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中文摘要 
 

交通大學於 97 年 1 月正式成立綠色能源科技中心（CGET, Center for Green 
Energy Technology），並委以林明璋院士主持，以全力發展本校再生能源之研究。

中心的主要研究目標將朝跨領域整合型研究的方向來發展。專注的跨領域研究，

將利用最先進的研發技術來從事新型矽薄膜多層光電池、量子光電池、有機光電

池及乙醇燃料電池等研究，並配合高階的理論計算來更進一步瞭解這些重要體系

的光化學及燃料系統的化學反應及物理特性。 
本三年期國科會個人計畫(97 年 7 月 1 日至 100 年 6 月 30 日)，配合 CGET

發展跨領域研究的方向為主軸，和各研究領域的專家學者密切合作，以進行下列

重要課題的基礎研究： (1)利用交通大學的衝擊波管做小醇類分子(CH3OH, 

C2H5OH 及 i-C3H7OH)熱分解及燃燒反應機制確立及有關基礎反應化學動力學的

研究；(2)小醇分子在固態氧化物表面熱分解及氧化的高階量子計算以供給固態

氧化物燃料電池( SOFC)大型模擬的應用。 
此報告包含 99 年 7 月 1 日至 100 年 6 月 30 日之研究成果。 
 
 
 
 
 
 

關鍵詞：再生小醇分子、熱分解及氧化反應、氧化物燃料電池( SOFC)電極反應 
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英文摘要 
 

At National Chiao Tung University (NCTU), an interdisciplinary renewable 
energy research center, CGET (Center for Green Energy Technology), was established 
in January 2008 with emphasis on studies of a new generation of silicon thin-film 
solar cells, organic solar cells and ethanol fuel cells. Prof. M. C. Lin of Emory 
University has assumed the Center’s directorship to coordinate the interdisciplinary 
research program funded by the Ministry of Education through the MOE-ATU Project. 
He is also in charge of the coordination of the ethanol fuel cell sub-project. 

The proposed research support from NSC covers the period of July 1, 2008 – 
June 30, 2011 for the administration of CGET by the PI as well as for collaborative 
studies with faculty members at NCTU on high temperature kinetics and mechanisms 
for small alcohol decomposition and oxidation reactions using a shock tube currently 
available at NCTU. The measured kinetics for elementary processes related to their 
decomposition and oxidation at high temperatures such as H + ROH and OH + ROH 
(R = CH3, C2H5 and i-C3H7), as well as the decomposition of RO radicals (CH3O, 
C2H5O, i-C3H7O and their structural isomers, CH2OH, CH3CHOH, CH3CHOCH3, 
CH3COHCH3 and CH3CHOHCH2), will be interpreted with high-level ab initio 
molecular orbital and statistical theory calculations. 

In addition, the decomposition and oxidation of the alcohols and alkoxyl 
radicals on solid oxide fuel cell electrode surfaces will be investigated by large-scale 
quantum chemical calculations to elucidate their decomposition mechanisms and 
predict their decomposition kinetics based on computed potential energy surfaces.  

 
 
 
 
 
 

關鍵詞：Decomposition and oxidation, Small alcohols, Ethanol SOFC, Quantum 
calculations 
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報告內容 
 

一、前言 
 
This report covers the period Jul. 1, 2010 – Jun 30, 2011 centering on: 1), 

Determination of the kinetics and mechanisms for thermal decomposition and 
oxidation of small alcohols at high temperatures using a shock tube currently 
available at NCTU. The measured kinetics for elementary processes have been 
interpreted with high-level ab initio molecular orbital and statistical theory 
calculations; 2), Reactions related to the operation and optimization of ethanol solid 
oxide fuel cell (SOFC); 3), Management of the Center for Green Energy Technology 
and the Center for Interdisciplinary Molecular Sciences at NCTU. In the proposed 
collaborative research, 15 full papers have been completed and submitted for 
publications with additional 11 papers credited to NSC for works carried out at Emory 
University but written or edited by the PI during the past year visiting NCTU. 
Representative cases studied are discussed briefly below. More detailed results can be 
found in the list of publications covering the reporting period.  

