FRERRPELE EAHLEE TS P A2
35K OKIOROGIOR ORI OIRORIOK
P A FFPER KT A

2k 242 - 8% -8t HFx
TR T HERLE T v ST R

PEAY W RUARE OFEUTE

>

24 %% 1 NSC 98-2221-E-009-164- MY3

M FHF T 98/08/01 ~ 101/07/31

FEALA RP A
PEEE AR el

HAFHE g2



FREFATPELR g LM

ﬁ”*kﬁﬁﬁiiﬁi4*+1r9—ﬁa

PR EFEL

BE KT KWt T gl i

I FE o Bk ’f?-
Non-equilibrium Channel Backscattering Framework Suitable for 1-D and 2-D

NanoFETs with Feature Size down to 10 nm and beyond

I THAPE: 98/08/01 ~ 101/07/31
&= 4m5%: NSC 98-2221-E-009-164- MY3

AFFEA P AT SR
SRRARE T
ﬂ%é#g’,;xﬁﬂﬁﬁmﬁﬂ

AT L 5 AOHES
T IR N SETIET P = Y e 3 @i¢é+—
T2 - BE - EENH T LY, 7 'F/f:lf\
LT AR A TR,
fe A A TFROPE, % - EHREFT SR
poe (1)24:?:&_1@1——:«:&«&;}};;.-‘{%55
L EETIRT IR SIS T 4 M 1‘§ -1 £ ﬁsg
*i*‘{a,as’éﬁﬁ‘*‘ﬁ—mr‘él‘ _‘m‘?\}i g

m@aw P2, drE S B, ;t:ﬂ‘aib
# R r§ P /))E‘I’E*;LLE | ﬁi‘}? PR @J‘/)ﬁl
B RSN, LIERGLI Fr 8

; (2) B AT T R f Hok

maagﬁilﬂ%rﬁ’f(k"]”b—'\‘ *P*? EHOREY
mvgzik—‘l:_?e‘.’“li’}’s‘_:j’ggﬁi E] f‘rﬁlf‘t"r{' f:.f-_
B RRE S R LRI AT B
BRAE R, 7R HEFE AR 3R R
'F%@m.}i”*‘i—rﬁ't%t’“' ’Ebra"g(‘&"r'é‘ﬁ'{
5HREE MR, 1 ATk ﬁﬁr&
PHELR AL na () -
ER I SR a’l}iij@_'g v B+ R
%ﬁﬁf%i$% DR

¥ EBEFTAED
T A KR BT RO
S, BT AEHLEE S e K
REARN, G A RPESLE F R
R LS (LA
R GE A oG FLFE, ZET R E R
S, EIERGRI Y E; (D) B0
BenFr R ACHERES p AR
F N BGR - pRE R I e 2

B

TIIRENERIALH

LT - MR HT LM E e A

ot A, - Mt fesE 1‘{&1‘%5")%."

i%é’;‘gfg—tﬁ‘}; s R () my
fg'r_r s BN N Y 1R U 1E r?'%;(-é/"]'

B ERLMFE G, $ 2 EREFT

FIE P (1) B d g2 T frT - @z
B - 7 2 o .S ’Wﬁiﬁ S R
Wi g; () BFEY iy e
T RAREGRET-FEF; 2 (D)

,-;/,551 R EEETETHTT -2 -8
5 H BT S A P ACHHIES % R

Y1E R ARG

Br - s

AR 1

L EF EHRT hi, %
Fa, RO, s, R, sei

This is a three-year project proposal
aimed at examining and creating an updated,
non-equilibrium version of the channel
backscattering framework suitable for 1-D
and 2-D nanoFETs with the channel lengths
down to 10 nm and beyond. This proposal is
expected to have a profound impact, either
from the aspect of device physics or the
experimental data analysis. In the first year,
we will have three items to be carried out: (i)
construction of a non-equilibrium 2-D
nanoFETs channel backscattering framework,
where higher-orders physical effects, greatly
ignored before in the case of long channel
counterparts, will be systematically treated
and therefore incorporated, such as quantum
confinement, carrier degeneracy, velocity



overshoot, source-channel interface
bottleneck, tunneling across the
non-equilibrium  source-channel  barrier,

