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At National Chiao Tung University (NCTU), an interdisciplinary renewable
energy research center, CGET (Center for Green Energy Technology), was established
in January 2008 with emphasis on studies of a new generation of silicon thin-film
solar cells, organic solar cells and ethanol fuel cells. Prof. M. C. Lin of Emory
University has assumed the Center’s directorship to coordinate the interdisciplinary
research program funded by the Ministry of Education through the MOE-ATU Project.
He is also in charge of the coordination of the ethanol fuel cell sub-project.

The proposed research support from NSC covers the period of July 1, 2008 —
June 30, 2011 for the administration of CGET by the PI as well as for collaborative
studies with faculty members at NCTU on high temperature kinetics and mechanisms
for small alcohol decomposition and oxidation reactions using a shock tube currently
available at NCTU. The measured kinetics for elementary processes related to their
decomposition and oxidation at high temperatures such as H + ROH and OH + ROH
(R = CHs, C;Hs and i-C3Hy), as well as the decomposition of RO radicals (CH;O,
C,Hs0, i-C3H7O and their structural isomers, CH,OH, CH;CHOH, CH;CHOCHs3;,
CH;COHCH; and CH3;CHOHCH,), will be interpreted with high-level ab initio
molecular orbital and statistical theory calculations.

In addition, the decomposition and oxidation of the alcohols and alkoxyl
radicals on solid oxide fuel cell electrode surfaces will be investigated by large-scale
quantum chemical calculations to elucidate their decomposition mechanisms and
predict their decomposition kinetics based on computed potential energy surfaces.

B 4£ 32 ¢ Decomposition and oxidation, Small alcohols, Ethanol SOFC, Quantum
calculations
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This report covers the period Jul. 1, 2010 — Jun 30, 2011 centering on: 1),
Determination of the kinetics and mechanisms for thermal decomposition and
oxidation of small alcohols at high temperatures using a shock tube currently
available at NCTU. The measured kinetics for elementary processes have been
interpreted with high-level ab initio molecular orbital and statistical theory
calculations; 2), Reactions related to the operation and optimization of ethanol solid
oxide fuel cell (SOFC); 3), Management of the Center for Green Energy Technology
and the Center for Interdisciplinary Molecular Sciences at NCTU. In the proposed
collaborative research, 15 full papers have been completed and submitted for
publications with additional 11 papers credited to NSC for works carried out at Emory
University but written or edited by the PI during the past year visiting NCTU.
Representative cases studied are discussed briefly below. More detailed results can be
found in the list of publications covering the reporting period.
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1. Ab initio chemical kinetics for the O(®P) + CHs reaction: The effect of
roaming transition states on the CHO + H, formation

The OCP) + CHj; reaction is one of the most influential processes in the
combustion of hydrocarbon and bio-fuels. It produces H atom and CH,O as well as
CHO + H,. The latter product pairs were first detected by Leone and coworkers by
time-resolved CO emission with FTIR [1]. The surprising result was reported by
Harding and Klippenstein through on-the-flight CPMD calculations to be a
reaction which takes place without a transition state [2]. We investigated the
kinetics and mechanism of this peculiar reaction at the CCSD/aug-cc-pVTZ,
CCSD/aug-cc-pVDZ and B3LYP/6-311+G(3df,2p) levels of theory. The energies
of all stationary points have been refined by single-point energy calculations at the
CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ level of theory. The predicted PES
presented in Fig. 1 shows that both CH,O + H and CHO + H, can be produced by
isomerization/decomposition of the excited CH3;O, from which the TS3 — LMI1
step is favorable for the CH,O + H formation and the consecutive well-defined
path TS3 —» LM1 — TS7 — LM2 — TS4 step leads to the CHO + H; products,
contrary to the conclusion reached earlier by Harding and Klippenstein that the
formation of the latter products occurred without a transition state. The rate
constants and the individual product branching ratios predicted with the
micro-canonical VIST/RRKM theory according to the CCSD(T) potential energy
surface are in good agreement with experimental data as illustrated in Fig. 2 and
Fig. 3, respectively.

