
ARTICLE IN PRESS
0165-1684/$ - se

doi:10.1016/j.si

�Correspond
E-mail addr

csiesheep.csie91

wlee@cse.psu.e
Signal Processing 87 (2007) 2861–2881

www.elsevier.com/locate/sigpro
Processing k nearest neighbor queries in location-aware
sensor networks

Yingqi Xua,�, Tao-Yang Fub, Wang-Chien Leea, Julian Wintera

aPennsylvania State University, USA
bNational Chiao Tung University, Taiwan

Received 10 October 2006; received in revised form 25 February 2007; accepted 15 May 2007

Available online 25 May 2007
Abstract

Efficient search for k nearest neighbors to a given location point (called a KNN query) is an important problem arising in

a variety of sensor network applications. In this paper, we investigate in-network query processing strategies under a KNN

query processing framework in location-aware wireless sensor networks. A set of algorithms, namely the geo-routing tree,

the KNN boundary tree and the itinerary-based KNN algorithms, are designed in accordance with the global infrastructure-

based, local infrastructure-based and infrastructure-free strategies, respectively. They have distinctive performance

characteristics and are desirable under different contexts. We evaluate the performance of these algorithms under several

sensor network scenarios and application requirements, and identify the conditions under which the various approaches

are preferable.

r 2007 Elsevier B.V. All rights reserved.

Keywords: Wireless sensor networks; k Nearest neighbor (KNN) query; Network infrastructure
1. Introduction

Sensor networks are composed of a sheer number of
distributed small sensing devices. The sensor networks,
facilitating detailed measurements over a wide geogra-
phical area, allow an unprecedented level of interaction
with physical environments. Since sensor nodes are
widely distributed across the deployed field, it may not
be easy for end-users to access them. Thus, considering
the frugal energy budget and very limited capabilities
at sensor nodes, scalable, efficient and robust query
e front matter r 2007 Elsevier B.V. All rights reserved

gpro.2007.05.013

ing author. Tel.: +1814 5717044.

esses: yixu@cse.psu.edu (Y. Xu),

@nctu.edu.tw (T.-Y. Fu),

du (W.-C. Lee), jwinter@cse.psu.edu (J. Winter).
processing mechanisms for data collection and dis-
semination are mandatory to fully realize the potential
of sensor networks.

Spatial queries that extract sensed data from
specific locations are fundamental to many sensor
network applications, as the data are often geogra-
phically distributed. K nearest neighbor (KNN)
query, a classical spatial query, is particularly
relevant to sensor networks. For instance, applica-
tions usually require readings from certain number
of sensor nodes closest to the location of an event
[1,2]. KNN queries provide a way to sample the
environment around the location of an event by
specifying a sample size (k) in close proximity. In
this paper, a KNN query retrieves sensor readings
from the k sensor nodes nearest to the given query
.

www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2007.05.013
mailto:yixu@cse.psu.edu
mailto:csiesheep.csie91@nctu.edu.tw
mailto:wlee@cse.psu.edu
mailto:jwinter@cse.psu.edu

ARTICLE IN PRESS
Y. Xu et al. / Signal Processing 87 (2007) 2861–28812862
point q.1 We examine a set of alternative solutions
for locating and querying these k nearest sensor
nodes. Generally speaking, the KNN problem can
be defined follows:

Definition (k nearest neighbor problem). Given a set
sensor nodes M (where jMj ¼ N) and a geographi-
cal location (denoted as a query point q), find a
subset M 0 of k nodes (M 0 �M, kpN) such
that 8n1 2M 0 and 8n2 2M �M 0, distðn1; qÞp
distðn2; qÞ.

2

KNN queries have been extensively studied in
traditional spatial databases [3–5]. Such centralized
databases utilize indices in designing efficient KNN
algorithms. However, the wireless sensor network
environment raises several new research challenges:
(1) sensor nodes operate on an extremely frugal
energy budget. Traditional centralized query pro-
cessing plans which require all sensor nodes to
periodically report their readings to a central node
(e.g. base station), could quickly drain the energy
resources of sensor nodes; (2) sensor nodes have
limited computation, storage and communication
abilities. Complex centralized index structures are
not applicable to sensor networks; (3) sensor
networks are mainly characterized by a dynamic
topology due to node failures (e.g. energy deple-
tion), unattended and untethered operations, and
mobility of sensor nodes [6,7]. Therefore, a desirable
KNN algorithm for wireless sensor networks should
be distributed and reliable, and be able to incorpo-
rate in-network processing techniques for commu-
nication reduction. More specifically, an efficient
KNN query algorithm should (1) minimize the
number of sensor nodes involved with query
processing since the radio operations dominate the
energy consumption of sensor nodes; (2) minimize
the total amount of data transmitted; (3) balance
the load and the responsibility of query processing
to all involved sensor nodes.

Before designing algorithms to achieve the above
goals, we consider alternative query processing
strategies, namely global infrastructure-based, local

infrastructure-based and infrastructure-free query
processing strategies. These strategies offer very
different performance characteristics. Which one
is appropriate for a particular network setting
1In this work, we only consider order-insensitive KNN query.

We will study order-sensitive KNN query in our future work.
2Function distð�; �Þ denotes the Euclidean distance between two

geographical locations.
depends on the nature of the sensor network and
its use. Consequently, our paper begins with a
discussion of these query processing strategies for
sensor networks. Correspondingly, we propose one
KNN algorithm for each strategy. Each KNN
algorithm is designed to achieve energy efficiency,
scalability and robustness based on the underlying
query processing strategy. This work does not claim
a certain algorithm to be the best choice. In stead, it
provides a guidance to choose preferable strategy
and algorithm under various conditions. In fact, we
argue that a sensor network system should embody
all three KNN query processing algorithms and
choose an appropriate strategy based on the given
task and network conditions. The three KNN query
processing algorithms proposed are geo-routing tree

(GRT), KNN bounded tree (KBT), and itinerary-

based KNN (IKNN) query processing algorithms.3
�

3

bo

inf
4

GRT, inspired by R-tree [8], is a long-running,
global tree infrastructure that capitalizes on the
spatial proximity of sensor nodes. A KNN query
propagates along the GRT, and prunes the
nodes that are definitely not in the answer set.
GRT involves unnecessary node visits in query
processing.

�
 KBT is a short-lived and local tree infrastructure.

To extract data from nodes of interest, a search

region which is as small as possible while still
large enough to contain the KNNs for the given
query point is estimated. Inside the estimated
region, a KBT is constructed, along which the
query propagation and data collection are con-
ducted.

�
 IKNN is an infrastructure-free approach, which

processes a query along a pre-designed itinerary.
Facilitated by the itinerary, IKNN stops query
processing automatically soon after collecting
data from the k nearest nodes, which minimizes
the number of nodes involved into query proces-
sing and significantly improves the algorithm
efficiency.

To our best knowledge, it is the first work
investigating KNN query for wireless sensor net-
works.4 We evaluate the performance of the three
KNN query processing algorithms with an extensive
Without causing confusion, we use GRT and KBT to denote

th the KNN query processing algorithms and the network

rastructures they are based on.

The preliminary result of this work was reported in [9,10].

ARTICLE IN PRESS
Y. Xu et al. / Signal Processing 87 (2007) 2861–2881 2863
simulation study. Various network conditions and
application requirements are examined.

The rest of the paper is organized as follows. In
Section 2, we describe our assumptions as well as
examine related work. Sections 3–5 present the
detailed designs for the GRT, KBT and IKNN
algorithms, respectively. The performance of
these three approaches under different circum-
stances is examined in Section 6. Finally, Section 7
gives the conclusive remark and discusses the future
work.
2. Preliminaries

In this section we first state our basic assumptions
about the sensor network system under considera-
tion. Then we give a brief review of closely related
work, which ends with a discussion of fundamental
query processing strategies for wireless sensor net-
works.
2.1. Assumptions

We assume that a wireless network consisting
of a number of sensor nodes is deployed in a
two-dimensional fixed area. Each sensor node is
location-aware, i.e., each sensor node is able
to obtain its location information through an
equipped GPS processor [11] or some localization
techniques [12]. The sensor network topology may
dynamically change during operation. The dy-
namics of a sensor network may be introduced by
(1) node mobility (sensor nodes may be mobile);
(2) energy conservation sensor nodes may periodi-
cally switch to sleep mode [13–15]; (3) unreliable
links and node failures.

Following the definition in Section 1, we consider
KNN queries specified by: a query point q specified
by its geographical location and an integer value k

which denotes the number of sensor nodes closest
to the query point need to be queried. A KNN
query can be issued by any sensor node instead of
by one or more stationary access points in the
networks. The application expects the query results
to return to the same sensor node where the
query was issued. Finally, we assume that sensed
data are stored locally on the sensor nodes which
implies that in order to extract the data from the k

nearest sensor nodes, a KNN query processing
algorithm has to locate and retrieve data reports
from those nodes.
2.2. Related work

While KNN queries have not been well explored
in wireless sensor networks, our work has been
inspired by a wide range of research efforts on
distributed sensor networks.

