
 1

行政院國家科學委員會補助專題研究計畫
 成 果 報 告

□期中進度報告

分散式網路儲存系統安全傳輸問題的研究

Security issues of distributed networked storage systems

計畫類別： 個別型計畫 □整合型計畫

計畫編號：NSC 98-2221-E-009-068-MY3

執行期間： 98 年 8 月 1 日至 101 年 7 月 31 日

第三年度： 100 年 8 月 1 日至 101 年 7 月 31 日

計畫主持人：曾文貴 教授

計畫參與人員：林孝盈、官正傑、林輝讓、劉正偉、劉麗君

成果報告類型(依經費核定清單規定繳交)：精簡報告 ■完整報告

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

■出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外，得立即公開查詢

 □涉及專利或其他智慧財產權，□一年□二年後可公開查詢

執行單位：國立交通大學 資訊工程系

中 華 民 國 101 年 10 月 28 日

 2

中文摘要

本研究計畫將研究分散式網路儲存系統的安全

儲存機制。網路儲存系統提供使用者儲存資料在

網路上的儲存系統中，再透過網路進行資料存

取。目前的分散式網路儲存系統首要注重的是效

率，其次才是安全性,我們認為在資料隱私性上

還有許多改善的空間。

第一年度（98-99）我們發展了一個以隨機

線性編碼基礎的安全分散式網路儲存系統。在我

們的系統中，資料透過公開金鑰系統加密來達到

高度資料隱私性，隨機線性編碼方法則是提供了

儲存系統的容錯能力。整體系統的運作符合分散

式系統的環境特質,論文已在 IEEE TPDS (2010)

期刊發表。

第二年度（99-100）我們基於去年發展的

安全儲存系統，繼續提供多樣性的功能，例如，

如 何 將 安 全 儲 存 的 資 料 送 給 第 三 者

(forwarding)，資料擁有者不需將儲存的資料取

回解密後再上傳，這樣可以減少大量的頻寬使

用。論文成果已經在 IEEE TPDS (2012)上發表。

第三年度（100-101），我們基於先前兩年

的成果，有一個安全強固且具有資料傳送給第三

者的分散式雲端儲存系統上，提出當系統的一些

伺服器出現錯誤時可以修復的機制，成果發表在

IEEE TrustCom-2011 會議上，完整論文也已投

稿到知名期刊。

關鍵詞: 分散式網路儲存系統，公開金鑰加密，

隨機容錯編碼，資料安全傳送，資料傳送。

英文摘要

In this project, we study security issues of

distributed networked storage systems. A

networked storage system enables users to store

data and to access data via Internet access.

Currently, distributed networked storage systems

are designed for efficiency and security is a second

issue. One of goals of this research is to improve

the data confidentiality in distributed networked

storage systems.

 In the first year (2009-2010), we developed a

random linear code-based secure distributed

networked storage system. The system uses a

public key encryption scheme to provide high data

confidentiality and uses a random linear code to

achieve the data robustness. The data storing and

retrieval processes are fully distributed. The paper

has been published in IEEE TPDE.

 In second year (2010-2011), we develop the

system such that it can support the functionality of

data forward. In this system, the data owner can

securely forward the stored data in the distributed

storage system to another user. The owner does

not need to retrieve the data back to process it for

forwarding to another user. The owner simply

sends a proxy re-encryption key to the storage

servers and the servers re-encrypt the data into a

ciphertext that can be decrypted by the target user.

This method reduces the bandwidth requirement

dramatically. We have finished a manuscript and

submitted it to an international journal.

 In the third year (2011-2012), we continue to

research on distributed storage systems. Based on

the results of the previous two years, we consider

repair mechanisms for our robust and secure

storage system. We propose cooperative and

non-cooperative repair mechanisms. The results

have been published in the conference IEEE

TrustCom-2011. The complete paper is submitted

to a prestigious journal.

 3

Keywords: Distributed networked storage system,

public key cryptosystem, random erasure code,

data forwarding, repair mechanism.

