
1

行政院國家科學委員會補助專題研究計畫成果報告
※※※※※※※※※※※※※※※※※※※※※※※※※
※ ※
※ 虛擬實境中結合幾何與影像顯像技術之研究(I) ※
※ Hybrid Rendering Techniques for Virtual Reality (I) ※
※ ※
※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：þ個別型計畫 □整合型計畫
計畫編號：NSC89－2218－E－009－013

執行期間： 89年 8月 1日至 90年 7月 31日

計畫主持人：莊榮宏

共同主持人：

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：

中 華 民 國 90年 11月 27日

2

行政院國家科學委員會專題研究計畫成果報告
虛擬實境中結合幾何與影像顯像技術之研究

Preparation of NSC Project Repor ts
計畫編號：NSC 89-2218-E-009-013
執行期限：89 年 8月 1日至 90 年 7月 31 日
主持人：莊榮宏 執行機構及單位名稱
共同主持人：xxxxxx 執行機構及單位名稱
計畫參與人員：xxxxxx 執行機構及單位名稱

1 中文摘要

本研究計畫主要是研究結合3D幾何式與2D影像
式顯像技術的優點，並且利用空間分割、影像曲化等
技術，發展出一顯像時間能與場景複雜度較無關的虛
擬實境瀏覽系統。整個系統將分前置處理與執行兩階
段，前置處理階段首先將整個場景作雙層蜂巢式的空
間分割成為正六邊形的影像與瀏覽子空間，且每一瀏
覽子空間對應一個影像子空間，而且有相同的中心
點。再對每一個影像子空間，以其中心當作視點，六
個邊面為視窗，分別產生六張快取影像，並且將深度
值也一併儲存，最後將深度快取影像作狄勞尼三角化
處理，以得到深度貼圖網格。執行階段則是瀏覽時整
合影像子空間內幾何式顯像與影像子空間外影像式
顯像的結果。對於空間外的場景利用深度快取影像與
深度貼圖網格經過影像曲化與重新投影的運算，代替
場景資料進行影像式顯像，而對於子空間內的幾何物
體則選擇適當精細度的漸進式模型，配合可見性裁切
決定出最後的幾何資料供顯像系統進行幾何式顯像。

關鍵詞：虛擬實境、影像快取、瀏覽、影像式顯像、
整合式顯像

Abstract

In this project, we propose a hybrid rendering scheme
that combines geometry-based and image-based
rendering techniques and have efficiency relatively
independent of the scene complexity. The scheme has
two stages. In the preprocessing stage, the x-y plane of
a 3D scene is partitioned into equal-sized hexagonal
cells, called navigation cells, each of which is associated
with a larger image cell that has an identical center.
Each side face of the image cell will be stored a cached
image with depth that is obtained by rendering the scene
using the cell’s center as the center of projection and the
side face as the window. The depth mesh of the cached
image will be obtained by triangulating cached image
using depth. In the run-time stage, when the
participant navigates inside a navigation cell, objects
outside the corresponding image cell will be rendered by
warping and re-projecting depth mesh with cached
texture image and objects inside the image cell will be
rendered by using meshes with appropriate resolution.

Keywords: Virtual Reality, Image Caching, Navigation,
Image-Based Rendering, Hybrid Rendering

2 INTRODUCTION

As the Amdal’s law, we can imagine that we will have
more and more powerful graphics accelerator in the near
future. But we will always have greater expectation on
performance and quality for visual applications. In last
decades, many techniques have been proposed on the
reduction of polygon count and preserving visual
realism. For examples, visibility clipping, visibility
culling and level-of-detail modeling, and more recently,
view interpolation, image caching, portal texture, and
image-based rendering.