 
二、結果與討論 

 
1. Ab initio chemical kinetics for the O(3P) + CH3 reaction: The effect of 

roaming transition states on the CHO + H2 formation 
 

The O(3P) + CH3 reaction is one of the most influential processes in the 
combustion of hydrocarbon and bio-fuels. It produces H atom and CH2O as well as 
CHO + H2. The latter product pairs were first detected by Leone and coworkers by 
time-resolved CO emission with FTIR [1]. The surprising result was reported by 
Harding and Klippenstein through on-the-flight CPMD calculations to be a 
reaction which takes place without a transition state [2]. We investigated the 
kinetics and mechanism of this peculiar reaction at the CCSD/aug-cc-pVTZ, 
CCSD/aug-cc-pVDZ and B3LYP/6-311+G(3df,2p) levels of theory.  The energies 
of all stationary points have been refined by single-point energy calculations at the 
CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ level of theory. The predicted PES 
presented in Fig. 1 shows that both CH2O + H and CHO + H2 can be produced by 
isomerization/decomposition of the excited CH3O, from which the TS3 → LM1 
step is favorable for the CH2O + H formation and the consecutive well-defined 
path TS3 → LM1 → TS7 → LM2 → TS4 step leads to the CHO + H2 products, 
contrary to the conclusion reached earlier by Harding and Klippenstein that the 
formation of the latter products occurred without a transition state. The rate 
constants and the individual product branching ratios predicted with the 
micro-canonical VTST/RRKM theory according to the CCSD(T) potential energy 
surface are in good agreement with experimental data as illustrated in Fig. 2 and 
Fig. 3, respectively. 

TS7 and TS4 shown in Fig. 1 are effectively roaming transition states for the 
formation of CHO + H2 which are competitive only with the presence of a large 
amount of energy from the O + CH3 chemical activation reaction. 
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Fig. 1. Schematic energy diagram of the CH3+O (3P) predicted on the ground 

electronic doublet state potential energy surface at the 
CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ level of theory. 
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Fig. 2. Predicted total rate constant in the CH3 + O reaction in the temperature range 

from 200 to 2600 K, computed with different Morse potentials for the CH3 + O 
association process comparing with available data. a. Washida, 1973; b. 
Washida, 1980; c. Biordi, 1975; d. Bhaskaran, 1980; e. Plumb;  1982; f. 
Slagle, 1987; g. Zellner, 1988; h. Oser, 199; i. Lim, 1992; j. Fockenberg, 1999; 
k. Fockenberg, 2002; l. Hack, 2005; m. Dean, 1987; n. Yagi, 2004; o Harding, 
2005. 
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Fig. 3. Individual product rate constants and total rate constant in the CH3 + O 

reaction in temperature range from 200 to 2600 K.  
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2. Kinetics for CH3O and CH2OH isomerization/decomposition reactions 
Both CH3O and CH2OH isomeric radicals play a key role in the 

decomposition and oxidation of CH3OH. They are also important intermediates in 
the combustion of hydrocarbons at the end of the oxidation chain processes. They 
can be directly formed by reactions such as CH3 + OxH and CH3 + O2. We have 
studied the ground electronic doublet-state potential energy surface of the C1H3O1 
system at the CCSD(T)/aug-cc-pVTZ and G2M levels of theory (see Fig. 1). The 
stationary points were optimized by using the CCSD/aug-cc-pVTZ, 
CCSD/aug-cc-pVDZ and B3LYP/6-311+G(3df, 2p) methods. The result shows 
that there are three low energy barrier processes including CH2O + H → CHO + 
H2, CH2O + H → CH2OH, and CH2O + H → CH3O. For these three reactions 
computed at the CCSD(T)/aug-cc-pVTZ// CCSD/aug-cc-pVTZ level, the forward 
potential barriers are predicted to be 6.1, 11.6, and 5.7 kcal/mol, with the 
corresponding reverse barriers of 22.5, 39.5, and 25.2 kcal/mol, respectively. The 
heats of formation of CH2OH and CH3O are predicted to be -1.2 ± 0.4 and 7.6 ± 
0.3 kcal/mol, respectively, using isodesmic reactions. The rate constant for the 
hydrogen abstraction reaction has been calculated by the canonical variational 
transition state theory with quantum tunneling and small-curvature corrections to 
be k(CH2O + H → CHO + H2) = 2.28 ×10-19 T2.65 exp(-766.5/T) cm3molecule–1s–1 
for the temperature range 200–3000 K. The rate constants for the addition and 
decomposition reactions have been calculated by the microcanonical RRKM 
theory with the time-dependent master equation solution of the multiple quantum 
well system in the temperature range 200 – 3000 K at 1 Torr – 100 atm pressures. 
The predicted rate constants are in good agreement with most of available data 
(see Figs. 4 and 5). At 1 atm Ar pressure, the rate constants for the CH2OH and 
CH3O formation can be expressed in units of cm3molecule-1s-1 as:  
 

ka
1atm(CH2OH) = 7.00 × 10-10 T-1.40 exp(-2612.5/T)  (200 – 1000 K) 