一. 計畫緣起及目的

由於高速網路與多樣隨身上網裝置的普及

化，許多服務都透過網路來傳遞。較為常見的有

網路信箱，搜尋引擎，網路聊天室，網路文件編

輯器等。這些透過網路提供的服務系統底層都使

用到了網路儲存系統的建構。我們考慮分散式網

路儲存系統這個基礎服務。

一個分散式網路儲存系統包含許多儲存伺

服器，彼此透過網路進行連結，其中並沒有一個

長駐的中央控制管理單位，這使得整體系統較為

彈性且不會在中央控制管理單位造成系統效能

瓶頸，但是相對地，管理效率就叫無法掌控。

將資料儲存在網路系統中首先會面臨的問

題是資料是否能夠正常取回，這點主要是透過容

錯機制來防止任何系統內部的意外錯誤，另外一

個新興的使用者疑慮是資料隱私性的問題，資料

存放在網路儲存系統之後是否會被惡意人士竊

取再利用，我們需要一個能夠同時處理系統容錯

與資料隱私性的雲端儲存系統。

最基本的容錯技術就是儲存副本，像是磁

碟陣列 RAID-1 或早期許多分散式儲存系統，都

使用副本技術。副本技術需要付出很大的儲存成

本。為了解決這個問題，Erasure codes 被提出

可以應用到容錯儲存上。

RAID-5與 RAID-6就應用了 Erasure codes

的技術， Lincoln erasure codes 是一個特殊

的 erasure codes 並被應用到儲存系統中以提

供容錯能力。其他種類的 Erasure Codes 還有很

多，例如 Low density parity checking codes

或者是 Evenodd codes 與 STAR codes，也都被

應用到儲存系統中來提供容錯能力。Random

liner codes可以容忍大量的儲存毀損且儲存成

本較副本技術低許多，但是需要使用較多的時間

進行編碼與解碼的運算。2006 年，Dimarks 與

Prabhakaran 等學者應用 random linear code

在分散式網路儲存環境中，以獲得具有容錯能力

但儲存空間成本較低的儲存系統，他們的結果亦

應用到無線感測網路系統中，可知在儲存空間成

本上是很有效率的。

想要保障使用者的資料不被第三者得知，

除了好的雲端管理與存取控管機制外，大概能做

的是把資料加密後再存入系統。加密可以由雲端

儲存系統來做，1993年 Blaze 所提出的 CFS, 與

其衍生的 TCFS與 NCryptfs，較為近期的系統則

有 OceanStore, Plutus, 與 Tahoe。然而我們想

要探討的資料隱私性，不僅是抵擋外來的攻擊，

更要預防雲端儲存中的惡意主機。對使用者來

說，全面相信雲端中的所有主機是較不實際的假

設，如果能夠達到在使用者不用信任這些主機的

情況下，仍能保障資料隱私性，這樣的保護機制

與儲存系統才能真正被使用者信任，進而使用。

我們結合了 random linear code 與公開金

鑰加密系統兩大工具，設計了一個安全的分散式

網路儲存系統。我們的分散式儲存系統同時具有

容錯能力與高度資料隱私性，除了儲存服務之

外，我們也新增了金鑰管理服務以降低使用者管

理金鑰上的風險。除此之外，我們還考慮如何有

效率的運用儲存的資料，雖然將資料加密儲存可

以提供好的安全保護，但是也限制了它們的使

用，大約是使用者將資料取回解密後處理，這樣

的動作需花費大量的網路頻寬，不方便且沒有效

 4

率。如何提供有效率使用安全儲存資料的方法是

研究的重點。

當資料以分散式的方式儲存在儲存伺服器

時，可能損毀或遭到破壞，當這些錯誤發生時，

如何利用儲存在其他伺服器的資料將錯誤的伺

服器修護或對新加入的伺服器寫入一些資料，使

得整個系統還具有強固與安全的特性，是值得研

究的課題。

二. 研究成果

第一年度（2009-2010）

第一年度的研究成果為提出一個安全的分

散式網路儲存系統。我們的系統有三個角色，儲

存伺服器，金鑰管理伺服器與使用者。假定系統

有 n個儲存伺服器，m個金鑰管理伺服器，使用

者要儲存 k筆資料。使用者的資料將被加密後存

入 系 統 ， 系 統 會 透 過 分 散 式 容 錯 編 碼

(decentralized erasure coding) 將資料分散

儲存在 v個儲存伺服器中，當使用者要將資料取

回時，系統中的金鑰管理伺服器會與 u個儲存伺

服器聯絡取得資料並協助使用者進行解密運

算，使用者自己再進行解碼以拿到資料。在這期

間，由於儲存伺服器與金鑰伺服器都是獨立進行

編碼與協助解密的程序，所以不需要一個中央控

制單位的協助。

在功能性上，我們透過錯誤更正碼儲存來

因應系統中儲存伺服器可能意外地斷線或儲存

設備的毀損，使得系統在發生意外狀況時仍能夠

提供服務。在資料隱私性上，我們則是考慮一個

高度隱私性的要求，使用者的資料不僅僅是其他

系統中使用者無法接觸，負責提供服務的儲存伺

服器本身亦無法得知資料的內容。

研究成果的主要貢獻，從學術理論上來

看，我們提供了一個結合了容錯技術與公開金鑰

加密系統的密碼學工具，這個工具能夠在一個非

集中式的儲存系統環境中被使用，使得系統同時

具有資料可信賴與高度隱私性並且兼顧了分散

式的優點，另外針對系統中資料儲存的取回正確

率上，我們亦提供了一個完整的分析方式並建議

了一組通用的系統參數。

從儲存系統發展與應用上來看，我們強調

了資料隱私性在雲端儲存系統上的重要性與一

個強度上的分野，早期網路儲存系統的隱私性是

建立在完全信任儲存伺服器的假設下，僅對登入

的使用者進行身分認證，我們則是強調資料隱私

性的強度應該要能夠消除對儲存伺服器的信任

的假設條件。

在容錯能力上來說，我們的系統能夠容忍

(n-k)個儲存伺服器錯誤與(m-t)個金鑰管理伺

服器錯誤。只要有 k個儲存伺服器與 t個金鑰管

理伺服器仍正常運作，則使用者可以有很高的機

率將資料取回。

在資料隱私性方面，因為資料都是以加密

的型態被儲存，所以即使是所有的儲存伺服器都

被攻擊者控制，資料內容仍能保密。我們對於金

鑰管理伺服器則有較高的信任要求，我們假設這

些金鑰管理伺服器有較好的安全機制以保障使

用者的各個部分解密金鑰。

第二年度（2010-2011）

為了在分散式安全的儲存系統上達到具有 data

forwarding 的能力，我們提出了新的門檻式的

再 加 密 協 定 (threshold re-encryption

scheme)，然後將整合到安全的儲存系統裡。結

合的系統具有安全、容錯、data forwarding的

 5

功能，這項工作的主要困難度在於如何在加密的

系統上同時做容錯計算與 data forwarding。

我們將伺服器分為儲存伺服器與金鑰伺服

器，其中金鑰伺服器位於私有雲中，我們將金鑰

分由金鑰伺服器持分，當使用者要取回資料時，

由金鑰伺服器向儲存伺服器要求資料做部分解

密，當使用者有足夠的解密資料就可以將真正的

資料計算出來。我們還改進了先前對儲存伺服器

數 n，分配的訊息數 v，文件的的分割數 k等作

了更精確的計算，得到較好的 bounds.

詳細內容請見我們所附的論文。

第三年度（2011-2012）

我們基於先前兩年的成果，有一個安全強固且具

有資料傳送給第三者的分散式雲端儲存系統

上，提出當系統的一些伺服器出現錯誤時可以修

復的機制。我們有兩種修復機制，第一種是新加

入的儲存伺服器間不相互傳遞訊息，第二種是新

加入的儲存伺服器間可以相互傳遞訊息。原先對

修復機制有一個最低下界值(lower bound)，用

我們的方法可以得到在平均下，可以打破此下界

值，在絕大多數的情形下，加入的伺服器可以跟

少於 k 個原先存在的儲存伺服器溝通交換訊

息，而系統還是可以保持良好的強固性。

這部分的成果發表在 IEEE TrustCom-2011

會議上，完整論文也已投稿到知名期刊。

三. 計畫成果自評

整個三年計劃我們已經發表了以下的論

文：

1. Hsiao-Ying Lin, Wen-Guey Tzeng, Shiuan-Tzuo

Shen and Bao-Shuh P. Lin. A Practical Smart

Metering System Supporting Privacy Preserving

Billing and Load Monitoring. In the10th

International Conference on Applied

Cryptography and Network Security (ACNS 2012),

June 2012.

2. Hsiao-Ying Lin, John Kubiatowicz and Wen-Guey

Tzeng. A Secure Fine-Grained Access Control

Mechanism for Networked Storage System. In the

Sixth IEEE International Conference on Software

Security and Reliability (IEEE SERE 2012), June

2012.

3. Hsiao-Ying Lin, Wen-Guey Tzeng. A Secure

Erasure Code-based Cloud Storage System with

Secure Data Forwarding, IEEE Transactions on

Parallel and Distributed Systems 23(6).

pp.995-1003, 2012.

4. Hsiao-Ying Lin, Wen-Guey Tzeng, Bao-Shuh Lin.

A Decentralized Repair Mechanism for

Decentralized Erasure Code based Storage

Systems. In the 10th IEEE International

Conference on Trust, Security and Privacy in

Computing and Communications (IEEE

TrustCom-2011), Nov, 2011.

5. Hsiao-Ying Lin, Wen-Guey Tzeng. A Secure

Decentralized Erasure Code for Networked

Storage Systems, IEEE Transactions on Parallel

and Distributed Systems, 21(11), pp.1586-1596,

2010.

其中有兩篇高水準的期刊論文，另外一篇

正在投稿中，研究成果符合計劃的預期。

A Decentralized Repair Mechanism for
Decentralized Erasure Code based Storage Systems

Hsiao-Ying Lin∗, Wen-Guey Tzeng†, Bao-Shuh Lin∗
∗Intelligent Information and Communications Research Center, †Department of Computer Science

National Chiao Tung University
Hsinchu, Taiwan

hsiaoying.lin@gmail.com, wgtzeng@cs.nctu.edu.tw, bplin@mail.nctu.edu.tw

Abstract—Erasure code based distributed storage systems
provide data robustness by storing encoded-fragments over
servers. To maintain data robustness, a repair mechanism
recovers a storage system from server failures by repairing
encoded-fragments. For decentralized erasure code based stor-
age systems, we propose a decentralized repair mechanism.
Our mechanism has the following features. Firstly, an encoded-
fragment is replenished by a combination of a number u of
encoded-fragments that are randomly chosen. Secondly, the
number u depends on the number of the available encoded-
fragments and is independent of the pattern of missing
encoded-fragments. Thirdly, multiple encoded-fragments are
simultaneously replenished in parallel. We measure the com-
munication cost in terms of the number u of required network
connections for replenishing an encoded-fragment. We then
conducted a numerical analysis by using traces of real systems.
We find that our requirement on u is smaller than that from
existing methods. Both theoretical and numerical results show
that our decentralized repair mechanism outperforms existing
ones in terms of the communication cost under the same
consideration of efficiency cost for storage.

Keywords-decentralized erasure codes; regenerating codes;
network coding; distributed storage;

I. INTRODUCTION

Erasure code based distributed storage systems provide
data robustness by storing encoded-fragments over servers.
An (𝑛, 𝑘) erasure code encodes a message of 𝑘 symbols
to a codeword of 𝑛 symbols such that the message can be
decoded from any 𝑘 codeword symbols. The code tolerates
𝑛−𝑘 erasure errors. To store a message in an (𝑛, 𝑘)-erasure
code based distributed storage system with 𝑛 servers, the
message is encoded into a codeword by the erasure code
and each of its codeword symbols is stored in a different
server. A server failure corresponds to an erasure error of the
stored codeword symbol. As long as 𝑘 servers are available,
the message can be recovered. In this paper, we sometimes
refer a codeword symbol as an encoded fragment and use
them interchangeably.

A decentralized erasure code is an erasure code that inde-
pendently computes each codeword symbol for a message.
Thus, the encoding process for a message consists of 𝑛
parallel tasks of generating codeword symbols. Each server
executes one task to compute a codeword symbol. This kind

of systems is suitable for decentralized environments, where
no centralized authority coordinates the tasks, such as peer-
to-peer and ad-hoc networks. Parallel computing also speeds
up the storing process.