It is well known that the image-based rendering has
efficiency that is independent on scene complexity and
could easily produce photo-realistic images. It has,
however, very limited viewing degree of freedom. On
the contrary, traditional geometry-based rendering has
high viewing degree of freedom and accelerated by
graphics hardware, but it’s rendering time is dependent
on the scene complexity. In this project, we propose a
hybrid rendering scheme that combines geometry- and
image-based rendering technique to take advantage of
both. The aim is to be able to render complex scenes
at interactive and almost constant frame rate while still
able to achieve good visual realism. In the
pre-processing of our scheme, the x-y plane of a 3D
scene is partitioned into equal-sized hexagonal
navigation cells, each of which is associated with a
larger image cell that has an identical center. Each side
face of the image cell will be stored a cached image with
depth that is obtained by rendering the scene using the
cell’s center as the center of projection and the side face
as the window. The depth mesh of the cached image
will be obtained by triangulating cached image using
depth. In the run-time stage, when the participant
navigates inside a navigation cell, objects outside the
corresponding image cell will be rendered by warping
and re-projecting depth mesh using the proposed
hardware accelerated projective-alike texture-mapping
and objects inside the image cell will be rendered by
using meshes with appropriate resolution. The loading
time of neighboring cell data will be amortized to
several inside-cell frames.

Warping with depth mesh can eliminate not only

3

parallax problem but also the gap (crack) problem
resulting from resolution change. It is also capable of
reducing popping effects due to cell-to-cell,
image-to-geometry, and geometry-to-image transition.

3 RELATED WORK

View frustum culling that prevents the objects that are
outside the view volume from being sent to the
rendering pipeline is the basic visibility culling. Several
methods have been proposed that further cull out
polygons that are occluded by others. There include
occluding culling using shadow frusta [7], hierarchical
z-buffer [4], and hierarchical occlusion map [17].
Moreover, level-of-detail modeling (e.g., edge
collapsing [6], vertex clustering [9], vertex decimation
[11], and progressive mesh [5, 16]) has been very useful
to further reduce the number of polygon that are inside
the view frustum and visible.

Geometry-based rendering based on visibility culling
and LOD modeling alone usually cannot meet
interactive requirement for very complex scenes.
Image-based rendering (IBR) has been a well known
alternative. IBR takes parallax into account, and
renders a scene by interpolating neighboring reference
views [2, 8, 12]. IBR has complexity that is
independent on the scene complexity, and can model
natural scenes using photographs, but often constrained
by limited viewing degree of freedom. IBR in general
has problems like folding, gap, and hole. Layered
depth image (LDI) [14] is a good try to eliminate hole
problems due to visibility change. LDI structure is
more compact in the sense that redundant information
has been reduced when several neighboring reference
images are composed into a LDI.

Hierarchical image caching proposed in [13, 10] is
the first approach that combines geometry-based and
image-based rendering aiming to achieve an interactive
frame rate for complex static scenes. The cached
texture possesses no depth information and has to be
re-generated when the error due to parallax exceeds a
user-specified tolerance. The image simplification
schemes proposed in [3, 15] is another kind of approach
in which background or distant objects are rendered
using cached depth meshes. The depth meshes are
rendered by re-projection and texture mapping.

4 PROPOSED HYBRID SCHEME

For an extremely large and complex scene, the amount
of geometry data will be too huge for current graphics
hardware to achieve interactive frame rate even though
level-of-detail (LOD) and visibility culling techniques
are used. We use here a spatial subdivision to localize
the geometry complexity, in which the entire space is
partitioned into equal-sized hexagonal navigation cells
(Figure 1). Each navigation cell is associated with a
larger image cell. Only objects inside the image cell
are rendered geometrically with approximate LOD,
while objects outside the cell are rendered by cached
image with depth.

The scheme proposed here has two stages:
preprocessing stage and run-time stage, which are
detailed in the subsequent sections.

4.1 PROPOSED HYBRID SCHEME

The preprocessing stage contains the following steps:
l Derive a progressive mesh for each object.
l Subdivide the entire scene into equal-sized navigation

cells by hexagonal subdivision.
l Capture six depth images viewed from center of each

navigation cell by using side face of the corresponding
image cell as the window and rendering the geometries
behind the image cell, and store the transformation
matrix for each depth image.

l Derive a simplified depth mesh for each depth image.