long-range Coulomb interactions, etc; (ii)
modification  or  refining of the
non-equilibrium 2-D nanoFETs channel
backscattering framework with the accuracy
of 10-nm channel length and below, which
will be done with the purchased Monte Carlo
device simulators and fabricated device
test-key to find out underlying backscattering
coefficients and injection velocity over the
barrier as a function of the device structural
parameters, material physical parameters,
operating biases and temperatures; and (iii)
writing and debugging of a
Schrodinger-Poisson equation self-consistent
solver for the direction normal to the channel
of 1-D nanowire FET and we can
straightforwardly change some parameters as
required for the next year proposal. In the
second year, we will have three items to be
carried out: (i) construction of a
non-equilibrium 1-D nanoFETs channel
backscattering framework, where
higher-orders physical effects will be
incorporated, such as quantum confinement,

carrier degeneracy, velocity overshoot,
source-channel interface bottleneck,
tunneling across the non-equilibrium

source-channel barrier, long-range Coulomb
interactions, etc; (ii) modification or refining
of the non-equilibrium 1-D nanoFETs
channel backscattering framework with the
accuracy of 10-nm channel length and below,
which will be done with both the purchased
Monte Carlo device simulators and the
device test-key fabricated by our group and
also provided by the industry and/or the
academic colleagues; and (iii) in-depth study
of the 2-D non-equilibrium nanoFETs
backscattering issue. Finally, in the third year,
three main items will be addressed: (i)
continuing further investigation of 1-D/2-D
non-equilibrium nanoFETs backscattering
issues; (ii) more produced microscopic
physical phenomena by executing the
purchased Monte Carlo device simulators;
and (iii) practical demonstrations of the
1-D/2-D non-equilibrium nanoFETSs

backscattering framework, both theoretically
and experimentally, in terms of the statistical
fluctuations, self-heating, and random
telegraph signals.

Key Words:

Quantum, Nano, MOSFETSs, Nanowire,
Scatter, Statistical, Fluctuations, Noise
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Temperature-Oriented Mobility Measurement and

Simulation to Assess

Surface Roughness in

Ultrathin-Gate-Oxide (~1 nm) nMOSFETs
and Its TEM Evidence

Ming-Jer Chen, Senior Member, IEEE, Li-Ming Chang, Shin-Jiun Kuang, Chih-Wei Lee, Shang-Hsun Hsieh,
Chi-An Wang, Sou-Chi Chang, and Chien-Chih Lee, Student Member, IEEE

Absiract—On a 1.27-nm gate-oxide nMOSFET, we make a
comprehensive study of SiO4/Si interface roughness by combining
temperature-dependent electron mobility measurement, sophisti-
cated mobility simulation, and high-resolution transmission elec-
tron microscopy (TEM) measurement. Mobility measurement and
simulation adequately extract the correlation length A and rough-
ness rms height A of the sample, taking into account the Coulomb-
drag-limited mobilities in the literature. The TEM measurement
yields the apparent correlation length A,, and roughness rms
height A,,. It is found that the following hold: 1) A = A,
for both the Gaussian and exponential models, validating the
temperature-oriented extraction process: 2) the extracted A
(~1.3 A for the Gaussian model and 1.0 A for the exponential one)
is close to that (~1.2 A) of A, all far less than the conventional
values (~3 A) in thick-gate-oxide case; and 3) the TEM 2-D pro-
jection correction coefficient A, /A is approximately 1.0, which
cannot be elucidated with the current thick-gate-oxide-based
knowledge.

Index Terms—Coulomb drag, gate oxide, interface plasmons,
mobility, metal-oxide—semiconductor field-effect transistors
(MOSFETs), scattering, surface roughness, transmission electron
microscopy (TEM), universal mobility.

I INTRODUCTION

ANDOM roughness at the Si0,/Si interface can critically

affect the carrier transport in the inversion layers of MOS-
FETs. Thus, attempts to characterize the surface roughness
parameters are essential. To facilitate the description of the
surface roughness picture, two fundamentally distinct models
were proposed [1]: Gaussian and exponential. Both models
contain two elements, i.e., correlation length A and roughness
rms height A, To assess the underlying A and A, numerical
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simulations were applied with the inversion-layer mobility data
as inputs [1]-[4]. However, for MOSFETs having ultrathin
gate oxides, such a scheme encountered difficulties due to the
increasing importance of remote scatterers [5], [6]. Indeed,
how to correctly distinguish between the surface roughness and
remote scatterers has been a challenging issue [7]. To overcome
the issue, we recently proposed a temperature-dependent ex-
traction method [8]. As has been demonstrated [8] on 1.65-nm-
gate-oxide nMOSFETs through the use of the Gaussian model,
the merits of the method are summarized: 1) it can effectively
distinguish the surface-roughness-limited mobility from the
remote-scatterer-limited mobility; 2) it can accurately deter-
mine the surface roughness parameters; and 3) it can easily be
conducted in a certain range around room temperature.