Maintenance of robustness in an erasure code based dis-
tributed storage system requires to replenish codeword sym-
bols when servers fail or leave the system. A straightforward
solution is to compute the original message from available
codeword symbols and then to regenerate missing codeword
symbols from the message. This approach leads to higher
communication and computation cost. Another approach
is to generate codeword symbols by directly combining 𝑢
available ones. When a new server joins the system, it
queries 𝑢 available servers to generate a codeword symbol.
The generated codeword symbol can be different from the
missing one. But, the property that any 𝑘 codeword symbols
can recover the message remains.

In previous studies, efficiency is measured by the storage
cost (the number of bits a server stores) and the repair
bandwidth (the number of bits a new server received for
replenishing a codeword symbol). However, in considering
the communication cost, the cost of establishing network
connections is significant. Establishing network connections
between servers involves authentication and negotiation
process. The entailed communication cost is significant,
especially when 𝑢 is large. For example, when 𝑢 = 𝑛 − 1,
a new server needs to connect all available servers in the
system. Thus, we measure the communication cost by the
number 𝑢 of required network connections, as well as the
repair bandwidth.

We study repair mechanisms for decentralized erasure
code based storage systems. In a decentralized erasure code
based storage system, we show that 𝑢 = 𝑘 is a sufficient
condition for a repair mechanism. Specifically, we are inter-
ested in finding out whether 𝑢 can be smaller than 𝑘.

Contributions. We propose a decentralized repair mecha-
nism for decentralized erasure code based storage systems
with the following features:

∙ A codeword symbol is replenished by a combination
of a number 𝑢 of randomly chosen codeword symbols
without recreating the original message.

2011 International Joint Conference of IEEE TrustCom-11/IEEE ICESS-11/FCST-11

978-0-7695-4600-1/11 $26.00 © 2011 IEEE

DOI 10.1109/TrustCom.2011.79

613

∙ The number 𝑢 depends on the number of available
codeword symbols and is independent of the pattern
of missing codeword symbols.

∙ Multiple codeword symbols can be independently re-
plenished.

We theoretically study the lower bound for 𝑢. The bound
depends on the number of available servers and the param-
eter 𝑘. With a fixed 𝑘, the larger the number of available
servers is, the smaller 𝑢 can be. It shows flexibility between
the parameter 𝑢 and the number of available servers. We
then conducted a numerical analysis by using traces of real
systems. Both theoretical and numerical results show that
𝑢 can be smaller than 𝑘. When 𝑢 < 𝑘, the average repair
bandwidth for a server failure is less than the size of the
original message. From the aspect of information theory,
it gives a light data confidentiality, which is independently
interesting. When a new server joins the system and tries to
recover a missing codeword symbol, some codeword sym-
bols are sent to the new server from remaining servers. An
eavesdropper may eavesdrop the transmitted codeword sym-
bols and recover the original message. If 𝑢 is smaller than
𝑘, the information in the eavesdropped codeword symbols is
not enough to compute the message. This confidentiality is
light since increasing eavesdropped codeword symbols will
eventually reveal the message. Thus, it is advised to encrypt
communication channel between servers.

We compare our decentralized repair mechanism with
other mechanisms in terms of communication cost and
storage cost. The result shows that our decentralized repair
mechanism outperforms existing ones in terms of the com-
munication cost under the same consideration of efficiency
cost for storage.

II. RELATED WORK

We briefly review repair mechanisms of erasure code
based distributed storage systems.

In erasure code based distributed storage systems, repair-
ing codeword symbols is essential to maintain robustness
against server failures. Since regenerating codeword sym-
bols after reconstructing the message is costly in terms of
communication and computation cost, a hybrid approach is
proposed [1]. A storage server stores the message whereas
other storage servers store encoded-fragments. When some
servers fail, the storage server storing the message regen-
erates missing encoded-fragments. The asymmetric storing
structure complicates system management.

Dimakis et al. introduced regenerating codes [2]. The
codes are to minimize storage cost and repair bandwidth.
They showed that repair bandwidth can be decreased by
letting a new server query more than 𝑘 servers. However,
storage cost would slightly increase. The tradeoff between
storage cost and repair bandwidth is described as a curve
where two extreme points are highlighted. By the points,
they proposed two repair mechanisms, minimum storage

regime and minimum bandwidth regime. In the minimum
storage regime, a new server queries 𝑘+1 randomly chosen
servers; in the minimum bandwidth regime, a new server
queries 𝑛−1 randomly chosen servers. By using the cut-set
bound of network coding in an information flow graph, a
repair mechanism corresponding to a point on the curve is
proved that after a system is repaired, a user retrieves a mes-
sage with probability 1. More constructions and discussions
of regenerating codes can be found in [3], [4].

Rashmi et al. [5] proposed exact regenerating codes,
which exactly regenerate missing codeword symbols. Shah
et al. [6] took the consideration that traffic conditions vary
among different links. They proposed flexible regenerating
codes, which allow a new server download different amounts
of data from different servers. Alternative models of repair
mechanisms [7], [8], [9] are proposed for different scenarios.
Nevertheless, the family of regenerating codes handles only
the case of one server failure. Once a server fails or leaves
the system, the repair mechanism is immediately executed.
This approach increases system load.

Hu et al. [10] proposed a mutually cooperative recovery
mechanism to recover distributed storage systems from mul-
tiple server failures. The mechanism has two communication
phases. First, each new server queries all remaining servers.
Second, each new server communicates with all other new
servers. Thus, a new server totally queries 𝑛 − 1 servers.
Recently, Oggier and Datta [11] proposed self-repairing ho-
momorphic codes for repairing multiple server failures. Each
new server queries a fixed number of servers to regenerate
missing codeword symbols and the number can be less than
𝑘. However, a new server has to query a specific subset of
old servers to regenerate some codeword symbol. There is a
mapping from a codeword symbol to specific subsets of old
servers for regenerating the codeword symbol. Thus, self-
repairing homomorphic codes need a central table for these
mappings. The deterministic self-repairing homomorphic
codes are not suitable for decentralized environments.

Dikaliotis et al. [12] studied the method of detecting faulty
errors in distributed storage systems. Rashmi et al. [13]
proposed a framework that integrates two erasure codes to
obtain features from both codes. Pawar et al. [14] discussed
data confidentiality issue when a repair mechanism is ex-
ecuted. Papailiopoulos and Dimakis [15] gave a reduction
between the problem of maximizing data confidentiality and
the problem of minimizing repair bandwidth.

III. OUR REPAIR MECHANISM

We firstly describe a decentralized erasure code based
storage system as our system model and then introduce our
repair mechanism. We show our bound on the parameter 𝑢
for the repair mechanism.

614

Figure 1. The model of decentralized erasure code based storage systems.

A. Decentralized Erasure Code based Storage System

Dimakis et al. [16] proposed a decentralized erasure code
based storage system where the encoding process is ac-
complished by decentralized servers in parallel. Afterward,
for strengthening data confidentiality, Lin and Tzeng [17],
[18] proposed secure decentralized erasure codes where data
are encoded in an encrypted form. Illustrated in Fig. 1,
a decentralized erasure code based storage systems is de-
scribed as follows. There are 𝑛 servers, SS1,SS2, . . .,
SS𝑛, and a message is represented as a vector of symbols
𝑚1,𝑚2, . . . ,𝑚𝑘 in some finite field. To store the message,
each symbol is distributed to 𝑣 randomly chosen servers.
A server SS𝑖 then picks a random coefficient 𝑔𝑖,𝑗 for a
received message symbol 𝑚𝑗 and linearly combines all
received message symbols as a codeword symbol 𝑐𝑖. If 𝑚𝑗

is not received, 𝑔𝑖,𝑗 is set to 0. Note that the combination is
operated in the finite field. Globally, all chosen coefficients
form a generator matrix 𝐺 = [𝑔𝑖,𝑗], 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘,
which encodes the vector of 𝑘 message symbols to the
vector of 𝑛 codeword symbols. To retrieve the message, a
user queries 𝑘 randomly chosen servers to get 𝑘 codeword
symbols, say 𝑐1, 𝑐2, . . . , 𝑐𝑘, and the corresponding coeffi-
cients. The coefficients form a square matrix 𝐾, which is a
submatrix of 𝐺. The user decodes the message by computing
(𝑐1, 𝑐2, . . . , 𝑐𝑘)×𝐾−1, where 𝐾−1 is the inverse matrix of
𝐾. A successful data retrieval of the system is the event that
𝐾 is invertible. The probability of a successful data retrieval
is overwhelming when 𝑣 is sufficiently large [16], [17], [18].