4.1.1 Hexagonal Space Subdivision

The dual hexagonal spatial subdivision partitions the x-y
plane of the scene into equal-sized hexagonal navigation
cells, and each of which is associated with a larger
image cell that centered at the same point as the
navigation cell. Rendered images and depths of the
objects outside an image cell will be cached on its side
faces while the objects inside the image cell will be
rendered geometrically using LOD modeling. The size
ratio of image cell over navigation cell is a critical issue
regarding the navigation efficiency and image quality.
Smaller ratio leads to a better efficiency while larger
ratio results in a better image quality since hole problem
due to visibility change will be reduced.

4.1.2 Depth Image Tr iangulation

The simplest way to construct a depth mesh for a depth
image is the regular-grid triangulation, which would,
however, results in too many redundant triangles.
Several properties of the depth images could be adopted
to reduce the number of the triangles on a depth mesh.
The most important one is to use the depth coherence,
by that we mean that pixels of similar depths are likely
to be on the same surface. A pixel that has a sharp
depth variation from adjacent pixels would have a high
possibility to be on a silhouette edge, hence we identify
the silhouette edges on an image by comparing the depth
difference among neighboring pixels with a
pre-specified tolerance. Moreover, the external contours
(could derived by the contour extraction in the field of
image processing) of characteristic regions on an image
is a very important visual appearance, and hence must
be included in the depth mesh.

To have an optimized triangle aspect ratio, we use
the constrained Delaunay triangulation (CDT) algorithm

4

[1] to triangulate the depth image bounded by external
contours based on depth information. Furthermore, to
remove long and narrow triangles in the triangular mesh,
we assign uniform grid vertices inside the characteristic
regions before performing the CDT.

4.2 Run-time Stage

In run-time stage, we do the following:
1. At program start-up time, setup a lowest priority thread

for pre-fetching the geometry and image data in
neighboring cells. With such pre-fetching scheme, the
loading time of neighboring cell data is amortize to
several inside-cell frames. As a result, we will not be
interrupted by the loading of newly navigated data
during the cell transition and obtain a smooth frame
rates and an unnoticeable transition.

2. Fetch off-line nearby geometries and depth images for
the currently navigated cell.

3. Render faraway geometry (behind the image cell) by
warping the depths with texture mapping.

4. Render nearby geometry (inside the image cell) by
progressive meshes with appropriate resolution.

4.2.1 Image Warping and Morphing

If we map a cached image without depth directly onto a
virtual image plane, there will be apparent parallax error
while we navigate the scene apart from the cell’s center,
and there are noticeable popping effects while we
navigate across the cell boundary. The popping effects
are mainly caused by faraway geometries which are
represented by different cached images in before- and
after-crossing-boundary frames, and also the
image-to-geometry and geometry-to- image transitions.
In addition, invisible geometries may suddenly appear
while crossing the cell boundary. Our scheme handles
these problems by mapping the cached images onto the
corresponding re-projected depth meshes. Furthermore,
the folding problem is handled here by hardware
accelerated depth-buffering.

A projective-alike-texture-mapping method is
developed to map the cached image onto depth meshes.
The texture coordinate for each vertex can be generated
automatically by standard OpenGL (glTexGen().)
Texture coordinates (s, t) maps from image coordinates
(x, y) can be derived by (s, t) = (x/w, y/h), where w and h
are width and height of the cached image, respectively.
The GPU of graphics hardware can also do the
transformation of re-projection from the source image
coordinates to the destination image coordinates by
multiply the inverse of the camera matrix of source
image (cached image), allowing CPU leisurely does the
visibility culling, level-of-detail selection, pre-fetching,
and so on. Moreover, this method reduces the
bandwidth between CPU and graphics accelerator, and
does not need additional memory for storing texture
coordinate at each vertex.

5 EXPERIMENTS

The following methods are used for performance and
quality comparison:

l Method A: (Geometry) The scene is rendered by
the traditional graphics using view frustum culling
and progressive meshes.

l Method B: (Depth Mesh) The proposed hybrid
scheme.

l Method C: (Image Caching) Similar to method B,
except that cached images without depth are used.

