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Abstract

This report provides an overview of major results we have obtained in the research project “Con-
structions of Diversity-Multiplexing Tradeoff Optimal Codes for Multiuser MIMO Systems with
Applications to MIMO Mobile Communications” supported by National Science Council under
contract number NSC98 - 2221 - E - 009 - 045 - MY3 during August 2009 - July 2012.

In this report, we are concentrating explicit code constructions for multiple-input multiple-
output (MIMO) multiple-access channels (MAC) with K users. The first construction is dedicated
to the case of symmetric MIMO-MAC where all the users have the same number of transmit anten-
nas nt and transmit at the same level of per-user multiplexing gain r. Furthermore, we assume that
the users transmit in an independent fashion and do not cooperate. The construction is systematic
for any values of K, nt and r. It is proved that this newly proposed construction achieves the opti-
mal MIMO-MAC diversity-multiplexing gain tradeoff (DMT) provided by Tse et al. at high-SNR
regime. We next take a further step to investigate the MAC-DMT of a general MIMO-MAC where
the users are allowed to have different numbers of transmit antennas and can transmit at different
levels of multiplexing gain. The exact optimal MAC-DMT of such channel is explicitly charac-
terized in this report. Interestingly, in the general MAC-DMT, some users might not be able to
achieve their single-user DMT performance as in the symmetric case, even when the multiplexing
gains of the other users are close to 0. Detailed explanations of such unexpected result are provided
in this report. Finally, by generalizing the code construction for the symmetric MIMO-MAC, ex-
plicit code constructions are provided for the general MIMO-MAC and are proved to be optimal
in terms of the general MAC-DMT.

We also answer several open questions related to diversity-multiplexing tradeoffs (DMTs) for
point-to-point and multiple-access (MAC) MIMO channels. By analyzing the DMT performance
of a simple code, we show that the optimal MAC-DMT holds even when the channel remains
fixed for less than Knt + nr − 1 channel uses, where K is the number of users, nt is the number
of transmit antennas of each user, and nr is the number of receive antennas at receiver. We also
prove that the simple code is MAC-DMT optimal. A general code design criterion for constructing
MAC-DMT optimal codes that is much more relaxed than the previously known design criterion
is provided. Finally, by changing some design parameters, the simple code is modified for use in
point-to-point MIMO channels. We show the modified code achieves the same DMT performance
as the Gaussian random code.

Keywords: Diversity-multiplexing gain tradeoff (DMT), multiple access channel (MAC), cyclic
division algebras (CDAs), multiple-input multiple-output (MIMO) channel, space-time block codes
(STBCs).
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Chapter 1

Introduction

During the last decade extensive research has been carried out in the design of point-to-point
space-time (ST) codes [1, 2] for multiple-input multiple-output (MIMO) communication systems.
ST codes based on cyclic division algebras (CDAs) [3–7] that can also be regarded as a kind of
algebraic lattice codes and/or as a kind of linear dispersion ST codes [8] have been shown to
perform extremely well. The error performance of these codes have been shown to be very close
to the outage bound not only for practical numbers of antennas but also at moderate SNR values.

For high-SNR regime, the same point-to-point CDA-based ST codes have been shown [4] to
be optimal in terms of the diversity-multiplexing tradeoff (DMT) proposed by Zheng and Tse
[9]. Specifically, let nt and nr be respectively the numbers of transmit and receive antennas at
transmitter and receiver ends. Let r, 0 ≤ r ≤ min{nt, nr}, denote the multiplexing gain such that
the actual transmission rate equals

R = r log2 SNR (bits per channel use). (1.1)

Assuming a MIMO Rayleigh block fading channel, it was shown [4] that at multiplexing gain r,
the CDA-based ST codes achieve the optimal codeword error probability

Pcwe(r)
.
= SNR−d

∗
nt,nr

(r) (1.2)

at high-SNR regime, where by .
= we mean the exponential equality defined in [9]. That is, we

write f(SNR)
.
= SNRb if

lim
SNR→∞

log f(SNR)

log SNR
= b.

The notations of ≥̇ and ≤̇ are similarly defined. The exponent d∗nt,nr(r) is commonly known as the
DMT [9] and is given by a piecewise linear function connecting the points (r, (nt − r)(nr − r))
for r = 0, 1, · · · ,min{nt, nr}. Furthermore, d∗nt,nr(r) represents the largest diversity gain that can
be achieved by any point-to-point ST codes under Rayleigh block fading channel whenever the
channel remains static for at least a block of nt channel uses [4] and varies independently from one
block to another.

For other types of fading statistics, the CDA-based ST codes are also known [4] to be capable
of achieving the optimal error performance in such channels that include Rician, Weibull and Nak-
agami as special cases. ST codes that are optimal in all fading statistics are coined approximately
universal codes [4, 10].

If coding across independent fading blocks is allowed, the multi-block CDA code [6] has been
shown to be approximately universal as well. In particular, it achieves codeword error probability

Pcwe(r)
.
= SNR−m·d

∗
nt,nr

(r), (1.3)

at multiplexing gain r, where m is the number of independent fading blocks occupied by the code.
The exponent m · d∗nt,nr(r) is known as the multi-block DMT [6, 9] when coding is applied over
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m independent fading blocks. Therefore, the multi-block CDA-based ST code is optimal in terms
of the multi-block DMT at high-SNR regime. More important, (1.3) indicates that the code has
error probability decreasing to zero as m approaches infinity whenever d∗nt,nr(r) > 0. Hence, the
multi-block ST code could potentially achieve the MIMO ergodic channel capacity at high-SNR
regime and simultaneously be optimal in terms of the multi-block DMT at every discrete value m.

Motivated by the promising outcome in the point-to-point scenario, the aim of this report is
to investigate the code construction for the multiple-access channel (MAC) scenario. We will
concentrate on the uplink transmission from multiple mobile users to a common base station (or
access point). Both the mobile users and the base station may be equipped with multiple antennas.

Consider a MIMO-MAC with K mobile users. For simplicity, we first focus on the case of
symmetric MIMO-MAC [11], where each user is equipped with nt transmit antennas and commu-
nicates independently to the base station that has nr receive antennas. Furthermore, we assume
that all the users transmit at the same level of multiplexing gain. With a slight abuse of notation,
hereafter we will denote by r the per-user multiplexing gain in the symmetric MIMO-MAC. Let
S0, · · · ,SK−1, be respectively the ST codes used by the kth user, k = 0, 1, · · · , K − 1. Each code
Sk, k = 0, 1, · · · , K−1, consists of (nt×T ) matrices and satisfies the following power constraint:

E S∈Sk ‖S‖
2
F ≤ T · SNR, (1.4)

where by ‖S‖F we mean the Frobenius norm of matrix S. Furthermore, we require |Sk| = SNRrT

for all k such that every user transmits at the same multiplexing gain r. Let Hk be the (nr × nt)
channel matrix of the kth user. We assume Hk is fixed for a block of T channel uses. Hk is known
completely to the receiver at base station but unknown to all the users. Entries of Hk are modeled
as i.i.d. CN (0, 1) complex Gaussian random variables to model the MIMO Rayleigh block fading
channel. Let Sk ∈ Sk be the signal matrix transmitted by the kth user; then the signal matrix
received at base station is given by

Y =
K−1∑
k=0

HkSk +W, (1.5)

where W is the (nr × T ) noise matrix with i.i.d. CN (0, 1) entries. When each user’s information
is encoded independently, Tse et al. [11] proved that the tradeoff between the diversity gain d and
multiplexing gain r in a symmetric MIMO-MAC is governed by the following theorem.

Theorem 1 (Symmetric MAC-DMT [11]). In a symmetric MIMO-MAC withK users, each having
nt transmit antennas and transmitting independently at multiplexing gain r, the maximal possible
diversity gain is given by

d∗nt,nr,K(r) := min
1≤k≤K

d∗knt,nr(kr)

=



d∗nt,nr(r), if r ∈
[
0,min

{
nt,

nr
K+1

}]
,

d∗Knt,nr(Kr),

if r ∈
[
min

{
nt,

nr
K+1

}
,min

{
nt,

nr
K

}]
,

(1.6)

where d∗knt,nr(kr) is the point-to-point DMT for knt transmit antennas, nr receive antennas and
multiplexing gain kr defined as before (or see [9,11]). Equation (1.6) is termed optimal symmetric
MAC-DMT. The multiplexing gain r for nonnegative diversity gain is bounded between

0 ≤ r ≤ min
{
nt,

nr
K

}
= rmax. (1.7)

�
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Compared with the point-to-point scenario, the decrease of maximal multiplexing gain by a
factor of K (see nr

K
in rmax of (1.7)) is due to the sharing of nr receive antennas among K users

and the fact that d∗Knt,nr(Krmax) = 0. Equation (1.6) also shows that when the level of multi-
plexing gain is low such that r ∈

[
0,min

{
nt,

nr
K+1

}]
, each user is able to retain his single-user

performance, i.e., d∗nt,nr,K(r) = d∗nt,nr(r), as if there were no other users in the channel. On the
other hand, when the level of multiplexing gain is high and r ∈

[
min

{
nt,

nr
K+1

}
,min

{
nt,

nr
K

}]
,

the MIMO-MAC system would operate in the antenna pooling region [11], and single-user perfor-
mance can no longer be maintained. As a consequence, a much lower diversity gain d∗Knt,nr(Kr)
dominates the error performance in this region.

In Fig. 1.1 we demonstrate the above facts of the symmetric MAC-DMT for the case of K = 3
users, nt = 2 and nr = 2. It can be clearly seen that the turning point between the single-
user and antenna pooling regions is at r = min

{
nt,

nr
K+1

}
= 1

2
and the cut-off point of r is at

min{nt, nrK } = 2
3
.
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Figure 1.1: The MAC DMT for K = 3 users with nt = 2 and nr = 2.

The construction of MAC-DMT optimal codes calls for a coding scheme that independently
encodes, but simultaneously transmits, each mobile user’s information over the MIMO channel
such that at receiver end, the decoding of all users’ signals achieves the best possible error per-
formance dictated by the MAC-DMT. Thus, a coding scheme is called MAC-DMT optimal if it
achieves the following error performance under joint decoding

Pcwe(r)
.
= SNR−d

∗
nt,nr,K

(r).

1.1 Prior Work
Several works have been reported in this area. Nam et al. [12] presented the first MAC-DMT
optimal scheme using a class of structured multiple-access random lattice ST codes. For the con-
structions of deterministic codes, below we briefly review some relevant earlier papers. Almost all
deal exclusively with the two-user symmetric MIMO-MAC case, i.e., K = 2.

1. [13] extended the pairwise-error-probability-based design criteria of point-to-point ST codes
to the MAC case for K = 2 users and nt = 2, nr = 2. An explicit (4× 4) two-user MIMO
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code1, i.e., a (2 × 4) code for each user, based on independent Alamouti blocks [2] is also
introduced in [13]. Yet, we remark that such code does not achieve the optimal symmetric
MAC-DMT (1.6).

2. In [14] Badr and Belfiore proposed an explicit algebraic code for K = 2 and nt = 1. The
idea can be extended to bigger values of K. The determinant of the code matrix is non-
zero thanks to a ”twisting element.” However, the determinant is vanishing. The decay of
determinants of this two-user MIMO-MAC code was carefully studied in [15]. It was shown
that the code is MAC-DMT optimal, when r ≤ 1

5
. Whether this code achieves the optimal

MAC-DMT also when r > 1/5 remains an open question. In [15] it was shown, however,
that the code fails to satisfy the criteria for achieving optimal MAC-DMT set forth in [16],
when r > 1/5. This alone does not mean that their code could not be optimal, as the criteria
in [16] is sufficient, but not necessary (see [17] for justification of this claim).

3. Some explicit, algebraic code constructions for nt > 1 and K = 2 were introduced by
Hong and Viterbo in [18]. A design criterion based on an approximation of truncated union
bound was proposed. With such criterion they constructed a code that outperforms in error
performance the aforementioned (4× 4) two-user code [13].

4. Badr and Belfiore [19] proposed another (4 × 4) two-user MIMO-MAC code which is ob-
tained by adding a twist matrix Γ to the (2 × 2) Golden ST code [20, 21] such that the
overall code matrix is nonsingular whenever all the submatrices associated with each user
are nonzero. However, because of this additional Γ matrix, the overall code matrix, though
nonsingular, could be ill-conditioned at high-SNR regime, thereby resulting in a vanishing
determinant, similarly as did their earlier one-antenna code [14] already discussed above.

5. [22] addressed the problem of whether there exists a two-user MIMO-MAC code satisfying
the non-vanishing determinant (NVD) property. This problem concerns whether the twisted
Golden MIMO-MAC code [19] can be further improved to avoid the disadvantage of having
a vanishing determinant. The answer is negative. [22] shows that if all the overall code
matrices are nonsingular whenever the submatrices from each user are nonzero, then some
of them must have determinant arbitrarily close to zero, i.e., have vanishing determinants.

6. By removing the Γ matrix, [22] reported another code construction and proved its MAC-
DMT optimality for K = 2 and for any values of nt and nr. Computer simulations showed
that this code outperforms the (4 × 4) code of [19] at all SNR values. Another important
contribution reported in [22] was that, for the two-user MAC case, one does not need the
whole code matrix to be nonsingular, and hence introducing the additional Γ rotation matrix
is not necessary from the MAC-DMT point of view.

7. In [16], Coronel et al. studied the optimal DMT performance of a selective fading MIMO-
MAC and provided a sufficient criterion for designing MAC-DMT optimal codes for any
K and nt. Noting that the Rayleigh block fading channel is a flat fading channel, a simpli-
fication of their criterion requires the product concatenation of codes from any subsets of
K users to satisfy the NVD property such that the error probabilities associated with these
subcodes do not exceed the corresponding outage probability. However, as already pointed
out in [22], such codes do not exist for the case of K = 2 . A further investigation of their
criterion can be found in [17].

1In this report, by an (m× n) code we mean a code consisting of (m× n) code matrices, where m is the number
of transmit antennas required for transmission, and n is the number of channel uses. The number m can be either nt
or Knt, depending on the discussion. When m = nt, the code is for each user’s use. When m = Knt, we mean
the vertical concatenation of all users’ codes as an overall code. Notation nt × nr without parenthesis is used for the
channel dimensions.
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1.2 Complete Construction of DMT-Optimal Multiuser MIMO
Codes

A complete solution to the problem of constructing MIMO-MAC codes forK users that are MAC-
DMT optimal in Rayleigh MIMO-MAC is presented in this report.

We first provide the constructions of MAC-DMT optimal codes for the symmetric MIMO-
MAC. Later, we will give the code construction for the general MIMO-MAC where the users
are allowed to have different numbers of transmit antennas and can transmit at different levels of
multiplexing gain.

A general result on the nonexistence of NVD MIMO-MAC codes is presented in Chapter 2.
This result suggests that the design criterion proposed by Coronel et al. [16] might be too strict to
yield any MAC-DMT optimal codes. A relaxed design criterion is then provided in this section.

In Chapter 3, we present a new code construction for the symmetric MIMO-MAC for any K,
nt and nr. Several nice properties of the proposed code are presented in this section. We prove
that this newly proposed construction is MAC-DMT optimal and meets the relaxed design criterion
given in Chapter 2. For ease of reading, the proof of MAC-DMT optimality is relegated to Chapter
6.

In Chapter 4 we investigate the MAC-DMT in a general MIMO-MAC where the users are
allowed to have different numbers of transmit antennas and transmit at different levels of multi-
plexing gain. The exact general MAC-DMT in such channel will be given in Section 4.2, and it will
be seen that unlike the symmetric case, some users in the general MIMO-MAC are no longer able
to achieve their single-user performance even if the multiplexing gains of other users are extremely
close to zero. The reasons for such unexpected result will be carefully explained therein. Finally,
in Section 4.4 the newly proposed code construction for symmetric channels will be extended to
cater to the general MIMO-MAC. The MAC-DMT optimality of the generalized construction will
be presented in Chapter 7.

1.3 Several Open Problems in Multiuser MIMO Communica-
tion

It is known that using multiple antennas at both transmitting and receiving ends in a point-to-point
multiple-input-multiple-output (MIMO) channel can increase the transmission rate and simulta-
neously provide higher diversity gain. Assuming there are nt transmit antennas and nr receive
antennas, it has been shown that the ergodic channel capacity of such MIMO Rayleigh block fad-
ing channel is approximately min{nt, nr} log2 SNR in bits per channel use [23], and the maximal
achievable diversity gain is ntnr [1, 24], provided that the channel remains fixed for at least nt
channel uses. Let R = r log2 SNR be the actual transmission rate, where r is termed the mul-
tiplexing gain. Zheng and Tse [9] showed there is a fundamental tradeoff between multiplexing
gain r and diversity value d. Such tradeoff is commonly known as the diversity-multiplexing gain
tradeoff (DMT) and is reproduced below.

