(1)
Hybrid Rendering Techniques for Virtual Reality (1)

b 0
NSC89 2218 E 009 013
89 8 1 90 7 31

O U oo

90 11 27

Preparation of NSC Project Reports
NSC 89-2218-E-009-013

89 8

XXXXXX

1

0 7 31

XXXXXX

3D 2D

Abstract

In this project, we propose a hybrid rendering scheme
that combines geometry-based and image-based
rendering techniques and have efficiency relatively
independent of the scene complexity. The scheme has
two stages. In the preprocessing stage, the x-y plane of
a 3D scene is partitioned into equal-sized hexagonal
cells, called navigation cells, each of which is associated
with a larger image cell that has an identical center.
Each side face of the image cell will be stored a cached
image with depth that is obtained by rendering the scene
using the cell’s center as the center of projection and the
side face asthewindow. The depth mesh of the cached
image will be obtained by triangulating cached image
using depth. In the run-time stage, when the
participant navigates inside a navigation cell, objects
outside the corresponding image cell will be rendered by
warping and re-projecting depth mesh with cached
texture image and objects inside the image cell will be
rendered by using meshes with appropriate resolution.

Keywords: Virtual Reality, Image Caching, Navigation,
Image-Based Rendering, Hybrid Rendering

2 INTRODUCTION

As the Amdal’s law, we can imagine that we will have
more and more powerful graphics accelerator in the near
future. But we will always have greater expectation on
performance and quality for visual applications. In last
decades, many techniques have been proposed on the
reduction of polygon count and preserving visual
realism. For examples, visbility clipping, visibility
culling and level-of-detail modeling, and more recently,
view interpolation, image caching, portal texture, and
image-based rendering.

It is well known that the image-based rendering has
efficiency that is independent on scene complexity and
could easily produce photo-realistic images. It has,
however, very limited viewing degree of freedom. On
the contrary, traditional geometry-based rendering has
high viewing degree of freedom and accelerated by
graphics hardware, but it's rendering time is dependent
on the scene complexity. In this project, we propose a
hybrid rendering scheme that combines geometry- and
image-based rendering technique to take advantage of
both. The aim is to be able to render complex scenes
at interactive and almost constant frame rate while still
able to achieve good visual realism. In the
pre-processing of our scheme, the xy plane of a 3D
scene is partitioned into equal-sized hexagonal
navigation cells, each of which is associated with a
larger image cell that has an identical center. Each side
face of the image cell will be stored a cached image with
depth that is obtained by rendering the scene using the
cell’s center as the center of projection and the side face
as the window. The depth mesh of the cached image
will be obtained by triangulating cached image using
depth. In the run-time stage, when the participant
navigates inside a navigation cell, objects outside the
corresponding image cell will be rendered by warping
and re-projecting depth mesh using the proposed
hardware accelerated projective-alike texture-mapping
and objects inside the image cell will be rendered by
using meshes with appropriate resolution. The loading
time of neighboring cell data will be amortized to
several inside-cell frames.

Warping with depth mesh can eliminate not only

paralax problem but also the gap (crack) problem
resulting from resolution change. It is also capable of
reducing popping effects due to cell-to-cel,
image-to-geometry, and geometry-to-image transition.

3 RELATED WORK

View frustum culling that prevents the objects that are
outside the view volume from being sent to the
rendering pipeline is the basic visibility culling. Severa
methods have been proposed that further cull out
polygons that are occluded by others. There include
occluding culling using shadow frusta [7], hierarchical
z-buffer [4], and hierarchical occlusion map [17].
Moreover, level-of-detail modeling (e.g., edge
collapsing 6], vertex clustering [9], vertex decimation
[11], and progressive mesh [5, 16]) has been very useful
to further reduce the number of polygon that are inside
the view frustum and visible.

Geometry-based rendering based on visibility culling
and LOD modeling aone usually cannot meet
interactive requirement for very complex scenes.
Image-based rendering (IBR) has been a well known
aternative. IBR takes paralax into account, and
renders a scene by interpolating neighboring reference
views [2, 8, 12]. IBR has complexity that is
independent on the scene complexity, and can model
natural scenes using photographs, but often constrained
by limited viewing degree of freedom. IBR in general
has problems like folding, gap, and hole. Layered
depth image (LDI) [14] is a good try to eliminate hole
problems due to visibility change. LDI structure is
more compact in the sense that redundant information
has been reduced when severa neighboring reference
images are composed into aLDI.