From the results in [16], the system parameters are
suggested as follows in order to guarantee a high probability
of a successful data retrieval. When 𝑛 = 𝑎𝑘, 𝑣 = 𝑏 ln 𝑘,
and 𝑏 > 5𝑎 with constants 𝑎 and 𝑏, the probability of a
successful data retrieval is at least 1−𝑘/𝑝−𝑜(1), where 𝑝 is
the prime order of the underlined group. Later in [18], these
parameters are generalized for 𝑛 = 𝑎𝑘𝑐 and 𝑐 ≥ 1. When
𝑛 = 𝑎𝑘𝑐, 𝑣 = 𝑏𝑘𝑐−1 ln 𝑘, 𝑏 > 5𝑎, and 𝑐 ≥ 1 with constants
𝑎 and 𝑏, the probability of a successful data retrieval is at

Figure 2. Our repair model for decentralized erasure code based storage
systems.

least 1− 𝑘/𝑝− 𝑜(1).
B. Decentralized Repair Mechanism

Let messages be stored among 𝑛 servers in a decentralized
erasure code based storage system. After a period of time,
some servers fail. Let the number of remaining servers be
𝛼𝑛, where 𝛼 < 1. By the results [16], [17], [18], any 𝑘
remaining servers can recover the message with probability
1− 𝑘/𝑝− 𝑜(1). To repair the system from (1− 𝛼)𝑛 server
failures, (1 − 𝛼)𝑛 new servers join the system. We shall
call a remaining server as an old server and a newly joining
one as a new server. A repair procedure is initiated by new
servers (see Fig. 2). After executing the repair procedure,
the storage system is recovered from server failures so that
any 𝑘 servers, no matter new or old ones, shall recover the
message with an overwhelming probability.

Repair procedure. New server SS𝑗 performs the following
steps:

1) Query 𝑢 randomly chosen old servers, SS𝑗1 ,
SS𝑗2 , . . ., SS𝑗𝑢 . A queried old server SS𝑗𝑖 re-
turns the stored codeword symbol and coefficients
(𝑐𝑗𝑖 , 𝑔𝑗𝑖,1, 𝑔𝑗𝑖,2, . . . , 𝑔𝑗𝑖,𝑘).

2) Choose a random coefficient 𝑧𝑗𝑖 for a received
(𝑐𝑗𝑖 , 𝑔𝑗𝑖,1, 𝑔𝑗𝑖,2, . . . , 𝑔𝑗𝑖,𝑘).

3) Encode all received data into a new codeword
symbol and the corresponding coefficients
(𝑐𝑗 , 𝑔𝑗,1, 𝑔𝑗,2, . . . , 𝑔𝑗,𝑘):

𝑐𝑗 =
∑

1≤𝑖≤𝑢

𝑧𝑗𝑖𝑐𝑗𝑖 , 𝑔𝑗,𝑠 =
∑

1≤𝑖≤𝑢

𝑧𝑗𝑖𝑔𝑗𝑖,𝑠, 1 ≤ 𝑠 ≤ 𝑘

4) Store the resulting (𝑐𝑗 , 𝑔𝑗,1, 𝑔𝑗,2, . . . , 𝑔𝑗,𝑘).

By considering communication cost of establishing net-
work connections between servers, we want a smaller 𝑢. A
larger 𝑢 means that the new server queries more codeword
symbols from old servers. The combination of these queried
codeword symbols contains more information about the mes-
sage. Therefore, we need to carefully select 𝑢. Apparently, if
𝑢 ≥ 𝑘, more than 𝑘 codeword symbols are queried and they
are sufficient to recover the message with an overwhelming
probability. The combination of these codeword symbols in
the new server, together with the codeword symbols from

615

other 𝑘 − 1 servers, should provide enough information to
recover the message. On the other hand, if 𝑢 < 𝑘, the queried
codeword symbols are not sufficient to recover the message
and their combination contains less information about the
message. We are interested in finding out how smaller 𝑢
can be such that the combination of the queried codeword
symbols still provides sufficient information, when together
with other codeword symbols, to recover the message with
an overwhelming probability.

C. Main Result

We assume that 𝑛 = 𝑎𝑘𝑐 and 𝛼𝑛 = 𝑘𝑑 for some
constant 𝑎, 𝑐, 𝛼, and 𝑑, where 𝑐 ≥ 1, 𝛼 < 1, and 𝑑 > 1.
This assumption can be generally applied to decentralized
erasure code based storage systems. Our results are given
in Theorem 1 and Theorem 2. Proofs are provided in
subsequent subsections.

Theorem 1 shows that in a decentralized erasure code
based storage system with 𝑛 servers, our repair mechanism
with 𝑢 = 𝑘 recovers the system from (1−𝛼)𝑛 server failures.

Theorem 1. Let 𝑛 = 𝑎𝑘𝑐 for some constants 𝑎 and 𝑐,
where 𝑐 ≥ 1. Let the number 𝛼𝑛 of old servers be 𝑘𝑑,
where 𝛼 < 1 and 𝑑 > 1. Let the system be repaired by
our repair mechanism with 𝑢 = 𝑘. Consider the event of
a successful data retrieval that 𝑘 randomly chosen servers
from new and old servers recover a message. The probability
of a successful retrieval is at least 1− 2𝑘

𝑝 − 𝑜(1).
Theorem 2 shows the bound on 𝑢 for our repair mecha-

nism. The bound reveals the opportunities for 𝑢 < 𝑘.

Theorem 2. Let 𝑛 = 𝑎𝑘𝑐 and 𝛼𝑛 = 𝑘𝑑 for some constants
𝑎, 𝑐, 𝛼, and 𝑑, where 𝑐 ≥ 1, 𝛼 < 1, and 𝑑 > 1. Let the
parameter 𝑢 be set such that

𝑢 ≥ min{𝑘,max{ 2𝑘

(𝑑− 1) ln 𝑘
,

(
𝑘

(𝑑− 1) ln 𝑘
+

𝑑

𝑑− 1

)
}}

After the system is repaired by our repair mechanism, the
probability of a successful retrieval is at least 1− 2𝑘

𝑝 −𝑜(1).
Corollary 1. When 𝑑 > 𝑘

ln 𝑘 , it is sufficient to have 𝑢 ≥
min{𝑘, 𝑘

(𝑑−1) ln 𝑘 + 𝑑
𝑑−1}. When 𝑑 ≤ 𝑘

ln 𝑘 , it is sufficient to

have 𝑢 ≥ min{𝑘, 2𝑘
(𝑑−1) ln 𝑘}.

Proof: When 𝑑 > 𝑘
ln 𝑘 , we have 2𝑘

(𝑑−1) ln 𝑘 <(
𝑘

(𝑑−1) ln 𝑘 + 𝑑
𝑑−1

)
. When 𝑑 ≤ 𝑘

ln 𝑘 , we have 2𝑘
(𝑑−1) ln 𝑘 ≥(

𝑘
(𝑑−1) ln 𝑘 + 𝑑

𝑑−1

)
.

From Theorem 2, with a fixed 𝑑, 𝑢 can be less than 𝑘
when 𝑘 is sufficiently large. Similarly, with a fixed 𝑘, 𝑢 can
be less than 𝑘 when 𝑑 is sufficiently large. It implies that
when available servers are abundant, a new server can query
fewer servers for replenishing a codeword symbol.

Figure 3. The random bipartite graph 𝔾 of the repair mechanism.

