is hyper globally bi-3"-connected if m,n are even integers with n > 6 or
m=72.

Now we consider the case HReT(m,4) with m is an even integer and m > 4. We first prove that such
HReT(m,4) is not hyper globally bi-3*-connected.

To prove this fact, let x = (1,1), y=(1,3) and z= (0,2). Suppose that there exists a 3"-container
Cy(x,y) = {P1,P2,P;} of HReT(m,4) —{z}. Since degyperima--(v)=2 for ve{(0,1),(0,3),(3,2)},
((1,1),(1,2),(1,3)) and ((1,1),(0,1),(0,0),(0,3),(1,3)) are two paths in Cz(x,y). Without loss of
generality, we assmue that P; = ((1,1),(1,2),(1,3)) and P, = {(1,1),(0,1),(0,0),(0,3),(1,3)). Since
degHReT(mA)fz((lv 1)) = degHReT(mA)fz((l’ 3)) = 33 ((17 3)7 (170)) and ((170)7 (la 1)) are edges in Ps. Thus
Py ={((1,1),(1,0),(1,3)). Obviously, {P; UP, UP3} does not span HReT(m,4) — {z}. See Fig. 8 for an
illustration. Hence HReT(m,4) is not hyper globally bi-3"-connected.

Fig. 8. Illustration for Theorem 1.
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Although any HReT(m,4) with m is an even integer and m > 4 is not hyper globally bi-3"-connected, we
will prove that such HReT(m, 4) is strongly globally bi-3"-connected by induction.

We first prove that HReT(4,4) is strongly bi-3*-connected. Let x and y be any two different vertices in the
same partite set of HReT(4,4). Without loss of generality, we may assume that x and y are vertices in ¥, and
x = (0,0). We need to find a vertex z in ¥ — {x, y} such that there exists a 3*-container C3(x,y) = {P;, P2, P3}
of HReT(4,4)—{z}. The corresponding vertex z and 3"-container Cj-(x,y) are listed below.

Y z C3*(x7y)

(0,2) (1,3) ((0,0),(0,1),(0,2))

((0,0),(0,3),(0,2))
((0,0),(3,0),(3,1),(2,1),(2,0), (1,0, (1,1),(1,2), (2,2), (2,3), (3,3), (3,2), (0,2))

(L1 (1,3) ((0,0), (0, 1), (1, 1))
((0,0),(3,0),(3,1),(2,1),(2,0),(1,0), (1,1),)
((0,0),(0,3),(0,2),(3,2),(3,3),(2,3),(2,2), (1,2), (1, 1))

(1,3) (0,2) ((0,0),(0,3),(1,3))

((0,0),(0,1),(1,1),(1,2),(1,3))
((0.0).(3,0).05(0.3), (3,3),(2,3), 05" (0,3). 2.0), (1,0), (1.3))

(230) (052) <(070)7(073)7(173)7(170)7(270)>
((0,0),(3,0),(3,3),(3,2), (3,1),(2,1), (2,0))
((0,0),(0,1),(1,1),(1,2),(2,2),(2,3),(2,0))

(232) (0’2) <(O70)7(370)7Q3(073)7(373)7(273)7(272)>
<(070)7(073)7(173>7(170)7(270)>(271>7(272)>
((0,0),(0,1),(1,1),(1,2),(2,2))

3.1 (0,2) ((0,0),(3,0),(3,1))

((0,0),(0,3),(1,3),(1,0),(2,0),(2,1), (3, 1))
<(070)7(071)7(171)7(172)7(272)7(273)7(373)7(372)7(371)>

(3,3) (0,2) ((0,0),(3,0),(3,3))
((0,0),(0,3),(1,3),(1,0),(2,0),(2,1),(3,1), (3,2), (3,3))
((0,0),(0,1),(1,1),(1,2),(2,2), (2,3), (3,3))

Obviously, all these 3"-containers of HReT(4,4)—{z} are regular.

Now we consider the case HReT(m,4) with m > 4. Without loss of generality, we may assmue that
x=(0,0), y= (i,j), and z = (k, ). Suppose that i < m — 2 and k < m — 2. By induction, there exists a regular
3"-container Cs(x,y) = {P1,P>,P3} in HReT(m — 2,4) — {z}. By Lemma 3, C% ,,_5((0,0), (i, )) forms a 3"
container of HReT(m,4) — {z}. Suppose that i < m —2 and k > m — 2. By induction, there exists a regular
3"-container Cy(x,y) = {P1,P2,P3} in HReT(m —2,4) — (k —2,1). By Lemma 3, C ;((0,0), (i,/)) forms a
3*-container of HReT(m,4) — {z}. Suppose that i = m — 2 and k < m — 2. By induction, there exists a regular
Cs(x,(i —2,j)) = {P1,P2,P3} in HReT(m — 2,4) — {z}. By Lemma 3, C3 ,((0,0), (i, /)) forms a 3"-container
of HReT(m,4) — {z}. Suppose thati > m — 2 and k > m — 2. By induction, there exists a regular 3*-container
Cs(x, (i = 2,j)) = {P1,P2,P3} in HReT(m — 2,4) — (k- 2,1). By Lemma 3, C5 ,((0,0),(i,/)) forms a 3"
container of HReT(m,4) — {z}.

Thus the theorem is proved. [J

6. Concluding remarks

The honeycomb networks have been proposed as attractive alternatives to mesh and torus interconnection
networks for computer architectures, interconnection topologies, parallel processes and distributed systems.
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Many investigations related to this family of the networks have been proposed in the literature [2,10-12]. In
particular, the honeycomb rectangular torus HReT(m, n) is a well-structured 3-connected cubic network. We
study the globally bi-3"-connected property of the honeycomb rectangular torus HReT (m, n) in this paper. We
prove that any HReT (m, n) is strongly globally bi-3"-connected. We also prove that HReT (m, n) is hyper glob-
ally bi-3*-connected if and only if n > 6 or m = 2. Future work will try to find the globally 3*-connected prop-
erty of other cubic interconnection networks such as honeycomb rhombic torus, which is another type of
honeycomb network that is bipartite 3-connected cubic network introduced by Stojmenovic [11].
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