Alternatively, TEM measurements can be performed to pro-
vide the apparent correlation length A, and the apparent rms
height A,,. To address the 2-D projection effect in the TEM
measurement, a link to the aforementioned A was established in
terms of correction coefficient A, /A [1]. Furthermore, a math-
ematical transformation from digitized TEM surface roughness
data, without directly accounting for A and A, to mobility
values was developed, thus producing a quantity associated
with the projection correction [9]. However, these works [1],
[9] were devoted to the thick-gate-oxide samples only.

To make a comprehensive surface roughness study and to
advance the studies [1]-[9], in this paper, we integrate the
aforementioned means, i.e., temperature-dependent mobility
measurement, sophisticated mobility simulation accounting for
both the Gaussian and exponential models, and TEM measure-
ment. In addition, a thinner gate-oxide sample (1.27 nm), which
enables fair citation of the simulated Coulomb-drag-limited
mobilities (on 1-nm gate oxide) [5], is presented. The results are
novel and might substantially improve current understanding of
the surface roughness, particularly for the case of ultrathin gate
oxides.

II. SAMPLE AND ELECTRICAL CHARACTERIZATION

The device under study was fabricated in a conventional
manufacturing process. In this process, Si0; film was thermally
grown on the (001) surface, followed by NO annealing. Cor-
responding process parameters can essentially be obtained by
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Fig. 1. Comparison of the measured (symbol) and simulated (lines) gate
capacitance versus gate voltage. The lines came from the self-consistent
Schridinger and Poisson's equations solvers [10]. [11].
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Fig. 2. Measured terminal currents at a drain voltage of 0.05 V versus gate
voltage for four different temperatures.

fitting the measured gate capacitance versus the gate voltage
(C,=V,), as shown in Fig. 1. This was realized with the use
of a self-consistent Schridinger and Poisson’s equations solver.
Two such solvers were cited: one named Schred [10] and the
other in the previous work [11]. Obviously, the two sources
[10] and [11] are consistent of each other in the data fitting.
Although Cg-Cg data at high gate voltages were seriously
distorted due to the prepared ultrathin gate oxide, where the
direct tunneling current is profoundly large, the fitting was
successfully done in the remaining regions, leading to n™
polysilicon doping concentration = 1 % 10*” cm~3, gate oxide
(SiO4) physical thickness = 1.27 nm, and p-type substrate
doping concentration = 4 x 10'7 em~2, As will be explained
in detail later, the NO annealing used may have an impact on
the Si02/Si interface formation but not the Si02 bulk one.

The ratio of channel width W to length L of the device is
1/1 pm. The channel length direction is along the {110} direc-
tion. We conducted I-V' measurements at four temperatures
(292, 330. 360, and 380 K). Measured /-V curves across
different positions on wafer were found to be comparable with
each other. This ensures the integrity of the presented sample.
Fig. 2 shows the measured drain current 74, source current
I.. gate current [, and bulk current Iy, at drain voltage Vp =
50 mV, plotted versus gate voltage with the temperature as a
parameter. The effect of the huge gate tunneling current on the
source and drain currents is evidently clear. Similar behaviors
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Fig.3. Measured electron effective mobility at two drain voltages of 0.01 and
0.05 V versus vertical effective field for four temperatures.
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Fig. 4. Simulated vertical effective field, inversion-layer charge density, and
substrate depletion charge density versus gate voltage with the temperature as
a parameter.

were also observed elsewhere [12]. In this situation, the correct
mobility assessment should be formulated as [12]

S L LV +1a(Vy) 1
P['(‘ g) - W 21& Q.-N'in»-("';:"l ’

(1

Resulting temperature-dependent mobilities are given in Fig. 3
and plotted versus vertical effective field Fos. Here, Eon fol-
lowed the well-known expression

_ (05N, + Nyep)

Eei
Ssi

Eog 2
where Niny is the inversion-layer charge density, Naep is the
substrate depletion charge density, and £ is the silicon permit-
tivity. With the aforementioned process parameters as inputs,
the self-consistent Schridinger and Poisson’s equations solver
[11] was executed to furnish Ny, and Ngep. Corresponding
Ninv, Ndep. and Eqg are plotted in Fig. 4 versus gate voltage,
with the temperature as a parameter. Moreover, we repeated
the case of Vip = 10 mV and found that the change is little,
as shown in Fig. 3. This ensures the quality of the presented
mobility data, particularly for their temperature dependencies.