D. Proof of Theorem 1

Let E0 be the event that 𝑘 servers randomly chosen from
𝛼𝑛 old servers recover a message. Our assumption on 𝛼𝑛
old servers is that Pr[E0] ≥ 1−𝑘/𝑝−𝑜(1). Let 𝑛1 and 𝑛2 be
the numbers of queried old servers and queried new servers,
respectively. Thus, 𝑛1 + 𝑛2 = 𝑘. Let the event E1 be that 𝑘
servers randomly chosen from old and new servers recover
a message. Our goal is to show that Pr[E1] ≥ 1 − 2𝑘/𝑝 −
𝑜(1). We divide the event E1 into subevents as shown in
Equation (1).

Pr[E1] = Pr[E1∣𝑛1 = 𝑘] Pr[𝑛1 = 𝑘]

+ Pr[E1∣𝑛1 < 𝑘] Pr[𝑛1 < 𝑘] (1)

When 𝑛1 = 𝑘, we directly obtain:

Pr[E1∣𝑛1 = 𝑘] = Pr[E0] ≥ 1− 𝑘/𝑝− 𝑜(1) > 1− 2𝑘/𝑝− 𝑜(1)
When 𝑛1 < 𝑘, we model the repair mechanism as a random
bipartite graph 𝔾 and analyze the random graph.

Illustrated in Fig. 3, the random bipartite graph is 𝔾 =
(𝑉1, 𝑉2, 𝐸), where 𝑉1 and 𝑉2 are vertex sets with ∣𝑉1∣ = 𝛼𝑛
and ∣𝑉2∣ = (1− 𝛼)𝑛 and 𝐸 is the edge set. Each vertex 𝑣𝑖
in 𝑉1 represents an old server SS𝑖 and each vertex 𝑣𝑗 in
𝑉2 represents a new server SS𝑗 . There is an edge (𝑣𝑖, 𝑣𝑗)
between vertices 𝑣𝑖 ∈ 𝑉1 and 𝑣𝑗 ∈ 𝑉2 if and only if the
new server SS𝑗 queries the old server SS𝑖. Note that a new
server queries 𝑘 old servers. A set 𝑆 of 𝑘 servers represents
a set of servers chosen for data retrieval. The set 𝑆 consists
of two subsets 𝑆1 and 𝑆2 of vertices in 𝔾, where 𝑆1 ⊆ 𝑉1
with ∣𝑆1∣ = 𝑛1 and 𝑆2 ⊆ 𝑉2 with ∣𝑆2∣ = 𝑛2. Event E2 is
that there is a maximal matching from 𝑆2 to 𝑉1 ∖ 𝑆1. We
divide the event E1 conditioned on 𝑛1 < 𝑘 into subevents as
shown in Equation (2), where Ē2 is the complement event
of E2.

Pr[E1∣𝑛1 < 𝑘] Pr[𝑛1 < 𝑘]
= Pr[E1∣E2 ∧ (𝑛1 < 𝑘)] Pr[E2∣𝑛1 < 𝑘] Pr[𝑛1 < 𝑘]

+ Pr[E1∣Ē2 ∧ (𝑛1 < 𝑘)] Pr[Ē2∣𝑛1 < 𝑘] Pr[𝑛1 < 𝑘] (2)

We need Lemma 1 and Lemma 3 to formulate relations
between events E1 and E2 to complete this proof.

Lemma 1. Pr[E1∣E2 ∧ (𝑛1 < 𝑘)] ≥ 1− 2𝑘/𝑝− 𝑜(1)
Proof: Let 𝑁(𝑆2) ⊆ 𝑉1 be the set of neighbors of 𝑆2.

616

When E2 happens, there is a maximal matching from 𝑆2
to 𝑉1 ∖ 𝑆1. That is, a subset 𝑆′

2 ⊆ 𝑁(𝑆2) ∖ 𝑆1 exists with
∣𝑆′

2∣ = 𝑛2
Let 𝐾 be the 𝑘 × 𝑘 matrix formed by coefficients from

queried servers in 𝑆1∪𝑆2. When𝐾 is invertible, E1 happens.
Let 𝐾1 be the 𝑘× 𝑘 matrix formed by coefficients from the
servers in 𝑆1∪𝑆′

2. Since 𝑆1∪𝑆′
2 is a subset of 𝑘 vertices in

𝑉1, 𝐾1 is invertible with probability at least 1−𝑘/𝑝−𝑜(1).
Since the subgraph induced by 𝑆2 and 𝑆′

2 has a perfect
matching, 𝐾 has full rank if 𝐾1 has full rank. Moreover,
each row in 𝐾 can be expressed as a linear combination of
rows in 𝐾1. Thus, 𝐾 can be expressed as 𝑇 ×𝐾1 for some
𝑘×𝑘 matrix 𝑇 . Entries of 𝑇 are randomly and independently
determined by new servers. To have 𝐾 invertible, 𝐾1 and
𝑇 must be invertible. When 𝐾1 is invertible, 𝑇 is invertible
with probability at least 1− 𝑘/𝑝 according to the Schwartz-
Zippel Theorem. Thus, we have

Pr[E1∣E2 ∧ (𝑛1 < 𝑘)]

= Pr[𝐾 is invertible∣E2 ∧ (𝑛1 < 𝑘)]

≥ Pr[𝐾1 is invertible ∧ 𝑇 is invertible∣E2 ∧ (𝑛1 < 𝑘)]

≥ (1− 𝑘/𝑝− 𝑜(1))× (1− 𝑘/𝑝)
≥ 1− 2𝑘/𝑝− 𝑜(1)

Lemma 2. (Hall’s Theorem) If and only of for any subset
𝐵 ⊆ 𝑆2, the number of neighbors of 𝐵 in 𝑉1 ∖ 𝑆1 is no
less than the size of 𝐵, i.e., ∣𝑁(𝐵) ∖ 𝑆1∣ ≥ ∣𝐵∣, where
𝑁(𝐵) ⊆ 𝑉1 is the set of neighbors of 𝐵, there exists a
maximal matching from 𝑆2 to 𝑉1 ∖ 𝑆1.

Lemma 3. Pr[E2∣𝑛1 < 𝑘] = 1

Proof: When 𝑢 = 𝑘, each vertex 𝑣 in 𝑆2 has 𝑘
neighbors in 𝑉1. For all possible 𝐵, where 1 ≤ ∣𝐵∣ ≤ 𝑛2,

∣𝑁(𝐵) ∖ 𝑆1∣ ≥ 𝑘 − 𝑛1 = 𝑛2 ≥ ∣𝐵∣.
Hence, Pr[E2∣𝑛1 < 𝑘] = 1.

From Equation (1), Lemma 1, and Lemma 3, we have

Pr[E1] = Pr[E1∣𝑛1 = 𝑘] Pr[𝑛1 = 𝑘] + Pr[E1∣𝑛1 < 𝑘] Pr[𝑛1 < 𝑘]
≥ Pr[E1∣𝑛1 = 𝑘] Pr[𝑛1 = 𝑘]

+ Pr[E1∣E2 ∧ (𝑛1 < 𝑘)] Pr[E2∣𝑛1 < 𝑘] Pr[𝑛1 < 𝑘]
≥ (1− 𝑘/𝑝− 𝑜(1)) Pr[𝑛1 = 𝑘]

+ (1− 2𝑘/𝑝− 𝑜(1)) Pr[𝑛1 < 𝑘]
≥ 1− 2𝑘/𝑝− 𝑜(1)

It concludes this proof.

E. Proof of Theorem 2

The proof of Theorem 2 is similar to the proof of
Theorem 1 except for the analysis of the random graph. To
ease the analysis, the original repair procedure is modified
to that a new server randomly queries an old server 𝑢

times with replacement. Thus, a new server may query
less than 𝑢 distinct old servers. The modification leads to
a different random graph. The probability of a maximum
matching from 𝑆2 to 𝑉1 ∖ 𝑆1 in the new random graph is
smaller than that in the original random graph. Hence the
probability in the original random graph is underestimated.
Let 𝔾′ = (𝑉1, 𝑉2, 𝐸

′) be the random bipartite graph, where
∣𝑉1∣ = 𝛼𝑛, ∣𝑉2∣ = (1 − 𝛼)𝑛, and 𝐸′ is the edge set. Let
event E’2 is that there is a maximal matching from 𝑆2 to
𝑉1∖𝑆1. Again, we need Lemma 1 and Lemma 4 for relations
between events E1 and E’2 to complete this proof.

