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Abstract

The electrical properties of flexible organic thin-film transistors fabricated on stainless steel substrates were measured
under different bending conditions. We found that the compressive strain resulted in an increased mobility while the
tensile strain leaded to a decreased mobility. From the analysis of the resistances, we deduced that the mechanical strains
influence the barrier height between the grains of pentacene thin-films, thereby resulting in the variation of device
mobilities.
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Technical Summary

1. Background and objectives

Organic thin-film transistors (OTFTs) have been received much attention recently because of their potential
applications on low-cost, light-weight, and large-area electronic products.' More importantly, the mechanical flexibility
of organic materials facilitates the preparation of organic devices using high-throughput processes, such as roll-to-roll
processing, on flexible substrates. On the other hand, although flexible OTFTs have been widely reported,™ the analysis
of electrical properties under bending conditions is still rare.*> In this work, with the use of pentacene as the
semiconducting material, and poly(vinyl cinnamate) (PVCN)° as the insulator, we fabricated flexible OTFTs on stainless
steel (SS) substrates. We found that the compressive strain resulted in an increased mobility while the tensile strain leaded
to a decreased mobility. We deduced that the compressive strain forced the grains to become more compact, thereby
facilitating the charge transporting between the grains. On the other hand, the tensile strain caused an increase in the
spacing between the grains, thereby increasing the barrier height for charge hopping.

2. Results

The device structure is illustrated in Fig. 1 and the material used for each layer is summarized in the inserted table. To
fabricate flexible OTFTs on SS substrates, a thick photoresist (EOC-130B) layer was first spin-coated to planarize the
surface of the SS foils. Subsequently, a layer of polyimide was also fabricated to modify the surface energy for improving
the adhesion of the upper layers on the substrate. Then, Al was thermally evaporated as the gate electrode. For the
dielectric layer, poly(vinyl cinnamate) (PVCN) was firstly dissolved in dichlorobenzene (15wt%) and was spin coated on
the SS substrates. After a drying process at 80 °C for 10min, the substrate was under UV irradiated (A=264nm) to
crosslink the PVCN (Fig. 1). The substrate was then etched by an organic solvent to define the insulating area. After the
etching process, the substrate was dried at 80 °C for 10 min. The thickness of the resulting PVCN layer was ~400 nm.
The capacitance was 6.12x10” F/cm®. For the active layer, pentacene was thermally deposited (80nm). Finally, Au
electrodes were evaporated and served as the source/drain electrodes. We used a shadow mask to define channel length
(L) and width (W). All W/L ratio was 20. The electrical characteristics were measure by Keithley 4200 under atmosphere
environment. For the bending tests, the devices were stressed with a bending radius of 10 mm (Figure 2). The bending
direction was parallel to that of charge transport.

Figure 3 shows the device output characterization obtained under different mechanical bending conditions. We can
clearly see that the drain current increased under compress strain. On the other hand, the current decreased under tensile
condition. Further, the current differences increased with the gate voltage. From the above electrical characterization, the
device field-effect mobilities were calculated and summarized in Figure 4. The device mobility increased with the
channel length.

The device resistance (R,,) mainly comes from two contributions: bulk resistance of the semiconductor (Repanne1) and
the contact resistance at the interface between the source/drain electrode and the semiconductor (Reonwe). In order to
further clarify the effect of mechanical bending, transfer line method (TLM)’ was adapted to estimate the contact and
channel resistances following the equactions

R, = 0Vps/Olp (Vg=constant ; Vpg—=>0) )
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Ron = Rcontact + Rchannel (2)
Rchannel = L/[Wcl(VG'Vt)] (3)

R,n was calculated from the 14-V4 curves (Figure 3). The TLM results are plotted in Figure 5. The intercept of the curves
with y-axis indicated the contact resistance. After knowing the contact resistance, the channel resistance could be also
deduced. From the figure, we can see that the major effect of mechanical bending came from the change of channel
resistance. The contact resistance remained almost unchanged after bending.

Figure 6 shows the morphology of the pentacene layer, which exhibited polycrystalline morphology. For a
polycrystalline TFT, the mobility is usually governed by the grain boundary mobility.® In other words, the hopping
process is usually limited by the activation energy barrier between the grains. Following this assumption, we propose a
model to explain the above observation as the followings. Under a tensile strain [Fig. 6(c)], because the spacing between
the gains probably will become longer, the energy barrier between the grains is increased, thereby reducing the hopping
rate of holes. On the other hand, when the substrates is under compressive strain, the grains come closer and,
subsequently, the energy barrier is decreased [Fig. 6(d)]. Therefore, we observed an increased mobility under an inward
bending condition.