Theorem 2 ( [9]). In a MIMO Rayleigh block fading channel with nt transmit and nr receive
antennas, assuming the transmitter transmits at multiplexing gain r, the maximal diversity gain
d∗(r) can be achieved by any coding schemes is a piecewise linear function connecting the points
(r, (nt − r)(nr − r)) for r = 0, 1, · · · ,min{nt, nr}, when the channel is fixed for at least T ≥
nt + nr − 1 channel uses. �

If the MIMO channel cannot hold static for at least nt + nr − 1 channel uses, some lower
bounds on DMT based on Gaussian random coding schemes are provided in [9]. By using space-
time codes constructed from cyclic division algebra (CDA) [25], Elia et al. [4] proved that the
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same DMT d∗(r) holds whenever the channel is static for at least T ≥ nt channel uses. However,
such result cannot be further improved, and the exact DMT for T < nt is still uncertain.

In both DMT results, Theorems 1 and 2, the proofs proceed by first establishing an upper bound
on DMT based on an outage formulation, and then by using a Gaussian random coding scheme to
show the converse based on a union bound argument. It should be noted that in both point-to-point
and MAC cases the requirement on the channel coherence time T for the optimal DMT to hold
actually comes from the union bound, not the outage. When T ≥ Knt+nt−1, Coronel et al. [16]
presented a criterion for constructing MAC-DMT optimal codes. For any coding schemes, let Ek
denote the error event that only the messages from k users are erroneously decoded. Coronel et al.
showed that for any k-subsets of users, 1 ≤ k ≤ K, if Pr {Ek} is upper bounded by the probability
of the corresponding outage event formulated by these k users, i.e. if one can show

Pr {Ek} ≤̇Pr
{

log det
(
Inr + SNRHkH

†
k

)
≤ kr log SNR

}
, (1.8)

where H = [Hi1 · · ·Hik ] is the overall channel matrix and Hij is the (nr × nt) channel matrix of
the jth user, then the code is MAC-DMT optimal. Notions of exponential inequalities ≥̇, ≤̇, >̇, <̇,
and equality .

= are defined in [9]. Specifically, in terms of code design, the above criterion (1.8)
means that the (knt × T ) matrix obtained by vertically concatenating the signal matrices from k
users must be of full row rank and should perhaps satisfy the nonvanishing determinant (NVD)
criterion [4, 26]. This full NVD design criterion was explicitly given in [16].

The aim of this report is to answer the following questions.

1. Is it possible to achieve the optimal MAC-DMT d∗nt,nr,K(r) when T < Knt + nr − 1?

2. Is design criterion (1.8) necessary? or is it only sufficient?

3. In order to be MAC-DMT optimal, is it necessary for a code to satisfy the NVD criterion for
any (knt × T ) submatrix formed by any k-subsets of users?

4. In point-to-point MIMO channel, can one design a non-random DMT optimal code for T <
nt? Also, will the resulting DMT be the same as d∗nt,nr(r)? In other words, when T < nt, it
relates to the question of whether the outage event will dominate the error performance.

The major contribution of this report is not to provide constructions of codes having per-
formance better than the previously known DMT optimal codes, for example, the CDA based
codes [4], the Golden perfect codes [20], the max-order codes [7], or the multi-block codes [6].
Instead, we aim to address the above four questions that none of these codes can answer.

By analyzing the DMT performance of a very simple code, we will provide answers to all the
above questions. We will consider a MIMO-MAC channel with K = 2 users, each having only
nt = 1 transmit antenna, and we will assume there are nr = 2 receive antennas at receiving end.
While Theorem 1 holds for codes with T ≥ Knt + nr − 1 = 3 channel uses, we will prove this
simple code achieves the same optimal MAC-DMT d∗1,2,2(r) with only T = 1 or 2 channel uses.
Furthermore, from the DMT analysis of this code we will see that criterion (1.8) is only sufficient,
not necessary, and one does not need full NVD in order to achieve the optimal MAC-DMT. By
slightly modifying the parameters of this code, we will show in the point-to-point MIMO scenario
this simple code achieves the same DMT performance as the Gaussian random code over the fast
Rayleigh fading channel, i.e. the case when T = 1, which relates to the fourth question in the
above list.

In Chapter 8 we will present the simple code as well as the corresponding DMT performance
analysis. Inferences from the DMT analysis will be given in Chapter 9 and will answer all the
above questions of interest.
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Chapter 2

Relaxed Design Criterion of MAC-DMT
Optimal Codes

In this section, we first present a rigorous, yet negative, result on the nonexistence of a MIMO-
MAC lattice code that has the NVD property. This result suggests that the design criteria proposed
by Coronel et al. [16] might be too strict to yield any MAC-DMT optimal codes. Following this,
a relaxed design criterion will be presented and will be met by all subsequent constructions of
MIMO-MAC codes in this report.

Consider a symmetric MIMO-MAC with K users, each having nt transmit antennas and com-
municating independently to the base station at the same level of multiplexing gain r. Let S0, · · · ,
SK−1, be respectively the (nt × T ) space-time codes used by the kth user, k = 0, 1, · · · , K − 1,
all satisfying the power constraint (1.4). If independent Gaussian random codebooks were used,
i.e., the entries of code matrices Sk ∈ Sk are i.i.d. CN

(
0, SNR

nt

)
random variables for all k, Tse et

al. [11] showed that the event Em of m users in error has probability upper bounded by

Pr {Em} ≤ Pr {Om}
.
= SNR−d

∗
mnt,nr

(mr), (2.1)

whereOm is the event ofm users in outage. Note that the overall error event E = E1∪E2∪· · ·∪EK .
The union bound on E gives

Pr {E} ≤
K∑
m=1

Pr {Em} ≤̇ max
m

Pr {Om} . (2.2)

Since the right-hand-side of (2.2) has a negative SNR-exponent equal to d∗nt,nr,K(r) defined in
(1.6), (2.2) proved the achievability of MAC-DMT claimed by Theorem 1 based on the argument
of Gaussian random codebooks.

We next turn our attention to the deterministic ST codes. From the point-to-point perspective,
it is known [4] that ST codes satisfying the NVD property have the same error probability as the
outage events. Thus, for any MIMO-MAC code {S0, · · · ,SK−1}, set

Ck =

{
1

κ
Sk : Sk ∈ Sk

}
where

κ2 .
= SNR1− r

nt .

To see how κ is chosen, we offer the following insight. For each k, the code Ck has size |Ck| =
|Sk| = SNRrT so that it is of multiplexing gain r. An explicit construction of Ck was given in [4]
where the code is seen as a real algebraic ST lattice code with dimension 2ntT . Hence there
are |Ck|

1
2ntT = SNR

r
2nt PAM signals selected from each dimension and ‖Ck‖2

F ≤̇ SNR
r
nt for all
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Ck ∈ Ck. Thus, the constant κ is chosen such that the code Sk = κ Ck satisfies the power constraint
(1.4).

From [4], it is easy to prove the following theorem which in turn gives a sufficient criterion for
designing MAC-DMT optimal codes. We remark that this theorem is an alternative statement of
the result given in [16] under certain restrictions, and we refer the interested readers to [17] for the
connections.

Theorem 3 ( [16]). Let C0, · · · , CK−1 be given as above. For any Im = {i0, i1, · · · , im−1} ⊆
{0, 1, · · · , K − 1}, let CIm be the product concatenation of Ci0 , · · · , Cim−1 , defined by

CIm =

CIm =

 Ci0
...

Cim−1

 : Cij ∈ Cij , ij ∈ Im

 .

If for all pairs of distinct code matrices Cij 6= C ′ij ∈ Cij , j = 0, 1, · · · ,m−1, the difference matrix

∆CIm =

 Ci0 − C ′i0
...

Cim−1 − C ′im−1

 , (2.3)

satisfies det(∆CIm∆C†Im) ≥̇ 1, where by C† we mean the Hermitian transpose of matrix C, then
the codes C0, · · · , CK−1 are jointly MAC-DMT optimal.

Proof. Note that the imposed condition implies that the code CIm satisfies the NVD property for
any Im. Along similar lines as in [4], it can be shown that the error event E(Im) associated with
code CIm , i.e., the error event of users in Im in error, has probability upper bounded by

Pr {E(Im)} ≤̇ Pr {O(Im)} .= SNR−d
∗
mnt,nr

(mr),

where O(Im) is the event of users in Im in outage. Now taking union bound over all possible Im
as in (2.2) completes the proof. �

Remark 1. The condition of det(∆CIm∆C†Im) ≥̇ 1 for all Im is called the full NVD criterion
and is actually equivalent to the criterion given by Coronel et al. in [16] with certain restrictions,
see [17] for details. It should be noted that this full NVD condition is only sufficient, not necessary.
However, the following result suggests that this condition might be too strong and precludes the
existence of codes meeting the criterion. We call the stronger condition det(∆CIm∆C†Im) ≥ 1
the exactly full NVD criterion.

Theorem 4. For any K > 1 and for any nt ≥ 1, there do not exist any linear MIMO-MAC codes1

that satisfy the exactly full NVD criterion.

Proof. For ease of reading, the proof is relegated to Chapter 5. �

1Here by linear codes we mean codes having linear dispersion forms [8] or having a lattice structure. Almost all
existing ST codes are linear, for example, the Alamouti codes [2], the CDA-based ST codes [3–7, 13, 18–21, 27], etc.
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Roughly speaking, the proof of Theorem 4 shows that while it is possible to construct DMT-
optimal codes C0, · · · , CK−1 for each user, as the existing CDA-based ST codes [4] would do, it is
impossible for the product code C0 × · · · × CK−1 to have an exactly full NVD. Any such product
code would have difference matrices ∆CIm such that det(∆CIm∆C†Im) is extremely close to zero
at high-SNR regime. In terms of conventional rank and coding gain design criteria of ST codes,
this means that even if the code achieves full diversity gain, it necessarily loses significantly in
coding gain. Therefore, it becomes meaningless to say that the code achieves full rank and full
diversity. We may conclude that the exactly full NVD condition is in practice too strict to yield
MAC-DMT optimal codes.

Another implication from the proof of Theorem 4 is that the exactly full NVD condition can be
met only if the users cooperate in their transmission. Without cooperation, the exactly full NVD
condition can never be met and the determinant must be vanishing.

On the other hand, we may relax the exactly full NVD condition without adversely affecting
the DMT performance. To do so, we will partition the error events in a different manner. Given
the set of users Im, let En(Im), 1 ≤ n ≤ m, denote the error event when the users in Im are in
error and the corresponding error matrix ∆CIm (cf. (2.3)) has rank exactly nnt. Clearly event
E(Im) defined in the proof of Theorem 3 is a disjoint union of E1(Im), · · · , Em(Im). Now the
codes C0, · · · , CK−1 are jointly MAC-DMT optimal if the following holds.

Theorem 5 (Relaxed design criterion). Let C0, · · · , CK−1 be defined as above. Then they are jointly
MAC-DMT optimal if the error events En(Im) have probabilities upper bounded by

Pr {En(Im)} ≤̇ SNR−d
∗
nnt,nr

(nr) (2.4)

for all 1 ≤ n ≤ m ≤ K and for all Im ⊆ {0, 1, · · · , K − 1}. Furthermore, as for design of
MAC-DMT optimal codes we require at least that

Pr {En(Im)} ≤̇ SNR−min{d∗nt,nr (r),d∗Knt,nr
(Kr)} (2.5)

for all 1 ≤ n ≤ m ≤ K and for all Im. �

While (2.5) might be the most relaxed condition for designing MAC-DMT optimal codes,
in this report we will focus on condition (2.4). The rationale behind the above theorem is the
observation that the error probabilities SNR−d

∗
mnt,nr

(mr) with 1 < m < K are not dominant in the
overall DMT performance. Hence we could relax the conditions such that the event

E(Im) =
m⋃
n=1

En(Im)

has probability larger than the corresponding outage probability, but no larger than the dominant
error probability. That is, we could allow

Pr {E(Im)} � Pr{O(Im)} .
= SNR−d

∗
mnt,nr

(mr), (2.6)

but would still require

Pr {E(Im)} ≤̇ SNR−min{d∗nt,nr (r),d∗Knt,nr
(Kr)}.

Relaxation (2.6) would not affect the overall DMT performance. Compared with the exactly full
NVD condition required by Theorems 3, Theorem 5 relaxes greatly the code design criterion in
the following ways.
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1. We do not require the difference matrix ∆CIm to be nonsingular and to satisfy the NVD
property when all the component matrices Cij − C ′ij are nonzero, which has been shown to
be impossible by Theorem 4.

2. Should the difference matrix ∆CIm happen to be singular, (2.4) requires the resulting error
performance must be no worse than SNR−d

∗
nnt,nr

(nr) for some n, 1 ≤ n ≤ m, in order to
maintain the MAC-DMT optimality.

3. In Theorem 3, events En(Im) with n < m were required to have probability absolutely zero.
This is too strict and would preclude the existence of MAC-DMT optimal codes.
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Chapter 3

MAC-DMT Optimal Code Construction for
Symmetric MIMO-MAC Channels

For the symmetric MIMO-MAC coded system with K users, each having nt transmit antennas and
transmitting at multiplexing gain r, in this section we will propose a systematic code construction
that is MAC-DMT optimal for any combinations of K, nt, nr, and r. The construction does not
assume any cooperation among the users. Furthermore, compared with the MAC-DMT optimal
two-user code proposed in [22] where a sign change is required in the code matrices, here in the
proposed method each user encodes his own information using an identical encoder. This greatly
simplifies the hardware implementation of these encoders.

3.1 Proposed Construction
Given the number of users K, let Ko be the smallest odd integer such that Ko ≥ K, i.e.,

Ko =

{
K + 1, if K even,
K, if K odd. (3.1)

The construction calls for the following number fields. Let Ko = F(ηo) be a number field that
is a cyclic Galois extension of F = Q( ı ) with degree Ko, where ı =

√
−1. Let L = F(θ) be

another cyclic Galois extension of F with degree nt. Let σ and τo be the generators of Galois
groups Gal(L/F) and Gal(Ko/F) with degrees nt and Ko, respectively. The fields Ko and L are
chosen1 such that Ko ∩ L = F. Let E o = KoL = F(ηo, θ) be the compositum of Ko and L. See
Fig.3.1 for the relation among the required number fields. The readers are referred to [4,22,28] for
the constructions of such number fields.

Let Do := (E o/Ko, σ, ζ) be a cyclic division algebra with

Do = E o ⊕ zE o ⊕ · · · ⊕ znt−1E o, (3.2)

where

ζ =
γ

γ∗
, (3.3)

xz = zσ(x) (3.4)

for x ∈ E o. The element z is an indeterminate satisfying znt = ζ ∈ F∗, and 0 6= γ ∈ OF is some
suitable nonnorm element 2. By γ∗ we mean the complex conjugate of γ and OF is the algebraic
closure of Z in F [25, 29, 30]. Notice that ‖ζ‖ = 1 and ζ is unimodular. It has been shown [5] that
with such unimodular ζ , Do is always a cyclic division algebra.

1A more general condition on Ko and L is that the automorphisms σ and τ0 commute.
2A sufficient criterion for finding a suitable nonnorm element γ is given in [26, Theorem 1]. Also, we refer the

interested readers to [4, Theorems 10 and 11] for two explicit constructions of γ.
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E o = F(θ, ηo)
Ko

ntKo

nt

L = F(θ)

nt

Ko = F(ηo)

Ko

F = Q( ı )

Figure 3.1: Field extensions required by the proposed code constructions.

Remark 2. While in the above we have set ζ to be of form ζ = γ
γ∗

such that ζ is unimodular, it
might be possible that in some CDAs, the nonnorm element γ is actually an nth root of unity for
some integer n and is already unimodular. See [31] for such example construction. Should it be
the case, we could set ζ = γ, and the discussion below can be easily modified to show that the
MAC-DMT optimality of the proposed constructions remains to hold. Therefore, for simplicity,
here we will focus only on the case of ζ = γ

γ∗
. �

Remark 3. We note that by construction the Galois groups of the numbers fields are

Gal(E o/Ko) = 〈σ〉 ,
Gal(E o/L) = 〈τo〉 ,
Gal(E o/F) = 〈τo, σ〉 = 〈τo〉 × 〈σ〉 ,

where in the last line 〈τo〉 × 〈σ〉 denotes the direct product of the groups generated by τo and σ,
respectively. It should also be noted that the automorphisms τo and σ commute, i.e.,

τoσ = στo

due to the direct product of two groups. �

Given multiplexing gain r, let A(SNR) be the base alphabet defined as

A(SNR) =

{
a+ b ı :

−SNR
r

2nt ≤ a, b ≤ SNR
r

2nt ,
a, b ∈ Z, a, b odd

}
;

then the corresponding information set is

Ao(SNR) =

{
nt−1∑
i=0

zi
Kont−1∑
k=0

xi,kek : xi,k ∈ A(SNR)

}
, (3.5)

where {e0, · · · , eKont−1} is an integral basis of E o/F. It should be noted that
∑Kont−1

k=0 xi,kek ∈ E o

for xi,k ∈ A(SNR) ⊂ OF and that Ao(SNR) ⊂ Do. Let

ψo : Do →Mnt(E o)

be the left-regular map that maps elements in Do into (nt×nt) square matrices with entries in E o.
Specifically, given u ∈ Do with

u =
nt−1∑
i=0

ziui, ui ∈ E o,
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ψo(u) is given by

ψo(u) :=


u0 ζσ(unt−1) · · · ζσnt−1(u1)
u1 σ(u0) · · · ζσnt−1(u2)
...