Traditionally, KNN query are answered by
assistance of the indices on the data. The most
widely used algorithm is the branch-and-bound
algorithm based on R-trees, which traverses the
R-tree while maintaining a list of k potential nearest
neighbors in a priority queue [3,8]. Our GRT
algorithm adopts such an algorithm and tailored it
for wireless sensor networks. There are attempts to
use range queries to solve the k-NN search problem,
such as the one proposed in [16]. The basic idea is to
first find a region that guarantees to contain all
k-NNs, and then use a range query to retrieve the
potential k-NNs. This algorithm is further opti-
mized by [4,17]. Our KBT shares similar design
philosophy. KNN query for moving objects can be
answered by a time-parameterized R-tree (TPR-
tree) [18] or its variants [19]. Designed to support
predictive queries, the TPR-tree extends R-tree by
including the velocity vectors. The k-NN queries are
time-parameterized by a time interval and can be
answered by a depth-first traversal of the TPR-tree.

The above centralized algorithms focus on
improving the disk access performance, and thus
are not suitable for resource-constrained wireless
sensor networks. Increasing number of research
efforts have been made to support various sensor
network applications. The proposal of constructing
and maintaining a network-spanning infrastructure
within a sensor network is one of them. To
processing spatial query, the query is propagated
toward geographical location(s) specified by the
application along the infrastructure. Once the query
reaches all the sensor nodes of interest, data
collection takes place along the infrastructure. The
sensor nodes of interest recursively report their
readings to the nodes from which they received the
query, such that partial results are returned level-by-
level up the infrastructure until reaching the root
node. An example of such network-spanning infra-
structure is routing tree studied in [20,21]. Cluster-
ing is an alternative network infrastructure where a
cluster head is responsible for the operations of
the sensor nodes in its cluster [22,23]. With small-
scale centralized control from the cluster heads,
the cluster infrastructure is suitable for achieving
cooperation among sensor nodes. Another well

ARTICLE IN PRESS
Y. Xu et al. / Signal Processing 87 (2007) 2861–28812864
known approach called directed diffusion represents
an alternative solution for propagating queries and
collecting results. Query is flooded into the network
on-demand [24]. A few routes are selected adap-
tively by reinforcement procedure based on the
route quality (e.g., latency) and maintained during
the lifetime of the query. However, without
considering the geographical nature of sensor net-
works, this end-to-end route is not beneficial for
spatial queries.

Researchers also demonstrated traditional index
structures (e.g., R-tree) to be useful in sensor
network design. For instance, Demirbas and Fer-
hatosmanoglu [25] employ an R-tree as a network
infrastructure and discuss various query processing
mechanisms upon the modified R-tree. However
their work lacks design details that are necessary
to handle the unique spatial properties and limita-
tions of sensor networks. The Geo-routing tree
adopted by GRT algorithm was discussed in [26]
originally. We will examine its design details shortly
in Section 3.1.

In addition, recent work has pointed out that
location-awareness of sensor nodes can facilitate the
design of energy-efficient and robust sensor network
paradigms and protocols. For instance, Geo-rout-
ing protocols [27–30] have been adopted by many
research works (e.g [31–33]), due to their efficiency.
Geo-routing assumes that the location information
of routing destination is known. Routing decisions
at intermediate relay nodes are made based on the
location information of neighbor nodes and of
the destination. For example, the neighbor node
that is geographically closest to the destination
may be chosen as the next relay node. However, as
pointed out by [32], geo-routing is not efficient for
query propagation/ data collection among a set of
sensor nodes. The detailed design of GPSR, a
representative geo-routing protocol for wireless ad
hoc and sensor networks will be examined shortly in
Section 4.1.

Window query, another classical spatial query,
also attracts increasing research attentions. GEAR
[32] considers the issue of query diffusion for full
window coverage. Even though GEAR does not
require any network infrastructure for spreading the
query, it does not consider data collection proce-
dure without infrastructure support. Our prelimin-
ary work considers dynamic sensor network and
studies a complete query processing plan, but lacks
of technical details [7]. IWQE, an original itinerary-
based window query processing algorithm, effec-
tively integrates the query propagation and data
collection into one stage without requirement of
network infrastructure [33]. Our proposal of IKNN
query processing algorithm follows the design
principle of IWQE, which will be introduced in
detail in Section 5.1.

2.3. Query processing strategies for wireless sensor

networks

Next, we classify the various algorithms discussed
above based on their fundamental design strategies,
and analyze their performance characteristics.

2.3.1. Global infrastructure-based strategy

A global infrastructure covers the entire sensor
network field and involves all sensor nodes. To
build such an infrastructure, a node is selected as the
root of the infrastructure. The root node is usually
the point where users interacts with the network.
The root initiates an infrastructure construction by
broadcasting a message that specifies its own id and
other attributes (e.g., location and its level in the
infrastructure). Upon receiving the message, a node
joins the infrastructure and rebroadcasts the mes-
sage with its own information. This process repeats
until all nodes join the infrastructure. Due to the
wireless broadcast medium, a node may receive
duplicate message. Based on the desired infrastruc-
ture property, the node chooses one of the senders
as its higher-level node and determines its own level
in the infrastructure. To maintain a global infra-
structure, the root node periodically broadcasts the
message down to the infrastructure, so that the
process of topology discovery goes on continuously.
An alternative approach is to let all sensor nodes
periodically notify other nodes its existence and
other features (e.g., locations). The constant topol-
ogy maintenance makes it relatively easy to adapt to
network changes.

A global infrastructure facilitates one-to-many
data communication, since the infrastructure con-
verges at the root node. Query processing along a
global infrastructure is performed in two stages. At
the first stage of query propagation, the root node
floods the query down to the infrastructure. Once
the query reaches all sensor nodes that possess the
data of interest (may not be all sensor nodes), data
collection takes place. At data collection stage, the
sensor readings are continually rounded up from
lower-level nodes to higher-level nodes. To perform
in-network data aggregation, higher-level nodes do

ARTICLE IN PRESS
Y. Xu et al. / Signal Processing 87 (2007) 2861–2881 2865
not propagate their query results until they receive
from all their children. As such, the sensor readings
are aggregated at each level.

Due to its large scale, global infrastructure incurs
noticeable construction and maintenance cost.
When a query only interests in part of the network
with a small number of sensor nodes, the global
infrastructure may not provide the best support
since query processing may incur unnecessary node
visits. Moreover, data aggregation, which happens
at every hop on the way back to the sink node,
could be inefficient when the data of interest is
clustered.

2.3.2. Local infrastructure-based strategy

Local infrastructure-based strategy is similar to
the global one, as both process a query via an
infrastructure. The difference is that the construc-
tion of a local infrastructure is usually query-driven.
In other words, the local infrastructure is con-
structed based on the demand of queries. The
location, scale, lifetime, and property of local
infrastructure are customized based on the query
content. To reduce its construction and mainte-
nance cost, the local infrastructure should be as
small as possible, but still large enough to cover all
sensor nodes of interest. Local infrastructure-based
strategy requires a node-to-node routing protocol to
deliver the query message from the sink node to
the root of the local infrastructure. For spatial
queries, a geo-routing protocol is sufficient and
desirable to delivery the query to a specified
location. After the query reaches the root node, a
local infrastructure is constructed along query
processing. Data collection based on local infra-
structure is conducted in a similar manner as based
on global infrastructure. With a smaller scale and
shorter lifetime, local infrastructure is more flexible
and efficient than the global infrastructure. How-
ever, the flexibility of a local infrastructure raises
design challenges in determining its properties (e.g.,
infrastructure size) for processing KNN query. We
will discuss this research challenge in detail shortly
in Section 4.

2.3.3. Infrastructure-free strategy

Even though infrastructure-based strategies (both
global and local ones) have some drawbacks, they
are widely adopted by sensor networks. This is
because they support in-network processing techni-
ques, which by processing partial query results
within the network, greatly reduce the total amount
of network communication and energy usage, thus
crucial for energy-constrained sensor networks.
However, the gain achieved by in-network proces-
sing techniques is weakened by the overhead
incurred for building and maintaining such infra-
structures and by unnecessary node visits along
these infrastructures. Therefore, infrastructure-free
strategy is considered to overcome the above
problems.

Flooding is a naive infrastructure-free strategy, in
which the query is flooded into the network. Nodes
of interest upon receiving the query send their
responses directly back to the sink node. Even
though removing the requirement of an infrastruc-
ture, the flooding scheme does not support in-
network processing, thus incurring a significant
amount of data communication. The flooding
scheme reveals a big challenge faced by infrastruc-
ture-free approach, i.e., how to incorporate in-
network processing techniques into query proces-
sing without the support of network infrastructure?
More specifically, without an infrastructure, where
and when data aggregation should take place and
what nodes should take this responsibility?