TS7 and TS4 shown in Fig. 1 are effectively roaming transition states for the
formation of CHO + H, which are competitive only with the presence of a large
amount of energy from the O + CHj3 chemical activation reaction.
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Fig. 2. Predicted total rate constant in the CH3 + O reaction in the temperature range
from 200 to 2600 K, computed with different Morse potentials for the CHs + O
association process comparing with available data. a. Washida, 1973; b.
Washida, 1980; c. Biordi, 1975; d. Bhaskaran, 1980; e. Plumb; 1982; f.
Slagle, 1987; g. Zellner, 1988; h. Oser, 199; i. Lim, 1992; j. Fockenberg, 1999;
k. Fockenberg, 2002; 1. Hack, 2005; m. Dean, 1987; n. Yagi, 2004; o Harding,
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Fig. 3. Individual product rate constants and total rate constant in the CHs + O
reaction in temperature range from 200 to 2600 K.



2. Kinetics for CH30 and CH,OH isomerization/decomposition reactions

Both CH3;0O and CH,OH isomeric radicals play a key role in the
decomposition and oxidation of CH3;OH. They are also important intermediates in
the combustion of hydrocarbons at the end of the oxidation chain processes. They
can be directly formed by reactions such as CH; + OxH and CH; + O,. We have
studied the ground electronic doublet-state potential energy surface of the C;H;0,
system at the CCSD(T)/aug-cc-pVTZ and G2M levels of theory (see Fig. 1). The
stationary points were optimized by using the CCSD/aug-cc-pVTZ,
CCSD/aug-cc-pVDZ and B3LYP/6-311+G(3df, 2p) methods. The result shows
that there are three low energy barrier processes including CH,O + H — CHO +
H,, CH,O + H - CH,0H, and CH,0O + H — CH;0. For these three reactions
computed at the CCSD(T)/aug-cc-pVTZ// CCSD/aug-cc-pVTZ level, the forward
potential barriers are predicted to be 6.1, 11.6, and 5.7 kcal/mol, with the
corresponding reverse barriers of 22.5, 39.5, and 25.2 kcal/mol, respectively. The
heats of formation of CH,OH and CH3;O are predicted to be -1.2 £ 0.4 and 7.6
0.3 kcal/mol, respectively, using isodesmic reactions. The rate constant for the
hydrogen abstraction reaction has been calculated by the canonical variational
transition state theory with quantum tunneling and small-curvature corrections to
be k(CH,0 + H — CHO + Hy) = 2.28 107" T*% exp(-766.5/T) cm’molecule 's™!
for the temperature range 200-3000 K. The rate constants for the addition and
decomposition reactions have been calculated by the microcanonical RRKM
theory with the time-dependent master equation solution of the multiple quantum
well system in the temperature range 200 — 3000 K at 1 Torr — 100 atm pressures.
The predicted rate constants are in good agreement with most of available data
(see Figs. 4 and 5). At 1 atm Ar pressure, the rate constants for the CH,OH and
CH;0 formation can be expressed in units of cm’molecule's™ as:

ko' *™(CH,0H) = 7.00 x 107" T"* exp(-2612.5/T) (200 — 1000 K)
=3.41 x 10" T exp(-7720.3/T) (1000 — 3000 K)

ko' *™(CH;0) = 2.32 x 10"° T"'*? exp(-1813.2/T) (200 — 800 K)
=3.10 x 10° T*" exp(-5573.9/T) (800 — 3000 K)

and those for the CH,OH and CH30O decomposition reactions can be expressed in
unit of s as:

ka'*"™(CH,OH) = 4.52 x 10* T7!" exp(-22176.3/T) (500 — 3000 K)
ka"“"(CH30) = 3.17 x 10** T™** exp(-13104.9/T) (300 — 3000 K)
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Fig. 4. Rate constants, k(CH,O+H), of the CH,O + H — CHO + H..
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Fig.5. Low pressure rate constants, k¢’(CH,OH) and ks’ (CH;0), for the decomposition
reactions of CH,OH and CH30O, comparing with available data in the literature..