= 3.41 × 107 T-6.23 exp(-7720.3/T)   (1000 – 3000 K) 
ka

1atm(CH3O) = 2.32 × 10-10 T-1.22 exp(-1813.2/T)    (200 – 800 K) 
= 3.10 × 108 T-6.79 exp(-5573.9/T)     (800 – 3000 K) 

 
and those for the CH2OH and CH3O decomposition reactions can be expressed in 
unit of s-1 as: 
 

kd
1atm(CH2OH) = 4.52 × 1034 T-7.11 exp(-22176.3/T)   (500 – 3000 K) 

kd
1atm(CH3O) = 3.17 × 1024 T-4.25 exp(-13104.9/T)     (300 – 3000 K) 
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Fig. 4. Rate constants, k(CH2O+H), of the CH2O + H → CHO + H2. 
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Fig.5. Low pressure rate constants, kd

0(CH2OH) and kd
0(CH3O), for the decomposition 

reactions of CH2OH and CH3O, comparing with available data in the literature.. 
 
3. Thermal decomposition of C2H5OH in shock waves under highly diluted 

conditions 
The thermal decomposition of C2H5OH highly diluted in Ar (1 and 3 ppm) 

has been studied by monitoring H atoms using the atomic resonance absorption 
spectrometry (ARAS) technique behind reflected shock waves over the 
temperature range 1450 − 1760 K at fixed pressure; 1, 1.45 and 2 atm. The rate 
constant and the product branching fractions have been determined by analyzing 
temporal profiles of H atoms; the effect of the secondary reactions on the results 
has been examined by using a detailed reaction mechanism composed of 103 
elementary reactions. The apparent rate constant of ethanol decomposition can be 
expressed as k1/s−1 = (5.28 ± 0.14) × 1010 exp[−(23530 ± 980)/T]  (T = 1450 – 
1670 K, P = 1 − 2 atm.) without a detectable pressure dependence within the 
tested pressure range of this study. Branching fractions for producing 
CH3+CH2OH (1a) and H2O+C2H4 (1b) have been examined by a quantitative 
measurement of H atoms produced in the successive decompositions of the 
products CH2OH (1a): the pressure dependence of the branching fraction for 
channel (1a) is obtained by a linear least-squares analysis of the experimental data 
and can be expressed as 　1a = (0.71±0.07) − (826±116)/T, (0.92±0.04) − 
(1108±70)/T, (1.02±0.10) − (1229±168)/T for T = 1450 − 1760 K, at P = 0.99, 
1.45 and 2.0 atm., respectively. The rate constant obtained in this study is found to 
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be consistent with previous theoretical and experimental results; however, the 
pressure dependence of the branching fraction obtained in this study is smaller 
than those of previous theoretical works. Modification of the parameters for the 
decomposition rate in the fall-off region is suggested to be important to improve 
the practical modeling of the pyrolysis and combustion of ethanol. These results 
have been published in J. Phys. Chem. A, 2011, 115, 8086 [3]. 

 
4. Ab initio kinetics for the C2H5O1 + H reactions 

Both CH3CH2O and CH3CHOH are stable but highly reactive intermediates 
of ethanol decomposition and oxidation reactions. Their reactions with H atoms, 
key chain carriers in these high temperature processes, generate a number of even 
more reactive small radicals such as CH3, CH3O, CH2OH and OH. In this project, 
we have investigated the chemical activation reactions of these two C2-containing 
radicals with H atoms can be mechanistically presented below for the 
association/decomposition and direct abstraction processes: 

 
(a) CH3CH2O + H → CH3CH2OH* → CH3CH2OH (+M)            (a1) 

→ CH2OH + CH3               (a2) 
→ CH3CH2 + OH               (a3) 
→ CH3CHOH + H              (a4) 
→(TS1)→ CH2CH2 + H2O        (a5) 
→ (TS2)→LM→ CH3CH + H2O   (a6) 
→ (TS3) → CHOH + CH4        (a7) 
→ (TS4) → CH3CHO + H2       (a8) 
→ (TS5) → CH2O + CH4         (a9) 

→ (TS7) → CH3CHO + H2                     (a10) 
 