Itinerary-based query processing mechanism,
studied in our prior work [33], is one solution to
the above research challenge. With itinerary-based
query processing mechanism, the query is propa-
gated along an itinerary which is pre-designed to
ensure all nodes of interest be queried in an efficient
manner. Query propagation and data collection
take place concurringly at some special nodes
residing on the itinerary. An example of itinerary-
based algorithm developed for window query
processing [33] is presented in Section 5.1.

As shown in Fig. 1, we envision the above three
different query processing strategies residing at a
middle layer between a sensor network and applica-
tion requests (e.g., data dissemination, data collec-
tion, and event detection and monitoring). Such a
middle layer interacts with location service and
application layer to decide the right query proces-
sing strategy. In the following, we focus on KNN
query processing and develop three KNN query
processing algorithms in accordance with the global
infrastructure-based, local infrastructure-based and
infrastructure-free strategies, respectively.

3. KNN algorithm over geo-routing tree

In this section, we present our first KNN query
processing algorithm based on a geo-routing tree

ARTICLE IN PRESS

Sensor Network System

Infrastructure-based strategy

. . .

Data

Dissemination
Data

collection

Event

detection

Local

Infrastructure-

based strategy

Global

Infrastructure-

based strategy
Infrastructure

-free strategy

. . .

L
o

c
a

ti
o

n
 S

e
rv

ic
e

Event

monitoring

Fig. 1. Query processing framework.

X
Y

Y

Y

Y

Y

q

a b

Fig. 2. Minimum bounding rectangle (MBR): (a) MBRs in a geo-routing tree; (b) MINDIST.

Y. Xu et al. / Signal Processing 87 (2007) 2861–28812866
(GRT), which spans the entire network and remains
alive during the network lifetime. For the sake of
presentation, we assume queries are always inserted
from the root node.5
3.1. Geo-routing tree

The GRT, a tree infrastructure similar to R-tree,
was proposed for executing queries on sensor
networks in [26]. In the GRT (shown in Fig. 2(a)),
each sensor node X maintains a minimum bounding
rectangle (MBR) for its child Y. The MBR for
node Y is the smallest rectangle which encloses the
geo-locations of all the sensor nodes in the tree
rooted at Y (including Y). MBRs are constructed
from the leaf nodes up and MBRs for leaf nodes
are geographical points. GRT captures the spatial
5Queries inserted from non-root nodes have to be routed to the

root node first. Other solutions, such as building multiple trees

rooted at different sensor nodes or starting the GRT algorithm

from any sensor nodes, are possible but outside the scope of this

research.
properties of sensor nodes and does not require
the minimum and maximum number nodes in one
MBR.

To adapt to network topology changes, we adopt a
simple beacon algorithm for GRT maintenance [27].
Periodically, each sensor node broadcasts a beacon
message that includes its identifier, position and
MBR. The parent X recalculates Y’s MBR after
receiving its child Y’s beacon. If the changes on Y’s
MBR affects the correctness of X’ MBR, X has to
update its MBR and report the update to its parent
as well. If a parent node does not hear from a child
after a period of time the parent deletes this child and
updates the MBR. On the other hand, if a child does
not hear from its parent, it selects a new parent from
its neighbor table and informs the new parent which
involves recomputing the MBRs as well.

Several data structures are required for GRT to
process KNN query. For a given query point q and
a sensor node S
�
 MINDISTðS; qÞ is the minimum distance from q

toS’s MBR. The formal definition of MINDIST

ARTICLE IN PRESS

6

nod

Y. Xu et al. / Signal Processing 87 (2007) 2861–2881 2867
is given by [3]. Fig. 2(b) shows an example of
MINDIST denoted by dashed lines from q to
MBRs. Intuitively, MINDIST determines the
minimum distance from q to the MBR that
encloses the subtree rooted at node S.

�
 NTableðSÞ is the neighbor table for sensor node

S. A neighbor table stores the information about
the nodes one-hop away from S including their
id and their current geographical location. The
size of the NTable is the total number of
neighbors of S denoted by mðSÞ.

�
 KTableðS; qÞ is maintained by sensor node S.

From S and S’s neighbor nodes, the k closest
sensor nodes to q are selected. Their id and their
distance to the query point (i.e., distðq; idÞ are
stored in KTableðS; qÞ. If k4mðSÞ, the remain-
ing (k �mðSÞ) entries have their id set as NULL
and their distðq; idÞ ¼ 1. The KTable is sorted
based on distðq; idÞ in ascending order. For the
simplicity of the presentation we denote
distiSðq; idÞ as the distðq; idÞ of ith entry in
KTableðS; qÞ.

�
 Dmax records the maximum distance between the

query point q to sensor nodes from the current k

closest sensor nodes. Dmax is disseminated along
with the query and is updated as the query is
propagated.

3.2. GRT algorithm

The KNN search algorithm over GRT works as
follows. Once the root node receives a query from
an application, it computes its MINDISTð0; qÞ,
forms its KTableð0; qÞ, and initializes Dmax as the
distk0ðq; idÞ which is the dist of the last entry in
KTableð0; qÞ.6 The root node then broadcasts the
query along with the Dmax value. Any child node S
that receives the query computes its MINDISTðS; qÞ
and compares MINDISTðS; qÞ with the received
Dmax. If MINDISTðS; qÞ4Dmax node S drops the
query, since all sensors inS’s subtree have a distance
farther than Dmax from the query point q. Otherwise,
node S forms KTableðS; qÞ based on its NTable,
sets Dmax ¼MinfDmax;dist

k
Sðq; idÞg, and broadcasts

the query along with the new Dmax. The process is
repeated until the query reaches the leaf nodes. Once
the propagation procedure stops, the sensor node
returns its KTable and query execution results to
its parent. The parent at each level aggregates all
Without loss of generality, we set the node ID for the root

e to 0.
the KTables received from its children and extracts
the k entries which have smallest distðq; idÞ as a
new KTable as well as the query results from
these k nodes and reports them to its parent. This
aggregation process is repeated until eventually
the root receives results from all its children and
forms a new KTable that contains the k nearest
sensor nodes to the query point along with their
associated query results. Fig. 3 shows the network
communication incurred by GRT algorithm. For the
sake of presentation, MBRs are not drawn in Fig. 3.
The lines and arrows represent the tree structure and
communication incurred by query processing. The
root node is bounded by a rectangle.

The above KNN algorithm over GRT, usually
referred as the branch-and-bound technique [3],
prunes the subtrees that definitely do not have
nodes within k closest nodes to the query point
thereby reducing overall communication and con-
serving energy. However, GRT algorithm raises
several performance issues. First, as a global
infrastructure, GRT may incur excessive construc-
tion cost as well as maintenance cost when the
network topology changes frequently. Second, the
KNN algorithm over GRT requires substantial
storage space since many data structures (e.g.,
parent table, children table, KTable and NTable)
have to be maintained. This storage requirement
would increase significantly with either increasing
network density or the value of k.

4. KNN algorithm over KBT

We argue that the KNN search algorithm has to
be (1) more distributed so that the responsibility of
individual nodes is minimized, making the network
less vulnerable to single node failure, and (2) more
localized, so that the number of nodes involved in
query processing is minimized. Meanwhile, we are
aware of geographical routing algorithms that
approach shortest-path routing that can reach any
node in the network as long as its geographical
location is known. These routing algorithms require
a periodic beacon message to keep the list of
neighbors of each node updated.

4.1. GPSR algorithm

KBT, our second KNN algorithm, is built upon
GPSR [27], a geographical multi-hop routing
algorithm. The rationale of this selection is ex-
plained shortly in Section 4.2. GPSR works in two

ARTICLE IN PRESS

Fig. 3. GRT-based KNN query processing algorithm.

Y. Xu et al. / Signal Processing 87 (2007) 2861–28812868
modes: greedy mode and perimeter mode. In greedy
mode, the forwarding node forwards the message to
the neighbor closest to the destination. If no such
neighbor exists, the algorithm switches to the
perimeter mode, which given a planarized graph of
the network topology routes messages around voids
in the network. GPSR returns to greedy mode from
perimeter mode when the packet reaches a node
closer to the destination than the node at which the
packet entered the perimeter node. GPSR routes
packets to the nearest neighbor (NN) of the
destination which may not be associated with a
specific sensor node. This property has been used in
other studies; interested readers are referred to [34].

4.2. KBT algorithm

Our proposed KNN search algorithm over KBT
is facilitated by the greedy perimeter stateless
routing (GPSR) algorithm [27]. The basic idea of
KBT is to find the KNN sensor nodes by searching
an estimated region of the network. This region
(called the KNN search region) is a circular region
centered at the query point that is estimated to be as
small as possible while still large enough to enclose
the k nearest sensor nodes. Clearly, the performance
of the KBT algorithm heavily depends on the radius
of the circular KNN search region which determines
the number of nodes to be accessed for query
execution. Additionally, the techniques that disse-
minate the query and collect data inside the KNN
search region are also important for determining the
query latency. In the following, we discuss the above
issues in detail by breaking the KBT algorithm into
several phases: (1) forwarding the query toward the
query point and estimating the radius size of the
KNN search region; (2) propagating the query
inside the KNN search region and locating the k

nearest sensor nodes; (3) returning the query results
to the application.

