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1 中文摘要

本研究計畫主要是研究結合3D幾何式與2D影像
式顯像技術的優點，並且利用空間分割、影像曲化等
技術，發展出一顯像時間能與場景複雜度較無關的虛
擬實境瀏覽系統。整個系統將分前置處理與執行兩階
段，前置處理階段首先將整個場景作雙層蜂巢式的空
間分割成為正六邊形的影像與瀏覽子空間，且每一瀏
覽子空間對應一個影像子空間，而且有相同的中心
點。再對每一個影像子空間，以其中心當作視點，六
個邊面為視窗，分別產生六張快取影像，並且將深度
值也一併儲存，最後將深度快取影像作狄勞尼三角化
處理，以得到深度貼圖網格。執行階段則是瀏覽時整
合影像子空間內幾何式顯像與影像子空間外影像式
顯像的結果。對於空間外的場景利用深度快取影像與
深度貼圖網格經過影像曲化與重新投影的運算，代替
場景資料進行影像式顯像，而對於子空間內的幾何物
體則選擇適當精細度的漸進式模型，配合可見性裁切
決定出最後的幾何資料供顯像系統進行幾何式顯像。

關鍵詞：虛擬實境、影像快取、瀏覽、影像式顯像、
整合式顯像

Abstract

In this project, we propose a hybrid rendering scheme 
that combines geometry-based and image-based 
rendering techniques and have efficiency relatively 
independent of the scene complexity. The scheme has 
two stages. In the preprocessing stage, the x-y plane of 
a 3D scene is partitioned into equal-sized hexagonal 
cells, called navigation cells, each of which is associated 
with a larger image cell that has an identical center. 
Each side face of the image cell will be stored a cached 
image with depth that is obtained by rendering the scene 
using the cell’s center as the center of projection and the 
side face as the window.  The depth mesh of the cached 
image will be obtained by triangulating cached image 
using depth. In the run-time stage, when the 
participant navigates inside a navigation cell, objects 
outside the corresponding image cell will be rendered by 
warping and re-projecting depth mesh with cached 
texture image and objects inside the image cell will be 
rendered by using meshes with appropriate resolution.

Keywords: Virtual Reality, Image Caching, Navigation,
Image-Based Rendering, Hybrid Rendering

2 INTRODUCTION

As the Amdal’s law, we can imagine that we will have 
more and more powerful graphics accelerator in the near 
future.  But we will always have greater expectation on 
performance and quality for visual applications.  In last 
decades, many techniques have been proposed on the 
reduction of polygon count and preserving visual 
realism. For examples, visibility clipping, visibility 
culling and level-of-detail modeling, and more recently, 
view interpolation, image caching, portal texture, and 
image-based rendering.

It is well known that the image-based rendering has 
efficiency that is independent on scene complexity and 
could easily produce photo-realistic images.  It has, 
however, very limited viewing degree of freedom. On 
the contrary, traditional geometry-based rendering has 
high viewing degree of freedom and accelerated by 
graphics hardware, but it’s rendering time is dependent 
on the scene complexity. In this project, we propose a 
hybrid rendering scheme that combines geometry- and 
image-based rendering technique to take advantage of 
both.  The aim is to be able to render complex scenes 
at interactive and almost constant frame rate while still 
able to achieve good visual realism.  In the 
pre-processing of our scheme, the x-y plane of a 3D 
scene is partitioned into equal-sized hexagonal 
navigation cells, each of which is associated with a 
larger image cell that has an identical center. Each side 
face of the image cell will be stored a cached image with 
depth that is obtained by rendering the scene using the 
cell’s center as the center of projection and the side face 
as the window. The depth mesh of the cached image 
will be obtained by triangulating cached image using 
depth.  In the run-time stage, when the participant 
navigates inside a navigation cell, objects outside the 
corresponding image cell will be rendered by warping 
and re-projecting depth mesh using the proposed 
hardware accelerated projective-alike texture-mapping 
and objects inside the image cell will be rendered by 
using meshes with appropriate resolution.  The loading 
time of neighboring cell data will be amortized to 
several inside-cell frames.

Warping with depth mesh can eliminate not only 
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parallax problem but also the gap (crack) problem 
resulting from resolution change.  It is also capable of 
reducing popping effects due to cell-to-cell, 
image-to-geometry, and geometry-to-image transition.