3. Originality
The data presented is original.
4. Impact

This study studies the effect of mechanical strain on the pentacene-based organic thin film transistors. The OTFTs
were fabricated on flexible stainless steel (SS) substrates and measured under different bending conditions. We observed
that the compressive strain resulted in an increased mobility while the tensile strain leaded to a decreased mobility. We
further used transfer line method to extract the channel and parasitic resistances, and found that the major impact of the
mechanical bending was on the channel resistance. We suspected that mechanical strains influence the barrier height
between the grains of pentacene thin-films, thereby resulting in the variation of device mobilities.
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symbol | layer material
A | S-D electrode | Au
B Active laver pentacene
© | Gate insulator PVCN
D Gate electrode Al
E polyvimide
F Flexible substrate | g, 30B
G stainless
(a)
O 0
L =0 I
i /
0 —C 0= r_
() u
S 1,
(b)

Fig. 1 The device structure and materials used in this study. (b)The chemical structure of PVCN
and the photo-crosslinking reaction.

Fig. 2 The schematic presentation of the bending test apparatus: (a) compressive (inward) and (b)
tensile (outward) bending. The bending direction was parallel to the channel.
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Fig. 3 The output characteristics of the device measured under compressive and tensile strains
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Fig. 4 The mobility of the OTFTs under different mechanical strains as a function of channel
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Fig. 5 The mobility of the OTFTs under different mechanical strains as a function of channel

length (Vp=-40V).
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pentacene
PVCN
base
(b) (©) (d)
Fig. 6 (a)The surface morphology of the pentacene layer. The schematic representation of the gains

of the pentacene layer on a (b) flat substrate; (c) substrate under tensile strain; (d) substrate under
compressive strain.
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Light Harvesting Schemes for High-performance
Polymer Solar Cells

Fang-Chung Chen, Yi Hung

Department of Photonics and Display Institute
National Chiao Tung University
Hsinchu, Taiwan
fcchen@mail.nctu.edu.tw

Abstract—In this paper, we will present approaches for light
harvesting for enhancing the performance of polymer solar cells.
We have employed indium tin oxide (ITO) as an optical spacer in
inverted structures. We have found that the optical interference
effect led to spatial redistribution of the optical field in the
devices, resulting in favorable distribution of photogenerated
excitons. Therefore, the introduction of the ITO optical spacer at
an appropriate thickness increased the short-circuit current
density and the overall power conversion efficiency.

Keywords-Polymer; solar cell; light trapping; optical

. INTRODUCTION

Recently organic photovoltaic devices (OPVs) have
received widely attention because they could offer low-cost,
low temperature approaches, such as roll-to-roll and printing
methods, for the manufacture of cheap energy sources.
Furthermore, these devices potentially could be also applied
onto portable electronics devices due to their light-weight and
mechanical flexibility [1-3]. One of the key issues toward
achieving high efficiency is sufficient photo-absorption. To use
a thicker active layer to increase the absorption, however,
inevitably leads to a larger device series resistance, due to the
much lower motilities of organic materials. Therefore, it is of
importance to develop effective methods for efficient sunlight
harvesting through light trapping technology without sacrifice
of the electrical properties.

In this paper, we will present the light trapping scheme for
enhancing the power conversion efficiency (PCE) of polymer
solar cells. We incorporated a layer of indium tin oxide (ITO)
as an optical spacer in inverted OPV devices. ITO appears to
be a suitable candidate for use as a functional optical spacer
between the organic active layer(s) and the electrode in the
OPVs because of its high electrical conductivity (to avoid the
increased device resistance) and high optical transparency.
However, its work function somehow misaligns with the
highest occupied molecular orbital of the p-type conducting
polymer, which might result in a high contact resistance. This
problem could be easily solved, however, by incorporating
molybdenum trioxide (MoOs) as an interlayer to match the
energy levels. Our experimental and theoretical studies of this
MoO3/ITO “bilayer structure” revealed that the introduction of
the ITO optical spacer notably enhanced the exciton generation
rate, thereby increasing both the photocurrent and the overall

Juh-Lih Wu

Institute of Electro-optical Engineering
National Chiao Tung University
Hsinchu, Taiwan

device efficiency. More interestingly, the optical interference
effect, induced by the presence of the ITO optical spacer,
remained beneficial to the device performance of inverted
OPVs when optimizing the thickness of the active layer.

