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Abstract. The DMT (discrete multitone
modulation) technique has been widely ap-
plied to high speed data transmission. It is
known that the DMT system with ideal filter-
s can achieve within 8 to 9 dB of the chan-
nel capacity of ADSL. The DFT based DMT
system is proposed as a practical DMT imple-
mentation but its optimality is never asserted.
In this project we show that the DFT based
DMT systems are asymptotically optimal al-
though they are not optimal for finite number
of channels. The DFT based DMT system and
the DMT system with ideal filters achieve the
same bound. However, for a modest number of
channels the optimal transceiver can provide
substantial gain over the DFT based system

as will be demonstrated by examples.
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Recently there has been great interest in
applying the discrete multitone modulation
(DMT) technique to high speed data transmis-
sion over channels such as ADSL and HDSL
[1]. Fig. 1 shows an M-channel DMT system
over a channel C(z) with additive noise e(n).
The channel is divided into M subchannels us-
ing the transmitting filters Fj(z) and receiving
filters Hy(z). The input is parsed and coded
as modulation symbols, e.g., QAM (quadra-
ture amplitude modulation). With judicious
power and bit allocation, DMT can provide
significant gain over channels. In [2], Kalet
shows that the DMT system with ideal filters
can achieve within 8 to 9 dB of the channel
capacity of ADSL.

In the widely used DFT based DMT sys-
tem, the transmitting and receiving filters are
DFT filters. For a given probability of error
and transmission power, bits can be allocated
among the subchannels to achieve maximum
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1: An M-channel DMT system over channel C(z).

total bit rate Ry q,. Very high speed data
transmission can be achieved using DFT based
DMT system at a relatively low cost [1]. In
the DMT system the bit rate R} 4, depends
on the choice of the transmitting and receiv-
ing filters. The use of more general orthogo-
nal transmitting filters instead of DFT filters
is proposed in [3]. From the view point of mul-
tidimentional signal constellations it is shown
that, for AWGN channels the optimal trans-
mitting and receiving filters are eigen vectors
associated with the channel. However in AD-
SL or HDSL applications, the channel noise is
often the colored NEXT noise due to cross talk
[2]. For channels with general colored noise
source, the optimal transceiver is derived in

14].

The DFT based DMT system is proposed as
a practical DMT implementation but its op-
timality is not asserted. In this project we
show that the DFT based DMT systems are
asymptotically optimal. The performance of
the DFT based DMT systems becomes close
to that of optimal DMT systems when the
channel number M is sufficiently large. Fur-
thermore the asymptotic performance of these
two systems is the same as that of the DMT
system with ideal filters in [2]. Although the
DFT based DMT system is asymptotic opti-
mal, the optimal transceiver provides signif-
icant gain over the DFT based system for a
modest number of channels. An example with
NEXT noise source will be given to demon-
strate this.

3 FEREEGN:

Consider the system model of an M-channel
DMT transceiver over a channel C(z) with
additive noise e(n) in Fig. 1. Suppose the
channel C(z) is an FIR filter with order L,
which is a reasonable assumption after chan-
nel equalization. In practice, to cancel ISI
(inter-symbol interference) some degree of re-
dundancy is introduced and the interpolation
ratio N > M. Usually we have N = M + L.
The length of the transmitting and receiving
filters is also V.

Polyphase representation. The DMT system can
be redrawn as in Fig. 2 using polyphase de-
composition. The transmitter G is an N x M
constant matrix; the k£th column of G contains
the coefficients of the transmitting filter F(z).
The receiver S is an M x N constant matrix;
the kth row of S contains the coefficients of
the receiving filter Hy(z). The matrix C(z) is
an N x N pseudo circulant matrix with the
first column given by

0)"
where {c, }L_, is the channel impulse response.
The condition for zero ISI is SC(2)G = 1.