III. SIMULATION AND EXTRACTION

In the mobility simulation, we employed the self-consistent
Schridinger and Poisson’s equations solver [11] to deliver
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subbands and wavefunctions while computing the total mobility
firotal. Here, firoral was limited to the high-Fe region, where
the microscopic scattering by acoustic and optical phonons
in the channel region and by the Si0,/Si surface roughness
dominates. Two literature sources were quoted concerning the
scattering rate formalisms: one for the phonon scatlering rate
[2] and the other for both the Gaussian and exponential sur-
face roughness ones [13]. The material parameters used in
the phonon scattering rate calculation were the same as in
previous work [8]. These two surface roughness scattering rate
formalisms are given as follows [13]:

2w

| = e LA [ (—55) (1 cont
én(E) 253 | ew (=) (1 —cos)a
i
3)
for the Gaussian model and
2w
1 _ mfﬂosezEEHAQ)\z / 1 B ‘
TéR(E] - 203 i [] + (A2q2!2)](] cosd) df
il
4

for the exponential model. In (3) and (4), 7& is the scattering
rate of subband i, mj,, is the density-of-states effective mass
of subband i, # is the scattering angle, and ¢> = 2k?(1 — cos @),
with k% = 2mj,_ (E — E;)/2h?. Simulated total mobility with
different A’s and different A’s were used to reproduce universal
mobility data [14], [15] in a temperature range comparable with
the measurement one in this work, as shown in Figs. 5 and 6
for the Gaussian and exponential models, respectively. The best
fitting produces the solutions of A and A, as shown in Fig. 7 for
both models. Other values of A and A only led to a poor fitting
of the temperature dependencies and had been ruled out. It can
be seen from Fig. 7 that A is considerably constant and is higher
for the Gaussian model, A has a broad range and is smaller in
magnitude for the exponential model, and there is no overlap
between the two models. Thus, in the subsequently analysis, A
will be fixed at the middle value, i.e., 14.9 and 23.2 A for the
Gaussian and exponential models, respectively. Accordingly,
the values of A are 3.1 and 2.7 A, respectively, which are
close to the published values in the thick-gate-oxide case [1]—
[4]. This dictates the applicability of the proposed temperature-
dependent extraction process.

However, we found that, with the aforementioned A and X\
values, simulated results cannot match all observed temperature
dependencies of mobilities in a 1.27-nm sample. As shown in
Figs. 8 and 9 for both models, simulated mobilities at 292,
330, and 360 K fall below data points, despite the apparent
coincidence for the remaining temperature (380 K). Since this
is physically unreasonable, the value of A must be reduced.
The case of reducing A to lower values is depicted in these two
figures.

The required reduction in A indicates the existence of the
remote scatterers. In this sense, the additional mobility (tadq
due to the remote scatterers, ionized substrate impurity atoms,
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Fig.5. Comparison of the experimental electron universal mobility curves for
(open symbols) three temperatures [14] and (filled symbols) one temperature
[15] with the (lines) simulated ones in this work for the Gaussian model.
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3.0 A, and A = 17 A. Dac is the acoustic deformation potential. Dy is the
deformation potential of the kth intervalley phonon.