Lemma 4. Pr[E′
2∣𝑛1 < 𝑘] ≥ 1− 𝑜(1)

Proof: We use Lemma 2 (Hall’s theorem) and Lemma 5
to bound the probability Pr[E′

2∣𝑛1 < 𝑘]. Lemma 5 is a
bound for 𝐶𝑥

𝑦 (Due to limited space, the proof for Lemma 5
is omitted):

Lemma 5. 𝐶𝑥
𝑦 ≤

(
𝑥(𝑥−𝑦+1)

𝑦

) 𝑦
2

When there exists a subset 𝐵 ⊆ 𝑆2 where ∣𝑁(𝐵)∖𝑆1∣ <
∣𝐵∣, no maximal matching from 𝑆2 to 𝑉1 ∖ 𝑆1 exists.
We consider every possible subset 𝐵 and overestimate the
probability of the complement event of E’2 by a union
bound.

Pr[∃𝐵 ⊆ 𝑆2, ∣𝑁(𝐵) ∖ 𝑆1∣ < ∣𝐵∣]
≤ 2𝑘 ⋅ max

𝐵⊆𝑆2

{Pr [∣𝑁(𝐵) ∖ 𝑆1∣ < ∣𝐵∣]}

Let ∣𝐵∣ = 𝑡, where 1 ≤ 𝑡 ≤ 𝑛2. The event that some
subset 𝐵 exists for ∣𝑁(𝐵) ∖ 𝑆1∣ < ∣𝐵∣ is equivalent to the
event that some subset 𝐴 exists where 𝐴 ⊆ 𝑉1 ∖ 𝑆1, ∣𝐴∣ ≤
𝑡− 1, and 𝐴 ∪ 𝑆1 ⊇ 𝑁(𝐵)

Pr [∣𝑁(𝐵) ∖ 𝑆1∣ ≤ ∣𝐵∣]
= Pr[∃𝐴, ∣𝐴∣ ≤ 𝑡− 1, 𝐴 ∪ 𝑆1 ⊇ 𝑁(𝐵)]

≤ 𝐶𝛼𝑛−𝑛1
𝑡−1

(
𝑘 − 1

𝛼𝑛

)𝑡𝑢

(Lemma 5)

≤
(
2(𝛼𝑛− 𝑛1)(𝛼𝑛− 𝑛1 − 𝑡+ 2)

𝑡

) 𝑡−1
2

(
𝑘

𝛼𝑛

)𝑡𝑢

Since we want Pr[∃𝐵 ⊆ 𝑆2, ∣𝑁(𝐵) ∖ 𝑆1∣ < ∣𝐵∣] < 𝑒−𝑘, it
is sufficient to have:(

2(𝛼𝑛− 𝑛1)(𝛼𝑛− 𝑛1 − 𝑡+ 2)

𝑡

) 𝑡−1
2

(
𝑘

𝛼𝑛

)𝑡𝑢

< 𝑒−2𝑘

(3)

Now we substitute 𝛼𝑛 = 𝑘𝑑 in Equation (3) and overesti-
mate the left hand side:(

2𝑘2𝑑

𝑡

) 𝑡−1
2

𝑘(1−𝑑)𝑡𝑢 < 𝑒−2𝑘 (4)

We take nature logarithm on both sides of Equation (4) and

617

obtain the bound on 𝑢:

𝑢 >
(𝑡− 1)(ln 2 + 2𝑑 ln 𝑘 − ln 𝑡) + 4𝑘

2(𝑑− 1)𝑡 ln 𝑘

When 𝑡 = 1, the bound becomes 2𝑘
(𝑑−1) ln 𝑘 . When 2 ≤ 𝑡 ≤ 𝑘,

it is sufficient to have 𝑢 > 𝑑
𝑑−1 + 𝑘

(𝑑−1) ln 𝑘 . Combining the
result from Theorem 1, we obtain the requirement on 𝑢:

𝑢 ≥ min{𝑘,max{ 2𝑘

(𝑑− 1) ln 𝑘
,

(
𝑘

(𝑑− 1) ln 𝑘
+

𝑑

𝑑− 1

)
}}.

When 𝑢meets this requirement, Pr[E′
2∣𝑛1 < 𝑘] ≥ 1−𝑒−𝑘 =

1− 𝑜(1).
From Equation (1), Lemma 1, and Lemma 4, we have

Pr[E1]

= Pr[E1∣𝑛1 = 𝑘] Pr[𝑛1 = 𝑘] + Pr[E1∣𝑛1 < 𝑘] Pr[𝑛1 < 𝑘]
≥ Pr[E1∣𝑛1 = 𝑘] Pr[𝑛1 = 𝑘]

+ Pr[E1∣E′
2 ∧ (𝑛1 < 𝑘)] Pr[E

′
2∣𝑛1 < 𝑘] Pr[𝑛1 < 𝑘]

≥ 1− 2𝑘/𝑝− 𝑜(1)
It concludes this proof.

IV. NUMERICAL ANALYSIS AND PARAMETERIZED

COMPARISON

We conducted a numerical analysis by using traces of sev-
eral real systems. We also compare our decentralized repair
mechanism with other robustness management mechanisms.

A. Numerical Analysis

We introduce two key parameters from real systems. One
is the number 𝑛 of servers. The other is the fraction 𝑓
of failed servers per day. From traces of real systems, the
number of servers varies as well as the fraction 𝑓 over time.
We bring the average values into our repair mechanism in
the theoretical setting.

Traces. We quote statistics from [2] by Dimakis et al.
The statistics summarized parameters from traces of 4 real
systems: desktop PCs within Microsoft Corporation [19],
Gnutella peers [20], Skype superpeers [21], and the Plan-
etLab. The average number 𝑛 of servers and the average
fraction 𝑓 of failed servers per day are shown in Table I.

The parameter 𝑢 represents the communication cost and
only depends on 𝑘 and 𝑑. We are interested in the value of 𝑢
with different system scales 𝑛 and different numbers 𝑘𝑑 of
available servers. In a lazy strategy for repairing a system,
the number 𝑘𝑑 determines a threshold value that triggers
execution of a repair procedure. From Theorem 2 and
Corollary 1, we illustrate the numerical results in Table II.
With a fixed 𝑘, when 𝑑 gets larger, 𝑢 can be smaller. With
a fixed 𝑑, when 𝑘 gets larger, 𝑢 is much smaller than 𝑘.
It shows that when remaining servers are abundant, the
robustness maintaining cost is lower. More importantly, the
number of servers queried by a new server can be smaller

than 𝑘. For example, when 𝑘 = 8 and 𝑛 = 4096 servers are
available, 𝑢 can be set to only 3.

Survival duration. Since our repair mechanism recovers
the storage system from multiple server failures, a strategy
for periodical repairing is supported. We are interested in
the duration time that a storage system can stand against
server failures without any repairing. That is, the system
still have sufficient servers to perform the repair procedure
when needed. This period of time is called survival duration.
We consider various 𝛼𝑛 remaining servers. We bring the
fraction 𝑓 of failed servers per day into the scenario. With
a fixed 𝑓 , the system losses 𝑛𝑓 servers per day if no repair
procedure is performed. The survival duration in days is
estimated as ⌊(𝑛−𝛼𝑛)/⌈𝑛𝑓⌉⌋. When 𝑛≫ 𝛼𝑛, the survival
duration is close to 1/𝑓 . We choose 𝑢 as small as possible
under the limitation that 𝛼𝑛 < 𝑛. The numerical results are
given in Table III. For example, in the case of PlanetLab,
the system has 303 servers and 0.017% of servers fail per
day on average. When 𝑘 = 4, we set 𝑢 = 3, which is the
smallest one with 𝛼𝑛 < 𝑛 (see Table II). The threshold value
of available servers is 16. Thus, the system stands against
server failures for 47 days. After the 47th day, the system
would not have sufficient servers for the repair procedure to
work.

B. Parameterized Comparison

As introduced in Section II, some repair mechanisms can
be applied to decentralized erasure code based storage sys-
tems. From the family of regenerating codes [2], we choose
two mechanisms, the minimum bandwidth regime (MBR)
and the minimum storage regime (MSR). The two mecha-
nisms result in two extreme points on the trade off curve.
MBR minimizes the repair bandwidth and MSR minimizes
the storage cost. We also compare our mechanism with the
mutual cooperative recovery (MCR) mechanism [10] and
self-repair homomorphic codes (SRHC) [11] since they both
consider multiple server failures.

