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| Abstract

Most investigations on the performance
of block codes assume perfect interleaving
and memoryless channels that introduce only
random errors. Some authors study the effect
of finite interleaving size on the decoder
performance, using a two-state Gilbert-Elliott

(GE) model to characterize the channel effect.

However, there are circumstances that the
burst-error channel of concern can not be
properly described by a two-state GE model.
We extend earlier analysis to analyze the
performance of block codes in an
environment that can be modeled as an
arbitrary finite-state Markov chain.

Keywords. Gilbert-Elliott (GE) model, block
codes, finite-state Markov chain.

Il Introduction

Interleaving is needed to randomize
burst errors and to increase the effectiveness
of an error-control code. Most investigators,
however, assume perfect interleaving in their
analysis. The effect of channel memory on
the performance of a decoder is often
analyzed by the use of analytic channed
models. Kana and Sastry [1] presented
several such models for channel with
memory and their applications to error
control. Wilhelmsson and Milstein [2] use
the Gilbert-Elliott (GE) channel model to
evaluate the influence of finite interleaving
on the decoded performance of binary BCH
codes. Su and Jeng [3] analyzed the impact
of imperfect interleaving on RS coded
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systems in slow frequency-hopped (SFH)
jammed channels. A survey of various
models for land mobile satellite (LMS)
channels can be found in [4]. This purpose of
this study is to extend these earlier
investigations to the cases when the simple
two-state GE model is inappropriate for
characterizing the communication channel of
concern.

[l Hidden Markov channéds

We present two scenarios that can only
be described by a four-state Markov model.
Consider first a correlated Rayleigh fading
channel in which the transmitted signa is
corrupted by multiplicative fading distortion,
additive white Gaussian noise (AWGN)
whose one-sided power spectral density (PSD)
is Np W/Hz, and a partial band noise jammer
(PBNJ) whose probability of presenceis p .
Obvioudly, one needs at least four states to
indicate whether a jammer is present
(jammed versus unjammed) and if the fading
is severe (good versus bad).

Suppose a RS-coded MFSK system
uses symbol-wise block interleaving and
slow frequency hopping to combat the
various adverse channel effects mentioned
above. We assume that a hop duration is
equal to that of multiple rows of the block
interleaver. Hence there will be several hops
in one interleaving block of depth m
(columns) and span n (rows) and at the
interleaver output, symbols of severa
adjacent rows will be in the same hop. Define
K; = mn, H = the number of hops per K; Ts
seconds and assume J of H hops are jammed.



The number of jammed symbols in one
codeword is JS and the remaining n-JS
symbols are free of jamming. Then we can
use the hidden Markov model shown in Fig.
1 to evaluate the corresponding decoder
performance. The four states that
characterizes the channel are (i) unjammed
and good (UG), (ii) unjammed and bad (UB),
(iii) jammed and good (JG), and (iv) jammed
and bad (JB).

The hopping rate and the interleaver
structure put constraints on the alowable
state transitions of the above model.
Depending on whether the first codeword
symbol is jammed, the next S1 consecutive
MFSK symbols will bein the same state. The
channel reduces to a two-state GE model
during this period and will not become a
four-state model again until the (S+l)th
symbol interval.
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Figure 1. A four-state model for jammed
Rayleigh channels.

A PBNJ distributes its total power P;
evenly over a continuous spectrum of W Hz.
Let W be the total hopping bandwidth then
M =W,/ Ws 1isthe probability that the
PBNJ is present in the signal band. Within
the jammed band, the transmitted signa is
corrupted by an equivaent AWGN whose
PSD level Nrisequa to Nj/u + Ny, where
N;= P;| W, otherwise the PSD level is Nr=
No.

In modeling a correlated fading
channel by atwo-state Markov chain one has
to select a threshold that discriminates
whether the channel is in the "good' state
when the received envelop is higher than this
threshold. However, [2] found that the choice
of threshold has little impact on the accuracy
of the model. Applying asimilar procedure to
evaluate the parameters in our hidden

Markov model, we have [2]

rf,T,A/2p
e’ -1
b=rf,T,N2p
where fp is the Doppler frequency and 7sis
the symbol duration. When a hop is jammed,

the average SNR of the received signa g,

(1)

is equal to cé, where ¢ = Nr /| Ny The
transition probabilities then become
r; foT~N2p
e’/ -1
b, =r ,f,T,~2p
where r? =gt/g_/..