(b) CH3CHOH + H → CH3CH2OH* → CH3CH2OH (+M)           (b1) 
→ CH2OH + CH3              (b2) 
→ CH3CH2 + OH              (b3) 
→ CH3CH2O + H              (b4) 
→(TS1)→ CH2CH2 + H2O       (b5) 
→ (TS2)→LM→ CH3CH + H2O  (b6) 
→ (TS3) → CHOH + CH        (b7) 
→ (TS4) → CH3CHO + H2       (b8) 
→ (TS5) → CH2 + CH4          (b9) 

→ (TS8) → CH3CHO + H2                     (b10) 
→ (TS9) → CH2CHOH + H2                   (b11) 

 
The various transition states (TSn) and variational transition states for 
radical-radical production channels are summarized in Fig. 6: 
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Fig. 6. Schematic diagrams of the potential energy surfaces predicted at the 

CCSD(T)/6-311+G(3df, 2p)//BH&HLYP /6-311+G(3df, 2p) level of theory 
with zero-point vibrational energy corrections. (a) CH3CH2O + H and (b) 
CH3CHOH + H. [E(CH3CH2O) = -154.1134354 a.u.; E(CH3CHOH) = 
-154.129074 a.u and E(H) = -0.499810 a.u.; E(CH3CH2OH) = -154.788661 
a.u]. The numbers in parentheses are predicted at the CCSD(T)/6-311+G(3df, 
2p)//CCSD/6-311+G(3df, 2p) level of theory with ZPE correction. 
[E(CH3CH2O) = -154.113875 a.u.; E(CH3CHOH) = -154.1296977 a.u and E(H) 
= -0.499810 a.u.; E(CH3CH2OH) = -154.789264 a.u]. 

 
The potential energy surfaces of the two processes have been evaluated at the 

CCSD(T)/6-311+G(3df, 2p) level of theory with geometric optimization carried 
out at the BH&HLYP/6-311+G(3df, 2p) level. The direct hydrogen abstraction 
channels and the indirect association/decomposition channels from the chemically 
activated ethanol molecule have been considered for both reactions. The rate 
constants for both reactions have been calculated at 100-3000 K and 10-4 Torr-103 
atm Ar pressure by micro-canonical VTST/RRKM theory with master equation 
solution for all accessible product channels. The results show that the major 
product channel of the CH3CH2O + H reaction is CH3 + CH2OH (a2) under the 
atmospheric pressure conditions. Only at high pressure and low temperature, the 
rate constants for CH3CH2OH formation by collisional deactivation (a1) become 
dominant.  For CH3CHOH + H, there are three major product channels; at high 
temperatures, CH3+CH2OH production (b2) predominates at low pressures (P < 
100 Torr), while the formation of CH3CH2OH by collisional deactivation (b1) 
becomes competitive at high pressures and low temperatures (T < 500K).  At 
high temperatures, the direct hydrogen abstraction reaction producing CH2CHOH 
+ H2 becomes dominant (b11).  Rate constants for all accessible product channels 
in both systems have been predicted and tabulated for modeling applications. The 
predicted value for CH3CHOH + H at 295 K and 1 Torr pressure agrees closely 
with available experimental data (see Fig. 7). For practical modeling applications, 
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the rate constants for the thermal unimolecular decomposition of ethanol giving 
key accessible products have been predicted; those for the two major product 
channels taking place by dehydration and C-C breaking agree closely with 
available literature data (see Fig. 8); this work has been published in ref. [4].. 
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Fig. 7. Predicted braching ratios for the CH3CHOH + H reaction at 1 Torr, 1 atm, and 

100 atm. 
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Fig. 8. Comparison of the predicted constants with those in the literature for the 
decomposition reactions of (A) CH3CH2OH → CH3 + CH2OH and (B) 
CH3CH2OH → CH2CH2 + H2O at infinite high pressure. 
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5. Unimolecular decomposition of the C3H7O1 isomeric radicals 
The C3H7O1 radicals, (CH3)2COH, (CH3)2C(H)O and CH2CH(OH)CH3, are 

intermediates of n- and iso- propanols, propane and larger hydrocarbon  
combustion reactions. The kinetics and mechanisms of their unimolecular 
decomposition and isomerization reactions have not been well characterized. In 
this work, the mechanisms for the isomerization and decomposition of these 
radicals have been studied at the CCSD(T) /6-311+G(3df,2p)//B3LYP/6-311+G 
(3df, 2p) level.  The following product channels for these radical isomers are 
identified as shown in Fig. 9: 

 
CH2C(H)OHCH3 →  H  +  CH2C(OH)CH3          (1) 

             →  CH3  +  CH2C(H)OH          (2) 