Our test scene is a statuary park which is formed by
104 objects with 484,831 polygons; see Figure 2. The
test platform is a Pentium II 350Mhz with 256MB main
memory and an nVidia TNT with 16MB graphics
accelerator. We compare the performance in term of
frame time and polygon number for each frame, and
compare the quality by subjective fidelity criteria
(human eyes) and objective fidelity criteria
root-mean-square error erms and signal-to-noise ratio
SNR(dB). The erms and SNR are defined as follows.

where is the pixel color of the approximated
image at position (x, y), M and N are the dimensions of
the image.

5.1 Per formance

Table 1 depicts the average frame time and the average
polygon number of 3000 frames each for the path 1 and
the path 2. In polygon-count comparison, the method
B has in average only 15% of the polygons required by
A, and slightly more polygons than C.

For a scene in which all geometries are uniformly
distributed, the polygon number inside each image cell
will be almost constant. Moreover, the rendering costs
of a depth mesh and a cached image are mostly

5

dependent on the image resolution. Therefore, the
rendering time of B and C are almost the same, more
constant, and much less than that of A (see Figure 3.)
Note that, the polygon number of A is decreasing with
the frame number due to the fact that more and more
polygons are clipped out by the visibility culling in both
path 1 and path 2.

5.2 Quality

Figure 4 shows the images rendered by method A, B,
and C respectively. We see that the positions of
geometries are correct in B, but there are a few
differences in shapes and lighting effects. This is due
to the fact that depth mesh triangulation algorithm could
not properly capture small detail features. The method
C is even worse, the position of the building on the left
of Figure 4(c) is not correct. This will result in sudden
jump during cell transition. In our experiment, we
often perceive such sudden jumps in C.

Table 2 shows the average quality loss of B and C
compare to the pure geometric rendering using original
geometry without LOD. Note that, human eye in general

would not able to distinguish between two images that
have a signal-to-noise ratio (SNR) greater than 25dB.
Figure 5 shows the SNR for each frame of the path 1.
We can see that the SNR of B between 14 and 18 and is
much stable than C. This is mainly due to the fact that
parallax errors have been removed by re-projecting the
depth meshes. As a result, it will have a great quality
improvement with only a little performance loss in
re-projecting the depth meshes. Table 3 depicts the
average erms and SNR between frames before and after
cell transition. Method B has high average SNR 20.8

and 22 for path 1 and path 2, respectively.

5.3 Cell Size and Cell Ratio Considerations

We use JPEG algorithm to compress our cached images
to reduce the storage requirements and reduce the
loading time as well. Decompression needed at
run-time can be supported by the state-of-the-art
graphics hardware with texture decompression (e.g.,
S3’s S3TC.)

Since the storage requirement of a depth mesh and a
cached image are both dependent on the image
resolution (dimension) and an almost constant amount of
depth meshes and cached images would be required to
navigate a scene, the memory requirement for B and C
will be almost constant; as shown in Table 4. On the
other hand, as we mentioned in the Section 3.1.1, we
could make a tradeoff between the quality and
performance. The smaller navigation cell size, the
smaller amount of local geometries is. Thus, it should
have a better performance for a smaller navigation cell
size. However, with a smaller cell size, there will be
more navigation cells and, in turns, frequent transitions
and more frequent data loading are required.

6 DISCUSSION & FUTURE WORK

In this project, we propose a hexagonal spatial
subdivision and a hybrid scheme for navigating complex
scenes. The method can achieve a smooth, with no
apparent popping effects, navigation at an almost
constant and interactive frame rate. By cooperating
with the re-projection of depth meshes, parallax error
and popping effect will be minimized. Furthermore,
we could easily make a tradeoff between performance
and quality requirement by specifying the pixel-error
tolerance for cell-size ratio. As the future works, a
better adaptive triangulation algorithm for the depth
image which is able to capture the detail features with
low increase in polygon count will be also of interest.
Current implementation considers only the constant cell
ratio. To utilize the spatial properties, a floating cell
ratio approach could be considered.