4.2.1. Estimation of KNN search region

Upon receiving the KNN query from an applica-
tion, the sensor node forward the query toward the
home node (the nearest neighbor to the query point)
using the GPSR routing algorithm. The query point
is specified by the application and not necessarily
associated with any sensor node. The home node is
responsible for estimating the size of the KNN
search region based on the information collected
during the query propagation. In this paper, we
investigate four approaches for estimating the
radius of the KNN search region.

Our first approach, named SUMDIST, was pre-
viously reported in [9]. Briefly, this technique records
the location information of k relay nodes (i.e., nodes
that forward the query toward the home node) that
are closest to q along the relay path. Upon receiving
the query, the home node combines and sorts these k

relay nodes with its neighbor nodes based on the their
distance to q. The radius of KNN search region is set
as the distance of the kth nearest node to q.

The second approach, called MHD (named
MHD-2 in [9]), avoids transmitting the coordinates
of k relay nodes toward the home node. Instead,
only one maximum hop distance (MHD) value that
is calculated as the maximum distance between two
hops along the relay path is transmitted. Assuming
the home node has m neighbors and mok, the
KNN search region is estimated as a circle with

ARTICLE IN PRESS
Y. Xu et al. / Signal Processing 87 (2007) 2861–2881 2869
radius ðk �mÞ �MHD. Compared with SUM-
DIST, MHD dramatically reduces the transmission
overhead for query propagation.

However the above two approaches are not
expected to perform well when k becomes large as
the estimated region may quickly expand to the
entire sensor network. Therefore, we propose a
third approach called NeighborClass. First, the
home node selects the members of its NeighborClass
as the Minfm; kg closest nodes to q (m denotes the
number of neighbor nodes). The NeighborClass
distance is computed as the furthest distance
between the query point and any member of the
NeighborClass. These nodes become a new Neigh-
borClass and their IDs and the NeighborClass
distance value are passed along with the query
packet to the next relay node. Once a relay node
receives the query packet, it again selects the
Minfm; kg closest nodes from its list of neighbors
that do not belong to any NeighborClass in the
query packet it received from the previous relay.
These newly selected node IDs and the maximum
distance become a new NeighborClass and are
added to the query packet and transmitted to
the next forwarding node. When the home node
eventually receives the query packet, it includes its
NeighborClass and then sets the radius of the KNN
search region distance by iterating backward
through the list of NeighborClasses and summing
the number of members of each NeighborClass until
the sum is larger than k and the KNN search region
radius is set as the NeighborClass distance of
the last NeighborClass searched. By considering
the neighbor nodes of all relay nodes, we expect the
KNN search region estimated by NeighborClass to
be much smaller than those obtained by SUMDIST
and MHD and less affected by increasing k.

However NeighborClass still incurs a significant
amount of traffic overhead along the query path
since the IDs of the NeighborClass members are
transmitted. Therefore, we developed a modified
version of NeighborClass, called NeighborClass2
that avoids transmitting the IDs of NeighborClass
members along the forwarding path. Each relay
node (each having a NeighborClass) only passes the
count of member nodes and the maximum distance
to the query point q from the furthest member node.
Once the home node receives all the information, it
orders those information based on the maximum
distance and selects the smallest maximum distance
which ensures that the total number of member
nodes in the neighbor classes with shorter maximum
distance than the selected maximum distance is
larger or equal to k. This approach cannot
guarantee that the radius of the KNN search region
will encompass the KNN sensor nodes, but may
serve as a good heuristic technique since sensors
near the relay route may be double counted (i.e.
sensors may be members of more than one
NeighborClass). This double counting may be
advantageous since it can represent sensors that
are inside the KNN search region but are not
members of any NeighborClass.

After the query packet has reached the candidate
home node, it is transmitted around the perimeter of
the query point in perimeter mode. This is necessary
to verify the home node and we consider it part of
the relay path in order to exploit the perimeter
nodes and their neighbors for reducing the bound-
ary radius. Fig. 4(a) depicts the routing phase of the
KBT KNN algorithm.

4.2.2. Find k � 1 nearest neighbors

Given that the query has reached the home node,
the next step is to find the remaining k � 1 nearest
neighbors (the home node is the nearest neighbor).
Before we describe the details of the KBT algo-
rithm, we first discuss a naive algorithm which
simply floods within the KNN search region. Upon
receiving the query, all sensor nodes inside the
search region report their readings back to the home
node using GPSR algorithm. Although simple, the
flooding approach is expected to be efficient for
small k since the KNN search region is small. In this
case, constructing an infrastructure for disseminat-
ing the query and collecting data inside the small
KNN search region is unnecessary compared with
the cost of flooding. Moreover, flooding reduces the
dependence on any specific nodes inside the search
region (other than the home node), thus is more
tolerable to individual node failure which makes
flooding likely to have good accuracy and robust-
ness. A drawback of flooding is that the query
results have to be returned back to the home node
individually, thus losing the opportunity for aggre-
gating the results at intermediate nodes.

To address the drawbacks of flooding, we proposed
the KBT tree structure which provides the opportu-
nity for local data aggregation. For naming purposes,
we refer to this technique as the single root (SR) KBT
technique since the tree is rooted at the home node.
As the query is broadcasted, nodes select their parent
based on their geographical proximity. After choos-
ing a parent the child sets a timer based on the

ARTICLE IN PRESS

a b

Fig. 4. KBT perimeter and perimeter tree: (a) KBT home node and perimeter; (b) KBT perimeter tree.

Y. Xu et al. / Signal Processing 87 (2007) 2861–28812870
difference between an estimated value of the height of
the tree and its level in the tree. Once the timer
expires, the nodes aggregate results from their
children and respond to their parents. The Tree-
Height, the estimate of the height of the tree, is set
before the query is issued. A counter, increased by
one at every hop, is passed along with the query
and recorded by the internal nodes as their level.
The timer of the internal node is set as 2�
Maxf1;TreeHeight� levelg �MessageDelay where
MessageDelay is the estimated message propagation
delay between two neighbor nodes. The advantage of
the tree approach is that results can be aggregated
thereby reducing total amount of data transmitted.
The drawback is that poorly set timers can either
reduce the accuracy of the KNN results or unneces-
sarily increase the query latency.

A third approach is to use multiple trees rooted at
perimeter nodes [27]. The perimeter nodes are
determined by routing around the home node with
GPSR perimeter mode. We refer to this technique as
the perimeter tree (PT). The home node still serves
as an overall root. The goal of this approach is to
attempt to balance the tree to improve query
accuracy since the timers are set based on a fixed
estimate of the height of the tree. TreeHeight
estimates close to the actual tree give better query
accuracy. Furthermore, smaller TreeHeight esti-
mates mean shorter latency since the timers expire
sooner. When constructing the tree, the root
transmits the query back around the perimeter.
The circular region is divided into slices defined
by the midpoints between the hops as shown in
Fig. 4(b). This approach assigns more responsibil-
ities to internal nodes but may be able to improve
query accuracy for large values of k. This is because
the height of the tree will be smaller than the SR tree
since PT trees are more balanced. However, PT
has more overhead than SR since an additional
transmission around the perimeter is required and
the midpoint data must be included in the broadcast
query packet.
4.2.3. Return results

After the home node has received the KNN
results, they are aggregated into a single message
and returned to the query point using GPSR. If a
KBT tree has been constructed inside the KNN
search region it is automatically dissolved after the
query finishes. In other words, the lifetime of KBT
is only as long as the KNN query takes to process.
Fig. 5 shows an example of network communication
in KBT algorithm. The bounded node acts as the
root of the local infrastructure and the round circle
depicts the estimated KNN search region. Compar-
ing against Fig. 3, Fig. 5 shows that less number of
nodes are involved into KBT algorithm.
5. KNN algorithm over itinerary

By constraining query processing within a KNN
search region, KBT algorithm forms a smaller-scale
infrastructure and is more efficient and scalable
than GRT algorithm. However, without the knowl-
edge about network topology, it is not easy for
KBT algorithm to estimate the right size of a KNN
search region, which has significant impact on its
energy consumption and query accuracy. Another
drawback of KBT algorithm is that when a query
point is close to a home node, the estimation
heuristics discussed in Section 4.2.1 may not be able

ARTICLE IN PRESS

Fig. 5. KBT-based KNN query processing algorithm.

Y. Xu et al. / Signal Processing 87 (2007) 2861–2881 2871
to gather enough information for estimating an
appropriate KNN search region.

Motivated by the itinerary-based window query

processing (IWQE) [33], we consider the infrastruc-
ture-free query processing strategy and develop
the third KNN query processing algorithm, called
IKNN query processing algorithm. Similar to
IWQE, IKNN is executed along a pre-defined
itinerary and integrates query processing and data
collection into one stage. Thus, no infrastructure is
required to facilitate query processing. More im-
portantly, the query processing is able to stop very
soon after collecting data from the KNN nodes,
which minimizes the number of node visits. In the
following, we first briefly introduce the basic idea of
IWQE, which greatly inspires IKNN. Then we
present IKNN algorithm.