... . . . ...
unt−1 σ(unt−2) · · · σnt−1(u0)

 .
(3.6)

Note that the field Ko is the center of the division algebra Do, meaning that uk = ku for any
u ∈ Do and k ∈ Ko. Equivalently we have

ψo(u)ψo(k) = ψo(k)ψo(u),

showing that the matrix-product commutes.

Proposition 6 ( [4, 25]). Let Do and ψo be defined as above. Then

det (ψo(u)) ∈ K∗o

for all 0 6= u ∈ Do, where K∗o = Ko \ {0}. �

Having defined the above, the encoding of each user’s data stream proceeds as follows. Given
the multiplexing gain r, the ith user first partitions his binary data steam into blocks of rKont log2

SNR bits. Then using the integral basis {e0, · · · , eKont−1} and set Ao(SNR) defined above, each
block of binary bits is mapped in a one-one fashion to a symbol xi ∈ Ao(SNR) ⊂ Do. The
encoding is performed independently at each user’s end.

Given xi ∈ Ao(SNR), the ith user actually sends out the following (nt ×Kont) signal matrix
Si through his nt transmit antenna array in Kont channel uses

Si = κ
[
Xi τo (Xi) · · · τKo−1

o (Xi)
]
, (3.7)

where Xi = ψo(xi) and where κ is a normalizing constant such that

E ‖Si‖2
F = ntKoSNR .

= SNR.

Hence we have
κ2 .

= SNR1− r
nt (3.8)

Remark 4. The above construction of the MIMO-MAC codes is reminiscent of the multi-block ST
code presented in [6]. Some key differences are highlighted below.

1. In the proposed construction we require the length of the code to be nt ·Ko where Ko must
be an odd integer.

2. The number fields Ko and L are required such that the automorphisms σ and τo commute.
This was not needed in [6].

3. The element ζ of the CDA Do must be unimodular, and we have set ζ = γ
γ∗

.

�

We use the following example to illustrate the proposed construction.
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Example 1. We consider the case of K = 2 and nt = 2. By construction Ko = 3 is the smallest
odd integer such that Ko ≥ K. Then it can be shown that with θ = e ı

π
8 and ηo = 2 cos

(
2π
7

)
the

number fields L = F(θ) and Ko = F(ηo) meet the required conditions of [L : F] = 2, [Ko : F] = 3
and L ∩ Ko = F. Furthermore, we have η3

o + η2
o − 2ηo − 1 = 0. The generators σ and τo for the

Galois groups Gal(L/F) and Gal(Ko/F) are given respectively by

σ : θ 7→ −θ and τo : ηo 7→
(
η2
o − 2

)
= 2 cos

(
4π

7

)
The set {1, θ, ηo, θηo, η2

o , θη
2
o} is an integral basis for E o/F.

As the prime ideal (2 + ı ) of Z[ ı ] remains inert in OKo and OL, following from [4] this gives
an appropriate nonnorm element γ = 2 + ı . Hence we have ζ = 2+ ı

2− ı . With E o = F(θ, ηo),
Do = (E o/Ko, σ, ζ) is a CDA of index 2 which is also a central simple Ko-algebra [25]. Next let

ui = xi,0 + θxi,1 + ηoxi,2 + θηoxi,3 + η2
oxi,4 + θη2

oxi,5

for i = 0, 1 with xi,j ∈ A(SNR). The Galois conjugates of ui are for example given by

σ(ui) = xi,0 − θxi,1 + ηoxi,2 − θηoxi,3 + η2
oxi,4 − θη2

oxi,5,

τo(ui) = xi,0 + θxi,1 + η′oxi,2 + θη′oxi,3 + η′2o xi,4 + θη′2o xi,5

where η′o = η2
o − 2 = 2 cos

(
4π
7

)
and τo(η′o) = 1− ηo− η2

o = 2 cos
(

8π
7

)
. With the above, the signal

matrix of the first user is given by S0 = κ
[
X0 τo(X0) τ 2

o (X0)
]
, where κ2 = SNR1− r

2 and

X0 =

[
u0 ζσ(u1)
u1 σ(u0)

]
.

�

By vertically concatenating the signal matrices from all users, the overall MIMO-MAC code
of the K users is

S =


S = κ

 X0 · · · τKo−1
o (X0)

... . . . ...
XK−1 · · · τKo−1

o (XK−1)

 :

Xi = ψo(xi), xi ∈ Ao(SNR)


. (3.9)

For ease of code performance analysis that comes later we set C = 1
κ
S, i.e.,

C =


C =

 X0 · · · τKo−1
o (X0)

... . . . ...
XK−1 · · · τKo−1

o (XK−1)

 :

Xi = ψo(xi), xi ∈ Ao(SNR)


. (3.10)

Remark 5. Below we briefly compare the proposed construction of S with another MAC-DMT
optimal code constructed forK = 2 users in [22]. The latter MIMO-MAC code takes the following
form

S2 =


S2 = κ

[
X0 τ(X0)
X1 −τ(X1)

]
:

Xi = ψ(xi), xi ∈ A(SNR)

 . (3.11)
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The construction of S2 requires a number field K = F(η) with [K : F] = 2 and Gal(K/F) = {1, τ}
such that E = KL = F(θ, η), [E : F] = 2nt and Gal(E /F) = Gal(L/F)×Gal(K/F). Here by “1”
of Gal(K/F) we mean the trivial automorphism. The field L and the element θ are defined as be-
fore. The element xi is taken from the cyclic division algebra D = E ⊕z′E for some indeterminate
z′. A(SNR) is the base-information set defined similarly as Ao(SNR) in (3.5). Thus, compared
with the present proposed construction, we see that S2 requires an additional sign change at the
second block matrix of the second user’s code. This sign change is essential to ensure an NVD-like
property. It also endows S2 with another nice property that the transmission of code matrices in
S2 takes only 2nt channel uses, less than that required by S . However, this additional sign change
might complicate system design as the system must constantly check which user requires a sign
change and which user does not. Such disadvantage does not exist in the proposed construction
of S. Everything works perfectly after patching an extra block of transmission when K is even.
Another drawback of S2 is the difficulty of generalization to the cases of K > 2. �

Let Hi be the (nr × nt) channel matrix of the ith user. We assume Hi is fixed for a block of
ntKo channel uses. Following (1.5), given the overall transmitted code matrix S ∈ S, the received
signal matrix at receiver end is[

Y0 · · · YKo−1

]
=
[
H0 · · · HK−1

]
S +W. (3.12)

W is the noise matrix whose entries are i.i.d. CN (0, 1) random variables, and Yj is the jth block
received signal matrix given by

Yj := κ
K−1∑
i=0

Hiτ
j
o (Xi) +Wj, j = 0, 1, · · · , Ko − 1,

and
W =

[
W0 W1 · · · WKo−1

]
.

3.2 Properties of the Proposed Construction
To simplify the analysis of code performance, below we define the extended versions of S and C.

Co :=


Co =

 X0 · · · τKo−1
o (X0)

... . . . ...
XKo−1 · · · τKo−1

o (XKo−1)

 :

Xi = ψo(xi), xi ∈ Ao(SNR)


,

(3.13)
So := {So = κCo : Co ∈ Co} . (3.14)

Given the overall signal matrix S ∈ S , let So ∈ So be any signal matrix such that the upper
(Knt ×Kont) submatrix of So equals S. Then we can rewrite (3.12) as[

Y0 · · · YKo−1

]
=
[
H0 · · · HKo−1

]
So +W, (3.15)

where

HKo−1 =

{
HK−1, if K odd,

0, if K even.

By 0 we mean the all-zero matrix of proper size. Noting (3.12) and (3.15) are equivalent, hence-
forth we will work only with the extended codes So and Co, rather than S and C. We next show
several nice properties possessed by So and Co.
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Property 1. For any Co ∈ Co, we have[
(γ∗)Ko(nt−1) det(Co)

]
∈ Z[ ı ]. (3.16)

Proof. We first claim
τo(det(Co)) = det(Co). (3.17)

To see this, notice that

τo(det(Co)) = det

 τo(X0) · · · τKoo (X0)
... . . . ...

τo(XKo−1) · · · τKoo (XKo−1)


= det

 τo(X0) · · · X0
... . . . ...

τo(XKo−1) · · · XKo−1


= (−1)nt(Ko−1) det(Co) = det(Co),

where the last equality follows from the fact that Ko − 1 is even, hence the claim (3.17) is proved.
Next, we show

σ(det(Co)) = det(Co). (3.18)

To this end, define
Z = ψo(z), (3.19)

where z is the indeterminate defined as in (3.2). Since from (3.4) xz = zσ(x) for all x ∈ E o, it is
clear that σ(X) = Z−1XZ, where X = ψo(x). Now we have

σ(det(Co))

=

∣∣∣∣∣∣∣
Z−1X0Z · · · τKo−1

o (Z−1X0Z)
... . . . ...

Z−1XKo−1Z · · · τKo−1
o (Z−1XKo−1Z)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
Z−1X0Z · · · Z−1τKo−1

o (X0)Z
... . . . ...

Z−1XKo−1Z · · · Z−1τKo−1
o (XKo−1)Z

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
Z−1

. . .
Z−1

∣∣∣∣∣∣∣×∣∣∣∣∣∣∣
X0 · · · τKo−1

o (X0)
... . . . ...

XKo−1 · · · τKo−1
o (XKo−1)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Z

. . .
Z

∣∣∣∣∣∣∣
= det(Co),

where we have used the fact that τo(Z) = Z since 0 6= ζ ∈ F by construction. Thus, as det(Co) is
fixed by both τo and σ, we see that det(Co) ∈ F = Q( ı ).

Finally, from the definition of ψo (3.6), the matrix

τ jo (Xi)


1

γ∗

. . .
γ∗
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has entries in OE o for all i = 0, 1, · · · , Ko − 1 and j = 0, 1, · · · , nt − 1 since

Ao(SNR) ⊂ OE o ⊕ zOE o ⊕ · · · ⊕ znt−1OE o .

OE o is the ring of algebraic integers in number field E o. It then follows that[
(γ∗)Ko(nt−1) det(Co)

]
∈ OE o .

Summarizing the above results, we conclude that[
(γ∗)Ko(nt−1) det(C)

]
∈ OE o ∩Q( ı ) = Z[ ı ],

and this completes the proof. �

Property 2. Let

C =

 x>0
...

x>Ko−1

 =

 x0 · · · τKo−1
o (x0)

... . . . ...
xKo−1 · · · τKo−1

o (xKo−1)

 (3.20)

and

Co =

 X0 · · · τKo−1
o (X0)

... . . . ...
XKo−1 · · · τKo−1

o (XKo−1)

 ∈ Co
with Xi = ψo(xi), xi ∈ Ao(SNR), where by x> we mean the transpose of vector x. Let m be the
maximal number of rows in C that are linearly independent as a left Do-module; then

rank(Co) = mnt (3.21)

where the rank is measured in the complex number field C.

Proof. To find out the rank of matrix Co, we use the elementary row operations from Gaussian
elimination method. Note that the same row operations can be performed on C whose entries are
in Do. Extra care must be taken because multiplication in Do is non-commutative. Further, we
note that elementary row operations on C are equivalent to the block elementary row operations on
Co. By this we mean that, say P is a (Ko × Ko) elementary matrix with entries in Do; then it is
clear

Ψo (PC) = Ψo(P )Co,

where Ψo is the natural extension of ψo to the (Ko ×Ko) central simple matrix algebra MKo(Do)
over Do [25], i.e.,

Ψo(P ) = [ψo(Pi,j)] . (3.22)

From hypothesis, assume {x>i0 , · · · , x
>
im−1
} is the maximal subset of the rows of C that are linearly

independent over Do. Then it follows that there arem leading ones in the row-reduced matrix of C.
Equivalently, the same block elementary operations Ψo(P ) would reduce matrix Co into a matrix
whose main diagonal consists of m identity matrices, each of size (nt × nt), after permuting the
columns if necessary. This completes the proof. �
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Property 2 shows that the overall code matrix Co ∈ Co might not always have full rank Kont,
and the rank of Co is always a multiple of nt. This is not too much of a surprise as it is straight-
forward to see that in (3.13) if some Xi’s are identical, then the overall code matrix Co cannot be
nonsingular.

Compared with the constructions proposed in [18,19], the matrixCo of the present construction
could be singular even when the component matrices Xi are all distinct and nonzero as shown
by Property 2. Nevertheless, we will prove in Chapter 6 that in order to achieve the optimal
MAC-DMT performance at high-SNR regime, it is unnecessary to construct codes such that Co is
nonsingular whenever all the component matrices Xi are distinct and nonzero.

Before rigorously proving the above statement, a heuristic way to see this is the following.
Since the users communicate independently to the base station, for any overall MIMO-MAC code
C it is impossible for all the code matrices C ∈ C to be nonsingular as some component matrices
Ck of the kth user could be zero. Also, from the pairwise error probability point of view, for any
C 6= C ′ ∈ C, C − C ′ can be singular at least when the information symbols transmitted by some
users are the same. The rank of overall code matrices Co is at best a multiple of nt. Therefore,
intuitively speaking, perhaps it would not hurt to make things a bit worse in the sense that the
difference matrix C − C ′ can be singular in other cases. By this we mean that if there are m
distinct information symbols in the difference matrix C−C ′, the maximal possible rank of C−C ′
is mnt. We claim that it would not hurt in the DMT sense if the construction can provide only
rank nnt for some n with 1 < n < m. The reason for this actually follows from Theorem 5 that
the error events En (Im) of m users in error but getting only rank distance nnt do not dominate
the error performance in the final DMT performance. Therefore, we strongly speculate that such
difference matrices C−C ′ do not have to achieve the same rank mnt as the Gaussian random code
does. The rank can be less, as long as the resulting error performance is not worse than those of
m = 1 and m = Ko.

Although we do not need the whole code Co to satisfy the full NVD property as in the point-to-
point scenario, an alternative NVD-like property is preferred and is given as below.

Property 3. Let C be defined as in (3.20) and assume that {x>i0 , · · · , x
>
im−1
} is a subset of rows of

C that are linearly independent as a left Do-module. Define

Cs :=

 x>i0
...

x>im−1

 and Cs := Ψo (Cs) , (3.23)

i.e., Cs is the submatrix of Co consisting of the corresponding linearly independent mnt rows,
where Ψo is the natural extension of ψo. Then

1 ≤
[
|γ|2mnt · det

(
CsC

†
s

)]
∈ Z, (3.24)

where by A† we mean the hermitian transpose of matrix A.

Proof. First, it follows from Property 2 that[
|γ|2mnt · det

(
CsC

†
s

)]
> 0

since Cs has full row rank mnt and γ 6= 0 by assumption. To show |γ|2mnt · det
(
CsC

†
s

)
∈ Z,

we shall first verify that det
(
CsC

†
s

)
is fixed under automorphisms τo and σ. For τo, it can be seen

from the proof of Property 1 that

τo
(
det
(
CsC

†
s

))
= det

(
τo (Cs) [τ0 (Cs)]

†
)
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and

τo(Cs) =

 τo(Xi0) · · · τKoo (Xi0)
... . . . ...

τo(Xim−1) · · · τKoo

(
Xim−1

)


=

 τo(Xi0) · · · Xi0
... . . . ...

τo(Xim−1) · · · Xim−1


= CsP

for some column permutation matrix P of size (Kont ×Kont), where Xij = ψo(xij ,0) and x>ij =[
xij ,0, · · · , xij ,Ko−1

]
, j = 0, 1, · · · ,m− 1. Now it follows that

det
(
τo (Cs) [τ0 (Cs)]

†
)

= det
(
CsPP

†C†s
)

= det
(
CsC

†
s

)
as PP † = IKont , and we have proved det

(
CsC

†
s

)
is fixed by τo.