Let 𝑙 be the size of a message in bits. We compare
our mechanism with them in the following items: 1)the
number 𝑢 of required connections per server failure, 2)the
number of repaired server failures, 3)required bandwidth
for replenishing a codeword symbol in bits, 4)storage cost
per server in bits, and 5) method type. The 5th item is
an indicator of whether the mechanism is suitable in a
decentralized environment. When the repair procedure is
independent of missing codeword symbols, we call such
mechanism ”symmetric”. In other words, an asymmetric
repair mechanism uses different steps for different pat-
terns of missing codeword symbols. For example, SRHC
is asymmetric since it regenerates a codeword symbol from
a specific set of survival codeword symbols. The comparison
is summarized in Table IV.

Regenerating codes show that repair bandwidth can be
less than the size 𝑙 of the message when a new server

618

Trace Microsoft PCs Gnutella Skype PlanetLab
𝑛: average number of nodes 41970 1846 710 303
𝑓 : fraction of failed node per day 0.038 0.3 0.12 0.017

Table I
STATISTICS OF SYSTEM TRACES [2].

𝑘 = 4
𝑑 2 3 4 5 6
𝑢 3 3 3 3 2
𝑘𝑑 16 64 256 1024 4096

𝑘 = 8
𝑑 2 3 4 5
𝑢 6 4 3 3
𝑘𝑑 64 512 4096 32768

𝑘 = 16
𝑑 2 3 4 5
𝑢 8 5 4 3
𝑘𝑑 256 4096 65536 1048576

Table II
NUMERICAL ANALYSIS FOR THE NUMBER 𝑢 FOR DIFFERENT 𝑘 AND 𝛼𝑛.

Trace Microsoft Gnutella Skype PlanetLab
𝑛 41970 1846 710 303
𝑓 0.038 0.3 0.12 0.017
𝑘 4 8 4 8 4 8 4 8
𝑢 3 3 3 4 3 4 3 6
𝛼𝑛 16 4096 16 512 16 512 16 64

Survival duration (days) 26 23 3 3 8 2 47 39

Table III
NUMERICAL ANALYSIS FOR SURVIVAL DURATION IN DAYS.

𝑢 server failures bandwidth storage type

MBR [2] 𝑛− 1 single (2𝑛−2)𝑙
(2𝑛−𝑘−1)𝑘

(2𝑛−2)𝑙
(2𝑛−𝑘−1)𝑘 symmetric

MSR [2] 𝑘 + 1 single (𝑛−1)𝑙
(𝑛−𝑘)𝑘

𝑙
𝑘 symmetric

MCR [10] 𝑛− 1 multiple (𝑛−1)𝑙
(𝑛−𝑘)𝑘

𝑙
𝑘 symmetric

SRHC [11] < 𝑘 multiple 𝑢𝑙
𝑘

𝑙
𝑘 asymmetric

Our work < 𝑘 multiple 𝑢𝑙
𝑘

𝑙
𝑘 symmetric

Table IV
COMPARISON OVER REPAIR MECHANISMS.

queries more than 𝑘 servers. However, they only tolerate one
server failure. MCR tolerates multiple server failures, but
the number of required connections for repairing a failure is
𝑛 − 1. In other words, a new server has to communicate
with all other servers in the storage system. SRHC is a
novel way to recover the system from multiple server failures
with 𝑢 < 𝑘. But, SRHC is not suitable for distributed or
decentralized environment because it is asymmetric.

Our mechanism outperforms existing ones in terms of
the communication cost under the same consideration of
efficiency cost for storage. A new server queries less than
𝑘 servers and the required bandwidth is less than 𝑙. At the
same time, the storage cost is as less as the cost of the MSR.
Moreover, our repair mechanism recovers a decentralized
erasure code based storage system from multiple server
failures.

The sacrifice is the probability of a successful data re-
trieval. The probabilities of a successful data retrieval in
MBR, MSR, and MCR are all 1’s. Since SRHC exactly

regenerates missing codeword symbols, the probability is
1 as well. While our mechanism has lower communica-
tion cost, the probability of a successful data retrieval is
1− 2𝑘/𝑝− 𝑜(1). However, by choosing a sufficient large 𝑝,
the probability 1−2𝑘/𝑝−𝑜(1) is overwhelming. Moreover,
the probability can be dramatically increased by letting a
user query more than 𝑘 servers for data retrieval.

V. CONCLUSION AND FUTURE WORK

We consider the measurement of communication cost in
terms of the number 𝑢 of connections that a new server
has to establish. Our repair mechanism provides flexible
adjustment between 𝑢 and the number of remaining servers.
More importantly, our results confirm that to repair a server
failure, a new server can query less than 𝑘 servers.

Our repair mechanism symmetrically repairs multiple
server failures of decentralized erasure code based storage
systems. Thus, a lazy repair strategy or a periodical repair
strategy can be taken upon our repair mechanism. It is

619

compatible with most decentralized erasure code based stor-
age systems without any change in encoding and decoding
methods. Both theoretical and numerical results show that
our decentralized repair mechanism is efficient and practical.

In our repair mechanism, new servers do not commu-
nicate with each other during the repair procedure. In
some practical cases, they can exchange information for
repairing. Intuitively, mutual communications among new
servers can further decrease the number 𝑢. Exploring the
quantity of possible improvement is our work in progress.
Statistical simulation results are also required to demonstrate
the practicality of our repair mechanism.

ACKNOWLEDGMENT

The research was supported in part by projects ICTL-
100-Q707, ATU-100-W958, NSC 98-2221-E-009-068-MY3,
NSC 100-2218-E-009-003-, and NSC 100-2218-E-009-006-.

REFERENCES

[1] Rodrigo Rodrigues and Barbara Liskov. High availability in
dhts: Erasure coding vs. replication. In Proceedings of the
4th International Workshop on Peer-to-Peer Systems - IPTPS
2005, 2005.

[2] Alexandros G. Dimakis, Brighten Godfrey, Martin J. Wain-
wright, and Kannan Ramchandran. Network coding for
distributed storage systems. In Proceedings of the 26th IEEE
International Conference on Computer Communications –
INFOCOM 2007, pages 2000–2008. IEEE, 2007.

[3] Y. Wu, A. G. Dimakis, and K. Ranchandran. Deterministic
regenerating codes for distributed storage systems. In Pro-
ceedings of the 45th annual Allerton conference on Commu-
nication, control, and computing, Allerton’07, pages 1243–
1249. IEEE Press, 2007.

[4] Alexandros G. Dimakis, Brighten Godfrey, Yunnan Wu,
Martin J. Wainwright, and Kannan Ramchandran. Network
coding for distributed storage systems. IEEE Transactions on
Information Theory, 56(9):4539–4551, 2010.

[5] K. V. Rashmi, Nihar B. Shah, P. Vijay Kumar, and Kannan
Ramchandran. Explicit construction of optimal exact regen-
erating codes for distributed storage. In Proceedings of the
47th annual Allerton conference on Communication, control,
and computing, Allerton’09, pages 1243–1249. IEEE Press,
2009.

[6] Nihar B. Shah, K. V. Rashmi, and P. Vijay Kumar. A
flexibile class of regenerating codes for distributed storage.
In Proceedings of IEEE symposium on Information Theory
2010, pages 1943–1947. IEEE Press, 2010.

[7] Soroush Akhlaghi, Abbas Kiani, and Mohammad Reza
Ghanavati. A fundamental trade-off between the download
cost and repair bandwidth in distributed storage systems. In
Proceedings of IEEE International Symposium on Network
Coding 2010 – NetCod, pages 1–6, 2010.

[8] Salim El Rouayheb and Kannan Ramchandran. Fractional
repetition codes for repair in distributed storage systems.
In Proceedings of the 48th annual Allerton conference on
Communication, control, and computing, Allerton’10. IEEE
Press, 2010.

[9] Alessandro Duminuco and Ernst W. Biersack. Hierarchical
codes: A flexible trade-off for erasure codes in peer-to-peer
storage systems. Peer-to-Peer Networking and Applications,
3(1):52–66, 2010.