Using singular value decomposition, we can
decompose Cj as,

A
0

(co c1 c;, O

Co = [UyU, ( ) VT =UAVT, (1)
NxM
where U and V are N x N and M x M unitary

matrices. Consider the case that the trans-
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2: The polyphase representation of the
DMT system.

mitter is a unitary transformation followed by

Go
(%)
where Gy is an arbitrary M x M unitary
matrix. For zero ISI, we can choose S =
GIVA 'U!. When the transmitter is chosen
as Go = VT, the receiver is S = A 'U!". This
becomes the DMT system developed in [3].
Transmission Power For a given average bit
rate R,, the design of the transmitter and re-
ceiver affects the required transmission power.
Let Ry be the N x N autocorrelation matrix
of the channel noise process e(n). The M x 1
output noise vector of the receiver has auto-
correlation function given by

padding of L zeros, in particular G =

R = SR,S7.

Let the number of bits allocated to the k-
th channel be b;, then the average bit rate
is Ry, = % kM:BI bi. The actual bit rate is
%Rb, where T' is the sampling period of the
system. Let P(R,, P., M) be the transmission
power required for the M channel transceiv-
er to achieve an average bit rate of R, and
probability of error P,. With optimal bit al-
location, the transmission power for the given

transceiver is minimized and is equal to [4]

P(Ry, P, M) = ¢2*ReNM (M SRy ST 1) VM,

(2)
where the constant ¢ depends on the given
probability of symbol error P, and the mod-
ulation scheme.

In the DFT based DMT system, the receiver
is S = I' [0 W]. In this case we can verify

that transmission power is
Pprr(Ry, P, M)
_ M
(M5 [WRy W)Y
det(TTT)1/M '

2R N/M

From (2) we see that the transmission power
can be further minimized by optimizing the
transceiver. Using the optimal transceiver, the
minimum transmission power is [4]

(det(UTRyU,)) ™

Popu(By. Pe, M) = 228N = e

Asymptotic Performance We will show
that the DFT based DMT systems are asymp-
totically optimal although they are not opti-
mal for finite number of channels. For a given
error probability and bit rate, we will show
that the power required in DFT based DMT
system approaches that of the optimal system
for large M. In particular,

]\/lliinoo Popt(Rba Pea M)
= hm PDFT(RbaPeaM)
M—o

T See(e?¥) dw
= (2% / In o —— ),
¢ 6‘”’( “|c<ew>|22vr> )

Note that this is the same bound achieved by
the DMT system with ideal filters as derived
in [2]. The proof can be done in two steps.

Step 1: Using the distribution of eigenvalues
for Toeplitz matrices [5], we are able to show
that

lim det(AH)YM = lim det(D'T)YM
M—oo M—o

— eap (/ In |C(ejw)|2‘;—°;> , (4)

—T
where C(e’?) is the Fourier transform of c,,.
Step 2: Using properties of positive definite
matrices, we can show that

. 1/M
lim /
M—

1 (det(UfRyUy))

= eap ( / :lnsee(ej‘“);l—j)- (5)



On the other hand, properties of Toeplitz
matrices give us [6],

lim (T WRy W)

M—o0
= exp (/ In See(ejw)d—w> . (6)
o 2m

With (4)-(6), we can establish (3).

Example. Suppose the channel C'(z2) is an FIR
filter of order 1 and C(z) = 140.5z"'. For the
same probability of error and same bit rate,
Fig. 3 shows %, the ratio of pow-
er needed in optimal system over the power
needed in the DFT-based system. We plot
the ratio as a function of M for two differen-
t noise sources, the AWGN and NEXT noise
source, which is colored channel noise due to
cross talk [2]. From Fig. 3 we see that, for both
noise sources the ratio % approach-
es unity as the channel number M increases.
But for the NEXT noise channel, the ratio ap-
proaches unitary only for very large M. We
can see that for a modest number of channel

the optimal system provides substantial gain.
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3: The ratio of the power needed in the
optimal DMT system over the power needed
in DFT based system for the same probability
of error and the same bit rate.

1 FHEMEAT:

In this project we show that the DFT based
DMT systems are asymptotically optimal al-
though they are not optimal for finite num-
ber of channels. The results show that for
a modest number of subchannels the optimal
transceiver can provide substantial gain over
the DFT based system. For large number of
subchannels, DFT based DMT systems are
just as good.
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