Hierarchical image caching proposed in [13, 10] is
the first approach that combines geometry-based and
image-based rendering aiming to achieve an interactive
frame rate for complex static scenes. The cached
texture possesses no depth information and has to be
re-generated when the error due to parallax exceeds a
user-specified tolerance. The image simplification
schemes proposed in [3, 15] is another kind of approach
in which background or distant objects are rendered
using cached depth meshes. The depth meshes are
rendered by re-projection and texture mapping.

4 PROPOSED HYBRID SCHEME

For an extremely large and complex scene, the amount
of geometry data will be too huge for current graphics
hardware to achieve interactive frame rate even though
level-of-detail (LOD) and visibility culling techniques
areused. We use here a spatial subdivision to localize
the geometry complexity, in which the entire space is
partitioned into equal-sized hexagonal navigation cells
(Figure 1). Each navigation cell is associated with a
larger image cell. Only objects inside the image cell
are rendered geometrically with approximate LOD,
while objects outside the cell are rendered by cached
image with depth.

Figure 1: Dual hexagonal spatial subdivision

The scheme proposed here has two stages:
preprocessing stage and run-time stage, which are
detailed in the subsequent sections.

4.1 PROPOSED HYBRID SCHEME

The preprocessing stage contains the following steps:

1 Derive aprogressive mesh for each object.

1 Subdivide the entire scene into equal-sized navigation
cells by hexagonal subdivision.

1 Capture six depth images viewed from center of each
navigation cell by using side face of the corresponding
image cell as the window and rendering the geometries
behind the image cell, and store the transformation
matrix for each depth image.

1 Derive asimplified depth mesh for each depth image.

411 Hexagonal Space Subdivision
The dual hexagonal spatial subdivision partitions the x-y
plane of the scene into equal-sized hexagonal navigation
cells, and each of which is associated with a larger
image cell that centered at the same point as the
navigation cell. Rendered images and depths of the
objects outside an image cell will be cached on its side
faces while the objects inside the image cell will be
rendered geometrically using LOD modeling. The size
ratio of image cell over navigation cell is a critical issue
regarding the navigation efficiency and image quality.
Smaller ratio leads to a better efficiency while larger
ratio results in a better image quality since hole problem
due to visibility change will be reduced.
4.1.2 Depth Image Triangulation
The simplest way to construct a depth mesh for a depth
image is the regular-grid triangulation, which would,
however, results in too many redundant triangles.
Several properties of the depth images could be adopted
to reduce the number of the triangles on a depth mesh.
The most important one is to use the depth coherence,
by that we mean that pixels of similar depths are likely
to be on the same surface. A pixel that has a sharp
depth variation from adjacent pixels would have a high
possibility to be on a silhouette edge, hence we identify
the silhouette edges on an image by comparing the depth
difference among neighboring pixels with a
pre-specified tolerance. Moreover, the external contours
(could derived by the contour extraction in the field of
image processing) of characteristic regions on an image
is a very important visual appearance, and hence must
be included in the depth mesh.

To have an optimized triangle aspect ratio, we use
the constrained Delaunay triangulation (CDT) agorithm

[1] to triangulate the depth image bounded by external
contours based on depth information. Furthermore, to
remove long and narrow triangles in the triangular mesh,
we assign uniform grid vertices inside the characteristic
regions before performing the CDT.

4.2 Run-time Stage

In run-time stage, we do the following:

1. At program start-up time, setup a lowest priority thread
for prefetching the geometry and image data in
neighboring cells. With such pre-fetching scheme, the
loading time of neighboring cell data is amortize to
severa inside-cell frames. As a result, we will not be
interrupted by the loading of newly navigated data
during the cell transition and obtain a smooth frame
rates and an unnoticeable transition.

