
1

行政院國家科學委員會補助專題研究計畫成果報告
※※※※※※※※※※※※※※※※※※※※※※※※※
※      應用 RS碼之前向改錯系統之研究 (3/3)      ※
※   On the study of RS-code-embedded forward error    ※
※           correcting systems (3/3)          ※
※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：□個別型計畫  □整合型計畫

計畫編號：NSC－89－2213－E－009－183

執行期間： 89 年 8 月 1 日至 90 年 7 月 31 日

計畫主持人：蘇育德  教授

共同主持人：無

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：交通大學電信工程系 通訊系統實驗室

中 華 民 國 90 年 8 月 10 日



2

行政院國家科學委員會專題研究計畫成果報告

Preparation of NSC Project Repor ts
計畫編號：NSC 89-2213-E-009-183
執行期限：89 年 8月 1日至 90 年 7月 31 日
主持人：交通大學電信系  蘇育德 教授
共同主持人：無
計畫參與人員：交通大學電信系博士班  李昌明

I、Abstract

Most investigations on the performance 
of block codes assume perfect interleaving 
and memoryless channels that introduce only 
random errors. Some authors study the effect 
of finite interleaving size on the decoder 
performance, using a two-state Gilbert-Elliott 
(GE) model to characterize the channel effect. 
However, there are circumstances that the 
burst-error channel of concern can not be 
properly described by a two-state GE model. 
We extend earlier analysis to analyze the 
performance of block codes in an 
environment that can be modeled as an 
arbitrary finite-state Markov chain.

Keywords: Gilbert-Elliott (GE) model, block 
codes, finite-state Markov chain.

II、Introduction

Interleaving is needed to randomize 
burst errors and to increase the effectiveness 
of an error-control code. Most investigators, 
however, assume perfect interleaving in their 
analysis. The effect of channel memory on 
the performance of a decoder is often 
analyzed by the use of analytic channel 
models. Kanal and Sastry [1] presented 
several such models for channel with 
memory and their applications to error 
control. Wilhelmsson and Milstein [2] use 
the Gilbert-Elliott (GE) channel model to 
evaluate the influence of finite interleaving 
on the decoded performance of binary BCH 
codes. Su and Jeng [3] analyzed the impact 
of imperfect interleaving on RS coded 

systems in slow frequency-hopped (SFH) 
jammed channels. A survey of various 
models for land mobile satellite (LMS) 
channels can be found in [4]. This purpose of 
this study is to extend these earlier 
investigations to the cases when the simple 
two-state GE model is inappropriate for 
characterizing the communication channel of 
concern.

III、Hidden Markov channels
  

We present two scenarios that can only 
be described by a four-state Markov model. 
Consider first a correlated Rayleigh fading 
channel in which the transmitted signal is 
corrupted by multiplicative fading distortion, 
additive white Gaussian noise (AWGN) 
whose one-sided power spectral density (PSD) 
is N0 W/Hz, and a partial band noise jammer 
(PBNJ) whose probability of presence is μ. 
Obviously, one needs at least four states to 
indicate whether a jammer is present 
(jammed versus unjammed) and if the fading 
is severe (good versus bad). 

Suppose a RS-coded MFSK system 
uses symbol-wise block interleaving and 
slow frequency hopping to combat the 
various adverse channel effects mentioned 
above. We assume that a hop duration is 
equal to that of multiple rows of the block 
interleaver. Hence there will be several hops 
in one interleaving block of depth m
(columns) and span n (rows) and at the 
interleaver output, symbols of several 
adjacent rows will be in the same hop. Define 
KI = mn, H = the number of hops per KI Ts
seconds and assume J of H hops are jammed. 
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The number of jammed symbols in one 
codeword is JS and the remaining n-JS
symbols are free of jamming. Then we can 
use the hidden Markov model shown in Fig. 
1 to evaluate the corresponding decoder 
performance. The four states that 
characterizes the channel are (i) unjammed 
and good (UG), (ii) unjammed and bad (UB), 
(iii) jammed and good (JG), and (iv) jammed 
and bad (JB).

The hopping rate and the interleaver 
structure put constraints on the allowable 
state transitions of the above model. 
Depending on whether the first codeword 
symbol is jammed, the next S-1 consecutive 
MFSK symbols will be in the same state. The
channel reduces to a two-state GE model 
during this period and will not become a 
four-state model again until the (S+1)th 
symbol interval.

     A PBNJ distributes its total power PJ
evenly over a continuous spectrum of WJ Hz. 
Let Wss be the total hopping bandwidth then
μ= WJ / Wss ≦1 is the probability that the 
PBNJ is present in the signal band. Within 
the jammed band, the transmitted signal is 
corrupted by an equivalent AWGN whose 
PSD level NT is equal to NJ /μ+ N0, where 
NJ = PJ / Wss; otherwise the PSD level is NT =
N0.
     In modeling a correlated fading 
channel by a two-state Markov chain one has 
to select a threshold that discriminates 
whether the channel is in the `good' state 
when the received envelop is higher than this 
threshold. However, [2] found that the choice 
of threshold has little impact on the accuracy 
of the model. Applying a similar procedure to 
evaluate the parameters in our hidden 

Markov model, we have [2]
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where fD is the Doppler frequency and Ts is 
the symbol duration. When a hop is jammed, 
the average SNR of the received signal jγ

is equal to c γ , where c = NT / N0. The 
transition probabilities then become
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where jtj γγρ /2 = .