3. Thermal decomposition of C,HsOH in shock waves under highly diluted
conditions
The thermal decomposition of C;HsOH highly diluted in Ar (1 and 3 ppm)
has been studied by monitoring H atoms using the atomic resonance absorption
spectrometry (ARAS) technique behind reflected shock waves over the
temperature range 1450 — 1760 K at fixed pressure; 1, 1.45 and 2 atm. The rate
constant and the product branching fractions have been determined by analyzing
temporal profiles of H atoms; the effect of the secondary reactions on the results
has been examined by using a detailed reaction mechanism composed of 103
elementary reactions. The apparent rate constant of ethanol decomposition can be
expressed as ki/s™' = (5.28 £ 0.14) x 10" exp[—(23530 + 980)/T] (T = 1450 —
1670 K, P = 1 — 2 atm.) without a detectable pressure dependence within the
tested pressure range of this study. Branching fractions for producing
CH;+CH,OH (1a) and H,O+C,H4 (1b) have been examined by a quantitative
measurement of H atoms produced in the successive decompositions of the
products CH,OH (la): the pressure dependence of the branching fraction for
channel (1a) is obtained by a linear least-squares analysis of the experimental data
and can be expressed as 1, = (0.71+0.07) — (826+116)/T, (0.92+0.04) —
(1108+£70)/T, (1.02+0.10) — (1229+168)/T for T = 1450 — 1760 K, at P = 0.99,
1.45 and 2.0 atm., respectively, The rate constant obtained in this study is found to



be consistent with previous theoretical and experimental results; however, the
pressure dependence of the branching fraction obtained in this study is smaller
than those of previous theoretical works. Modification of the parameters for the
decomposition rate in the fall-off region is suggested to be important to improve
the practical modeling of the pyrolysis and combustion of ethanol. These results
have been published in J. Phys. Chem. A, 2011, 115, 8086 [3].

Ab initio kinetics for the C,Hs0; + H reactions

Both CH3;CH,0 and CH3CHOH are stable but highly reactive intermediates
of ethanol decomposition and oxidation reactions. Their reactions with H atoms,
key chain carriers in these high temperature processes, generate a number of even
more reactive small radicals such as CHs;, CH3;0, CH,OH and OH. In this project,
we have investigated the chemical activation reactions of these two C2-containing
radicals with H atoms can be mechanistically presented below for the
association/decomposition and direct abstraction processes:

(a) CH;CH,O + H — CH;CH,OH* —> CH;CH,OH (+M) (al)
— CH,0H + CHj; (32)
—» CH;CH, + OH (a3)
—» CH;CHOH + H (ad)
—)(TSI)—) CH,CH, + H,O (35)
5 (TS2)>LM—> CH;CH + H,0  (a6)
5 (TS3) — CHOH + CH,4 (a7)
5 (TS4) - CH;CHO + H, (a8)
> (TS5) - CH,O + CH,4 (29)
> (TS7) - CH;CHO + H, (a10)
(b) CH;CHOH + H — CH;CH,OH* —> CH;CH,OH (+M) (b1)
5 CH3CH, + OH (b3)
5 CH;CH,0 + H (b4)
—5(TS1)— CH,CH; + H,0 (b3)
5 (TS2)—>LM—> CH;CH + H;0  (b6)
5 (TS3) - CHOH + CH (b7)
> (TS4) - CH;CHO + H, (b8)
> (TS5) - CH, + CH, (b9)
> (TS8) — CH;CHO + H, (b10)
> (TS9) - CH,CHOH + H, (bl11)

The various transition states (TSn) and wvariational transition states for
radical-radical production channels are summarized in Fig. 6:



CH3CH,0 +H
0.0

1.0 TS7 -1.3 CH,CH,OH + H
95
CH3CH, + OH
h LM (-10.1) " 2
(-9.2) -13.5 TS4 -19.5 -15.8

CH3CH + H,0
CH4CHOH + H| -17.1 TS3 (-22.0) L (16.2) " ¢ 2
-18.6 N -16.7 CH,OH + CH3
-19. \ ~/ (17.3)
LS
-32. 9 ~—— 38,5 CHOH + CH,
\\