[10] Yuchong Hu, Yinlong Xu, Xiaozhao Wang, Cheng Zhan, and
Pei Li. Cooperative recovery of distributed storage systems
from multiple losses with network coding. Selected Areas in
Communications, IEEE Journal on, 28(2):268–276, 2010.

[11] Frederique Oggier and Anwitaman Datta. Self-repairing
homomorphic codes for distributed storage systems. In
Proceedings of the 30th IEEE international conference on
Computer communications 2011. IEEE Press, 2011.

[12] Theodoros K. Dikaliotis, Alexandros G. Dimakis, and Tracey
Ho. Security in distributed storage systems by communicating
a logarithmic number of bits. In Proceedings of IEEE
symposium on information theory 2010. IEEE Press, 2010.

[13] K. V. Rashmi, Nihar B. Shah, and P. Vijay Jumar. Enabling
node repair in any erasure code for distributed storage, 2011.

[14] Sameer Pawar, Salim El Rouayheb, and Kannan Ramchan-
dran. On secure distributed data storage under repair dy-
namics. Technical Report UCB/EECS-2010-18, University
of California Berkeley, EECS, 2010.

[15] Dimitris S. Papailiopoulos and Alexandros G. Dimakis. Dis-
tributed storage codes meet multiple-access wiretap channels.
In Proceedings of the 48th Annual Allerton Conference on
Communication, Control, and Computing, Allerton’10, pages
1420–1427, 2010.

[16] Alexandros G. Dimakis, Vinod Prabhakaran, and Kannan
Ramchandran. Decentralized erasure codes for distributed
networked storage. IEEE/ACM Transactions on Networking,
14:2809–2816, 2006.

[17] Hsiao-Ying Lin and Wen-Guey Tzeng. A secure decentralized
erasure code for distributed network storage. IEEE trans-
actions on Parallel and Distributed Systems, 21:1586–1594,
2010.

[18] Hsiao-Ying Lin and Wen-Guey Tzeng. A secure erasure
code based cloud storage system with secure data forwarding.
manuscript.

[19] William J. Bolosky, John R. Douceur, David Ely, and Marvin
Theimer. Feasibility of a serverless distributed file system de-
ployed on an existing set of desktop pcs. ACM SIGMETRICS
Performance Evaluation Review, 28:34–43, 2000.

[20] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble.
A measurement study of peer-to-peer file sharing systems. In
Proceedings of Multimedia Computing and Networking, 2002.

[21] Saikat Guha, Neil Daswani, and Ravi Jain. An experimental
study of the skype peer-to-peer voip system. In Proceedings
of the 5th International Workshop on Peer-to-Peer Systems,
2006.

620

行政院國家科學委員會補助國內專家學者出席國際學術會議報告

 101 年 7 月 13 日

報告人姓名 曾文貴 服務機構

及職稱
交通大學資工系 教授

 時間

會議

 地點

101 年 6 月 20 日至 101 年 6 月 22 日

(出國時間為 101 年 6 月 18 日至 101 年 6 月 24 日)

 美國華盛頓特區 NIST Administrator Building 101

會議

名稱

2012 IEEE International Conference on Software Security and

Reliability （SERE 2012）

出國目的/

發表論文題

目

發表論文：

論文作者於題目: Hsiao-Ying Lin, John Kubiatowicz and Wen-Guey Tzeng.

A Secure Fine-Grained Access Control Mechanism for Networked Storage

System. In the Sixth IEEE International Conference on Software Security and

Reliability (IEEE SERE 2012), June 2012.

內容包括下列各項：

一、 參加會議經過(含照片)

本人於 18日從台灣搭機，當日抵達，19日調整時差，20開始參加會議，會議舉

辦期間為 6月 20日至 6月 22日，參加完會議後，於 23日離開華盛頓 特區，24日到達

台灣。於會議舉辦期間，本人參加會議行程，詳細行程資訊按時間順序整理如下:

 6月 20日:

會議首日，由謝續平教授協助聯繫當地的同學來接我們一行三人抵達 NIST的 101

大樓。進入 NIST區域需要持有一份通行文件與一份含照片的個人識別證件，經

過警察核對之後才能進入，門禁相當森嚴。我們抵達會場時約為早上 9點半。

會議地點在 NIST區域的 A101大樓。

報到時，拿到大會時程，注意到自己需要在 22日下午主持一場議程(session)。

第一場 Keynote speech是由 Virgil Gligor主講。

會議除了 keynote speech之外的議程都有平行議程，同一時間有三個議程進

行。參加的議程內容如下所示:

下午的議程部分，首先進行的是第二場的 keynote speech。

下午參加的議程為：

這天大會有提供一些小點心，隨後我們便搭乘旅館的接駁車回旅館休息，並且

在旅館附近用晚餐。
 6月 21日:

會議第二天，是由第三場 Keynote speech開始。

早上參加的議程為:

下午則是參加：

下午的活動含有一個自助參訪與晚宴。兩項活動都是在 NIST 101大樓內舉行，

我們在參訪活動中，找到了牛頓的蘋果樹的後代，以及參訪了 NIST的博物館

(Museum):

晚上的接待晚宴於 NIST內進行，下圖是擔任 Program Chair的謝續平教授致詞

以及用餐過程中窗外突然出現的鹿:

 6月 22日:

會議第三天，我的論文報告被安排在這天的下午第二段時間，由林孝盈博士博

報告。這天亦由一個 keynote speech開始進行會議，這天會議的上午日程如下

所示:

在報告之後，有一位學者提出三個問題，分別是針對取消授權，儲存成本，以

及與其他存取控制方式的比較討論。上午議程結束後，與此學者討論了在結合

應用系統與密碼學工具上的經驗。

這天下午的日程如下所示，這兩個議程皆由本人擔任議程主席(Session chair):

至此，會議順利進行結束。

 6月 23日:

早上 8:30 離開飯店，搭乘地鐵前往雷根機場，在機場除了到航空櫃台報到，進

行行李檢查，亦通過繁複的安全檢查，足見美國對於機場安全的謹慎。在底特

律及東京轉機後，於台灣時間 6 月 24 日晚間 7 點抵達桃園機場，結束此次行程。

二、與會心得

這次與會在研究方面有多項心得，首先研究學術議題與潮流方面，目前針對軟

體安全與系統安全的研究大都需要檢驗非常底層的東西，例如原始碼(source

code)或執行檔(binary code)，以發掘潛在的軟體弱點或系統弱點，因此需要大量

的計算，非常適合雲端的架構來執行，另一方面，利用 Model checking 的技術來

檢驗各種系統的功能與安全性也受到重視。我們發表的文章是屬於系統權限的

存取控制，雖然較少的會議的參者熟悉，但是在進行報告之後，許多學者積極

的回響，可見國際學者的學術研究並不設限於自己專長的領域，對於其他相關

議題也多有涉獵。這點做研究的精神值得大家學習。

在研究學術活動方面，這次與會者中，來自大陸的學者很多，他們亦積極的互

相討論交流，有的學者甚至並非會議報告者，亦前來共襄盛舉，我想國內的學

者應該被鼓勵多參加這些國際重要研討會。

在研究學術服務方面，不論是會議主席還是議程主席，都非常熱心的招待大家，

和與會者有熱烈的互動，對於將來的學術交流或研究合作有很大的幫助。本次

由謝續平教授擔任議程主席之一，他積極鼓勵台灣的師生投稿，並安排大家擔

任 session chair 職位，對於提升國內學者在軟體安全研究的知名度，透過謝教授

的親身示範，若能在國際學術組織中擔任要職，對於提升台灣在國際學術知名

度上有相當大的影響力。

三、參觀活動(無是項活動者省略)

(略)

四、建議

透過參加國際研討會活動，可以與國際上其他學者交流，特別是透過 QA 的機

會，或者是茶會休息時間進行討論，是相當寶貴的經驗。非常建議國內學者多

家參與，並且最好能夠投身國際學術服務活動以提升台灣的國際學術知名度。

五、攜回資料名稱及內容

紙本議程一本，論文光碟兩片(論文集)，名牌。

其他活動照片

會議大樓門口眾與會者合影