and interface traps can be defined according to Matthiessen’s

rule, i.e.,

1 1 1
+

Hadd

= (5)
Heff Htotal

where o is the measured mobility [i.e., (1)], and prigeq is
the simulated total mobility that does not include the con-
tributions by remote scatterers, substrate impurity atoms, or
interface traps. Note that Matthiessen’s rule can empirically
apply as long as the undertaken Eug or Nigy is high enough
[16]. The effect of substrate impurity atoms or interface traps
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can also be suppressed in the high-E.q region. In Fig. 10,
we show the extracted praga at Nipy of 1 x 10" em=2, with
A as a parameter, along with the two separate curves for
the simulated Coulomb-drag-limited mobilities [5]. These two
Coulomb-drag-limited mobility curves represent two limiting
conditions of the Landau-damping wave vector: one for “zero-
temperature Landau damping wave vector” and the other for
“damping at Thomas Fermi screening wave vector” [5]. Ac-
cording to Fischetti [5], the realistic Coulomb-drag-limited
mobility is likely to be situated between the two limits. In this
sense, the actual A of the presented sample should be approxi-
mately 1.3 and 1.0 A for the Gaussian and exponential models.
respectively.

14

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 4, APRIL 2012

5 r T T r r .
wE al %=14.9x10% cm |
o | 7=23.2x10% em
c o J
SR} T N
24 [
o
g8 2| ]
£5
(7] E 1 }=e—Gaussian function D,.=12eV i

—=—Exponential function p,=10x10° eViem|

0 1 i 1 1 i N

12 14 16 18 20 22 24

Correlation Length A (x10®cm)

Fig. 7. Best-fitting results of A versus A for both the Gaussian and exponen-
tial models.

__ B00F Temperature T=292K T=330K T=360K T=380K

n Experiment o L} a T

% 500 |} Simulation _

s a=taxtotem Du"12EV

2 400 F-.. D“=1Ux1l}'e\ﬂcm

3 1=14.9%10" cm

S 300 -

[ b

= N

s 200

-

W o0} t,=1.27nm P, =4x10"em™?

0.8 1.0 1.2 14 1.6 18 20
Epr (MVicm)
()
T T T T T

__ BO0 | Temperature T=292K T=330K T=360K T=380K

g Experiment o o a4 v

& 500 '_5' ulation e

E A=1.2X10%cm D“-12e\:

—_ s D,=10x10" eViem

E 00 . .2=14.9x10" cm

S e,

2 300

@

'\EJ 200

S

W 400 | te=1.270m P, =4x10""em™ Y-

0.8 1.0 1.2 14 1.6 18 2.0
Egir (MVW/icm)
(b)

Fig. 8. Comparison of the (symbols) temperature-dependent electron effective

mobility data with the simulated mobility curves using the Gaussian model for
(a) A of (dashed line) 1.4 A and (solid line) 3.1 A, and (b) A of (dashed line)
1.2 A and (solid line) 2.8 A. A = 14.9 A

IV. TEM MEASUREMENT AND ANALYSIS

In performing TEM measurements, the sample was
1000 nm long, and its cross-section thickness had a range of
20-60 nm. A TEM image was created, as shown in Fig. 11.
In this picture, the labeled {110} direction is parallel to the
Si04/Si interface, whereas the (001} direction is normal to
the interface. Underlying A, and A,, were determined by
following the work of Goodnick ef al. [1]. First, digitalization
of surface roughness was done by directly counting lattice
points on the TEM photographs. The same sampling interval
(1.92 A) [1] was used. This led to the autocovariance function
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in Fig. 12 as a function of the distance. In the figure, the
squared root of the autocovariance at zero distance yields A,
of around 1.2 A. Data fitting was carried out, producing A,,, =
15.6 and 23.1 A for the Gaussian and exponential models,
respectively.

Straightforwardly, several key arguments can be drawn. First,
the sample length effect [1] may be neglected due to a long
sample used. Thus, the ratio of Ay, /A == 1.0 is reached accord-
ingly [1]. Strikingly. this is the fact because the extracted values
of A =15.6 and 23.1 A in this work separately are close
to those (14.9 and 23.2 A) of A. One of the arguments can
thereby be inferred: the sample length effect as cited in [1] can
act to be corroborating evidence for the temperature-dependent
extraction method. Second, the TEM 2-D projection correction
coefficient A, /A is approximately 1.0, valid for both the
Gaussian and exponential models. However, the current thick-
gate-oxide-based knowledge [1] cannot reasonably explain this
because, for the TEM sample cross-section thickness range of
20-60 nm as in our work, the theoretical calculation pointed
out [1] that the upper limit of A, /A decreases sharply from
0.7 (see [1]). Even the A, /A in this work is much higher
than the published experimental A, /A values of 0.50-0.71
[8]. We attribute such significant deviations to the sole use of
the ultrathin gate oxide (1.27 nm) in this work. It is therefore
suggested that further theoretical investigation of the TEM
sample cross-section thickness effect is needed, particularly for
the ultrathin-gate-oxide situation.
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Fig. 11.