Il.  EXPERIMENTAL

Fig. 1 provides a schematic representation of the devices’
structural configuration. To fabricate inverted OPVs, an
interfacial layer of cesium carbonate (Cs,CO3) was spin-
coated onto the ITO-coated (thickness: 180 nm) glass
substrate, followed by thermal annealing at 150 °C for 15 min.
The work function of the resulting ITO layer was reduced to
3.4 eV, facilitating electron collection at the cathode [4]. The
photoactive layer was spin-coated on top of the Cs,CO; from a
blend (1:1,w/w) of poly(3-hexylthiophene) (P3HT) and [6,6]-
phenyl-Cg;-butyric acid methyl ester (PCBM) dissolved in
1,2-dichlorobenzene (DCB). After solvent annealing [1], the
dried film was thermally annealed at 110 °C for 15 min; the
resulting film was ca. 180 nm thick. To complete the device,
20 nm-thick MoOs; and 150 nm-thick Ag layers were
sequentially deposited through thermal evaporation to function
as the hole-collection contact. Here, Ag was used as the
anodic electrode because of its high reflectance and
conductivity. 1TO layers of various thicknesses (50, 100, and
150 nm) were inserted between the MoO; and Ag layers
through rf sputtering to function as optical spacers. The device
area, defined through a shadow mask, was 0.12 cm? All of the
completed devices were thermally post-annealed at 140 °C for
5 min in a glove box. The current density—voltage (J-V)
characteristics of the devices were measured using a Keithley
2400 source-measure unit. The photocurrent was obtained
under air mass 1.5 global (AM 1.5G) illumination from a 150
W Thermal Oriel solar simulator. The illumination intensity
was calibrated using a standard Si photodiode equipped with a
KG-5 filter (Hamamatsu, Inc.) [5]. Optical modeling was
performed using the optical transfer matrix formalism (TMF)
approach [6]. The optical constants, including the refractive
index (n) and extinction coefficient (), of each layer in the
device structure were obtained using the ellipsometry method.
The film thickness of each layer was determined using atomic
force microscopy (AFM) and ellipsometry measurements.
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Figure 1. Schematic representation of the device architecture of OPVs

incorporating an ITO optical spacer.

IIl.  RESULTS AND DISSCUSSION

Fig. 2 displays the J-V characteristics, recorded under 100
mW cm illumination, of OPV devices incorporating ITO
optical spacers of various thicknesses. The reference device
possessing the structure 1TO/Cs,CO3/P3HT:PCBM/Mo0s/Ag
exhibited an open-circuit voltage (V.. of 0.59 V, a short-
circuit current (Ji) of 9.54 mA cm™, and a fill factor (FF) of
0.67, yielding an overall device PCE of 3.76%. The typical
photovoltaic characteristics suggested that functional contacts
were formed at both contacts (ITO/Cs,CO; and MoOi/AQ).
Note that Cs,CO;3[4] and MoOs [7] have been proposed to act
as functional electron- and hole-selective layers, respectively,
for efficient charge collection in OPVs.
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Figure 2. J—V characteristics, recorded under 100 mW cm illumination

(AM 1.5G), of polymer solar cells incorporating ITO optical
spacers of various thicknesses.

To further benefit from the optical interference effect, we
inserted ITO layers of various thicknesses (60, 120, and 180
nm) between the MoO; and Ag layers. In each case, the value
of V,. remained at 0.59 V. In contrast, the value of J, was
strongly dependent on the ITO thickness: its optimum value
occurred for an ITO thickness of 120 nm. Moreover, the FF
decreased slightly after inserting the ITO optical spacers,
presumably because of increased device series resistance
arising from the presence of ITO [8] and/or possible sputtering
damage. Such problems could, however, be overcome through
the incorporation of an optical spacer of a suitable thickness.