The second scenario we consider is 
mobile satellite communication systems. 
Measurement results reported by Lutz et al. 
[5] indicates that a land mobile satellite 
signal passes through shadowed and 
unshadowed sections and the characteristics 
of the switching process between shadowed 
and unshadowed sections can be described by 
a Markov model. Taking the degree of fading 
into account, we obtain the four-state model 
for mobile satellite channels of Fig. 2,

where pcl and plc are the transition 
probabilities, P( unshadowed state →
shadowed state) and P(shadowed state →
unshadowed state), respectively. These two 
transition probabilities can be evaluated by 
using the method in [5]. The transition 
probabilities between two shadowed or 
unshadowed states can be evaluated by the 
same method used for the two-state model 
[2]. Those for shadowed states (Rayleigh 
fading) are the same as (1). For unshadowed 
states (Ricean fading) the transition 
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probabilities are given by
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where ),(1 baQ  is Marcum’s Q function.

IV、Codeword er ror  probability analysis

The codeword error probability (CEP), 
Pw, can be decomposed into a sum of several 
conditional CEP’s. For example, if we define 
(n1, … , nk) as the event that during an 
n-symbol period, the channel is in state j for 
nj times, j=1, 2,… , k, then
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where Pw(n1,… , nk) is the CEP given that the 
event (n1,… , nk) occurs. Next we present two 
methods for evaluating Pn(n1,… , nk).
     Suppose that T = [pij] is the probability 
transition matrix of a k-state Markov chain. 
The first method uses a transfer domain 
approach. Let ZΨ (z1,… ,zk) be the 
k-dimensional z-transform of Pw(n1,… , nk)
and ZΠ = [ 1π z1, …  , kπ zk ] be the initial 
probability vector of the Markov chain and 
define the new transition matrix TZ = [ pijzj ]. 
Then we have
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     The second method utilizes the 
recursive relation given by
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where xi ,Φ (d1,...,dk) is the probability that 
the process stays in state x at the ith instant of 
time conditioned on dj = Pr[the process visits 
the jth state for dj time during an n-symbol 
period]. Obviously,
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V、Numerical results and conclusions

    This section provides some numerical 
examples of the CEP performance of the two 
RS-coded systems in channels discussed in 
Section 2. The first one is the slow 
frequency-hopped RS-coded MFSK system 
described in Section 2. The second system 
uses an M-ary orthogonal signal in 
conjunction with a RS code for the land 
mobile satellite (LMS) channel of Fig. 2. We 
consider errors-only (EO) as well as 
errors-and-erasures (EE) decoders and 
assume that both systems employ 
noncoherent detection. We also assume that 
the received fading amplitude is constant 
during a symbol period (nonselective fading). 
The CEP of these two coded system can be 
evaluated by using various probabilities 
derived in the above sections and following 
procedures similar to those presented in [2] 
and [3].
    The use of an EE decoder necessitates an 
erasure-insertion method (EIM) that detects 
the erasure positions. The EIM we used for 
both systems is Viterbi's ratio threshold test 
(RTT) [6] that erases a symbol when the ratio 
between the largest and the second largest 
outputs, Za, Zb of a noncoherent M-ary 
detector bank is greater than a threshold ô. In 
other words, a symbol is erased if Zb/Za > ô. 
The threshold can be different for different 
states. We consider single-threshold (1T) and 
two-threshold (2T) erasure-insertion 
algorithms only. For the 2T decoder, the 
same threshold is used for the two jammed or 
unjammed states or the two shadowed or 
unshadowed states. Our numerical 
experiment finds out that using more than 
two thresholds brings little or no performance 
improvement.
    Fig. 3 compares the CEP performance of 
the EO, 1T RTT/EE and 2T RTT/EE 
decoders in the presence of PBNJ when the 
ratio of the average bit energy to noise power 
level, Jb NE / , is 20 dB. The CEP 
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performance curves are depicted as a 
function of Jb NE / . It is clear that our 
analytic prediction is very close to that 
predicted by simulation and, as expected, EE 
decoders’ performance is better than that of 
EO decoders. At Pw =10-4, the EE decoding 
gain is greater than 7 dB while the 
corresponding gain is greater than 4 dB at Pw 
=10-3.
    EO and EE decoder performance of an 
LMS channel is shown in Fig. 4 when the 
satellite elevation angle is 13 degrees and the 
time-share factor of shadowing A=0.24 and 
0.89, respectively. Again, these curves 
indicate that our four-state hidden Markov 
model leads to accurate decoder performance 
prediction. Moreover, EE decoding brings 
about a decoding gain (at Pw =10-3) of 
approximately 1 dB and 2 dB when A= 0.89 
and 0.24, respectively. Since A accounts for 
the fraction of time the channel stays at 
Ricean fading states, these coding gains 
imply that the EE decoding gain tends to be 
larger in Rayleigh fading.
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