5.1. IWQE algorithm

IWQE [33] is designed for processing spatial
window queries for wireless sensor networks.
Window query retrieves the sensed data from the
sensor nodes falling within a query window (i.e., a
spatial area of interest specified by the user).
Distinguished from existing window query proces-
sing algorithms, IWQE integrates query dissemina-
tion and data collection into one stage, thus
removing the requirement of infrastructure support.
Moreover, as an infrastructure-free approach,
IWQE incorporates in-network data aggregation
technique which further provides opportunity for
aggressive energy optimization.

IWQE algorithm is shown in Fig. 6. Once a
window query (query window is marked as the
rectangle in Fig. 6) is inserted into the network,
IWQE forward the query toward the query window
by a geo-routing protocol. After the query reaches
the query window, a set of sensor nodes inside the
query window, called query nodes (i.e., Q-nodes)
are chosen for query dissemination. In Fig. 6,
Q-nodes are the nodes connected by black arrows.
For each receiving query, a Q-node broadcasts a
probe message that includes the query and informa-
tion about the pre-designed itinerary (shown by
gray dashed lines). Upon hearing the probe
message, the neighbor nodes that are qualified to
reply the query, called data nodes (i.e., D-nodes),
report their sensed data back to the Q-node. After
aggregating the data from all D-nodes and the
partial result received from the previous Q-node,
the current Q-node selects the next Q-node based
on the pre-designed itinerary and a query forward-
ing heuristic, and forward this new partial query
result to the selected next Q-node. After the query
traverses the entire query window, the aggregated
result is returned back to the sink node, again by a
geo-routing protocol. By performing data collection
along with query propagation at each Q-node,
IWQE does not rely on any infrastructure, thus is
more robust and efficient.

Several research challenges raised by IWQE are
addressed in [33]. In order to ensure the query
accuracy, the maximum itineracy width (MIW) is
defined and derived to ensure that all sensor nodes
inside the query window are queried at least once,
such that data from nodes falling into the query
window can be collected. Three different itinerary
routes, i.e., sequential itinerary, parallel itinerary
and hybrid itinerary are examined aiming at energy

ARTICLE IN PRESS

Fig. 6. Itinerary-based window query execution (IWQE) [33].

Y. Xu et al. / Signal Processing 87 (2007) 2861–28812872
optimization, query latency reduction and a balance
of those, respectively. Furthermore, itinerary tra-
versal, including data collection heuristics and query
forwarding heuristics are studied.

5.2. IKNN algorithm

Inspired by IWQE, we adopt itinerary-based
approach for KNN query processing. One straight-
forward adoption is to design a similar itinerary as
the one used by IWQE within a KNN search region
estimated by KBT algorithm, and process KNN
query by traversing the itinerary. This approach,
which does not require infrastructure support, still
faces the problem of KNN search region estimation
as KBT does. Our design aims at stopping query
processing as soon as the k nearest nodes are visited
to minimize the number of node visits without
sacrificing query accuracy. Motivated by this goal,
we consider to start the query processing from the
query point (or the home node) and diffuse query
outward along the itinerary to collect sensor read-
ings. The itinerary is designed in a way such that the
order of nodes being queried is the same as the order
of their distance to the query point. With such
itinerary, the query processing is able to stop as
soon as the sensor readings from the KNN nodes
are collected. In the following, we present the basic
design of IKNN, followed by the discussion about
the itinerary route, width and traversal.

5.2.1. Basic idea of IKNN

In IKNN, the query is first forwarded toward the
home node (i.e., the nearest node to the query point)
using a geo-routing protocol. Upon receiving the
packet, the home node, acting as query node
(i.e., Q-node) broadcasts the probe message includ-
ing the query and the information about the pre-
designed itinerary. Upon hearing the probe mes-
sage, D-nodes (i.e., the neighbor nodes that are
qualified to reply the query) report to the Q-node.
Similar to IWQE, the current Q-node aggregates the
data reports from all its D-nodes, and relay the
query and partial query result to the next selected
Q-node. With such itinerary-based approach, only a
set of sensor nodes (i.e., Q-nodes) among the k

nearest neighbors need to broadcast the query.

5.2.2. Itinerary route in IKNN

As we pointed out, to conserve energy resources
without jeopardizing the query accuracy, the IKNN
algorithm should stop once the KNN nodes are
queried. This design goal cannot be achieved by
GRT and KBT due to the nature of the infra-
structure used. More specifically, partial results
collected along several independent infrastructure
branches are not enough to determine the stop
condition of query processing. Different from
IWQE, IKNN does not have a pre-specified query
region (e.g., the query window for IWQE), which
stops the query processing automatically when the
region is fully covered. Thus, we consider a new
itinerary route, called Archimedean spiral for IKNN
to achieve the above goal.

An Archimedean spiral is a curve which in polar
coordinates (r; y) can be described by equation
r ¼ by, with real number b. Fig. 7(a) shows an
example of Archimedean spiral. The reason we
choose Archimedean spiral counts to one of its key
attribute that successive turnings of the spiral have a

ARTICLE IN PRESS
Y. Xu et al. / Signal Processing 87 (2007) 2861–2881 2873
constant separation distance, which equals to 2pb, if
y is measured in radians. Thus, parameter b controls
the distance between the successive turnings,
which also determines the density of the itinerary
(i.e., spirals) used for query processing. IKNN sets
the start of Archimedean spiral at the home node
and the query is processed diffusing away from the
query point. In other words, sensor nodes are
queried in an order based on their distances to the
query point approximately, as the distance between
the successive turnings is constant. When IKNN
collects data from the k nearest nodes, it can stop
immediately after traversing the next turning of the
Archimedean spiral, since nodes residing outside the
current turning are farther away from the query
point than the nodes that have been queried. Fig. 8
shows an example of IKNN, in which the bounded
node represents the home node; the Q-nodes are
connected by solid arrows demonstrating the direc-
tion of query propagation; Dotted arrows depict
the data collections. Again, comparing with GRT
 10

 20

 30

 40

30

210

60

240

90

270

120

300

150

330

180 0

Fig. 7. Itinerary: (a) Archimedean spiral; (b) parallel itinerary.

Fig. 8. Itinerary-based KNN qu
(shown in Fig. 3) and KBT (shown in Fig. 5), IKNN
incurs less network communication represented by
arrows.

Fig. 7(a) shows a sequential itinerary, in which
only one copy of the query is processed at any time.
Sequential query processing suffers from a long
query latency, especially for a large k (which implies
a long itinerary). This long latency can be overcome
by parallel itinerary, with which more than one
copy of the query can be processed simultaneously.
Fig. 7(b) shows an example of two threads of the
query initiated by the home node (marked as the
grey circle). However we want to point out that
while using parallel itinerary may speed up the
query processing, it is also critical to stop the query
processing once the KNNs are queried to conserve
energy. Therefore, along query processing, two
itineraries need to meet periodically to examine
the partial query result. As Fig. 7(b) shows that each
itinerary only explores half of the geographical
space and two itineraries encounter periodically at
certain point to combine collected query results and
determine the time for stopping the query proces-
sing. If k or more than KNN nodes are queried,
the query processing stops. Even though parallel
itinerary reduces the query processing latency, it
incurs potential communication collisions between
two adjacent itineraries (especially where two
itineraries are close to each other). Moreover, the
protocol complexity is increased, as two itineraries
must periodically exchange query results.

5.2.3. Itinerary width in IKNN

As [33] points out the itinerary density is critical
to the query accuracy and energy usage. When an
ery processing algorithm.

ARTICLE IN PRESS
Y. Xu et al. / Signal Processing 87 (2007) 2861–28812874
itinerary with high density is used, even though the
query accuracy can be ensured, a sensor node may
be queried for too many times, such that the energy
usage increases. On the other hand, when the
itinerary is too sparse, some nodes among KNNs
may not receive the query, which deteriorates the
query accuracy. We take Archimedean spiral as
an example, and study the value of parameter
b. Parallel itineracy can be examined in a similar
way. To determine an appropriate itinerary density
(i.e., the distance between the successive turnings),
we use the research results presented in [33] about
the maximum itinerary width (MIW), which is the
upper bound of itinerary width that ensures the
coverage of nodes of interest, derived in [33]. As
the distance between two successive turnings on
Archimedean spiral is 2pb, equation 2pbpMWI ¼
ffiffiffi

3
p

R=2 needs to be satisfied to ensure the coverage
of all KNN nodes. The derived b from the
above equation is not necessarily the optimal
solution, but is the conserve settings to ensure the
query accuracy.