The device incorporating the 120 nm~thick ITO optical spacer
achieved an excellent PCE of 4.20% (V. = 0.59 V; J,. = 11.49
mA cm™; FF = 0.62). In general, the expected benefit from the
optical interference effect is negated when the active layer is
sufficiently thick [9]. Amazingly, the inverted OPVs fabricated
in this study could still benefit from the introduction of an ITO
optical spacer when the thickness of the active layer was

optimized.

Fig. 3 compares the incident photon—to—electron conversion
efficiency (IPCE) curves for devices with and without optical
spacers. The IPCE, the ratio of the number of collected
electrons to that of absorbed photons, is measured to determine
the spectral response of OPVs; it is given by

IPCE (%) =1240x e x100%

Ax1, )
where A is the wavelength and 7; is the incident light intensity
from the monochromatic light source. Fig. 3 reveals that the
spectral response changed significantly after inserting an ITO

optical spacer, presumably because of the interference effect
caused by the ITO optical spacer.

Figure 3. IPCE curves of polymer solar cells incorporating ITO optical
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spacers of various thicknesses.

To further study the mechanism responsible for the
increased photocurrent, we also numerically investigated the
optical interference effect of incorporating an optical spacer in
OPVs through TMF optical modeling, which has been used
widely to investigate the optical behavior of OPV devices

2
[9,10]. The optical field intensity (|E(Z)| ) at any given
position in the device can be calculated from the optical
constants (» and k) and the depth of each layer. Figure 4
displays the effect of the optical spacers on the calculated
distribution profiles of optical field intensity in the device at
given wavelengths (1) of 500 and 550 nm. The spatial
distribution of the optical field intensity was strongly
dependent on the thickness of the optical space.



For quantitative analysis, therefore, we further calculated the
distribution profiles for the exciton generation rate G(z) inside
the active layer via the energy dissipation rate (Fig. 5) [11].
Figure 5 reveals that the incorporation of an ITO spacer

effectively tailored the distribution of photo-generated excitons.

After incorporating a 120 nm-thick ITO optical spacer, the
values of G(z) increased within the depth range from 60 to 120
nm but decreased near both organic/electrode contacts. We
suspect that the dramatic change in the distribution profile of
G(2) contributed to the enhanced photocurrent.
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Figure 4. Calculated distribution profiles for the optical field intensities in
OPV devices incorporating ITO optical spacers of various thicknesses,
determined at wavelengths of (a) 500 and (b) 550 nm.

Previously, Moulé and Meerholz suggested that the
photocurrent decreased when the light intensity in the
proximity of the organic/electrode interface increased due to
the exciton guenching (recombination) in conventional devices
[12]. In the present study, the shift of the exciton generation
zone away from the electrodes probably diminished possible
exciton quenching at the electrodes. Therefore, the use of an
ITO optical spacer of an appropriate thickness can give rise to a
favorable distribution profile of G(z) for maximizing the
number of “effective” photon-generated excitons. Finally, we
note that the “optical spacers” failed to increase the amount of
excitons (which can be calculated by integrating the area
beneath the curves in Fig. 5) because our devices had
sufficiently thick films for photon harvesting. However, the
favorable distribution profile of G(z) was still beneficial for
improving the overall device efficiency of OPVs.
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Figure 5. Calculated distribution profiles of the exciton generation rate inside
the active layer for OPV devices incorporating ITO optical spacers of various
thicknesses. Inset: Schematic illustration of our layer stack.

IV. CONCLUSION

Efficient light absorption in thin film solar cells is critical to
improving their performance—especially for those based on
organic materials, where the thickness of the active layer is
typically ca. 200 nm. We have improved the PCE of the
inverted OPVs by incorporating an ITO optical spacer, thereby
achieving interference-enhanced devices. The resulting optical
interference effect led to spatial redistribution of the optical
field intensity and the distribution profile of exciton generation
rate. Although the degree of light absorption in inverted OPVs
was not increased, the resulting favorable distribution of photo-
generated excitons probably decreased the level of exciton
quenching near the electrodes. Our results indicate that the
inverted OPVs could still benefit from such optical effects
when they had a sufficiently thick active layer.
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(# %) Using charge blocking layers for improving detectivities of organic photomultiple
photodetectors
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(# %) We have found the incorporation of charge blocking layer could effectively suppress the
dark current of organic photomultiple photodetectors. The dark current was reduced from
-43.8 mA/cm2 to 1.82 mA/cm?2 while the bias voltage was -4V. Due to the reduction of

the dark current, the detectivity has been improved substantially.
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