\\\13 CH,CHOH + H,

(A) -86.8 CH3CHO + H,
\ -89.2
CoHa + H,0
(90.4)°2Ha * 2
90.7
CH,0 + CH,
CHCH,0+ H 156 TS6 .
86 TS9 3 CH,CH,OH +H
©2) 22130\~ 08 0.9 CH CH, + OH
< LM 3CH2

0.0

L (-0.9)
! -10. / 7.2

CH3CH + H,0
CHLCHOH + H (128 [ 75 M X

8.1 CH,0H + CH
(81) 2 3

-29.9 CHOH + CH,

657 CH,CHOH + H,

-82.1 CH,0 + CH,

Fig. 6. Schematic diagrams of the potential energy surfaces predicted at the
CCSD(T)/6-311+G(3df, 2p)/BH&HLYP /6-311+G(3df, 2p) level of theory
with zero-point vibrational energy corrections. (a) CH3CH,O + H and (b)
CH;CHOH + H. [E(CH3CH;O) = -154.1134354 a.u.; E(CH;CHOH) =
-154.129074 a.u and E(H) = -0.499810 a.u.; E(CH3;CH,OH) = -154.788661
a.u]. The numbers in parentheses are predicted at the CCSD(T)/6-311+G(3df,
2p)//CCSD/6-311+G(3df, 2p) level of theory with ZPE correction.
[E(CH3CH,0) = -154.113875 a.u.; E(CH;CHOH) = -154.1296977 a.u and E(H)
=-0.499810 a.u.; E(CH3CH,OH) = -154.789264 a.u].

The potential energy surfaces of the two processes have been evaluated at the
CCSD(T)/6-311+G(3df, 2p) level of theory with geometric optimization carried
out at the BH&HLYP/6-311+G(3df, 2p) level. The direct hydrogen abstraction
channels and the indirect association/decomposition channels from the chemically
activated ethanol molecule have been considered for both reactions. The rate
constants for both reactions have been calculated at 100-3000 K and 10™* Torr-10°
atm Ar pressure by micro-canonical VIST/RRKM theory with master equation
solution for all accessible product channels. The results show that the major
product channel of the CH;CH,O + H reaction is CH; + CH,OH (a2) under the
atmospheric pressure conditions. Only at high pressure and low temperature, the
rate constants for CH;CH,OH formation by collisional deactivation (al) become
dominant. For CH3;CHOH + H, there are three major product channels; at high
temperatures, CH3;+CH,OH production (b2) predominates at low pressures (P <
100 Torr), while the formation of CH3CH,OH by collisional deactivation (bl)
becomes competitive at high pressures and low temperatures (T < 500K). At
high temperatures, the direct hydrogen abstraction reaction producing CH,CHOH
+ H; becomes dominant (b11). Rate constants for all accessible product channels
in both systems have been predicted and tabulated for modeling applications. The
predicted value for CH;CHOH + H at 295 K and 1 Torr pressure agrees closely
with available experimental data (see Fig. 7). For practical modeling applications,



the rate constants for the thermal unimolecular decomposition of ethanol giving
key accessible products have been predicted; those for the two major product
channels taking place by dehydration and C-C breaking agree closely with
available literature data (see Fig. 8); this work has been published in ref. [4]..
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5. Unimolecular decomposition of the C3H;O; isomeric radicals

The CsH;0; radicals, (CH3),COH, (CH3),C(H)O and CH,CH(OH)CHj3, are
intermediates of n- and iso- propanols, propane and larger hydrocarbon
combustion reactions. The kinetics and mechanisms of their unimolecular
decomposition and isomerization reactions have not been well characterized. In
this work, the mechanisms for the isomerization and decomposition of these
radicals have been studied at the CCSD(T) /6-311+G(3df,2p)//B3LYP/6-311+G
(3df, 2p) level. The following product channels for these radical isomers are
identified as shown in Fig. 9:

CH,C(H)OHCH; —» H + CH,C(OH)CHs (1)