5.2.4. Itinerary traversal in IKNN

For data collection along itinerary, we consider
contention-based scheme. In contention-based
scheme, each D-node determines its reply prece-
dence independently without assistance from the
Q-node or knowledge about it neighbor nodes. Each
D-node upon receiving the probe message that
contains a reference line emanating from the current
Q-node, sets a timer which can be calculated
by a simple heuristic: timer ¼ max _delay� ða=2pÞ,
where a is the angle formed by the specified
reference line and the line connecting the current
Q-node and the current D-node, and max _delay is
the maximum time that a Q-node is allowed to
complete its data collection. A D-node does not
respond to the Q-node until its timer expires.
After aggregating the reports from all D-nodes, a
Q-node selects the next Q-node to forward the query
and partial query result. Routing along an itinerary
has been well-studied in our prior work [33].
We adopt the heuristic of most progress on itinerary

(MPI), which is effective in terms of energy
consumption and query latency, and has a similar
query accuracy to other forwarding heuristics.
Considering the representation of Archimedean
spiral r ¼ by, it is not easy to calculate the progress
a given node made along the itinerary. As r

increases monopoly with variable y, we use the
distance between a sensor node and the home node
to evaluate the progress, as this distance is only
affected by variable y.

6. Performance evaluation

In this section, we evaluate the performance of
GRT, KBT and IKNN algorithms in terms of
energy consumption, query latency and query accu-

racy. We first study the basic design of KBT and
IKNN algorithms. We then compare the perfor-
mance of GRT, KBT and IKNN algorithms and
examine the impact of varying network conditions
and application specifications (i.e., network density,
the rate of node failure and the application
parameter k), in order to test the sensitivity of
designed KNN query processing algorithms to these
factors.

We implemented all KNN query processing
algorithms on CSIM [35] which allows customized
and scaled simulation design of sensor networks. By
default, 1500 sensors are deployed randomly inside
a 500m� 500m region. Each of these sensors has a
transmission radius of 40m and has approximately
30 neighbors within its transmission radius. The
query point q for a given KNN query is chosen
randomly with a k value selected randomly from
between 10 and 100. By default, nodes are
stationary and do not fail. For each experiment
we run five KNN queries back to back. The
simulations run until all five queries have returned
successfully or have been dropped due to a network
failure, which typically takes between 10 and 20 s.
We assume a MessageDelay of 30ms. The packet
size varies with different KNN processing algo-
rithms. Moreover, given an algorithm (e.g., GRT
and KBT), the packet sizes vary through query
processing as more packets are disseminated along
the path. The experiment results represent the
average of 50 trials.

For each experiment we measure the following
performance metrics:
�
 Transmission energy consumption ðJÞ: The total
energy consumed for transmitting packets during
the simulation time.

�
 Query latency (ms): The average elapsed time

between a query being issued and results being
received.

�
 Query accuracy (%): The percentage ratio of the

number of nodes which are k nearest nodes to q

reporting their results over k. The query accuracy
for a failed query due to network failures is 0.

ARTICLE IN PRESS
Y. Xu et al. / Signal Processing 87 (2007) 2861–2881 2875
6.1. Study of KBT algorithm
This section studies the basic design of KBT
algorithm. We first study the different heuristics for
estimating the KNN search region, and explore an
important tradeoff in KBT design by varying the
TreeHeight value.

6.1.1. Estimating KNN search boundary in KBT

Heuristics for estimating KNN search boundary
determine the size of the estimated region, thus
directly impacting the energy efficiency of KBT. For
a clear comparison, we introduce the optimal KNN
search region which contains exact KNN nodes
with a minimum radius.

Fig. 9 shows the impact of query parameter k (the
driving factor on the radius size) on the different
proposed boundary estimation techniques where the
Y -axis demonstrates the radius of KNN search
boundary. Fig. 9(a) shows that the SUMDIST and
MHD have the best performance for very small k

(i.e., kp10) and come very close to approaching the
optimal boundary radius. However as k increases,
the region estimated by SUMDIST and MHD grow
radically as shown in Fig. 9(b). This is because when
k is larger than the number of hops on the query
forwarding path, the information collected by both
MHD and SUMDIST approach is insufficient for
making accurate estimations about the KNN search
region. As we expected, the NeighborClass2 bound-
ary method consistently gives boundary values
closest to the optimal boundary size for large value
of k (i.e., k410). For the sake of clarity, we only
1 2 3 4 5 6 7 8 9

0

50

100

150

200

K

B
o
u
n
d
a
ry

 R
a
d
iu

s
 (

m
e
te

rs
)

Optimal
SUMDIST
MHD
Neighborclass
Neighborclass2

B
o
u
n
d
a
ry

 R
a
d
iu

s
 (

m
e
te

rs
)

10

Fig. 9. KBT boundary techniq
simulate KNN queries with k410 and employ the
NeighborClass2 boundary technique for KBT algo-
rithm in the following experiments since it gives the
best performance and has low overhead.

6.1.2. Impact of KBT TreeHeight

An important design in KBT design is how to
select an appropriate TreeHeight value since the
internal nodes of the tree must wait long enough to
obtain results from their children without unneces-
sarily increasing the query latency. The TreeHeight
value is an estimate of the height of the KBT tree.

Fig. 10(a) shows the effect of varying TreeHeight
from 2 to 12 on the KBT query accuracy. The figure
shows that the accuracy of all KBT techniques
increase with the tree height, as less datum are
dropped due to expired timers. Fig. 10(b) shows the
natural increase in the query latency as the tree
height increases. Based on this experiment, we
selected a tradeoff value of 6 as the default
TreeHeight value.

6.2. Itinerary in IKNN

In this section, we study the performance of IKNN
using sequential and parallel itinerary, respectively.
We consider two network settings, i.e., 1000 and 1500
nodes deployed within the network. The impact of
network density on GRT and KBT algorithms will
be examined in Section 6.3.

Fig. 11 shows the performance of IKNN algo-
rithm with and without data aggregation (denoted
by agg and non-agg, respectively) along sequential
10 50 100 150 200

0

50

100

150

200

250

300

350

400

450

500

K

Optimal
SUMDIST
MHD
Neighborclass
Neighborclass2

ues: (a) ko10; (b) k410.

ARTICLE IN PRESS

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

KBT Tree Height

Q
u
e
ry

 A
c
c
u
ra

c
y

KBT Flood
KPT SR
KBT PT

2 4 6 8 10

0

500

1000

1500

2000

2500

Q
u
e
ry

 L
a
te

n
c
y
 (

m
s
)

KBT Flood
KPT SR
KBT PT

12

KBT Tree Height

12

Fig. 10. Impact of KBT tree height: (a) query accuracy; (b) query latency.

Y. Xu et al. / Signal Processing 87 (2007) 2861–28812876
and parallel itinerary (denoted by S and P, res-
pectively). For non-aggregation case, we assume
that even though data from multiple nodes could be
combined into one packet to reduce the overhead
incurred by packet headers, sensor readings cannot
be compressed. On the other hand, data aggregation
(i.e., agg) refers to the case where sensor readings
can be aggregated and compressed such that the
data packet size remains the same along query
processing in IKNN. Among three compared
algorithms (i.e., GRT, KBT and IKNN), only
IKNN supports such in-network data aggregation.
GRT and KBT do not support in-network data
aggregation as when data is propagated back to the
application, the intermediate nodes relaying the
data do not have enough information to avoid
unnecessary transmission, as they cannot tell
whether the collected data are from KNN nodes.
In both GRT and KBT, the root node has to select
the readings of the k nearest nodes from all reported
data based on the location where it is collected.
Since GRT and KBT do not support in-network
processing techniques, they are much less energy-
efficient than IKNN when data aggregation is
allowed, which will be further studied shortly.

As shown in Fig. 11(a), IKNN algorithm with
sequential and parallel itinerary have close energy
consumption. IKNN with data aggregation incurs
significantly less energy cost than that without
aggregation, since the total amount of collected
data is drastically reduced by in-network proces-
sing. Since in-network processing techniques do not
have significant impacts on query accuracy and
query latency, we only show those of IKNN with
sequential and parallel itinerary in Figs. 11(b) and
(c), respectively. As we expected, a query accuracy
of using sequential itinerary is close to that of using
parallel itinerary. However, sequential itinerary
causes more than 50% longer of query latency
than parallel itinerary. Our experimental results
show that this is due to the small k value used in
the experiment. When k increases, the latency ratio
between parallel and sequential itinerary ap-
proaches to 1

2
. Due to the space constrains, the

results are not shown here.

6.3. Impact of network density

In this experiment, we measure the effect of
sensor node density on the performance of GRT,
KBT and IKNN algorithms by varying the number
of sensor nodes inside the fixed region from 500 to
1500 (the average number of neighbors varies from
10 to 30), which is demonstrated in Fig. 12. For
the clarity of the presentation, we only show the
performance of IKNN using parallel itinerary with
and without data aggregation, since experimental
results in Section 6.2 show that the performance of
sequential itinerary is close to that of parallel
itinerary. Meanwhile, we depict the performance
of KBT Flood and KBT SR, as KBT PT has worse
performance than these two schemes.