2. Fetch off-line nearby geometries and depth images for
the currently navigated cell.

3. Render faraway geometry (behind the image cell) by
warping the depths with texture mapping.

4. Render nearby geometry (inside the image cell) by
progressive meshes with appropriate resolution.

421 ImageWarping and Morphing

If we map a cached image without depth directly onto a
virtual image plane, there will be apparent parallax error
while we navigate the scene apart from the cell’s center,
and there are noticeable popping effects while we
navigate across the cell boundary. The popping effects
are mainly caused by faraway geometries which are
represented by different cached images in before- and
after-crossing-boundary frames, and aso the
image-to-geometry and geometry-to- image transitions.
In addition, invisible geometries may suddenly appear
while crossing the cell boundary. Our scheme handles
these problems by mapping the cached images onto the
corresponding re-projected depth meshes. Furthermore,
the folding problem is handled here by hardware
accelerated depth-buffering.

A proective-alike-texture-mapping method is
developed to map the cached image onto depth meshes.
The texture coordinate for each vertex can be generated
automatically by standard OpenGL (glTexGen().)
Texture coordinates (s f) maps from image coordinates
(%, y) can be derived by (s f) = (X¥w yH), where wand h
are width and height of the cached image, respectively.
The GPU of graphics hardware can also do the
transformation of re-projection from the source image
coordinates to the destination image coordinates by
multiply the inverse of the camera matrix of source
image (cached image), allowing CPU leisurely does the
visibility culling, level-of-detail selection, pre-fetching,
and so on. Moreover, this method reduces the
bandwidth between CPU and graphics accelerator, and
does not need additional memory for storing texture
coordinate at each vertex.

5 EXPERIMENTS

The following methods are used for performance and
quality comparison:

1 Method A: (Geometry) The sceneisrendered by
the traditional graphics using view frustum culling
and progressive meshes.

1 Method B: (Depth Mesh) The proposed hybrid
scheme.

1 Method C: (Image Caching) Similar to method B,
except that cached images without depth are used.

Our test scene is a statuary park which is formed by
104 objects with 484,831 polygons; see Figure 2. The
test platform is a Pentium |1 350Mhz with 256MB main
memory and an nVidia TNT with 16MB graphics
accelerator. We compare the performance in term of
frame time and polygon number for each frame, and
compare the quality by subjective fidelity criteria
(human eyes) and objective fidelity criteria
root-mean-square error ems and signal-to-noise ratio

SNR(dB). The emsand SNR are defined as follows.
M-1N-1 1/2
come = |5 D D [Fww) — sew)] M
=0 y=0
M—1 N-1 2 2
flz,y)”
SNR = 10 = log ”E:”‘:‘\’ 712”":“ /) 5 @
Z.r:() Z;/:n [f<“l v) = f(J“ y)}
where f(z,y) isthe pixel color of the approximated

image at position (x, J), M and N are the dimensions of
the image.

Figure 2: Test scene from a bird’s eye view
5.1 Performance

Table 1 depicts the average frame time and the average
polygon number of 3000 frames each for the path 1 and
the path 2. In polygon-count comparison, the method
B has in average only 15% of the polygons required by
A, and dightly more polygonsthan C.

Method Method A Method B Method C
Depth map Pure
Geometry cached

image

& cached
image
Average Frame Time (milli-second)

152 19 152 —0

Item Geometry | Geometry

Path 1 1207

171 152
148 20 148 —0
168 148
Average Polygon Number
23508 1984

Path 2 1151

23508 2
23510
23171 2
23173

Path 1 169807

73490
23171 1031
25100

Path 2 166982

Table 1: Average frame time in ms and polygon number for
each method.

For a scene in which all geometries are uniformly
distributed, the polygon number inside each image cell
will be almost constant. Moreover, the rendering costs
of a depth mesh and a cached image are mostly

Method A — Method B — Method C

1001
2001
2501

e
2, 1501

Figure 3: The frame time for each frame of path 1, path 2 is

similar to path 1.
dependent on the image resolution. Therefore, the
rendering time of B and C are almost the same, more
constant, and much less than that of A (see Figure 3.)
Note that, the polygon number of A is decreasing with
the frame number due to the fact that more and more
polygons are clipped out by the visibility culling in both
path 1 and path 2.