— CH; + CH,C(H)OH 2)

— OH + CH,C(H)CH; (3)

— H + Propylene oxide (4)
(CH;3),C(H)O — CH; + CH3CH)O (5)

— H + (CH;),CO (6)
(CH3),COH — H + (CHj)CO (7)

— CHs + CH;CO (8)

— H,0 + CH;CCH; )
(CH3),C(H)O < CH,C(H)OHCHj3 (10, 11)
(CH3),C(H)O < (CH3),COH (12, 13)
CH,C(H)OHCH3 < (CHs3),COH (14, 15)

The rate constants for the low-lying energy channels are evaluated by using
The transition-state-theory (TST) and the Rice-Ramsperger-Kassel-Marcus
(RRKM) theory. Among these radicals, (CH3);COH is the most stable one,
CH,CH(OH)CH; and (CH;),COH lie above it by 7.8 and 11.3 kcal/mol,
respectively. For the (CH3),CHO decomposition, the formation of CH3;C(H)O +
CHj; is the dominant channel with 14.9 kcal/mol barrier; formation of (CH3),CO +
H has an 18.4 kcal/mol barrier. Rate constant results show that at 1 atm (Ny),
branching ratio of CH3;C(H)O + CHj is larger than 99% in the temperature range
of 298 ~ 3000 K. For the CH,CH(OH)CH;3; decomposition, formation of
CH,=C(H)CH; + OH, CH,=C(H)OH + CHj; needs to overcome 27.0, 30.9
kcal/mol barriers, respectively. For the (CH3),COH decomposition, the lowest
energy channel is the formation of (CH3),CO + H with 31.5 kcal/mol barrier.
The calculated rates for the formation of CH3;C(H)O + CHs;, (CH3),CO + H and
CH,=C(H)CHj3; + OH are in good agreement with available experimental values.
The results by coupling all the channels show that comparing with the low-lying
energy processes, the isomerization rates among the isomers can be ignored due to
their higher isomerization barriers.
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Fig.9. Schematic energy diagram for the dissociation of IPA radicals computed at the

CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311+G(3df,2p) level.

6. Photo-fragmentation of CsgHsCHO at 266, 248 and 193 nm

We had reported the preliminary result of this extensive study in our last
report; the work resulted from a collaboration with IAMS (C. K. Ni and Y. T. Lee)
and NCTU?’s reaction dynamics laboratory of Y-P Lee employing the multi-mass
ion imaging photo-fragmentation machine and step-scan tr-FTIR emission
technique, respectively aid by our high-level ab initio MO calculations [5]. We
also characterized the potential energies with the CCSD(T)/6-311+G(3df,2p)
method and predicted the branching ratios for various channels of dissociation.
Upon photolysis at 248 and 266 nm, two major channels for formation of HCO
and CO, with relative branching of 0.37: 0.63 and 0.20 : 0.80, respectively, were
observed The C¢Hs + HCO channel has two components with large and small
recoil velocities; the rapid component with average translational energy of ~25 kJ
mol™ dominates. The C¢Hg + CO channel has a similar distribution of
translational energy for these two components. Secondary dissociation channels
C¢H5CO (from H elimination) — C¢Hs + CO and C¢Hg (from CO elimination) —
C¢Hs + H or HCO (from HCO elimination) - CO + H, might also occur. IR
emission from internally excited CcHsCHO, v3; (v =1) of HCO, and levels v <2, J
< 43 of CO was observed; the latter has average rotational energy ~13 kJ mol™
and vibrational energy ~6 kJ mol™'. Upon photolysis at 193 nm, similar
distributions of energy were observed, except that the C¢Hs + HCO channel
becomes the only major channel with a branching ratio of 0.82 £+ 0.10 and an
increased proportion of the slow component; IR emission from levels v, (v = 1)
and v3 (V=1 and 2) of HCO and v < 2, J <43 of CO were observed; the latter has
average energy similar to that observed in photolysis at 248 nm. The observed
product yields at different dissociation energies are consistent with
statistical-theory predicted results based on the computed singlet and triplet
potential energy surfaces given below:
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