Fig. 12(a) shows an increasing energy consump-
tion in both GRT and KBT algorithms, as the

ARTICLE IN PRESS

(S, nonagg) (S, agg) (P, nonagg) (P, agg)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

IKNN

T
ra

n
s
m

is
s
io

n
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

Sequential Parallel

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

IKNN
Q

u
e
ry

 A
c
c
u
ra

c
y
 (

%
)

1000 Nodes
1500 Nodes

Sequential Parallel

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

5000

IKNN

Q
u
e
ry

 L
a
te

n
c
y
 (

m
s
)

1000 Nodes
1500 Nodes

1000 Nodes
1500 Nodes

c

Fig. 11. Study of IKNN: (a) transmission energy consumption (J); (b) query accuracy; (c) query latency.

Y. Xu et al. / Signal Processing 87 (2007) 2861–2881 2877
network becomes denser. This is because that more
sensor nodes are involved in query processing.
IKNN has much less energy consumption than
KBT and GRT algorithms by reducing the number
of node visits. The query accuracy of all algorithms
depicted in Fig. 12(b) improves as more sensor
nodes are deployed, since fewer routing failures are
likely to happen in a denser network. This is
especially clear for IKNN, because the Q-node
selection is constrained within a relatively small
region (i.e., within the itinerary width), which is
more likely to fail comparing with tree-based
routing in GRT and KBT algorithms. The problem
worsens when the network is sparse. In a fairly
dense network (e.g., 1000 nodes), IKNN has
comparable query accuracy as KBT algorithms.
Fig. 12(c) demonstrates the query latency for
different algorithms. Query latency of IKNN and
KBT is only slightly affected by sensor density. The
reason that IKNN has a longer query latency than
KBT algorithm is because KBT collect sensor
readings through multiple tree branches, which is
more time-efficient than IKNN algorithm using two
itinerary for query processing. We believe by using
more parallel itinerary, the query latency of IKNN
algorithm can be further reduced. This paper focuses

ARTICLE IN PRESS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 150014001300120011001000900800700 600500

T
ra

n
s
m

is
s
io

n
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

Number of Sensors

GRT
KBT Flood

KBT SR
IKNN (non-agg)

IKNN (agg)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1500 1000 500

Q
u

e
ry

 A
c
c
u

ra
c
y

Number of Sensors

GRT
KBT Flood

KBT SR
IKNN

 1000

 2000

 3000

 4000

 5000

 6000

 1500 1000 500

Q
u

e
ry

 L
a

te
n

c
y
 (

m
s
)

Number of Sensors

GRT
KBT Flood

KBT SR
IKNN

Fig. 12. Impact of sensor density: (a) transmission energy consumption; (b) query accuracy; (c) query latency.

Y. Xu et al. / Signal Processing 87 (2007) 2861–28812878
on the performance comparison of different KNN
query processing algorithms and will study the impact
of parallel itinerary on IKNN in our future work.

6.4. Impact of k

In this section we investigate the application
requirement of k that directly affects the number of
nodes involved with the query processing. Fig. 13
varies k from 50 to 400. As KBT Flood and KBT
SR have similar performance, we only show the
performance of KBT Flood in this section.

Fig. 13(a) shows that with small and medium k

(ko250), the transmission energy consumed by
IKNN is lower than GRT and KBT algorithms.
However, IKNN without data aggregation has
dramatically increasing energy consumption as k

further increases. This is because that all collected
sensor readings are carried along a longer itinerary
when k becomes larger. The transmission energy
consumed by the GRT algorithm stays fairly
constant. It is because that when k is larger than
the average number of neighbors (i.e., m) a node
has, the size of KTable transmitted from children
node to their parent node is determined by m that is
constant in this experiment and that of KBT
algorithm increases since the size of estimated
KNN search region grows along with k.

Fig. 13(b) shows the effect of varying k on
query accuracy. The query accuracy of comparing
algorithms is close, but all declines slowly as k

increases. Therefore, we conclude that when k is

ARTICLE IN PRESS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250 300 350 400

T
ra

n
s
m

is
s
io

n
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

K

GRT
KBT Flood

IKNN (non-agg)
IKNN (agg)

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

Q
u
e
ry

 A
c
c
u
ra

c
y

K

GRT
KBT Flood

IKNN

Fig. 13. Impact of k (number of expected answers): (a) transmission energy consumption; (b) query accuracy.

Y. Xu et al. / Signal Processing 87 (2007) 2861–2881 2879
small (e.g., ko250), IKNN is a better choice
than KBT and GRT. On the other hand, when k

becomes larger and in-network data aggregation
is not applicable, both GRT and KBT perform
better than IKNN in terms of transmission energy
consumption.

6.5. Impact of sensor failure

Another property of sensor networks that can
affect query processing performance is the rate of
failure of sensor nodes. Fig. 14 shows the effect of
node failure on energy consumption and query
accuracy by varying the percentage rate of node
failure per second from 0% to 0.3%. A beacon
period (the duration between two beacon messages)
of 3 s is used for this experiment. As all algorithms
require such a beacon mechanism, we do not count
the energy consumption for maintaining neighbor
states. The transmission energy consumption de-
picted in Fig. 14(a) decreases for KBT algorithm
since less number of nodes within the estimated
KNN region report back to the root node. In
Fig. 14(b), the query accuracy of IKNN drops when
more nodes fail, since it is more difficult to select
Q-nodes when the network density drops with less
nodes active within the network.

The results presented in this section show that
when k is small or medium, IKNN achieves
comparable query accuracy at a much less energy
cost compared with GRT and KBT algorithms.
Considering the relative long query latency of
IKNN, KBT algorithm is more appropriate for
data collection with tight time constraints. With a
larger k, if data aggregation is allowed, IKNN by
supporting in-network processing significantly im-
proves energy efficiency and outperforms GRT and
KBT algorithms. Otherwise, GRT and KBT algo-
rithms have comparable performance and both can
be adopted for KNN query processing. IKNN using
parallel itinerary has comparable energy efficiency
and query accuracy as that using sequential
itinerary. However, parallel itinerary is promising
for shortening the query latency experienced by the
sequential itinerary.

7. Conclusion and future work

In this paper, we present various challenges in
processing KNN queries in sensor networks, and
studied three query processing strategies, including
global infrastructure-based, local infrastructure-
based and infrastructure-free. These strategies
demonstrate very distinctive performance charac-
teristics. We designed three KNN query processing
algorithms, namely, GRT, KBT and IKNN algo-
rithms in accordance with different design philoso-
phies. GRT prunes nodes along a tree infrastructure
spanning over the network, thus incurring notice-
able infrastructure maintenance overhead and
unnecessary node visits. KBT reduces such an
overhead by constraining the tree infrastructure
within an estimated KNN search region, which
directly determines the energy cost and accuracy of

ARTICLE IN PRESS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.05 0.1 0.15 0.2 0.25 0.3

T
ra

n
s
m

is
s
io

n
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

Node Failure Rate per Second (%)

GRT
KBT Flood

IKNN (non-agg)
IKNN (agg)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Q
u
e
ry

 A
c
c
u
ra

c
y

Node Failure Rate per Second (%)

GRT
KBT Flood

IKNN

Fig. 14. Impact of sensor failure: (a) transmission energy consumption; (b) query accuracy.

Y. Xu et al. / Signal Processing 87 (2007) 2861–28812880
KBT algorithm. Without prior knowledge about
network topology, estimation of such KNN search
region is difficult. IKNN takes a different approach
by propagating query and collecting data along a
pre-designed itinerary. Different from GRT and
KBT algorithms, IKNN is able to stop query
processing soon after collecting from the k nearest
nodes, thus effectively reducing the number of
unnecessary node visits. To our best knowledge,
this research represents the first study investigating
KNN query processing in wireless sensor networks.
Our research results reveal a profound guidance for
designing and selecting appropriate KNN query
processing algorithms corresponding to given net-
work conditions and application requirements. An
extensive performance evaluation of all three
designed algorithms shows that when k is small or
medium, IKNN achieves better energy efficiency
and comparable query accuracy at cost of pro-
longed query latency. When k becomes large, both
KBT and GRT are more efficient than IKNN
algorithm. Moreover, among three algorithms, only
IKNN is able to support in-network processing
technique, which significantly optimizes energy
consumption.

In our future work, we plan to adapt IKNN
algorithm for order-sensitive KNN query and
optimize KBT algorithm by determining Tree-
Height based on the value of k. In addition, we
will investigate the impact of parallelism in IKNN
algorithm on reducing its query latency without
sacrificing the energy efficiency and query accuracy.
Moreover, we plan to implement the developed
algorithms in a prototype.

Acknowledgment

This research was supported in part by the
National Science Foundation under Grant no. IIS-
0328881, IIS-0534343 and CNS-0626709.
References

[1] D. Li, K. Wong, Y. Hu, A. Sayeed, Detection, classification

and tracking of targets in distributed sensor networks, IEEE

Signal Process. Mag. 19 (2) (2002).