5.2 Quality

Figure 4 shows the images rendered by method A, B,
and C respectively. We see that the positions of
geometries are correct in B, but there are a few
differences in shapes and lighting effects. This is due
to the fact that depth mesh triangulation algorithm could
not properly capture small detail features. The method
C is even worse, the position of the building on the left
of Figure 4(c) isnot correct. Thiswill result in sudden
jump during cell transition. In our experiment, we
often perceive such sudden jumpsin C.

Table 2 shows the average quality loss of B and C
compare to the pure geometric rendering using original
geometry without LOD. Note that, human eye in general

Measurement | Method B | Method C
Path |
€rms [174108
SNR(dB) | 159820 |
Path 2
Erms [17.3058 [32.17376
SNR(dB) | 162703 | 7.22965

21.32756
7.51852

Table 2: The error measurements of the method B and C.
would not able to distinguish between two images that
have a signal-to-noise ratio (SNR) greater than 25dB.
Figure 5 shows the SNR for each frame of the path 1.
We can see that the SNR of B between 14 and 18 and is
much stable than C. Thisis mainly due to the fact that
parallax errors have been removed by re-projecting the
depth meshes. As aresult, it will have a great quality
improvement with only a little performance loss in
re-projecting the depth meshes. Table 3 depicts the
average emsand SNR between frames before and after
cell transition. Method B has high average SNR 20.8

SNR(@B) — Method B Method C

2
18
16
1
12
10

3

LSRR

I N e F—MV,W‘IM frompentime

6
4
2
0
1 L) 1001 1501 2001 2501

Frame Number

Figure 5: The SNR of each frame in path 1.

and 22 for path 1 and path 2, respectively.
5.3 Céll Size and Cell Ratio Consider ations

We use JPEG algorithm to compress our cached images
to reduce the storage requirements and reduce the
loading time as well. Decompression needed at
run-time can be supported by the state-of-the-art
graphics hardware with texture decompression (e.g.,
S3'sS3TC)

Measurement | Method B | Method C
Path 1

Crms [741108 T 306.03415
SNR(dB) | 20.79533 | 681792
Path 2
Crms [727450] 37.03243
SNR(dB) | 22.14936_| 6.01207

Table 3: The error measurements of cell transition.

Since the storage requirement of a depth mesh and a
cached image are both dependent on the image
resolution (dimension) and an almost constant amount of
depth meshes and cached images would be required to
navigate a scene, the memory requirement for B and C
will be almost constant; as shown in Table 4. On the
other hand, as we mentioned in the Section 3.1.1, we
could make a tradeoff between the quality and
performance. The smaller navigation cell size, the
smaller amount of local geometriesis. Thus, it should
have a better performance for a smaller navigation cell
size. However, with a smaller cell size, there will be
more navigation cells and, in turns, frequent transitions
and more frequent data loading are required.

6 DISCUSSION & FUTURE WORK

In this project, we propose a hexagona spatial
subdivision and a hybrid scheme for navigating complex
scenes. The method can achieve a smooth, with no
apparent popping effects, navigation at an amost
constant and interactive frame rate. By cooperating
with the re-projection of depth meshes, paralax error
and popping effect will be minimized. Furthermore,
we could easily make a tradeoff between performance
and quality requirement by specifying the pixel-error
tolerance for cell-size ratio. As the future works, a
better adaptive triangulation algorithm for the depth
image which is able to capture the detail features with
low increase in polygon count will be also of interest.
Current implementation considers only the constant cell
ratio. To utilize the spatial properties, a floating cell
ratio approach could be considered.

References

[1] M. Bern and D. Eppstein. Mesh Generation and
Optimal Triangulation. In F. K. Jwang and D.-Z.
Du, editors, Computing in Euclidean Geometry,
pages 23-90, Singapore, 1992. World Scientific.

[2] S.E.ChenandL.Williams. View Interpolation for
Image Synthesis. In J. T. Kagjiya, editor, Computer
Graphics (SGGRAPH 93 Proceedings), pages
279-288, August 1993.

(a) Geometry

(b) Depth Mesh

(c) Image Caching

Figure 4: The same view for three different rendering methods. Parallax errors is appeared in (c).