For σ, again from the proof of Property 1 we see that

σ
(
det
(
CsC

†
s

))
= det

(
σ (Cs) [σ (Cs)]

†
)

and

σ(Cs) =

 Z−1Xi0Z · · · Z−1τKo−1
o (Xi01)Z

... . . . ...
Z−1Xim−1Z · · · Z−1τKo−1

o (Xim−1)Z


=

 Z−1

. . .
Z−1

Cs
 Z

. . .
Z

 ,
where

Z = ψo(z) =


0 0 0 · · · ζ
1 0 0 · · · 0
0 1 0 · · · 0
...

... . . . . . . ...
0 0 · · · 1 0

 . (3.25)

From (3.25) it is clear that ZZ† = Int since ζζ∗ = 1 by construction. Therefore, we see that

σ(Cs) [σ(Cs)]
†

= diag(Z−1, · · · , Z−1)CsC
†
s diag((Z−1)†, · · · , (Z−1)†).

Taking into account that det
(
Z−1 (Z−1)

†
)

= 1 it follows that σ det(CsC
†
s) = det(CsC

†
s). So far,

we have proved that det(CsC
†
s) is fixed by both τo and σ. This in turn implies that det(CsC

†
s) ∈

Q ∩ R = Q. Finally, the proof is complete after noting that γ∗Cs has entries in OE o . �

In Property 2 we have shown that the overall code matrix Co might not have full rank, and
when that happens, its rank always equals mnt for some m. The number m indicates the number
of users whose transmitted signal vectors, when regarded as rows of matrix C in (3.20), are linearly
independent over Do. Further, Property 3 shows that even when Co is singular and fails to have
NVD, i.e., fails to satisfy det(CoC

†
o) ≥ 1, the submatrix Cs formed by the transmitted signal

matrices of those m users still satisfies the NVD property. Such result can be further extended to
yield the following property on the nonzero eigenvalues of CoC†o .
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Property 4. LetCo andCs be defined as above with rank(Co) = rank(Cs) = mnt. Let β1, · · · , βmnt
be the nonzero eigenvalues of CoC†o . Then

mnt∏
i=1

βi ≥ det (CsCs) ≥̇ 1. (3.26)

Proof. Here we take an information theoretic approach to prove the first inequality. To this end,
let N = [N1, · · · , NKont ]

> be a complex Gaussian random vector of length Kont with zero mean
and covariance matrix

EN N † = CoC
†
o .

Without loss of generality we can assume that m linearly independent users are the first m users
and ij corresponds to the jth user, j = 0, 1, · · · ,m − 1. Hence the covariance matrix of the
sub-vector N s = [N1, · · · , Nmnt ]

> equals

EN sN
†
s = CsC

†
s .

We have the following inequality for the differential entropies of N and N s

h (N1, · · · , NKont) ≥ h (N1, · · · , Nmnt)

= log det
(
CsC

†
s

)
+mnt log(2πe)

(3.27)

Notice that the covariance matrix of N can be decomposed as

CoC
†
o = UΣU †

for some (Kont ×Kont) unitary matrix U . Σ is a diagonal matrix whose nonzero entries are the
βi’s. Thus setting N ′ = UN we have

h(N) = h(U †N ′) =
mnt∑
i=1

log βi +mnt log(2πe).

Now combining the above results proves the first inequality in (3.26). The second inequality in
(3.26) follows directly from Property 3 and from |γ| .= 1. �

Remark 6. The above property shows that despite Co can be singular, the product of the nonzero
eigenvalues ofCoC†o is always bounded from below by 1. This can be regarded as a relaxation of the
conventional NVD property. In the design of ST codes, satisfying the NVD criterion is a sufficient
condition to achieve the optimal point-to-point DMT performance. To guarantee NVD in the point-
to-point MIMO, we require all the users to cooperate fully as already seen in Theorem 4. However,
it is not allowed in MIMO-MAC where users transmit independently their own information to the
common receiver. Thus, in MIMO-MAC we do not demand full NVD, and only partial NVD is
required as shown in (3.26). �

3.3 MAC-DMT Optimality of the Proposed Construction
Armed with the properties discussed in the previous section, below we are able to show the pro-
posed code is MAC-DMT optimal.
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Theorem 7. Given multiplexing gain r, the proposed code S defined as in (3.9) achieves the
following diversity gain

d(r) = min
1≤k≤K

d∗knt,nr(kr) (3.28)

over Rayleigh block fading channel with channel coherence time T ≥ Kont channel uses. Thus, S
is MAC-DMT optimal.

Proof. The proof is relegated to Chapter 6 for ease of reading. �
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Chapter 4

MAC-DMT Optimal Codes for General
MIMO-MAC Systems

In [11], Tse et al. focused on analyzing the DMT in a symmetric MIMO-MAC system. By sym-
metric we mean that every mobile user in the system has the same number of transmit antennas
and transmits at the same level of multiplexing gain. However, the symmetric MIMO-MAC might
not be practical enough. In the near future, the mobile communication is likely to be at a transi-
tion stage, migrating from conventional SISO (single-input single-output) to MIMO. In fact, such
transition already takes place in wireless local area networks where some old laptops have single
transmit antenna while the latest ones could have more than two transmit antennas. In the mixture
of SISO and MIMO communication environment, one would expect the mobile users having dif-
ferent numbers of transmit antennas. Furthermore, in practice it is often possible that mobile users
transmit at different rates because of the different plans they purchase from the service provider.
The different rate implies a different level of multiplexing gain in the DMT sense. It is then of
fundamental importance that we must have a general code construction that works for any MIMO-
MAC systems where the mobile users are allowed to have different numbers of transmit antennas
and can transmit at different levels of multiplexing gains. In the previous sections we have pro-
vided a systematic construction for the symmetric MIMO-MAC and have proved that it achieves
the optimal MAC-DMT. Below we will extend these results to the general channel.

4.1 Decoding in General MIMO-MAC
There can be at least two decoding methods in the general MIMO-MAC, depending on how much
computational complexity one can afford. The first decoder is the joint ML decoder, by which
we mean the following. Assuming there are K users, each transmitting using a codebook Si that
consists of (ni × T ) ST code matrices, for i = 0, 1, · · · , K − 1. Let Si ∈ Si be the signal matrix
transmitted by the ith user, and let

Y =
K−1∑
i=0

HiSi +W

be the received signal matrix; then the joint ML decoder seeks the optimal joint ML estimate(
Ŝ0, · · · , ŜK−1

)
by(

Ŝ0, · · · , ŜK−1

)
= arg max

S∈S
Pr {S = (S0, · · · , SK−1) |Y }

= arg min
S∈S

∥∥∥∥∥Y −
K−1∑
i=0

HiSi

∥∥∥∥∥
F

, (4.1)
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where S = S0 × S1 × · · · × SK−1. This joint ML decoder was used in [11] for analyzing the
MAC-DMT performance in symmetric MIMO-MAC.

However, the above joint ML decoder might not be optimal in terms of the error performance of
each user. For the ith user, the truly optimal decoder, though having extremely high computational
complexity, is the individual ML decoder that seeks optimal ML estimate Ŝi by

Ŝi = arg max
Si∈Si

Pr {Si|Y }

= arg max
Si∈Si

∑
S(i)∈S(i)

exp

−∥∥∥∥∥Y −
K−1∑
i=0

HiSi

∥∥∥∥∥
2

F

 , (4.2)

where S(i) = (S0, S1, · · · , Si−1, Si+1, · · · , SK−1) and S(i) = S0 ×S1 × · · · × Si−1 ×Si+1 × · · · ×
SK−1. The difference between the individual and joint ML decoders is analogous to that between
the BCJR and Viterbi decoders [32] for the decoding of convolutional codes. It is easy to see that
the individual ML decoder always outperforms the joint ML decoder.

In the next two sections we will examine the MAC-DMT performances of these two decoders.
Obviously we expect there might exist certain performance loss in the joint ML decoder, compared
to the individual ML decoder.

4.2 MAC-DMT for General MIMO-MAC with Joint Decoding
Consider a general MIMO-MAC system with K mobile users. Let ni denote the number of trans-
mit antennas of the ith user, i = 0, 1, · · · , K − 1, and let ri be the corresponding multiplexing
gain. Assuming nr receive antennas at the base station, the first major result of this section is the
following.

Theorem 8 (General joint MAC-DMT). LetK, ni, ri and nr be defined as above. If joint decoding
is performed at receiver end, the optimal MAC-DMT of such system is given by

d∗{n0,··· ,nK−1},nr(r0, · · · , rK−1) = min
I
d∗Nt(I),nr

(∑
i∈I

ri

)
(4.3)

for i.i.d. Rayleigh block fading channel that is fixed for at least

T ≥

[
K−1∑
i=0

ni

]
+ nr − 1 (channel uses).

The minimization in (4.3) is taken over all possible non-empty subsets I ⊆ {0, 1, · · · , K−1}, and

Nt(I) :=
∑
i∈I

ni (4.4)

is the total number of transmit antennas of users in I. The notion of d∗p,q(r) is the conventional
point-to-point DMT. �

Prior to proving Theorem 8, we shall give an example illustrating this theorem and in particular,
show some unexpected effects resulting from joint decoding.
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Example 2. For simplicity, here we consider a general MIMO-MAC system with two users. The
first user has n0 = 1 transmit antenna and transmits at multiplexing gain r0; the second user has
n1 = 2 transmit antennas and transmits at multiplexing gain r1. Assume there are nr = 2 receive
antennas at receiver end. Using (4.3) the resulting MAC-DMT is shown in Fig. 4.1. First, it is
interesting to note that unlike the symmetric MIMO-MAC where all users have same number of
transmit antennas and transmit at same level of multiplexing gain, here the second user cannot
achieve his single-user DMT performance even when r0 = 0. This effect is shown in Fig. 4.2.
While this is quite unexpected, such phenomenon can be easily explained. Recall that the DMT is
an asymptotic result. Strictly speaking, the multiplexing gain ri is defined as

ri = lim
SNR→∞

Ri

log2 SNR
,

and Ri is the actual transmission rate. Therefore, when we say r0 = 0 it does not necessarily mean
R0 = 0. It simply means that the rate of the first user grows much slower than log2 SNR. For
example, an ST code that is fixed and does not vary with SNR has multiplexing gain 0 since the
rate Ri is a constant. But the rate Ri is bounded away from 0.

Having learned the above, in our example given the multiplexing gain r0 = ε for some positive ε
very close to 0, the DMT performance of joint decoder would be dominated by erroneous decoding
of the first user’s signals when r1 is small. It is also easy to confirm this observation from pairwise
error probability (PEP) analysis. Assume r0 = r1 = 0, butR0, R1 > 0, i.e., the codes are fixed and
do not vary with SNR. Since the two users do not cooperate, for any distinct pairs of overall code
matrices, the maximal possible rank is the minimum of n0 and n1. Hence the resulting maximal
possible diversity gain equals

dmax = nr ·min{n0, n1},

which equals 2 in this example. Therefore, the PEP analysis confirms that the single-user DMT
performance d∗2,2(r1) cannot be achieved for small values of r0 as shown in Fig. 4.2.

Before concluding this example we remark that the loss in DMT for the second user can in fact
be recovered if an individual ML decoder is used. We will come back to this in Chapter 4.3. �
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Figure 4.1: Joint MAC-DMT d∗{1,2},2(r0, r1) of general MIMO-MAC with two users.

The proof of Theorem 8 follows along similar lines of that of symmetric MAC-DMT provided
by Tse et al. in [11]. Specifically, let

Ri := ri log2 SNR (bits/channel use)
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Figure 4.2: Joint MAC-DMT d∗{1,2},2(0, r1) of general MIMO-MAC with two users.

denote the actual transmission rate of the ith user. Given the subset I of users, letO(I) denote the
following outage event

O(I) :=

{
H ∈ Cnr×N : I

(
SI ; y|SIc , H

)
≤
∑
i∈I

Ri

}
, (4.5)

where

• H = [H0 · · · HK−1] is the overall channel matrix, Hi is the channel matrix of size (nr×ni)
of the ith user,

• N is the total number of transmit antennas defined by

N :=
K−1∑
i=0

ni,

• SI contains the transmitted signal vectors of users in I and is defined as

SI := {si : i ∈ I} ,

• y is the received signal vector given by

y =
K−1∑
i=0

Hisi + w,

where w is the complex Gaussian random noise vector, and

• SIc consists of transmitted signals of users not in I.

Let O denote the overall outage event. It is clear that

O =
⋃
I

O(I).
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Following similar arguments as in [11] it is straightforward to see that the error probability of joint
decoding Pe(r0, · · · , rK−1) is lower bounded by

Pe(r0, · · · , rK−1) ≥ Pr {O} ≥ max
I

Pr {O(I)}
.
= SNR−minI d

∗
Nt(I),nr(

∑
i∈I ri).

(4.6)

To establish the converse, we take the random codebook approach similar to that used by Tse
et al. in [11]. Let Si be the codebook of the ith mobile user, consisting of (ni × T ) code matrices
that are randomly generated by some complex Gaussian random generator. Further, Si satisfies the
desired multiplexing gain,

1

T
log2 |Si| = Ri = ri log2 SNR.

Let E (I) denote the event that the signal matrices of users in I are erroneously decoded by the
joint decoder. Then arguing similarly as in [11], it can be shown that

Pr {E (I)} ≤̇ SNR−d
∗
Nt(I),nr(

∑
i∈I ri)

whenever
T ≥ Nt(I) + nr − 1.

Thus, using union bound we have

Pe (r0, · · · , rK−1) ≤
∑
I

Pr {E (I)}

.
= SNR−minI d

∗
Nt(I),nr(

∑
i∈I ri),

provided that
T ≥ max

I
Nt(I) + nr − 1 = N + nr − 1.

This proves Theorem 8.

4.3 MAC-DMT for General MIMO-MAC with Individual ML
Decoding

In the previous section we investigated the MAC-DMT for a general MIMO-MAC with joint de-
coding at the receiver end. We also observed in Example 2 that certain DMT performance loss
could result from the use of joint decoder. However, such loss can be safely avoided by the use of
individual ML decoder.

Recall that for the ith user, the truly optimal decoder, though having extremely high computa-
tional complexity, is the individual ML decoder that seeks optimal ML estimate Ŝi by

Ŝi = arg max
Si∈Si

Pr {Si|Y }

= arg max
Si∈Si

∑
S(i)∈S(i)

exp

−∥∥∥∥∥Y −
K−1∑
i=0

HiSi

∥∥∥∥∥
2

F

 , (4.7)

where S(i) = (S0, S1, · · · , Si−1, Si+1, · · · , SK−1) and S(i) = S0 × S1 × · · · × Si−1 × Si+1 ×
· · · × SK−1. Clearly (4.7) outperforms (4.1) in error performance, but at a cost of much higher
computational complexity.
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Without loss of generality, below we focus on the error performance of the individual ML de-
coding for the ith user. To distinguish the DMT performances of decoders (4.1) and (4.7), we shall
call the DMT of the latter the individual MAC-DMT and will denote it by d(i)∗

{n0,··· ,nK−1},nr(r0, · · · ,
rK−1).

To characterize the DMT performance of the individual ML decoder, we only need to consider
the outage events O (I) (cf. (4.5)) in which the ith user is a member of I. Event O(I) with i 6∈ I
is not counted as an outage for the ith user for obvious reasons. Thus, along similar lines as in the
proof of Theorem 8 we can show the following.

Theorem 9 (General individual MAC-DMT). Let K, ni, ri and nr be defined as before. If individ-
ual ML decoding is performed at receiver end for the ith user, the optimal individual MAC-DMT
is given by

d
(i)∗
{n0,··· ,nK−1},nr(r0, · · · , rK−1) = min

I:i∈I
d∗Nt(I),nr

(∑
i∈I

ri

)
, (4.8)

where the minimization is taken over all I ⊆ {0, 1, · · · , K − 1} under the condition i ∈ I and
Nt(I) is defined in (4.4). �

Proof. For brevity we only outline the proof. Let Oi denote the outage event of the ith user; then
following from the above discussion it can be seen that

Oi =
⋃

I⊆{0,1,··· ,K−1}
i∈I

O (I) ,

since if i 6∈ I, the ith user is not in outage. Now let P (i)
e (r0, · · · , rK−1) denote the error probability

of the individual decoder for the ith user; then it can be shown that

P (i)
e (r0, · · · , rK−1) ≥ Pr {Oi}

≥̇ max
I⊆{0,1,··· ,K−1}

i∈I

Pr {O(I)}

.
= SNR

−d(i)∗{n0,··· ,nK−1},nr
(r0,··· ,rK−1)

,

where the first inequality follows from [9, Lemma 5]. To show the converse, let E (I) denote the
error event that the signal matrices of the users in I are erroneously decoded under joint decoding.
Then simply note that the error probability of an individual ML decoder is upper bounded by that
of a joint ML decoder, i.e.,

P (i)
e (r0, · · · , rK−1) ≤ Pr


⋃

I⊆{0,1,··· ,K−1}
i∈I

E (I)

 ,

where the right-hand-side gives the probability of a joint ML decoder when the signal of the ith
user is erroneously decoded. Now using the union bound argument and along similar lines as in
the proof of Theorem 8 it can be shown that

P (i)
e (r0, · · · , rK−1) ≤

∑
I⊆{0,1,··· ,K−1}

i∈I

Pr {E (I)}

≤̇
∑

I⊆{0,1,··· ,K−1}
i∈I

SNR−d
∗
Nt(I),nr(

∑
i∈I ri)

.
= SNR

−d(i)∗{n0,··· ,nK−1},nr
(r0,··· ,rK−1)

.