TEM image of the sample.

Finally, we want to stress that the physical gate oxide thick-
ness can be estimated from the TEM picture in Fig. 11, and
it appears to be in proximity of 1.27 nm, which is the value
of Cg-Vg fitting. The same gate oxide thickness had earlier
been applied to p-type counterparts on the same wafer [17].
This strongly suggests that the presented SiOz bulk film was
less nitrided during the NO annealing. Moreover, according to
the literature [4], the use of the oxide nitridation process will
produce a smoother Si/Si05 interface in terms of a reduced A.
Extra traps may be created during the pure nitridation or mixed
one (i.e., NO annealing process); however, their effect might be
limited to the low-FE.s region, rather than the high-Eos region
where this work was focused on. Therefore, it is argued that the
mixed NO annealing used may have an impact on the Si02/Si
interface formation but not the Si0y bulk one.
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V. CONCLUSION

Electron mobility of a 1.27-nm gate-oxide nMOSFET sam-
ple has been measured at various temperatures. Temperature-
dependent numerical simulation has for the first time
transformed existing universal mobility data into the solutions
of surface roughness parameters and has been applied to the
presented sample, taking into account the available Coulomb-
drag-limited mobilities. The extracted surface roughness pa-
rameters have been correlated with the values from TEM
measurements. As a consequence, novel results have been cre-
ated and might substantially improve the current understanding
of interface roughness, particularly for the case of ultrathin gate
oxides.
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Evidence for a Very Small Tunneling Effective
Mass (0.031m) in MOSFET High-£
(HfSiON) Gate Dielectrics

Ming-Jer Chen, Senior Member, IEEE, and Chih-Yu Hsu, Student Member, IEEE

Abstract—We have recently conducted experimental and mod-
eling tasks on TaC/HISiON/SiON n-type MOSFETs, leading to an
effective mass of 0.031g for 2-D electrons tunneling in high-~&
HfSiON dielectrics. In this letter, we present extra evidence
obtained from complementary MOSFETs undergoing the same
TaC/HESION/SiON processing, which shows that such a very small
tunneling effective mass is existent not only for 3-D electrons but
also for 2-D holes. This new finding is very important because
it can substantially enhance the current understanding of gate
tunneling leakage suppression in metal-gate high-k MOSFETs.

Index Terms—Effective mass, effective oxide thickness (EOT),
HfOz, HfSiON, high-k, metal gate, MOSFETSs, tunneling.

[. INTRODUCTION

IGH-k GATE dielectrics are currently largely employed
H in advanced MOSFET manufacturing. Thus, understand-
ing the fundamental properties of high-k dielectrics is crucial.
Relative to conventional SiOs and SiON counterparts, high-k
dielectrics feature two fundamentally distinct properties: a
narrower energy bandgap and a lower optical phonon en-
ergy [1]. Concerning electrons or holes tunneling in high-k
dielectrics, their tunneling effective masses should, in prin-
ciple, differ fundamentally from those of gate oxide. More
recently, we have conducted experimental and modeling tasks
on TaC/HfSION/SiON n-MOSFETs and found that 2-D elec-
trons in a HfSiON dielectric have a tunneling effective mass of
around 0.03m [2]. This value is quite unusual because it is far
below that of gate oxide and is the smallest of high-F dielectrics
to date. On the other hand, a countertrend with increasing
effective oxide thickness (EOT) was experimentally observed
[3]-[5]: HfO> gate tunneling leakage with respect to the 5i0;
one does not decrease as intuitively expected. To elucidate
this, an intermixing action between a high-%k dielectric and
an interfacial layer was proposed [3], [4]; however, tunneling
effective masses as responsible origins were not mentioned
there.
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The aim of this letter is to provide extra evidence to confirm
the existence of a very small tunneling effective mass and make
it one of the fundamental properties of the high-k HfSiON
dielectric. In a sense, the current understanding of the observed
gate tunneling leakage suppression [3]-[5] is able to be signifi-
cantly enhanced.