L Storage Requirement(MB) Average
. Navigation Image cell e
Sreratio o si si Off-line data (pre-processing data) On-line data (run-time data) Frame
cell size size Dff-line data (pre-processing data On-line data (run-time data Time(ms)
geomelry depthmesh cached image geometry depthmesh cached image
10 15 150 30 428 309 179 1.94 348 135
10 20 200 30 248 178 29.5 1.93 345 139
15 10 150 30 957 674 19.6 1.94 34.6 184
15 15 225 30 425 299 37.1 1.92 342 161
15 20 300 30 242 171 065.2 1.89 337 162
15 25 375 30 150 110 98.4 1.87 332 176
20 15 300 30 424 291 64.5 1.90 34.0 189
20 20 400 30 240 164 114.7 1.89 33.1 232

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

Table 4: The storage requirements and average frame time under different cell ratios and cell sizes.

L. Dasa, B. Costa, and A. Varshney.
Walkthroughs of Complex Environments using
Image-based Simplification. In Computers &
Graphics, volume 22, pages 5569, 1998.

N. Greene, M. Kass, and G. Miller. Hierarchica
ZBuffer Vighility. In J T. Kajiya, editor,
Computer Graphics (S GGRAPH 93
Proceedings), pages 231-238, August 1993.

H. Hoppe. Progressive Meshes. In H. Rushmeier,
editor, Proceedings of SGGRAPH 96, pages
99-108. ACM SIGGRAPH, Addison Wesley,
August 1996.

H. Hoppe, T. DeRose, T. Duchamp, J.
McDonald, and W. Stuetzle. Mesh Optimization.
In J. T. Kajiya, editor, Computer Graphics
(SGGRAPH 93 Proceedings), pages 19-26,
August 1993.

T. Hudson, D. Manocha, J. Cohen, M. Lin, K.
Hoff, and H. Zhang. Accelerated Occlusion
Culling using Shadow Frusta. In Proceedings of
13th Symposium on Computational Geometry,
pages 1-10, 1997.

L. McMillan and G. Bishop. Plenoptic Modeling:
An Image-Based Rendering System. In R. Cook,
editor, Proceedings of SGGRAPH 95, pages
39-46. ACM SIGGRAPH, Addison Wesley,
August 1995.

J. Rossignac and P. Borrel. Multi-resolution 3-D
Approximations for Rendering Complex Scenes.
In B. Falcidieno and T. L. Kunii, editors,
Modéeling in Computer Graphics, pages 455-465,
Berlin, 1993. Springer-Verlag.

G. Schaufler and W. St'urzlinger. A
Three-Dimensional Image Cache for Virtua

Reality. In Proceedings of Eurographics '96,
pages 227-236, August 1996.

[11] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen.

[12]

Decimation of Triangle Meshes. Computer
Graphics, 26(2):65-69, 1992.

S. M. Seitz and C. R. Dyer. View Morphing. In
H. Rushmeier, editor, Proceedings of
S GGRAPH 96, pages 21-30. ACM SIGGRAPH,
Addison Wesley, August 1996.

[13] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose,

[14]

[15]

[16]

[17]

and J. Snyder. Hierarchica Image Caching for
Accelerated Walkthroughs of Complex
Environments. In H. Rushmeler, editor,
Proceedings of SGGRAPH 96, pages 75-82.
ACM SIGGRAPH, Addison Wedey, August
1996.

J. W. Shade, S. J. Gortler, L.-W. He, and R.
Szeliski. Layered Depth Images. In Proceedings
of SGGRAPH 98, pages 231-242. ACM
SIGGRAPH, Addison Wesley, July 1998.

F. Sillion, G. Drettakis, and B. Bodelet. Efficient
Impostor Manipulation for Real-Time
Visualization of Urban Scenery. In Proceedings
of Eurographics’ 97, pages 207-218, Budapest,
Hungary, September 1997.

S. K. Yang. Material-Preserving Progressive
Mesh Using Geometry and Topology
Simplification. Master's thesis, Department of
Computer Science and Information Engineering,
National Chiao Tung University, 1999.

H. Zhang, D. Manocha, T. Hudson, and K. Hoff.
Visibility Culling Using Hierarchical Occlusion
Maps. In Computer Graphics, volume 31, pages
77-88, 1997.

	page1
	page2
	page3
	page4
	page5
	page6