The second scenario we consider is
mobile satellite communication systems.
Measurement results reported by Lutz et al.
[5] indicates that a land mobile satellite
signal  passes through shadowed and
unshadowed sections and the characteristics
of the switching process between shadowed
and unshadowed sections can be described by
aMarkov model. Taking the degree of fading

into account, we obtain the four-state model
for mobile satellite channels of Fig. 2,
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Figure 2. A land mobile satellite channel
model.

where py and p. ae the transition
probabilities, A unshadowed state -
shadowed state) and A(shadowed state -
unshadowed state), respectively. These two
transition probabilities can be evaluated by
using the method in [5]. The transition
probabilities between two shadowed or
unshadowed states can be evaluated by the
same method used for the two-state model
[2]. Those for shadowed states (Rayleigh
fading) are the same as (1). For unshadowed
states (Ricean fading) the transition



probabilities are given by
re’’ f,T.~/2p

P =11 Q.(V2K ,~2r)) (3)
p. = re”’ f,T.~/2p

(Q, (V2K ,~/21)

where Q,(a,b) isMarcum’s Qfunction.

IV Codeword error probability analysis

The codeword error probability (CEP),
P,, can be decomposed into a sum of several
conditional CEP's. For example, if we define
(m, ..., nY as the event that during an
n-symbol period, the channel isin state j for
njtimes, j=1, 2,..., k, then

= A R(Man) PARL-), 4
where P,(m,..., ng is the CEP given that the
event (m,..., g occurs. Next we present two
methods for evaluating P(r, ..., ).

Suppose that T = [p;] is the probability

transition matrix of a k-state Markov chain.
The first method uses a transfer domain
approach. Let Y, (&,....Z2) be the
k-dimensional ztransform of Py(r,..., )
and P,=[p,z, ... , Pyz] be the initia
probability vector of the Markov chain and
define the new transition matrix Tz = [ p;z].
Then we have

B,(z, z,)=D,TM1,
where1 =[11...1] and

1 19,(zL z)
n'miL n! Tz*L 1z
The second method utilizes

recursive relation given by

P,(n,L ,n,) =

the

k
O/,X(Clg.iK 7dk) = aoi—l,X(C’g.’K 7dx -1K 7dk)pyx
=1
where F; (ai,...,dy is the probability that
the process staysin state x at the ith instant of
time conditioned on dj = P[the process visits
the jth state for @ time during an r-symbol
period]. Obviously,
O,,(d.K ,d,=0K,d,)=0, x=1...k

Ol,x(dl =O'K ’dx ::LK ’dk =O) :px

we have,

k k
P(mK 1) =8 80,., (-0 -1.)p,.

x=1 y=1
V Numerical resultsand conclusions

This section provides some numerical
examples of the CEP performance of the two
RS-coded systems in channels discussed in
Section 2. The first one is the dSow
frequency-hopped RS-coded MFSK system
described in Section 2. The second system
uses an M-ay orthogonal signa in
conjunction with a RS code for the land
mobile satellite (LM S) channel of Fig. 2. We
consider errorsonly (EO) as wel as
errors-and-erasures (EE) decoders and
assume that both systems employ
noncoherent detection. We aso assume that
the received fading amplitude is constant
during a symbol period (nonselective fading).
The CEP of these two coded system can be
evaluated by using various probabilities
derived in the above sections and following
procedures similar to those presented in [2]
and [3].

The use of an EE decoder necessitates an
erasure-insertion method (EIM) that detects
the erasure positions. The EIM we used for
both systems is Viterbi's ratio threshold test
(RTT) [6] that erases a symbol when the ratio
between the largest and the second largest
outputs, Z, Z» of a noncoherent M-ary
detector bank is greater than a threshold 6. In
other words, a symbol is erased if Z/Z, > 6.
The threshold can be different for different
states. We consider single-threshold (1T) and
two-threshold (27) erasure-insertion
algorithms only. For the 2T decoder, the
same threshold is used for the two jammed or
unjammed states or the two shadowed or
unshadowed  states. Our  numerica
experiment finds out that using more than
two thresholds brings little or no performance
improvement.

Fig. 3 compares the CEP performance of
the EO, 1T RTT/EE and 2T RTT/EE
decoders in the presence of PBNJ when the
ratio of the average bit energy to noise power

level, E,/N, , is 20 dB. The CEP



performance curves are depicted as a
function of E,/N,. It is clear that our

analytic prediction is very close to that
predicted by simulation and, as expected, EE
decoders performance is better than that of
EO decoders. At P, =10 the EE decoding
gan is greater than 7 dB while the
corre;epondi ng gain is greater than 4 dB at P,
=10".

EO and EE decoder performance of an
LMS channel is shown in Fig. 4 when the
satellite elevation angle is 13 degrees and the
time-share factor of shadowing A=0.24 and
0.89, respectively. Agan, these curves
indicate that our four-state hidden Markov
model leads to accurate decoder performance
prediction. Moreover, EE decoding brings
about a decoding gain (a P, =107) of
approximately 1 dB and 2 dB when A= 0.89
and 0.24, respectively. Since A accounts for
the fraction of time the channel stays at
Ricean fading states, these coding gains
imply that the EE decoding gain tends to be
larger in Rayleigh fading.
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Figure 3. CEP performance of a RS-coded
SFH MFSK system in presence of PBNJ and
fading.
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Figure 4. EO and EE RS decoder performance
over land mobile satellite channels; A = the
time-share factor of shadowing.
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