II. EXPERIMENT

TaC/HfSiION/SION n- and p-MOSFETs were fabricated
in a manufacturing process detailed elsewhere [6]. A TEM
picture of the underlying TaC/HfSiON/SiON/Si system is
shown in Fig. 1. The corresponding energy band diagram
is together plotted for a p-MOSFET in flatband condition.
All relevant material and process parameters are labeled in
Fig. 1, along with the corresponding values. By performing
a quantum mechanical numerical fitting of gate capacitance
C',—V, measured from the p-MOS device in inversion, we
obtained T'aC’ work function = 448 eV, EOT = 1.5 nm, and
n-type substrate doping concentration = 1 x 10'7 ¢cm™>. Evi-
dently, the p-MOS gate stack is slightly larger than the n-MOS
one (1.4 nm) [2]. We attributed this to the different ni-
trogen concentrations encountered. To meet the same EOT
(1.5 nm), £y, in the interface layer (IL) was changed to 6.2z,.
The corresponding ¢c and @y were 2.54 and 3.06 eV,
respectively [7].

The carrier separation method in inversion condition was
employed. The measured terminal currents are shown in Figs. 2
and 3 for n- and p-MOSFETs, respectively. Fig. 2 reveals the
following: 1) The source/drain current /5, dominates the gate
current I, due to 2-D electron tunneling, and 2) owing to
3-D valence-band electron tunneling to the gate, separated holes
flow down the substrate and constitute the substrate current [},
In the inset of the figure, the carrier separation measurement
setup is shown. In Fig. 3, one can see that I, comprises two
distinct components: 1) Is;p due to hole tnneling from the
inversion layer and 2) [ due to 3-D electron tunneling from
the metal side. In Fig. 3, we inserted experimental C';—V, for
p-MOSFET in inversion, along with the aforementioned curve
fitting. The corresponding energy band diagrams and tunneling
paths are shown in Fig. 4.

MI. CALCULATION AND FITTING

A quantum gate tunneling simulator [2], [8] was used. Given
the known material and process parameters (mj = 0.03my,
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Fig. 1. Schematic of the energy band diagram in a metal-gate/high-k/IL/Si
system for a p-MOSFET in flatband condition, along with a high-resolution
TEM picture. The relevant material and process parameters are as follows:
1) the TaC metal work function ®,,: 2) for the HfSiON high-k part, its physical
thickness £, permittivity £, tunneling effective mass m},, conduction-band
offset @kc. and valence-band offset iy : and 3) for the SiON IL part, its
physical thickness t11.. permittivity £11., conduction-band electron tunneling ef-
fective mass '"TLC' valence-band electron tunneling effective mass ml’l.\.‘“ hole
tunneling effective mass m:“‘. conduction-band offset ¢j1,c. and valence-
band offset 1y .

wkc = 1.1 eV, g = 12.4¢g, myc = 0.95my, c11, = Tep, and
piLc = 2.36 eV) [2], the calculated Ig;p of the n-MOSFET
and, hence, its dIn(1,)/dV, are shown in Fig. 2. The opposite
tunneling case, namely the I of the p-MOSFET in inversion,
should encounter the same tunneling parameters. To testify
to this, we quoted an existing formula [9], and thereby, the
underlying [}, can be written as

Emax
/ ETywa(E)dE
0

dmgmyy,

(n
/13

I,

where mjy; (= 1.0mo) is the metal electron mass; E is the
allowed electron energy, as shown in Fig. 4 for the p-MOSFET,
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Fig. 2. (Symbols) Experimental Iy, Ig,p, and Iy, as well as the corre-
sponding dIn(I;)/dV, and d1In(Iy)/dV,. plotted versus Vy for n-MOSFET
in inversion. The (lines) calculated results are given. For I, calculation,
e = 1.1 eV, pi.c =236 eV, m:_ = 0.03myg, ml*LC = 0.95myg, and
&1, = 7=p. For I, calculation, m;_ = 0.03mgq, and m,‘w = 0.65myg. The
inset schematically shows the current separation measurement.
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Fig.3. (Symbols) Experimental I4. I's/ . and I, as well as the correspond-
ing dIn(Is;p)/dVy and dIn(1y)/dVy, plotted versus Vy for p-MOSFET in
inversion. The (lines) calculated results are given. For I, calculation, vy =
L1 eV, gy o = 2.54 eV, m} = 0.03mg, and my}; . = 0.95my. For Is;p
calculation, wxyv = 3.1 eV, @iy = 3.06 eV, mj = 0.03mo, and m;, =
0.65mo. The inset shows a comparison of the (symbol) experimental and
(line) simulated C'g versus Vj for TaC/HfSiON/SiON-gate-stack p-MOSFET

in inversion.
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Fig. 4. Schematics of the energy band diagrams and tunneling paths for n-
and p-MOSFETs.