This completes the proof. �
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Figure 4.3: Comparison between the joint MAC-DMT and the individual MAC-DMT of the second
user when r1 = 4r0 = r.
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Figure 4.4: Comparison between the joint MAC-DMT and the individual MAC-DMT when r1 =
r0 = r.

With the above result, we now come back to Example 2 to investigate the individual MAC-
DMT of the second user.

Example 3 (Continued from Example 2). In Example 2 we have considered the specific case of
K = 2, n0 = 1, n1 = 2, nr = 2 and r0 = 0. Assuming the second user transmits at multiplexing
gain r1, from Theorem 9 the individual MAC-DMT of the second user is

d
(1)∗
{1,2},2(0, r1) = min{d∗2,2(r1), d∗3,2(r1)} = d∗2,2(r1).

Hence we see that the single-user performance of the second user is recovered by the use of an
individual ML decoder. To illustrate further the difference in MAC-DMT between (4.1) and (4.7),
in Fig. 4.3 we compare the MAC-DMT performances of joint and individual decoders at r1 =
4r0 = r. It can be clearly seen that the individual ML decoder outperforms significantly the joint
ML decoder at low-multiplexing-gain regime.
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Another comparison between the DMT performances of both decoders at r1 = r0 = r is given
in Fig. 4.4. It shows that the joint ML decoder (given by d∗{1,2},2(r, r)) is not optimal for the
second user. The truly optimal individual ML decoder for the second user has DMT performance
d

(1)∗
{1,2},2(r, r). Furthermore, the individual ML decoder for the second user achieves the single-user

DMT performance d∗2,2(r) as long as r ≤ 0.4. On the other hand, for the first user who has lesser
number of transmit antennas, the DMT performances of the joint and individual decoders are the
same and are actually equal to his single-user performance d∗1,2(r). �

Next we could apply Theorem 9 to the case of symmetric MIMO-MAC to see how the error
probabilities of joint and individual ML decoders compare. The comparison is given in the fol-
lowing corollary. It shows that in the symmetric MIMO-MAC there is no difference in terms of
MAC-DMT performance between the joint and individual ML decoders.

Corollary 10. For symmetric MIMO-MAC with K users, each having nt transmit antennas and
transmitting at multiplexing gain ri = r, let Pe(r) denote the error probability of the joint ML
decoder and P (i)

e (r) denote the error probability of the ith individual ML decoder. Then

Pe(r)
.
= P (i)

e (r)

and in terms of DMT we have

d
(i)∗
{nt,··· ,nt},nr(r, · · · , r) = d∗{nt,··· ,nt},nr(r, · · · , r)

for all i = 0, 1, · · · , K − 1.

Proof. It suffices to show only the equality in DMT. First, from Theorem 9 we have

d
(i)∗
{nt,··· ,nt},nr(r, · · · , r) = min

1≤m≤K
d∗mnt,nr(mr)

and the proof is complete after noting that the right-hand-side of the above is the same as the
MAC-DMT given in Theorem 1. �

Before concluding the section we have the following remarks. First, while the individual ML
decoder could achieve a much higher DMT performance as seen in Examples 2 and 3, the com-
putational complexity required by (4.7) is often extremely high. Thus, the individual ML decoder
has widely been considered as being impractical in multiuser detections. The reason for including
this receiver is only to clarify the unexpected DMT performance loss of the joint ML decoder in
Example 2.

As the individual ML decoder is rarely used, below we will not consider this receiver anymore.
We will regard the joint MAC-DMT given in Theorem 8 as the optimal MAC-DMT in practice,
although it is now clear that it is not the best one can actually achieve.

4.4 General MAC-DMT Optimal Codes
So far we have provided the optimal MAC-DMT (4.3) for the general MIMO-MAC system with
K users where the ith user has ni transmit antennas and transmits at multiplexing gain ri. To have
a deterministic code for the general MIMO-MAC, we can extend the code construction given in
Chapter 3 for symmetric MIMO-MAC to the present case.

Let K, ni, ri, and nr be defined as before. For brevity we only present the construction when
K is odd. Codes for K even can be constructed by simply patching an extra coded block to each
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user’s code matrices, similar to that described in Chapter 3. Henceforth we will drop the subscript
“o” in Ko, Ko, τo, Co, So, etc. for simplicity.

Given ni and K, we first define

nmax := max
0≤i≤K−1

ni (4.9)

as the maximal number of transmit antennas among all users. In general, the number nmax can
be either pre-known to all the users, or explicitly specified among any groups of users. Next, let
L = F(ϑ) be the number field that is cyclic Galois over F = Q( ı ) with degree nmax, and let
K = F(η) be another cyclic Galois extension of F with degree K. Let σ be the generator of the
Galois group Gal(L/F), and similarly let τ be the generator of Gal(K/F). The fields L and K are
required to satisfy L∩K = F or are required such that τ and σ commute. Finally, we set E = LK
to be the compositum of fields L and K. Similar to Chapter 3, with some suitable unimodular
ζ ∈ F∗, we have

D = E ⊕ zE ⊕ · · · ⊕ znmax−1E (4.10)

as an appropriate central simple division K-algebra with xz = zσ(x) for x ∈ E , where z is an
indeterminate satisfying znmax = ζ .

Given the multiplexing gain ri of the ith user, we set the corresponding base alphabet and
information set as follows:

Ai(SNR) =

{
a+ b ı :

−SNR
ri

2nmax ≤ a, b ≤ SNR
ri

2nmax ,
a, b ∈ Z, a, b odd

}
(4.11)

and

Ai(SNR) =

{
nmax−1∑
j=0

zj
Knmax−1∑

k=0

xj,kek : xj,k ∈ Ai(SNR)

}
, (4.12)

where {e0, · · · , eKnmax−1} is an integral basis of E /F. Unlike the construction for symmetrical
MIMO-MAC, here the information set can be different among users as each user has different
level of multiplexing gain.

Let ψ denote the left-regular map of elements in D into matrices of size (nmax × nmax) whose
entries are in E (similar to ψo of (3.6)); then the ST code Si of the ith user is given by

Si =

 Si = κi
[
Xi τ (Xi) · · · τK−1 (Xi)

]
:

Xi = ψ(xi), xi ∈ Ai(SNR)

 , (4.13)

where
κ2
i
.
= SNR1− ri

nmax (4.14)

such that the power constraint (1.4) is satisfied.
Given Si, i = 0, 1, · · · , K−1, the overall code is obtained by vertically concatenating the code

matrices from each user,

S := S0 × S1 × · · · × SK−1

=

S =

 S0
...

SK−1

 : Si ∈ Si

 . (4.15)

The overall code matrix S is a square matrix of size (Knmax × Knmax). Below we will present
some nice properties of S which are essential to proving its MAC-DMT optimality.

The first property extends Property 2 of the symmetric MAC code So in Chapter 3.2.
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Property 5. For any xi ∈ Ai(SNR), define

C =

 x>0
...

x>K−1

 =

 x0 · · · τK−1 (x0)
... . . . ...

xK−1 · · · τK−1 (xK−1)

 (4.16)

and let

S =

 κ0X0 · · · κ0τ
K−1 (X0)

... . . . ...
κK−1XK−1 · · · κK−1τ

K−1 (XK−1)

 ∈ S
be the corresponding overall code matrix where Xi = ψ(xi). Then ‖S‖2

F ≤̇ SNR. Further, let m
be the maximal number of rows of C that are linearly independent as a left D-module. Then

rank(S) = mnmax, (4.17)

where the rank is measured in the complex number field C.

Proof. The first claim can be easily verified from the settings of κi and Ai(SNR), and is thus
omitted for brevity. For the second, to determine the rank of S, it suffices to consider the rank of
the unscaled code matrix

C =

 X0 · · · τK−1 (X0)
... . . . ...

XK−1 · · · τK−1 (XK−1)

 . (4.18)

Notice that C is a code matrix of the code Co defined in (3.14) for the symmetric MIMO-MAC
when we set nt = nmax and

r = max
i
ri.

Now the result follows from Property 2. �

The next property generalizes Property 3 in Chapter 3.2 where we were interested in the Gram
determinant of the un-scaled code matrix. Here, for the purpose of analyzing the general MAC-
DMT performance of the proposed code, we will seek directly the Gram determinant of the overall
matrix S.

Property 6. Let C be defined as in (4.16) and assume that {x>i0 , · · · , x
>
im−1
} is a subset of rows of

C that are linearly independent as a left D-module. Let

Ss =

 κi0Xi0 · · · κi0τ
K−1 (Xi0)

... . . . ...
κim−1Xim−1 · · · κim−1τ

K−1
(
Xim−1

)
 (4.19)

be the submatrix of S consisting of the corresponding mnmax rows. Then[
‖γ‖2mnt · det

(
SsS

†
s

)]
≥ SNRmnmax−

∑m−1
j=0 rij . (4.20)
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Proof. Arguing similarly to the proof of Property 5, set

Cs =

 Xi0 · · · τK−1 (Xi0)
... . . . ...

Xim−1 · · · τK−1
(
Xim−1

)
 . (4.21)

Then we have

Ss =

 κi0Inmax

. . .
κim−1Inmax

Cs
and [

‖γ‖2mnmax · det
(
CsC

†
s

)]
≥ 1

by Property 3 since Cs is a submatrix of the code matrix C (cf. (4.18)) of the code Co (cf. (3.14))
for the symmetric MIMO-MAC when setting nt = nmax and r = maxi ri. The result now follows
from

det
(
SsS

†
s

)
= det

(
CsC

†
s

)m−1∏
j=0

det
(
κijInmax

)
≥̇

m−1∏
j=0

det
(
κijInmax

)
and from the definition of κij in (4.14). �

The two properties above are exactly what we need to prove the MAC-DMT optimality of the
proposed general MIMO-MAC code S in (4.15). Hence, with these properties we can prove the
following theorem.

Theorem 11. Given ni and ri, i = 0, 1, · · · , K − 1 with K odd, the proposed code S defined in
(4.15) achieves the general joint MAC-DMT

d(r0, · · · , r1) = min
Im

d∗Nt(I),nr

(∑
i∈I

ri

)
(4.22)

over a Rayleigh block fading channel that remains static for at least T ≥ Knmax channel uses. S
is MAC-DMT optimal.

Proof. The proof is similar to that of Theorem 7 and is relegated to Chapter 7 for ease of reading.
�

The proof to Theorem 11 can in fact be further extended to show that the proposed code S
(4.15) achieves the optimal individual MAC-DMT (4.8), provided that an individual ML decoder
for each user is used at the receiver end. This result along with the proof will be presented in
Corollary 15 of Chapter 7.
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Chapter 5

Proof of Theorem 4

Consider the multi-user set up with K users, each having nt transmit antennas. The users are
simultaneously and synchronously transmitting the matrix Ck, k = 0, 1, · · · , K − 1, and each is
using a (user specific) code lattice Lk, k = 0, 1, · · · , K − 1 of complex nt × Knt-matrices, so
Ck ∈ Lk for all k. From the receiver’s point of view, the overall Knt ×Knt code matrix

C = M(C0, C1, · · · , CK−1) =


C0

C1
...

CK−1


then becomes interesting. Theorem 3 lists the following requirements that the group of lattices Lk

should ideally have.

1. Each lattice Lk should have the full rank 2Kn2
t in order to reach the maximum multiplexing

gain. That is, assuming a PAM alphabet of size SNR
r

2nt , the code Ck defined by Lk has size[
SNR

r
2nt

]2Kn2
t

= SNRrKnt ,

which means a multiplexing gain of value r for Knt channel uses.

2. Given any Im = {i0, i1, · · · , im−1} ⊆ {0, 1, · · · , K − 1}, whenever Cij 6= C ′ij ∈ Cij for
j = 0, 1, · · · ,m− 1, ∆CIm = M(Ci0 −C ′i0 , · · · , Cim−1 −C ′im−1

) should have full row rank
mnt, i.e., det(∆CIm∆C†Im) 6= 0.

3. In the cases listed in item 2 the determinants det(∆CIm∆C†Im) should be bounded away
from zero, i.e., NVD. In term of the notation of exponential equality, this means

det(∆CIm∆C†Im) ≥̇ 1.

The main idea behind our proof to Theorem 4 is that these ideal requirements are incompatible
if in the third requirement we have det(∆CIm∆C†Im) ≥ 1 . More precisely, we shall show
that first two requirements imply that the determinants det(∆CIm∆C†Im) will necessarily become
arbitrarily small, for all m > 1.

For simplicity, here it suffices to prove only the case of m = K and IK = {0, 1, , · · · , K − 1},
and we will show that if the first two requirements are met, then for the overall (Knt × Knt)
difference code matrix

∆C = M(C0 − C ′0, C1 − C ′1, · · · , CK−1 − C ′K−1),
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though invertible, the absolute of determinant |det(∆C)| can be arbitrarily small and be close to
0, hence the third requirement of NVD cannot be met.

To see this, set
∆Ck = Ck − C ′k,

with ∆Ck 6= 0 from the second requirement, and let W be the complex vector space of (nt×Knt)
matrices. Let V = L(∆C1,∆C2, · · · ,∆CK−1) be the complex vector space spanned by these
K − 1 matrices. From the second requirement we immediately see that dimC V

′ = K − 1. We
shall work with the quotient space Q = W/V . It has a natural structure of a finite dimensional
complex vector space. We also need its topology which is that of a Euclidean (or a Hermitian)
space that is well known to also be equal to the quotient topology.

The following simple observation is the key to prove Theorem 4.

Lemma 12. The mapping f : Q→ C, given by

X + L(∆C1, · · · ,∆CK−1) 7→ det(M(X,∆C1, · · · ,∆CK−1) (5.1)

is well-defined and continuous.

Proof. Any two (nt ×Knt) matrices X and X ′ determine the same coset modulo V , if and only
if the difference matrix X − X ′ is a complex linear combination of the matrices ∆C1,∆C2, · · · ,
∆CK−1. It is immediately clear that in that case

det(M(X,∆C1, · · · ,∆CK−1)

= det(M(X ′,∆C1, · · · ,∆CK−1).

Therefore f is a well-defined function. Continuity of f follows from the continuity of the polyno-
mial function X 7→ det(M(X,∆C1, · · · ,∆CK−1) and the basic properties of the quotient topol-
ogy. �

Lemma 13. A subgroup in Cn is a lattice if and only if it is discrete. �

Having obtained Lemmas 12 and 13, we are now in position to prove Theorem 4.

Proof. As above, let us fix non-zero difference matrices ∆Ck ∈ Lk, k = 1, 2, · · · , K − 1 for all
the other users. Let ∆C0 ∈ L0 be non-zero. Let π : W → Q denote the natural projection.

By the second requirement we have

det(M(∆C0, · · · ,∆CK−1)) 6= 0,

so ∆C0 does not belong to the subspace V . Therefore ∆C0 + V 6= 0Q, and we see that kerπ
intersects trivially with the lattice of the first user L0. So restricted to the free abelian group L0, π
is an injection. Hence G = π(L0) is a free abelian group of rank 2Kn2

t ⊂ Q.
Because dimCQ < Kn2

t , the quotient spaceQ is not big enough to contain a free abelian group
of rank 2Kn2

t as a discrete subset. Therefore the set G must have an accumulation point in Q by
Lemma 13. In other words, there are matrices in G that are arbitrarily close to each other. As G
is closed under addition and negation, it follows that we can find a sequence of non-zero matrices
(Si)i=1,2,··· from the lattice L0 such that the sequence of their images in the space Q converges
towards zero, or

lim
i→∞

π(Si) = 0Q.

The continuity of the function f of Lemma 12 then implies that

lim
i→∞

det(M(Si,∆C1, · · · ,∆CK−1) = f(0) = 0.

As all these matrices are of the form prescribed in condition 3), we see that this last condition
cannot be met. �
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Chapter 6

Proof of Theorem 7

Here we only prove the case of K odd. The case of K even and Ko = K + 1 can be proved using
similar arguments, and will therefore be briefly handled in a remark following the proof.