References
[1] M. Bern and D. Eppstein. Mesh Generation and

Optimal Triangulation. In F. K. Jwang and D.-Z.
Du, editors, Computing in Euclidean Geometry,
pages 23–90, Singapore, 1992. World Scientific.

[2] S. E. Chen and L. Williams. View Interpolation for
Image Synthesis. In J. T. Kajiya, editor, Computer
Graphics (SIGGRAPH 93 Proceedings), pages
279–288, August 1993.

6

[3] L. Darsa, B. Costa, and A. Varshney.
Walkthroughs of Complex Environments using
Image-based Simplification. In Computers &
Graphics, volume 22, pages 55–69, 1998.

[4] N. Greene, M. Kass, and G. Miller. Hierarchical
ZBuffer Visibility. In J. T. Kajiya, editor,
Computer Graphics (SIGGRAPH 93
Proceedings), pages 231–238, August 1993.

[5] H. Hoppe. Progressive Meshes. In H. Rushmeier,
editor, Proceedings of SIGGRAPH 96, pages
99–108. ACM SIGGRAPH, Addison Wesley,
August 1996.

[6] H. Hoppe, T. DeRose, T. Duchamp, J.
McDonald, and W. Stuetzle. Mesh Optimization.
In J. T. Kajiya, editor, Computer Graphics
(SIGGRAPH 93 Proceedings), pages 19–26,
August 1993.

[7] T. Hudson, D. Manocha, J. Cohen, M. Lin, K.
Hoff, and H. Zhang. Accelerated Occlusion
Culling using Shadow Frusta. In Proceedings of
13th Symposium on Computational Geometry,
pages 1–10, 1997.

[8] L. McMillan and G. Bishop. Plenoptic Modeling:
An Image-Based Rendering System. In R. Cook,
editor, Proceedings of SIGGRAPH 95, pages
39–46. ACM SIGGRAPH, Addison Wesley,
August 1995.

[9] J. Rossignac and P. Borrel. Multi-resolution 3-D
Approximations for Rendering Complex Scenes.
In B. Falcidieno and T. L. Kunii, editors,
Modeling in Computer Graphics, pages 455–465,
Berlin, 1993. Springer-Verlag.

[10] G. Schaufler and W. St ürzlinger. A
Three-Dimensional Image Cache for Virtual

Reality. In Proceedings of Eurographics ’96,
pages 227–236, August 1996.

[11] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen.
Decimation of Triangle Meshes. Computer
Graphics, 26(2):65–69, 1992.

[12] S. M. Seitz and C. R. Dyer. View Morphing. In
H. Rushmeier, editor, Proceedings of
SIGGRAPH 96, pages 21–30. ACM SIGGRAPH,
Addison Wesley, August 1996.

[13] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose,
and J. Snyder. Hierarchical Image Caching for
Accelerated Walkthroughs of Complex
Environments. In H. Rushmeier, editor,
Proceedings of SIGGRAPH 96, pages 75–82.
ACM SIGGRAPH, Addison Wesley, August
1996.

[14] J. W. Shade, S. J. Gortler, L.-W. He, and R.
Szeliski. Layered Depth Images. In Proceedings
of SIGGRAPH 98, pages 231–242. ACM
SIGGRAPH, Addison Wesley, July 1998.

[15] F. Sillion, G. Drettakis, and B. Bodelet. Efficient
Impostor Manipulation for Real-Time
Visualization of Urban Scenery. In Proceedings
of Eurographics’97, pages 207–218, Budapest,
Hungary, September 1997.

[16] S. K. Yang. Material-Preserving Progressive
Mesh Using Geometry and Topology
Simplification. Master’s thesis, Department of
Computer Science and Information Engineering,
National Chiao Tung University, 1999.

[17] H. Zhang, D. Manocha, T. Hudson, and K. Hoff.
Visibility Culling Using Hierarchical Occlusion
Maps. In Computer Graphics, volume 31, pages
77–88, 1997.

	page1
	page2
	page3
	page4
	page5
	page6