         →  OH  +  CH2C(H)CH3          (3) 

         →  H  +  Propylene oxide          (4) 

 

(CH3)2C(H)O  →  CH3  +  CH3C(H)O          (5) 

              →  H  +  (CH3)2CO           (6) 

 

(CH3)2COH  →  H  +  (CH3)2CO           (7) 

         →  CH4  +  CH3CO           (8) 

        →  H2O  +  CH3CCH2       (9) 

  (CH3)2C(H)O  ⇔  CH2C(H)OHCH3           (10, 11) 

  (CH3)2C(H)O  ⇔  (CH3)2COH               (12, 13) 

  CH2C(H)OHCH3 ⇔  (CH3)2COH               (14, 15) 

 
The rate constants for the low-lying energy channels are evaluated by using 

The transition-state-theory (TST) and the Rice-Ramsperger-Kassel-Marcus 
(RRKM) theory. Among these radicals, (CH3)2COH is the most stable one, 
CH2CH(OH)CH3 and (CH3)2COH lie above it by 7.8 and 11.3 kcal/mol, 
respectively. For the (CH3)2CHO decomposition, the formation of CH3C(H)O + 
CH3 is the dominant channel with 14.9 kcal/mol barrier; formation of (CH3)2CO + 
H has an 18.4 kcal/mol barrier. Rate constant results show that at 1 atm (N2), 
branching ratio of CH3C(H)O + CH3 is larger than 99% in the temperature range 
of 298 ~ 3000 K. For the CH2CH(OH)CH3 decomposition, formation of 
CH2=C(H)CH3 + OH, CH2=C(H)OH + CH3 needs to overcome 27.0, 30.9 
kcal/mol barriers, respectively. For the (CH3)2COH decomposition, the lowest 
energy channel is the formation of (CH3)2CO + H with 31.5 kcal/mol barrier.  
The calculated rates for the formation of CH3C(H)O + CH3, (CH3)2CO + H and 
CH2=C(H)CH3 + OH are in good agreement with available experimental values. 
The results by coupling all the channels show that comparing with the low-lying 
energy processes, the isomerization rates among the isomers can be ignored due to 
their higher isomerization barriers.  
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Fig.9. Schematic energy diagram for the dissociation of IPA radicals computed at the 

CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311+G(3df,2p) level. 

 

6. Photo-fragmentation of C6H5CHO at 266, 248 and 193 nm 
We had reported the preliminary result of this extensive study in our last 

report; the work resulted from a collaboration with IAMS (C. K. Ni and Y. T. Lee) 
and NCTU’s reaction dynamics laboratory of Y-P Lee employing the multi-mass 
ion imaging photo-fragmentation machine and step-scan tr-FTIR emission 
technique, respectively aid by our high-level ab initio MO calculations [5]. We 
also characterized the potential energies with the CCSD(T)/6-311+G(3df,2p) 
method and predicted the branching ratios for various channels of dissociation. 
Upon photolysis at 248 and 266 nm, two major channels for formation of HCO 
and CO, with relative branching of 0.37: 0.63 and 0.20 : 0.80, respectively, were 
observed The C6H5 + HCO channel has two components with large and small 
recoil velocities; the rapid component with average translational energy of ~25 kJ 
mol−1 dominates. The C6H6 + CO channel has a similar distribution of 
translational energy for these two components. Secondary dissociation channels 
C6H5CO (from H elimination) → C6H5 + CO and C6H6 (from CO elimination) → 
C6H5 + H or HCO (from HCO elimination) → CO + H, might also occur. IR 
emission from internally excited C6H5CHO, ν3 (v = 1) of HCO, and levels v ≤ 2, J 
≤ 43 of CO was observed; the latter has average rotational energy ~13 kJ mol−1 
and vibrational energy ~6 kJ mol−1. Upon photolysis at 193 nm, similar 
distributions of energy were observed, except that the C6H5 + HCO channel 
becomes the only major channel with a branching ratio of 0.82 ± 0.10 and an 
increased proportion of the slow component; IR emission from levels ν1 (v = 1) 
and ν3 (v = 1 and 2) of HCO and v ≤ 2, J ≤ 43 of CO were observed; the latter has 
average energy similar to that observed in photolysis at 248 nm. The observed 
product yields at different dissociation energies are consistent with 
statistical-theory predicted results based on the computed singlet and triplet 
potential energy surfaces given below:  
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Fig. 10. Singlet (A) and triplet (B) potential energy surfaces of C6H5CHO [5]. 
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