6.1 Proof Overview
In this section we provide an overview of the proof for the case ofK odd, along with a few insights
to the proof.

Given the overall channel matrix

H =
[
H0 H1 · · · HKo−1

]
(6.1)

we will provide an upper bound on the codeword error probability Pcwe(r) of the joint decoder at
receiver end. Let

Im := {i0, · · · , im−1} ⊆ {0, 1, · · · , Ko − 1}

be a subset of Ko users, and let En (Im) denote the event that

1. the signal of the ith user is erroneously decoded if and only if i ∈ Im, and further that

2. the rank distance between overall transmitted code matrix and the erroneously decoded over-
all signal matrix is only nnt for some n ≤ m.

Specifically, let xi ∈ Ao(SNR) denote the information symbol transmitted by the ith user, and let
x̂i be the corresponding decoding output at receiver; then the event En (Im) can be formulated as
follows:

En (Im) :=


xi 6= x̂′i, for all i ∈ Im,
xi = x̂′i, for all i 6∈ Im, and
rank (Co − C ′o) = nnt

 , (6.2)

where from the proposed construction So (cf. (3.14)) we have

Co =

 ψo(x0) · · · τKo−1
o (ψo(x0))

... . . . ...
ψo(xKo−1) · · · τKo−1

o (ψo(xKo−1))


and

C ′o =

 ψo(x
′
0) · · · τKo−1

o (ψo(x
′
0))

... . . . ...
ψo(x

′
Ko−1) · · · τKo−1

o

(
ψo(x

′
Ko−1)

)
 .
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Note that the difference matrix Co − C ′o has exactly mnt nonzero rows, and by Property 2 we see
the rank distance nt ≤ rank(Co − C ′o) ≤ mnt. Hence it makes sense for the second requirement
of error event En (Im) that rank(Co − C ′o) = nnt for some 1 ≤ n ≤ m.

Thus, it can be seen from the union bound argument that the codeword error probability is
upper bounded by

Pcwe(r) = Pr

{ ⋃
Im,n≤m

En (Im)

}
≤
∑
m

∑
Im

∑
n≤m

Pr {En (Im)} . (6.3)

The event En (Im) is a further partition of the event considered by Tse et al. in [11]. We discuss
this in more detail in the following remark.

Remark 7. With regard to the Gaussian random codebook considered by Tse et al. [11], it is
straightforward to see En (Im) is empty with probability one if n < m, since the component ma-
trices associated with each user are complex Gaussian random matrices of size (nt × T ) for some
T ≥ Kont. In other words, if xi 6= x̂′i for all i ∈ Im and xi = x̂′i otherwise, then the error matrix
Co − C ′o would have rank mnt with probability one. Therefore, one can rewrite (6.3) as

Pcwe(r) ≤
∑
m

∑
Im

Pr {Em (Im)} (6.4)

and recover the same union bound used in [11]. �

Unlike [11] where the authors analyzed each summand Pr {Em (Im)} of (6.4) by a union bound
argument with a Gaussian random codebook, here we will focus on the error probability of a
deterministic codebook So (cf. (3.14)), and attempt to upper bound the probability Pr {En (Im)}
by using a joint ML decoder. To this end, in Chapter 6.2 we will examine the minimum Euclidean
distance among the noise-free received code matrices contained in En (Im). It should be noted that
here by minimum Euclidean distance, we mean the minimum Euclidean distance among only the
pairs of code matrices in En(Im), not the whole code Co. Thus, the minimum Euclidean distance
will be a function of n, Im, and Co.

Once we obtain the minimum Euclidean distance, we will analyze the error performance of a
bounded distance decoder, which will be used as an upper bound on that of the ML decoder. The
bounded distance decoder results in an error only when the noise matrix has norm larger than half
of the minimum Euclidean distance. More precisely, let H be the overall channel matrix defined
in (6.1) and be known to the decoder; let So = S0× · · ·×SKo−1 be the overall MIMO-MAC code,
where Si is the codebook of the ith user. The minimum Euclidean distance dmin among all code
matrices in So is defined as

dmin(H) = min
So 6=S′o∈So

‖H (So − S ′o)‖ ,

which is dependent upon H . Given the received signal matrix Y = HSo + W , the bounded dis-
tance decoder outputs Ŝo ∈ So if

∥∥∥Y −HŜo∥∥∥ < dmin(H)
2

, and declares a decoding failure otherwise.

Thus, only the received signal matrices that are within distance dmin(H)
2

from the original transmit-
ted overall code matrix can be correctly decoded in the bounded distance decoder. Other received
signal matrices would result in either a decoding error (i.e., decoding into an erroneous code ma-
trix) or a decoding failure (i.e., cannot find a code matrix within distance dmin(H)

2
). Though this

decoder is suboptimal compared to the ML decoder, its error performance can be mathematically
analyzed.

The error performance analysis following this outline will be given in Chapter 6.3. Finally, in
Chapter 6.6 we briefly discuss the proof for the case of even K.
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6.2 Lower Bounds on the Minimum Distance Among Noise-
Free Received Signal Matrices

For any Co 6= C ′o ∈ Co with

Co =

 ψo(x0) · · · τKo−1
o (ψo(x0))

... . . . ...
ψo(xKo−1) · · · τKo−1

o (ψo(xKo−1))


and

C ′o =

 ψo(x
′
0) · · · τKo−1

o (ψo(x
′
0))

... . . . ...
ψo(x

′
Ko−1) · · · τKo−1

o

(
ψo(x

′
Ko−1)

)


let So = κCo, S ′o = κC ′o, and let H = [H0 · · ·HKo−1], where Hi is the (nr × nt) channel matrix
associated with the ith user.

Given the channel matrix H , below we provide a lower bound on the squared Euclidean dis-
tance between HSo and HS ′o, i.e.,

d2
E (So, S

′
o) =

∥∥∥∥∥∥H (So − S ′o)︸ ︷︷ ︸
:=∆So

∥∥∥∥∥∥
2

F

. (6.5)

We distinguish the following two cases which correspond to the error events Em (Im) and En (Im)
with n < m, respectively.

1. For event Em (Im) we have x` 6= x′` for ` ∈ {i0, · · · , im−1}, x` = x′` otherwise, and
rank(Co − C ′o) = mnt. In this case, let Cs and C ′s be defined as in (3.23) and let

Hs =
[
Hi0 · · ·Him−1

]
be the equivalent (nr ×mnt) channel matrix; then we have

d2
E(So, S

′
o) = ‖κHs (Cs − C ′s)‖

2
F .

Let λ(m)
1,1 ≤ · · · ≤ λ

(m)
1,Qm

be the set of ordered nonzero eigenvalues of HsH
†
s where Qm =

min{mnt, nr}, and let `1,1 ≥ · · · ≥ `1,mnt > 0 be the ordered nonzero eigenvalues of
(Cs − C ′s) (Cs − C ′s)

†. Then we have

d2
E(So, S

′
o) ≥ κ2

Qm∑
i=1

λ
(m)
1,i `1,mnt−Qm+i. (6.6)

Note that
mnt∏
i=1

`1,i ≥
1

‖γ‖2mnt

.
= 1, (6.7)

where the first inequality follows from Property 3, and the second exponential equality is
because γ is fixed and is independent of SNR.
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By repeatedly using the arithmetic mean-geometric mean inequality and (6.7) as in [4,6] for
k = 1, 2, · · · , Qm, we have

d2
E(So, S

′
o) (6.8)

≥ κ2

Qm∑
i=Qm−k+1

λ
(m)
1,i `1,mnt−Qm+i

≥̇ κ2

[
Qm∏

i=Qm−k+1

λ
(m)
1,i

] 1
k

×

[
Qm∏

i=Qm−k+1

`1,mnt−Qm+i

] 1
k

≥̇ κ2

[
Qm∏

i=Qm−k+1

λ
(m)
1,i

] 1
k
[
mnt−k∏
i=1

`1,i

]− 1
k

(6.9)

≥̇ κ2

[
Qm∏

i=Qm−k+1

λ
(m)
1,i

] 1
k
[
mnt−k∑
i=1

`1,i

]−mnt−k
k

≥̇ κ2

[
Qm∏

i=Qm−k+1

λ
(m)
1,i

] 1
k

‖Cs − C ′s‖
−mnt−k

k
F

≥̇ SNR1− r
nt

[
Qm∏

i=Qm−k+1

λ
(m)
1,i

] 1
k

SNR−
r
nt

mnt−k
k

:= d
(m)
1,k (α

(m)
1 ) = SNRδ

(m)
1,k (α

(m)
1 ), (6.10)

where (6.9) follows from (6.7) and where in (6.10) we have set

λ
(m)
1,i = SNR−α

(m)
1,i ,

α
(m)
1 =

[
α

(m)
1,1 · · ·α

(m)
1,Qm

]>
.

Hence the SNR exponent of d2
E(So, S

′
o) is lower bounded by

δ
(m)
1,k (α

(m)
1 ) :=

1

k

[
Qm∑

i=Qm−k+1

(
1− α(m)

1,i

)]
− rm

k
. (6.11)

2. The second case corresponds to event En (Im) which means x` 6= x′` for ` ∈ Im = {i0, · · · , im−1},
xi = x′i otherwise, and rank (Co − C ′o) = nnt < mnt. In other words, the m nonzero rows{[

(x` − x′`) · · · τKo−1
o (x` − x′`)

]
: ` ∈ Im

}
are not linearly independent over Do. From Property 2 we can assume without loss of gen-
erality that {[

(x` − x′`) · · · τKo−1
o (x` − x′`)

]
: ` = i0, · · · , in−1

}
are linearly independent for some n < m.

Let dx` := x` − x′` and let Cs and C ′s be defined as in (3.23) with respect to the set
{i0, · · · , im−1}. Set ∆Cs = Cs − C ′s and ∆X` = ψo(dx`). Property 2 in turn implies
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that

∆Cs =



Int
. . .

Int
Pin,0 · · · Pin,n−1

...
...

...
Pim−1,0 · · · Pim−1,n−1


∆X, (6.12)

for some square matrices Pi,j , where

∆X :=

 ∆Xi0 · · · τKo−1
o (∆Xi0)

... . . . ...
∆Xin−1 · · · τKo−1

o

(
∆Xin−1

)
 . (6.13)

Similar to the previous case, let

Hs =
[
Hi0 · · · Him−1

]
be the equivalent channel matrix; then the difference of the noise-free received signal matri-
ces can be rewritten as

κHs∆Cs = κHeq ∆X, (6.14)

where
Heq =

[
H̃i0 · · · H̃in−1

]
(6.15)

is an alternative channel equivalent matrix and

H̃i` := Hi` +
m−1∑
k=n

HikPik,` (6.16)

for ` = 0, 1, · · · , n− 1.

Let λ(m,n)
2,1 ≤ · · · ≤ λ

(m,n)
2,Qn

be the set of ordered nonzero eigenvalues of HeqH
†
eq, where

Qn = min{nnt, nr}, and let `2,1 ≥ · · · ≥ `2,nnt > 0 be the ordered nonzero eigenvalues of
∆X∆X†. Notice that

nnt∏
i=1

`2,i = det
(
∆X∆X†

)
≥ 1

‖γ‖2nnt

.
= 1

from Property 3. Arguing similarly as in the first case shows that

d2
E(So, S

′
o) ≥ d

(m,n)
2,k (α

(m,n)
2 ) := SNRδ

(m,n)
2,k (α

(m,n)
2 ) (6.17)

for k = 1, 2, · · · , Qn, where

λ
(m,n)
2,i := SNR−α

(m,n)
2,i , (6.18)

α
(m,n)
2 =

[
α

(m,n)
2,1 · · ·α(m,n)

2,Qn

]>
, (6.19)

and

δ
(m,n)
2,k (α

(m,n)
2 ) :=

1

k

[
Qn∑

i=Qn−k+1

(
1− α(m,n)

2,i

)]
− rn

k
. (6.20)
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Remark 8. We remark that (6.20) shows the last term is − rn
k

, instead of being − rm
k

as in (6.11).
For readers who may wonder why these two terms are different given both events concern the case
of m users in error, the major reason is due to the distance bounding techniques, i.e., the repeated
arithmetic mean-geometric mean inequalities, we have used in the above.

In general, when the equivalent channel matrix Heq of (6.15), and similarly when the channel
matrix Hs with n = m, has rank Qn, the rank of the product matrix Heq∆X would be Qn since
∆X is of full rank nnt. Thus our lower bound on the norm ‖Heq∆X‖ would only capture the Qn

smaller eigenvalues of ∆X∆X†, which are all nonzero. Furthermore, one reason for introducing
the equivalent channel matrix Heq, rather than working withHs is that, algebraically speaking, the
norm ‖Hs∆Cs‖ could be zero as ∆Cs is singular and all the rows of Hs could lie in the left-null
space of Cs. However, since Hs is random, this occurs with probability zero. In other words, if we
apply the series of arithmetic mean-geometric mean inequalities to the matrix product Hs∆Cs, we
could end up with the trivial algebraic inequality

dE(So, S
′
o) ≥ min

Hs
‖Hs∆Cs‖ = 0,

even the right-hand-side has probability 0. Whether the above could happen depends on the rela-
tions among n, m, nt, and nr. While there is nothing wrong with the algebraic inequality itself,
this bound can actually be further tightened by introducing the equivalent channel Heq so that we
can focus on error events that have probability larger than zero. �

Remark 9. Another heuristic way to see why the last term of δ(m,n)
2,k equals − rn

k
follows from the

base-alphabet A(SNR) defined in Chapter 3.1. Recall that in the construction of (nnt × T ) CDA-
based ST code for point-to-point channel [4, 6], to achieve the DMT optimality therein we would
set the base-alphabet as

A′(SNR) =

{
a+ b ı :

−SNR
r

2nnt ≤ a, b ≤ SNR
r

2nnt ,
a, b ∈ Z, a, b odd

}
such that the resulting exponent equals

δ
′(m,n)
2,k (α

(m,n)
2 ) :=

1

k

[
Qn∑

i=Qn−k+1

(
1− α(m,n)

2,i

)]
− r

k
;

then along the same lines as in [4, 6] one can prove such code is approximately universal and
achieves diversity gain d∗nnt,nr(r). However, it is because we set the base-alphabet as A(SNR),
which has size

|A(SNR)| = |A′(SNR)|n ,

meaning an n-fold increase in the multiplexing gain, we expect the error probability associated
with event En(Im) has diversity gain d∗nnt,nr(nr). �

6.3 Upper Bounds on Codeword Error Probability

Having obtained the squared minimum Euclidean distances d(m)
1,k (α

(m)
1 ) among the signal matrices

associated with error event Em(Im), and d(m,n)
2,k (α

(m,n)
2 ) among the signal matrices associated with

error event En(Im), below we proceed to analyze the error performance of the proposed construc-
tion. The analysis resembles the sphere bounding technique used in [4, 6] which is essentially
a bounded-distance decoding technique. That is, the bounded-distance decoder declares an error
only when the noise has norm larger than half of the minimum Euclidean distance. Clearly, the
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error performance of a bounded-distance decoder serves as an upper bound on that of a joint ML
decoder.

First, since the lower bounds on the Euclidean distance dE(So, S
′
o) hold for all k, we define

d
(m)
1,min(α

(m)
1 ) := max

1≤k≤Qm
d

(m)
1,k (α

(m)
1 ),

δ
(m)
1,min(α

(m)
1 ) := max

1≤k≤Qm
δ

(m)
1,k (α

(m)
1 ),

d
(m,n)
2,min(α

(m,n)
2 ) := max

1≤k≤Qn
d

(m,n)
2,k (α

(m,n)
2 ),

δ
(m,n)
2,min (α

(m,n)
2 ) := max

1≤k≤Qn
δ

(m,n)
2,k (α

(m,n)
2 ).

Then, using the bounded distance decoder discussed in Chapter 6.1, the probability of error event
Em(Im) given channel matrix H can be upper bounded by

Pr {Em(Im)|H}

≤ Pr

‖W‖2
F ≥

[
d

(m)
1,min(α

(m)
1 )

]2

4


= exp

−
[
d

(m)
1,min(α

(m)
1 )

]2

4

Konrnt−1∑
j=0

[
d

(m)
1,min(α

(m)
1 )

]2j

j!
,

(6.21)

where the inequality follows from the property of a bounded distance decoder. Hence we see that
Pr {Em(Im)|H} .= 0 if δ(m)

1,k (α
(m)
1 ) > 0. On the other hand, we may replace the above upper bound

of Pr {Em(Im)|H} with the trivial upper bound Pr {Em(Im)|H} ≤ 1 when δ
(m)
1,min(α

(m)
1 ) ≤ 0.