for tunneling between metal Fermi level and conduction-band
energy at the Si/IL interface; and Emax is the corresponding
energy difference. The WKB transmission probability Twkg
in (1) can make use of existing analytic expressions (i.e.,
[2, eq. (2)]) as long as the tunneling criteria (i.e., ©1, ©s, @3, and
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Fig.5. Simulated [ 5 due to electron tunneling from the inversion layer versus
EOT with 11, as a parameter. The corresponding t;. values are labeled. The
material parameters used in the simulation are the same as those in Fig. 2. The
inset shows a comparison of the simulated g with experimental values [6]
in the same TaC/HfSiON/SiON process, plotted versus electrical gate oxide
thickness in inversion. Vyy, is the threshold voltage.

ip4 therein) are modified according to the energy band diagram
in Fig. 4. Strikingly, the resulting [, appears to match the
experimental data well, as shown in Fig. 3. This was achieved
without changing any parameters.

Next, the values of mj = 0.03mg and mjp, = 0.65mg were
drawn from a fitting of the experimental [ of the n-MOSFET
in inversion. This was done by using (1) but with the following
changes: mj; was replaced by a valence-band electron effective
mass of 0.65my [9], Egae was redefined as the difference
between metal Fermi level and silicon valence-band edge, and
the corresponding criteria (4, (22, 3. and iy) for Tyygg were
altered, in accordance with the energy band diagram in Fig. 4.
The fitting quality is fairly good, as shown in Fig. 2.

Physically speaking, mj;; in IL should be equal or close to
mipy- In this work, we made my;; = 0.65my. To calculate the
hole tunneling component I's;p, of the p-MOSFET, a hole tun-
neling simulator [8] was utilized. Tyykp can be easily modified
accordingly. Then, a comparison of the calculated Is;p with
the experimental one led to ¢y = 3.1 eV. As shown in Fig. 3,
good fitting holds again.

IV. Discussion

To see the individual effects of varying ), and f71,, we show
in Fig. 5 the simulated I, due to electron tunneling from the
inversion layer, plotted versus EOT for three ty;, values. The
simulation points are also labeled with corresponding ;. In
addition, the simulated 7, was found to match existing data in
the same manufacturing process [6], as shown in the inset of the
figure for two different combinations of 5 and f1r.

From Fig. 5, we can see the following: 1) the gate leakage
increases with decreasing EOT, in agreement with [3]-[5]. and
2) an increase in fy, can suppress I, more significantly than ).
We also show in Fig. 5 that reducing 17, will seriously increase
I, until it is intolerably high. This seems to be inconsistent
with recent experiments [S5]: I, through HfOs is tolerable
even for the case of tiL approaching zero. However, one of
the fundamental differences should be kept in mind: HfOs
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permittivity is higher than that of HfSiON, and as a conse-
quence of maintaining the same EOT, the HfO; dielectric is
much thicker. Indeed, this is the fact since a fair comparison of
experimental I, between HfSiON and HfO5 has been published
in the literature [6].

As corroborated earlier, a fundamental very small tunneling
effective mass is existent. In this sense, a tunneling effective
mass point of view is able to enhance current understanding of
the observed I, suppression [3], [4]. First, the HfO3 dielectric
is featured by a very small m; while the interfacial layer can
have a much higher mj; . Next, as stated in [3] and [4], extra
annealing treatments increase 17, while simultaneously making
more hafnium atoms appear in the regrown interfacial layer.
Thus, the corresponding mj;, is likely to be lowered according
to this work. Consequently, the gate leakage suppression ability
relative to the SiOz gate oxide is degraded, as experimentally
observed [3], [4].

V. CONCLUSION

Characterization and modeling of gate tunneling components
of TaC/HfSiON/SION complementary MOSFETs in inversion
have been carried out. A fundamental tunneling effective mass
featuring a very small value has been corroborated in the
HfSiON dielectric. Current understanding of gate leakage sup-
pression has been substantially enhanced.
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