[2] H. Qi, X. Wang, S.S. Iyengar, K. Chakrabarty, High

performance sensor integration in distributed sensor net-

works using mobile agents, Internat. J. High Performance

Comput. Appl. 16 (3) (2002) 325–335.

[3] N. Roussopoulos, S. Kelley, F. Vincent, Nearest neighbor

queries, in: Proceedings of ACM SIGMOD, San Jose, CA,

1995, pp. 71–79.

[4] T. Seidl, H.P. Kriegel, Optimal multi-step k-nearest neigh-

bor search, in: Proceedings of ACM SIGMOD, New York,

NY, 1998, pp. 154–165.

[5] Z. Song, N. Roussopoulos, K-nearest neighbor search for

moving query point, in: Proceedings of International

Symposium on Spatial and Temporal Databases, Los

Angeles, CA, July 2001, pp. 79–96.

[6] Y. Xu, W.-C. Lee, J. Xu, G. Mitchell, PSGR: priority-based

stateless geo-routing in highly dynamic sensor networks,

Technical Report CSE 04-021, Pennsylvania State University,

September 2004, hhttp://www.cse.psu.edu/pda/SDB/pubs/

PSGR_TR.pdfi.

[7] Y. Xu, W. Lee, Window query processing in highly dynamic

geo-sensor networks: issues and solutions, in: Proceedings

http://www.cse.psu.edu/pda/SDB/pubs/PSGR_TR.pdf
http://www.cse.psu.edu/pda/SDB/pubs/PSGR_TR.pdf

ARTICLE IN PRESS
Y. Xu et al. / Signal Processing 87 (2007) 2861–2881 2881
of NSF Workshop on GeoSensor Networks, Portland,

ME, October 2003.

[8] A. Guttman, R-trees: a dynamic index structure for spatial

searching, in: Proceedings of ACM SIGMOD, Boston, MA,

1984, pp. 47–57.

[9] J. Winter, W. Lee, KPT: a dynamic KNN query processing

algorithm for location-aware sensor networks, in: Proceed-

ings of International Workshop on Data Management for

Sensor Networks, Toronto, Canada, 2004, pp. 119–125.

[10] J. Winter, Y. Xu, W. Lee, Energy efficient processing of

k nearest neighbor queries in location-aware sensor net-

works, in: Proceedings of International Conference on

Mobile and Ubiquitous Systems: Networking and Services,

San Diego, CA, 2005, pp. 281–292.

[11] N. Patwari, A.O. Hero III, M. Perkins, N. Correal, R.

O’Dea, Relative location estimation in wireless sensor

networks, IEEE Trans. Signal Proc. (Special Issue Signal

Process. Networking) 51 (9) (2002) 2137–2148.

[12] C. Wang, Survey on sensor network localization, Technical

Report MSU-CSE-05-2, Department of Computer Science,

Michigan State University, January 2005.

[13] B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, SPAN:

an energy-efficient coordination algorithm for topology

maintenance in ad hoc wireless networks, Wireless Network

8 (5) (2002) 481–494.

[14] C. Schurgers, V. Tsiatsis, S. Ganeriwal, M. Srivastava,

Topology management for sensor networks: exploiting

latency and density, in: Proceedings of the International

Symposium on Mobile Ad Hoc Networking and Comput-

ing, Lausanne, Switzerland, June 2002, pp. 135–145.

[15] Y. Xu, J. Heidemann, D. Estrin, Geography-informed

energy conservation for ad hoc routing, in: Proceedings of

ACM MobiCom, Rome, Italy, July 2001, pp. 70–84.

[16] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel,

Z. Protopapas, Fast nearest neighbor search in medical

image databases, in: Proceedings of VLDB, San Francisco,

CA, 1996, pp. 215–226.

[17] S. Chaudhuri, L. Gravano, Evaluating top-k selection

queries, in: Proceedings of VLDB, San Francisco,

CA, 1999, pp. 397–410.

[18] S. Saltenis, C.S. Jensen, S.T. Leutenegger, M.A. Lopez,

Indexing the positions of continuously moving objects,

in: Proceedings of ACM SIGMOD, Dallas, TX, 2000,

pp. 331–342.

[19] R. Benetis, C.S. Jensen, G. Karciauskas, S. Saltenis, Nearest

neighbor and reverse nearest neighbor queries for moving

objects, in: Proceedings of the 2002 International Sympo-

sium on Database Engineering & Applications, Washington,

DC, 2002, pp. 44–53.

[20] S.R. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong,

The design of an acquisitional query processor for sensor

networks, in: Proceedings of the ACM SIGMOD, San

Diego, CA, June 2003.

[21] S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong,

TAG: a tiny aggregation service for ad-hoc sensor networks,

ACM SIGOPS Operating Systems Rev. 36 (SI) (2002)

131–146.
[22] D. Estrin, R. Govindan, J. Heidemann, S. Kumar, Next

century challenges: scalable coordination in sensor net-

works, in: Proceedings of the ACM/IEEE International

Conference on Mobile Computing and Networking, Seattle,

WA, August 1999, pp. 263–270.

[23] W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan,

Energy-efficient communication protocol for wireless micro-

sensor networks, in: Proceedings of the Hawaii International

Conference on System Sciences, Maui, HI, January 2000,

pp. 8020–8029.

[24] C. Intanagonwiwat, R. Govindan, D. Estrin, Directed

diffusion: a scalable and robust communication paradigm

for sensor networks, in: Proceedings of the ACM Annual

International Conference on Mobile Computing and Net-

working, Boston, MA, August 2000, pp. 56–67.

[25] M. Demirbas, H. Ferhatosmanoglu, Peer-to-peer spatial

queries in sensor networks, in: Proceedings of IEEE

International Conference on Peer-to-Peer Computing,

Linkping, Sweden, September 2003.

[26] G. Goldin, M. Song, A. Kutlu, H. Gao, H. Dave,

Georouting and delta-gathering: efficient data propagation

techniques for geosensor networks, in: Proceedings of NSF

Workshop on GeoSensor Networks, Portland, ME, October

2003.

[27] B. Karp, H. Kung, GPSR: greedy perimeter stateless routing

for wireless networks, in: Proceedings of the ACM Annual

International Conference on Mobile Computing and Net-

working, Boston, MA, August 2000, pp. 243–254.

[28] Y.-B. Ko, N.H. Vaidya, Location-aided routing (LAR) in

mobile ad hoc networks, Wireless Network 6 (4) (2000)

307–321.

[29] F. Kuhn, R. Wattenhofer, A. Zollinger, Worst-case optimal

and average-case efficient geometric ad-hoc routing, in:

Proceedings of ACM International Symposium on Mobile

Ad Hoc Networking and Computing, Annapolis, MD, June

2003, pp. 267–278.

[30] Y. Xu, W.C. Lee, J. Xu, G. Mitchell, Psgr: priority-based

stateless geo-routing in wireless sensor networks, in:

Proceedings of IEEE Conference Mobile Ad-hoc and Sensor

Systems, Atlanta, Georgia, April 2006.

[31] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan,

L. Yin, F. Yu, Data-centric storage in sensornets with GHT,

a geographic hash table, ACM/Kluwer J. Mobile Networks

Appl. 8 (4) (2003) 427–442.

[32] Y. Yu, R. Govindan, D. Estrin, Geographical and energy

aware routing: a recursive data dissemination protocol for

wireless sensor networks, Technical Report UCLA/CSD-

TR-01-0023, UCLA Computer Science Department, May

2001.

[33] J. Xu, Y. Xu, W.C. Lee, G. Mitchell, Processing window

queries in wireless sensor networks, in: Proceedings of IEEE

ICDE, Atlanta, GA, April 2006.

[34] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, D. Estrin,

Data-centric storage in sensornets, ACM SIGCOMM

Comput. Commun. Rev. 33 (1) (2003) 137–142.

[35] H. Schwetman, CSIM user’s guide (version 18), Mesquite

Software, Inc., hhttp://www.mesquite.comi, 1998.

http://www.mesquite.com

	Processing k nearest neighbor queries in location-aware �sensor networks
	Introduction
	Preliminaries
	Assumptions
	Related work
	Query processing strategies for wireless sensor networks
	Global infrastructure-based strategy
	Local infrastructure-based strategy
	Infrastructure-free strategy

	KNN algorithm over geo-routing tree
	Geo-routing tree
	GRT algorithm

	KNN algorithm over KBT
	GPSR algorithm
	KBT algorithm
	Estimation of KNN search region
	Find k-1 nearest neighbors
	Return results

	KNN algorithm over itinerary
	IWQE algorithm
	IKNN algorithm
	Basic idea of IKNN
	Itinerary route in IKNN
	Itinerary width in IKNN
	Itinerary traversal in IKNN

	Performance evaluation
	Study of KBT algorithm
	Estimating KNN search boundary in KBT
	Impact of KBT TreeHeight

	Itinerary in IKNN
	Impact of network density
	Impact of k
	Impact of sensor failure

	Conclusion and future work
	Acknowledgment
	References