Thus, it implies

Pr {Em(Im)} = EH Pr {Em(Im)|H}
≤ Pr

{
H : δ

(m)
1,min(α

(m)
1 ) ≤ 0

}
≤ Pr

{
H : δ

(m)
1,k (α

(m)
1 ) ≤ 0, 1 ≤ k ≤ Qm

}
.

Similarly, for error event En(Im) with n < m we have

Pr {En(Im)} = EH Pr {En(Im)|H}
≤ Pr

{
H : δ

(m,n)
2,k (α

(m,n)
2 ), 1 ≤ k ≤ Qn

}
.

Since the above bounds do not depend on the specific choices of Im, from (6.3) the union bound
on the codeword error probability Pcwe(r) gives

Pcwe(r) ≤
∑
m

∑
Im

∑
n≤m

Pr {En (Im)}

≤
Ko∑
m=1

(
Ko

m

)[
Pr
{
H : δ

(m)
1,k (α

(m)
1 ) ≤ 0, 1 ≤ k ≤ Qm

}
+

m−1∑
n=1

(
m

n

)
Pr
{
H : δ

(m,n)
2,k (α

(m,n)
2 ), 1 ≤ k ≤ Qn

}]
.

(6.22)
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Remark 10. One can regard the probability(
Ko

m

)
Pr
{
H : δ

(m)
1,k (α

(m)
1 ) ≤ 0, 1 ≤ k ≤ Qm

}
as a further upper bound on the union bound

∑
Im Pr {Em (Im)} in (6.3), and the second type of

probability (
Ko

m

)m−1∑
n=1

(
m

n

)
Pr
{
H : δ

(m,n)
2,k (α

(m,n)
2 ), 1 ≤ k ≤ Qn

}
(6.23)

as an upper bound on
∑
Im
∑

n<m Pr {En (Im)}. Furthermore, the event Em of m users in error
has probability upper bounded by

Pr {Em} ≤
∑
Im

∑
n≤m

Pr {En (Im)}

≤
(
Ko

m

)[
Pr
{
H : δ

(m)
1,k (α

(m)
1 ) ≤ 0, 1 ≤ k ≤ Qm

}
+

m−1∑
n=1

(
m

n

)
Pr
{
H : δ

(m,n)
2,k (α

(m,n)
2 ), 1 ≤ k ≤ Qn

}]
. (6.24)

It should be noted that in (6.23) we have over-estimated the number of choices of n Do-linearly
independent rows out of m nonzero rows in the difference matrix [τ jo (xi − x′i)]Ko−1

i=0
Ko−1
j=0 that can

happen in the event En (Im). �

Even with this over-estimate, noting(
Ko

m

)
,

(
m

n

)
.
= 1

for all m,n within the range of interest, we can rewrite (6.22) as

Pcwe(r) ≤̇ max
m

Pr
{
H : max

k
δ

(m)
1,k (α

(m)
1 ) ≤ 0

}
+

max
n<m

Pr
{
H : max

k
δ

(m,n)
2,k (α

(m,n)
2 ) ≤ 0

}
.

(6.25)

Below we investigate the diversity orders of each term in (6.25).

6.4 Diversity Gain of the First Case
For each m, 1 ≤ m ≤ K0, we have

Pr
{
H : max

k
δ

(m)
1,k (α

(m)
1 ) ≤ 0

}
= Pr

{
H :

1
k

[∑Qm
i=Qm−k+1

(
1− α(m)

1,i

)]
− rm

k
≤ 0,

all k, and α(m)
1,1 ≥ α

(m)
1,2 · · · ≥ α

(m)
1,Qm

}

= Pr

{
H :

Qm∑
i=1

(
1− α(m)

1,i

)+

≤ rm

}
(6.26)

= Pr
{
H : log det

(
Inr + SNRHsH

†
s

)
≤ rm log SNR

}
.
= SNR−d

∗
mnt,nr

(rm), (6.27)
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where Qm := min{mnt, nr}, Hs =
[
Hi0 · · ·Him−1

]
, and where (x)+ = max{x, 0} for x ∈ R.

Equation (6.26) follows from [33–35], and (6.27) is given in [9] since Hs is a matrix of size
(nr × mnt) having entries that are i.i.d. CN (0, 1) complex Gaussian random variables. The
quantity d∗mnt,nr(rm) represents the point-to-point DMT of an mnt × nr MIMO Rayleigh fading
channel at multiplexing gain rm.

6.5 Diversity Gain of the Second Case
Similarly, for the second set of maximizations in (6.25) we have for each 1 ≤ n < m ≤ Ko that

Pr
{
H : max

k
δ

(m,n)
2,k (α

(m,n)
2 ) ≤ 0

}
= Pr

{
H :

1
k

[∑Qn
i=Qn−k+1

(
1− α(m,n)

2,i

)]
− rn

k
≤ 0,

all k, and α(m,n)
2,1 ≥ α

(m,n)
2,2 · · · ≥ α

(m,n)
2,Qn

}

= Pr

{
H :

Qn∑
i=1

(
1− α(m,n)

2,i

)+

≤ rn

}
= Pr

{
H : log det

(
Inr + SNRHeqH

†
eq

)
≤ rn log SNR

}
,

(6.28)

where Heq is defined in (6.15) and is of size (nr × nnt). Noting that the entries of Heq are
correlated complex Gaussian random variables, we invoke the following result which was shown
independently in [36, Corollary 1] and [37, Theorem 3] to simplify the analysis.

Theorem 14 ( [36,37]). The diversity order of outage probability for Rayleigh fading channels with
arbitrary full rank correlations is unchanged from the case of i.i.d. Rayleigh fading. Moreover, if
the channel matrix H can be decoupled as ΣLH̃ΣR where H̃ has independent and regular entries,
then the optimal DMT for channel H is the same as that for H̃ . �

Armed with Theorem 14, the analysis of the diversity gain of the second case is now easy. A
direct application of the above theorem gives

Pr
{
H : max

k
δ

(m,n)
2,k (α

(m,n)
2 ) ≤ 0

}
= Pr

{
H : log det

(
Inr + SNRHeqH

†
eq

)
≤ rn log SNR

}
.
= SNR−d

∗
nnt,nr

(nr). (6.29)

Summarizing results of (6.25), (6.27) and (6.29) gives

Pcwe(r) ≤̇ SNR−d(r)

and

d(r) := min
n<m

{
d∗mnt,nr(mr), d

∗
nnt,nr(nr)

}
= min

m

{
d∗mnt,nr(mr)

}
= d∗nt,nr,K(r).

This completes the proof.

Remark 11. The above proof shows that

Pr {Em(Im)} ≤ Pr
{
H : max

k
δ

(m)
1,k (α

(m)
1 ) ≤ 0

}
.
= SNR−d

∗
mnt,nr

(mr)
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for error events Em(Im), m = 1, 2, · · · , K, and

Pr {En(Im)} ≤ Pr
{
H : max

k
δ

(m,n)
2,k (α

(m,n)
2 ) ≤ 0

}
.
= SNR−d

∗
nnt,nr

(nr)

for 1 ≤ n < m. This is exactly what is shown in Theorem 3. Furthermore, in the event Em of m
users in error, the proposed code So has error probability

Pr {Em} ≤
m∑
n=1

Pr {En(Im)}

≤̇ max
{

SNR−d
∗
nt,nr

(r),SNR−d
∗
mnt,nr

(mr)
}
.

�

6.6 Proof Outline for K Even
The proof of Theorem 7 can be adapted to cater to the case when the number of users K is even.
Here we discuss only briefly what the changes are. Firstly, with

H =
[
H0 · · · HK−1 0

]
in mind, i.e., HKo−1 = 0, the result (6.5) of the squared Euclidean distance between So and S ′o
remains to hold. Similarly, the further lower bounds on d2

E(So, S
′
o) in (6.11) and (6.20) stay without

changes except that one should keep the following in mind.

1. The parameter m of the first case, where rank(Co − C ′o) = mnt, and m out of Ko xi’s are
distinct, has value from 1 up to Ko−1 = K. This is because HKo−1 = 0, and we can always
assume xKo−1 = x′Ko−1 without affecting the value of d2

E(So, S
′
o). Thus the diversity gain

resulting from the first case is
min

1≤m≤K
d∗mnt,nr (mr) .

Compared with the case of odd K, (6.27) has m up to Ko.

2. The parameters m and n in the second case can be argued similarly as the above, and we
have 1 ≤ n < m ≤ Ko − 1 = K. Hence the diversity gain of this case is

min
1≤n≤K−1

d∗nnt,nr (nr) .

Overall, it shows the MAC-DMT optimality of the proposed construction remains to hold.
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Chapter 7

Proof of Theorem 11

The proof of Theorem 11 is similar to that of Theorem 7. Therefore, we will skip the most of the
details and highlight only the key differences.

First, for any subset Im = {i0, · · · , i−1} ⊆ {0, 1, · · · , K−1} of users, again let En (Im) denote
the event that the decoder has made an error in decoding m users signals, but only the rows formed
by the difference signal matrices of some n users, say user i0, · · · , in−1, are linearly independent
over D. In other words, let (xi, x

′
i) be a pair of distinct information symbols of the ith user for

i ∈ Im. Set the submatrices Cs and C ′s as in (4.21) with Xi = φ(xi) and X ′i = φ(x′i). Then the
event En (Im) corresponds to the case when rank (Cs − C ′s) = nnmax.

Let Hi denote the (nr × ni) channel matrix of the ith user that is known completely to re-
ceiver. Since the code matrices Si ∈ Si of the ith users are of size (nmax ×Knmax), here we will
assume without loss of generality that only the first ni rows of Si are used for transmission via
the ni transmit antennas of the ith user, and the remaining (nmax − ni) rows are discarded during
either encoding or transmission. On the other hand, we could extend the channel matrix Hi to an
equivalent channel matrix H̃i of size (nr × nmax) by adding on the right an all-zero matrix with
appropriate size. That is, we set

H̃i :=
[
Hi 0nr×(nmax−ni)

]
,

and the received signal matrix Y can be written as

Y =
K−1∑
i=0

H̃iSi +W,

where W is the noise matrix of size (nr ×Knmax).
For the event Em(Im), let

H̃s =
[
H̃i0 · · · H̃im−1

]
be the overall equivalent channel matrix, and let λ(m)

1,1 ≤ · · · ≤ λ
(m)
1,QIm

be the ordered nonzero
eigenvalues of H̃sH̃

†
s with

Q
(m)
Im = min

{
nr,

m−1∑
j=0

nij

}
.

Similarly, let `1,1 ≥ · · · ≥ `1,mnmax > 0 be the ordered nonzero eigenvalues of (Ss − S ′s) (Ss − S ′s)
†.
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Then the minimum squared Euclidean distance between Ss and S ′s is bounded by

d2
E(Ss, S

′
s) ≥

Q
(m)
Im∑

i=Q
(m)
Im −k+1

λ
(m)
1,i `1,mnmax−Q(m)

Im +i

≥̇

 Q
(m)
Im∏

i=Q
(m)
Im −k+1

λ
(m)
1,i


1
k

×

SNR
mnmax−

∑m
j=1 rij

k ‖Ss − S ′s‖
−mnmax−k

k
F

(7.1)

≥̇ SNRδ
(m)
1,k (α

(m)
1 ), (7.2)

where

δ
(m)
1,k (α

(m)
1 ) =

1

k

 Q
(m)
Im∑

j=Q
(m)
Im −k+1

(
1− α(m)

1,j

)
−

m∑
j=1

rij

 (7.3)

for k = 1, · · · , Q(m)
Im , and where

α
(m)
1,j = −

log λ
(m)
1,i

log SNR
. (7.4)

(7.1) follows from Property 6 that
mnmax∏
j=1

`1,1 ≥̇ SNRmnmax−
∑m
j=1 rij

and (7.2) from Property 5 that
mnmax∑
j=1

`1,1 ≤̇ SNR.

Now we see that

Pr {Em(Im)}
≤̇ Pr

{
H̃s : δ

(m)
1,k (α

(m)
1 ) < 0, all k

}
.
= Pr

{
log det

(
Inr + SNRH̃sH̃

†
s

)
≤

m−1∑
j=0

rij log SNR

}
.
= SNR−d

∗
Nt(Im),nr

(
∑
i∈Im ri). (7.5)

Similarly, techniques used in Chapters 6.2 and 6.5 can be modified accordingly to show

Pr {En(Im)} ≤̇ SNR
−d∗∑n−1

i=0
ni,nr

(
∑n−1
i=0 ri)

. (7.6)

Combining the above results completes the proof of MAC-DMT optimality of the proposed con-
struction.

Corollary 15. Given ni and ri, i = 0, 1, · · · , K − 1 with K odd, the proposed code S defined in
(4.15) achieves the general individual MAC-DMT of the ith user

d
(i)∗
{n0,··· ,nK−1},nr(r0, · · · , rK−1) = min

I:i∈I
d∗Nt(I),nr

(∑
i∈I

ri

)
,
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over a Rayleigh block fading channel that remains static for at least T ≥ Knmax channel uses and
for each i, where the minimization is taken over all I ⊆ {0, 1, · · · , K − 1} under the condition
i ∈ I. Thus, S is individual MAC-DMT optimal.

Proof. Following the proof outline of Theorem 9 it suffices to show only that the error probability
of the ith individual decoder of the proposed code S meets the following bound

P (i)
e (r0, · · · , rK−1) ≤̇ SNR

−d(i)∗{n0,··· ,nK−1},nr
(r0,··· ,rK−1)

.

Again, note that the error probability of ith individual decoder can be upper bounded by the joint
decoder when the error events Em(Im) and En(Im), 1 ≤ n ≤ m, occur with i ∈ Im. It then follows
from (7.5) and (7.6) that

P (i)
e (r0, · · · , rK−1)

≤
K∑
m=1

∑
Im:i∈Im

[
Pr {Em(Im)}+

m−1∑
n=1

Pr {En(Im)}

]
.
= max
Im:i∈Im

SNR−d
∗
Nt(Im),nr

(
∑
i∈Im ri).

This completes the proof. �
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Chapter 8

DMT Performance of A Simple Code

For simplicity, we will first present the code for use in a MIMO-MAC channel. For point-to-point
MIMO channels, the same code can be easily modified and will be discussed later in the next
section.

Consider a MIMO-MAC channel with K = 2 users, each having nt = 1 transmit antenna and
transmitting at multiplexing gain r. Assume there are nr = 2 receive antennas at receiving end.
The code to be analyzed is the following:

S =

{
S = κ

[
s11 s12

s21 s22

]
: sij ∈ A(SNR)

}
(8.1)

where
A(SNR) =

{
a+ b ı : |a|, |b| ≤ SNR

r
2 , a, b odd

}
, (8.2)

ı =
√
−1, and where

κ2 .
= SNR1−r. (8.3)

Entries sij are independently drawn from the QAM set A(SNR). During transmission, the first
user transmits the first row of S while the second user sends the second row. Clearly, the two users
do not cooperate. Given S ∈ S, the received signal matrix is

Y = HS +W, (8.4)

whereH = [h1h2] is the overall (2×2) channel matrix whose entries are modeled as i.i.d. complex
Gaussian random variables CN (0, 1) and where W is the (2 × 2) noise matrix. hi is the channel
vector associated with the ith user. We assume H is known to the receiver but is unknown to either
of the users.

Obviously, the code S of (8.1) is uncoded since the entries are just plain QAM symbols with
some scaling factor κ that is chosen to satisfy the power constraint E |κsij|2 ≤̇ SNR. Nevertheless,
below we will show that this uncoded scheme S achieves the optimal MAC-DMT (cf. (1.6))

d∗1,2,2(r) = min
{
d∗1,2(r), d∗2,2(2r)

}
over the two-user MIMO-MAC channel.

To prove the claim, we will partition the error event E into several subevents E1, · · · , En for
some n, and analyze the probability of each. Then we will apply the union bound

Pr

{
E =

n⋃
i=1

Ei

}
≤

n∑
i=1

Pr {Ei}

to establish the claim. Although during the analysis some subevents can be combined, in order
to be extra cautious we will analyze separately the error probabilities of these events. Below we
distinguish five different kinds of error events.
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8.1 Type-I Error Event
The first-type error event E1 corresponds to the case when only one entry in S is erroneously
decoded. Without loss of generality, below we focus on a specific subevent of E1: for any S 6=
S ′ ∈ S,

E1,1 :=

{
S − S ′ = κ

[
d11 0
0 0

]
: 0 6= d11 = s11 − s′11

}
. (8.5)

That is, events with only one dij 6= 0 can be considered the same as E1,1 and we have Pr {E1} ≤
4 Pr {E1,1}.

To find out the error probability of E1,1, it suffices to note that the subcode S11 = {κs11 : s11 ∈ A(SNR)}
is exactly the CDA-based code proposed by Elia et al. [4] with nt = 1 and T = 1. Hence we have

Pr {E1,1} ≤̇ SNR−d
∗
1,2(r). (8.6)

To make the present report self-contained, below we briefly highlight some key steps in proving
(8.6). The proof actually follows from the fact that the bounded-distance decoder would make an
error if the noise vector w1 has norm larger than half the minimum Euclidean distance, i.e. if

‖w1‖
2 ≥ min

S−S′∈E1
‖H(S − S ′)‖2

= min
d11 6=0

‖κh1d11‖2 ,

where we have set the noise matrix W = [w1 w2]. By ‖A‖ we mean the Frobenius norm of matrix
A.

Given the channel vector h1, if

min
d11 6=0

‖κh1d11‖2 >̇ SNR0,

then it can be shown that Pr
{
‖w1‖

2 >̇ SNR0
} .

= 0. Hence

Pr {E1,1} ≤̇Pr

{
‖w1‖

2 ≤̇SNR0

∣∣∣∣min
d11 6=0

‖κh1d11‖2 ≤̇SNR0

}
×

Pr

{
min
d11 6=0

‖κh1d11‖2 ≤̇SNR0

}
≤ Pr

{
min
d11 6=0

‖κh1d11‖2 ≤̇SNR0

}
(a)

≤ Pr
{
‖κh1‖

2 ≤̇SNR0
}

.
= SNR−(2−2r)+ = SNR−d

∗
1,2(r),

where (a) follows from 0 6= d11 ∈ Z[ ı ] and ‖d11‖2 ≥ 1. The notation (x)+ is defined as (x)+ =
max{x, 0}. Thus, we conclude Pr {E1} ≤ 4 Pr {E1,1} ≤̇SNR−d

∗
1,2(r).

8.2 Type-II Error Event
The second-type is the event when only the messages from exactly one of the two users are erro-
neously decoded in both channel uses, i.e. the case when si1 and si2 are both erroneously decoded
for i = 1 or 2. Clearly for this specific code S we have

Pr {E2} ≤ 4 Pr {E1} ≤̇ SNR−d
∗
1,2(r). (8.7)

The factor of 4 comes from that the probability of both s11 and s12 are erroneously decoded is at
most twice of Pr {E1} and the same holds for s21 and s22 in error.

The previous two types of error events concerns the case when only one user is in error. The
remaining ones will deal with situations when both users are in error.
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8.3 Type-III Error Event
The third-type error event is the case when both users are in error but only the one of the two
transmissions is erroneously decoded. Again, without loss of generality, we focus on the case
when the first transmission is erroneously decoded, i.e. it is of the following form:

E3,1 :=

{
S − S ′ = κ

[
d11 0
d21 0

]
: 0 6= di1 = si1 − s′i1

}
. (8.8)

and we have Pr {E3} ≤ 2 Pr {E3,1}.
We remark that in this case the difference matrix ∆S = S−S ′ is of rank 1 and does not satisfy

the full NVD criterion given in [16] (cf. (1.8)). Furthermore, if one applies the conventional
mismatched bound on product of eigenvalues [38], which is subsequently used as a key ingredient
for proving the DMT optimality of CDA-based codes [4], the resulting bound on the DMT of
present event E3,1 would be too loose to become any useful. Thus, below we will use a novel
technique to analyze the DMT performance of this case.

Let s1 = [s11 s21]>, s′1 = [s′11 s
′
21]>, si1 6= s′i1 ∈ A(SNR), where by a> we mean the usual

transpose of vector a. Set d1 = s1 − s′1. Then from the pairwise error probability analysis [1, 24],
the probability of erroneously decoding s1 as s′1 is given by

Pr {s1 → s′1}
.
=
[
1 + κ2 ‖d1‖

2]−2
. (8.9)

Fixing s1, we see that the number of s′1 such that ‖d1‖
2 ≤̇SNRz for some 0 ≤ z ≤ r can be upper

bounded by ∣∣∣{s′1 : ‖s1 − s′1‖
2 ≤̇ SNRz

}∣∣∣ ≤ SNR2z (8.10)

due to the choice of A(SNR). The exponent 2z comes from the independent choices of s′11 and
s′21. Now from the union bound we see

Pr {E3,1} ≤
∑
s′1:E3

Pr {s1 → s′1}

.
= sup

0≤z≤r

[
1 + κ2SNRz

]−2 SNR2z

.
= κ−4 = SNR−(2−2r)+ = SNR−d

∗
1,2(r).

Thus we conclude that the diversity gain achieved by S in E3 equals d∗1,2(r).

8.4 Type-IV Error Event
The fourth error event concerns the case when the messages from both users are erroneously de-
coded in both transmissions, but the difference matrix has only rank 1. That is, E4 can be formulated
as

E4 :=

{
S − S ′ = κ

[
d11 d12

d21 d22

]
:

0 6= dij = sij − s′ij,
rank(S − S ′) = 1

}
. (8.11)

The conditions of dij 6= 0 for all i, j = 1, 2 and rank(S − S ′) = 1 distinguish this case from the
remaining one, the type-V error event, the case when rank(S − S ′) = 2. Specifically, if dij = 0
for only one pair of i and j, then the difference matrix would have rank equal to 2. The same also
applies to the cases of d12 = d21 = 0 or d11 = d22 = 0. On the other hand, if d11 = d21 = 0 then it
is equivalent to E3. Similarly, the case of d11 = d12 = 0 reduces to type-II.

Analyzing the probability of E4 might be the most troublesome as neither the weighted pairwise
error probability technique used in analyzing type-II nor the conventional techniques [4] used for
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analyzing the DMT performance of CDA-based codes would work in this case. Furthermore, same
as E3, this event again belongs to the situation when both users are in error but the difference matrix
is singular, a situation violating the full NVD design criterion (1.8).

Nevertheless, following the same bounded distance argument as in type-I it can be shown that
event E4 would occur if the noise matrix W has norm larger than half the minimum Euclidean
distance minS 6=S′:E4 ‖H(S − S ′)‖. Next, let d1 = [d11 d21]> and d2 = [d12 d22]>; then note

min
S 6=S′:E4

‖H(S − S ′)‖2
= min

d1,d2:E4

[
‖κHd1‖

2 + ‖κHd2‖
2]

≥ min
d1,d2:E4

‖κHd1‖
2 .

Thus, we see

Pr {E4} ≤̇ Pr

{
H : min

d1,d2:E4

[
‖κHd1‖

2 + ‖κHd2‖
2] ≤̇SNR0

}
≤ Pr

{
H : min

d1,d2:E4
‖κHd1‖

2 ≤̇SNR0

}
.
= Pr {E3,1}

.
=≤ SNR−d

∗
1,2(r).

Remark 12. Another quick-and-dirty way to show the above is to note the relation between events
E3 and E4, and it can be seen that

Pr {E4} ≤ 1− (1− Pr {E3,1})2 ≤ 2 Pr {E3,1} ≤̇ SNR−d
∗
1,2(r).

The reason for this method being dirty is that the error probability calculation does not capture
the fact that the channel remains static for two consecutive channel uses. It relies rather on the
ergodicity of channel variation. �

8.5 Type-V Error Event
Finally, the last error event addresses the case when both users are in error but the difference matrix
is of full rank, i.e. it is of the following form:

E5 :=

{
S − S ′ = κ

[
d11 d12

d21 d22

]
: rank(S − S ′) = 2

}
. (8.12)

Analyzing the probability of E5 is relatively easy since the matrix

D =

[
d11 d12

d21 d22

]
has determinant in Z[ ı ]. Therefore, the code satisfies the full NVD criterion in E5. It can be shown
along similar lines as in [4] that

Pr {E5} ≤̇ Pr
{

log det
(
I2 + SNRHH†

)
≤ 2r log SNR

}
.
= SNR−d

∗
2,2(2r).

Overall, we have proved the following result.

Theorem 16. The error probability of the simple code S is

Pr {E} ≤
5∑
i=1

Pr {Ei}
.
= max

{
SNR−d

∗
1,2(r),SNR−d

∗
2,2(2r)

}
,

and the diversity gain is
d(r) = min

{
d∗1,2(r), d∗2,2(2r)

}
.

Hence the simple code S is MAC-DMT optimal. �
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8.6 Further Extension
In this chapter, we have answered all the four open questions posed in Chapter 1.3. We showed
it is possible to achieve the optimal MAC-DMT with T < Knt + nr − 1, and previously known
full NVD design criterion for MAC-DMT optimal codes [16] is only sufficient. A simple code
not satisfying this full NVD criterion is provided, and we proved it is still MAC-DMT optimal. In
view of this, we have provided an alternative, yet much more relaxed, criterion for constructing
MAC-DMT optimal codes. This simple code is also modified for use in point-to-point MIMO
channels. We showed the modified code is optimal in DMT in the sense that it achieves the same
DMT performance as the Gaussian random coding schemes.

Below we state without proof a generalization of the results in this report.

Theorem 17. Consider a MIMO-MAC channel with n users, each having nt = 1 transmit antenna
and transmitting at multiplexing gain r. Assume there are n receive antennas at receiver. Then the
following overall code

Sn =

κ
 s11 · · · s1n

... . . . ...
sn1 · · · snn

 : sij ∈ A(SNR)


achieves the optimal MAC-DMT d∗1,n,n(r) with T = n channel uses, where κ and A(SNR) are
defined as before (cf. Chapter 8). Furthermore, the same result holds for the vector code Sn,vec

obtained by taking the first column of code matrices in Sn. Hence d∗1,n,n(r) holds for T = nt = 1
as well. Finally, by setting the multiplexing gain at r

n
in Sn,vec the resulting code achieves DMT

d(r) = n − r in the point-to-point MIMO channel with nt = nr = n and T = 1. It is the same
DMT performance achieved by Gaussian random coding schemes. �
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Chapter 9

Inferences from DMT Analysis of Code S

In this section we will take a closer look at the results presented in the previous section and then
address the four open questions posed in Chapter 1.3.

9.1 Alternative Design Criterion for MAC-DMT Optimal Codes
Recall that among the five types of error events analyzed in the previous section, only E4 and E5

belong to the case when both users are in error. However, it was proved that E4 achieves diversity
gain d∗1,2(r) rather than d∗2,2(2r), which was required by the design criterion (1.8). We also note that
events E1, E2, E3, and E4 all correspond to the case when the difference matrix (S − S ′) is of rank
1, and all achieve the same diversity order d∗1,2(r). Thus, below we summarize this observation
and provide an alternative, yet much relaxed, design criterion for constructing MAC-DMT optimal
codes.

Theorem 18 (Relaxed Design Criterion). In a MIMO-MAC channel with K users, each having nt
transmit antennas and transmitting at multiplexing gain r, let Si be the space-time code of the ith
user, and let S = S1 × · · · SK be the overall code obtained by vertically concatenating the code
matrices from all users. Let En,m denote the error event that n users are in error but the difference
matrix (S − S ′) has only rank mnt with 1 ≤ m ≤ n. If for all m and n

Pr {En,m} ≤ SNR−d
∗
mnt,nr

(mr), (9.1)

then S is optimal in MAC-DMT. �

The above design criterion is weaker than (1.8) since (1.8) excludes the possibility of having
error event En,m when m < n, that is, (1.8) requires whenever n users are in error, the difference
matrix must be of rank nnt. Codes satisfying (9.1) must be MAC-DMT optimal since it follows
from [11] that SNR−d

∗
mnt,nr

(mr) ≤ SNR−d
∗
nt,nr

(r) and SNR−d
∗
mnt,nr

(mr) ≤ SNR−d
∗
Knt,nr

(Kr) for any
1 ≤ m ≤ K. Hence the events En,m with 1 ≤ m < n ≤ K are not dominant in the union bound,
and the requirement on the error performance of these error events can be much relaxed without
worsening the overall DMT performance.

Thus, in this section we have answered the second and the third questions posed in Chapter
I. We showed that criterion (1.8) is only sufficient, not necessary, and it is unnecessary to design
codes to meet the full NVD criterion. Moreover, we have provided in Theorem 18 an alternative,
yet much relaxed, code design criterion for constructing MAC-DMT optimal codes.

9.2 Requirement on Minimal Channel Coherence Time
In Theorem 1 it was shown that in the MIMO-MAC channel withK = 2 users, nt = 1 and nr = 2,
the MAC-DMT d∗nt,nr,K(r) holds whenever the channel remains fixed for T ≥ Knt + nr − 1 = 3
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channel uses. The requirement on T was improved by the simple code S analyzed in Chapter 8. We
proved that S achieves the same MAC-DMT optimality with only T = 2 channel uses, and hence
improves the result on minimal channel coherence time required by Theorem 1. In particular, we
note that in this specific channel we actually have

d∗1,2(r) ≤ d∗2,2(2r), for all 0 ≤ r ≤ 1.

In other words, the single-user performance dominates the entire region of r ∈ [0, 1], and there is
no region of antenna-pooling [11] in this case.

From the analyses presented in the previous section, we can further strengthen the MAC-DMT
result to the following. The vector code

Svec =

{
κ

[
s1

s2

]
: si ∈ A(SNR)

}
(9.2)

that is a subcode of S given in Chapter 8 and is obtained by taking only the first column of code
matrices in S, is in fact MAC-DMT optimal. To see this, from the error events E1 and E3, the error
probability of Svec is

Pr {E (Svec)} ≤ Pr {E1}+ Pr {E3} ≤̇SNR−(2−2r)+ . (9.3)

It then implies that the MAC-DMT d∗1,2,2(r) holds even for fast fading channel, i.e. the case when
T = 1. This answers the first question posed in Chapter 1.3.

9.3 Point-to-Point MIMO Channel
The vector code Svec of (9.2) can be easily modified for use in a point-to-point MIMO channel. To
this end, let

ASU(SNR) =
{
a+ b ı : |a|, |b| ≤ SNR

r
4 , a, b odd

}
(9.4)

and set

SSU =

{
κSU

[
s1

s2

]
: si ∈ ASU(SNR)

}
(9.5)

where κ2
SU = SNR1− r

2 . In other words, SSU can be obtained from Svec when both users transmit at
multiplexing gain r

2
such that the overall multiplexing gain achieved by SSU equals r. Because of

this, the error probability of SSU is upper bounded by

Pr {E (SSU)} ≤ SNR−(2−r)+ , (9.6)

and the diversity gain equals d(r) = 2 − r for r ∈ [0, 2]. The maximal multiplexing gain rmax =
2, same as that indicated by the ergodic channel capacity [9, 23] of this channel. However, the
resulting DMT is only d(r) = 2−r, much worse than the optimal DMT d∗2,2(r). It is understandable
since the latter requires the channel to be fixed for at least two channel uses, while the former
changes from one channel use to another, and there is no coding across independent channel uses.

The maximal diversity gain dmax achieves by SSU is given by d(0) = 2, which is the same
for any such vector codes. This can be easily seen from the pairwise error probability argument.
Taking any fixed vector coding schemes that do not vary with SNR, the resulting multiplexing gain
equals 0 and the maximal possible rank distance between any pairs of distinct code vectors equals
1. Hence the resulting diversity order is 2 since there are two receive antennas. Therefore, we
conclude that for T < nt the maximal diversity order is nrT , and the resulting DMT can never be
the same as the optimal one d∗nt,nr(r), where the maximal diversity order equals ntnr. Furthermore,
it means that the outage event does not dominate the error performance when T < nt. These
answer the fourth question posed in Chapter 1.3.

While the code SSU is not optimal in terms of d∗2,2(r), in [9] Zheng and Tse proved the following
result.

57



Theorem 19 ( [9]). For a point-to-point MIMO channel with nt transmit antennas, nr receive
antennas, and T < nt+nr−1, the Gaussian random coding scheme achieves the following DMT:

dG(r) = inf
α∈G

{[
M∑
i=1

(2i− 1 + |nt − nr|)αi

]
+

T

(
M∑
i=1

(1− αi)− r

)}
, (9.7)

where M = min{nt, nr}, α = [α1 · · · αM ]>, and the constraint G is given by

G :=

{
α ∈ [0, 1]M : α1 ≥ · · · ≥ αM ,

M∑
i=1

(1− αi) > r

}
.

�

Substituting nt = nr = 2 and T = 1 into (9.7) gives

dG(r) = inf
α∈G
{2− r + 2α2} = 2− r.

Thus, we see that the DMT achieved by Gaussian random coding scheme is the same as that
achieved by the deterministic code SSU. Hence SSU is DMT optimal in the case of T = 1.

Finally, we remark that the well-known Alamouti scheme of orthogonal space-time codes [2]
was shown to achieve DMT at dA(r) = 4(1 − r)+ for r ∈ [0, 2] by Zheng and Tse [9]. Thus we
see for multiplexing gain r ≥ 2

3
the Alamouti code would perform worse than the uncoded SSU in

the DMT sense.
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