3 RELATED WORK
  
View frustum culling that prevents the objects that are 
outside the view volume from being sent to the 
rendering pipeline is the basic visibility culling. Several 
methods have been proposed that further cull out 
polygons that are occluded by others. There include 
occluding culling using shadow frusta [7], hierarchical 
z-buffer [4], and hierarchical occlusion map [17]. 
Moreover, level-of-detail modeling (e.g., edge 
collapsing [6], vertex clustering [9], vertex decimation
[11], and progressive mesh [5, 16]) has been very useful 
to further reduce the number of polygon that are inside
the view frustum and visible.

Geometry-based rendering based on visibility culling 
and LOD modeling alone usually cannot meet 
interactive requirement for very complex scenes. 
Image-based rendering (IBR) has been a well known 
alternative. IBR takes parallax into account, and 
renders a scene by interpolating neighboring reference 
views [2, 8, 12].  IBR has complexity that is
independent on the scene complexity, and can model 
natural scenes using photographs, but often constrained 
by limited viewing degree of freedom. IBR in general 
has problems like folding, gap, and hole.  Layered 
depth image (LDI) [14] is a good try to eliminate hole 
problems due to visibility change.  LDI structure is 
more compact in the sense that redundant information 
has been reduced when several neighboring reference 
images are composed into a LDI.

Hierarchical image caching proposed in [13, 10] is 
the first approach that combines geometry-based and 
image-based rendering aiming to achieve an interactive 
frame rate for complex static scenes. The cached 
texture possesses no depth information and has to be 
re-generated when the error due to parallax exceeds a 
user-specified tolerance.  The image simplification 
schemes proposed in [3, 15] is another kind of approach 
in which background or distant objects are rendered 
using cached depth meshes. The depth meshes are
rendered by re-projection and texture mapping.

4 PROPOSED HYBRID SCHEME

For an extremely large and complex scene, the amount 
of geometry data will be too huge for current graphics 
hardware to achieve interactive frame rate even though 
level-of-detail (LOD) and visibility culling techniques 
are used.  We use here a spatial subdivision to localize 
the geometry complexity, in which the entire space is 
partitioned into equal-sized hexagonal navigation cells 
(Figure 1). Each navigation cell is associated with a 
larger image cell. Only objects inside the image cell 
are rendered geometrically with approximate LOD, 
while objects outside the cell are rendered by cached 
image with depth.

The scheme proposed here has two stages: 
preprocessing stage and run-time stage, which are 
detailed in the subsequent sections.

4.1 PROPOSED HYBRID SCHEME

The preprocessing stage contains the following steps:
l Derive a progressive mesh for each object.
l Subdivide the entire scene into equal-sized navigation 

cells by hexagonal subdivision.
l Capture six depth images viewed from center of each 

navigation cell by using side face of the corresponding 
image cell as the window and rendering the geometries 
behind the image cell, and store the transformation 
matrix for each depth image.

l Derive a simplified depth mesh for each depth image.

4.1.1 Hexagonal Space Subdivision

The dual hexagonal spatial subdivision partitions the x-y
plane of the scene into equal-sized hexagonal navigation 
cells, and each of which is associated with a larger 
image cell that centered at the same point as the 
navigation cell.  Rendered images and depths of the 
objects outside an image cell will be cached on its side 
faces while the objects inside the image cell will be 
rendered geometrically using LOD modeling.  The size 
ratio of image cell over navigation cell is a critical issue 
regarding the navigation efficiency and image quality.  
Smaller ratio leads to a better efficiency while larger 
ratio results in a better image quality since hole problem 
due to visibility change will be reduced.

4.1.2 Depth Image Tr iangulation

The simplest way to construct a depth mesh for a depth 
image is the regular-grid triangulation, which would, 
however, results in too many redundant triangles.  
Several properties of the depth images could be adopted 
to reduce the number of the triangles on a depth mesh. 
The most important one is to use the depth coherence, 
by that we mean that pixels of similar depths are likely 
to be on the same surface.  A pixel that has a sharp 
depth variation from adjacent pixels would have a high 
possibility to be on a silhouette edge, hence we identify 
the silhouette edges on an image by comparing the depth 
difference among neighboring pixels with a 
pre-specified tolerance. Moreover, the external contours 
(could derived by the contour extraction in the field of 
image processing) of characteristic regions on an image 
is a very important visual appearance, and hence must 
be included in the depth mesh.  

To have an optimized triangle aspect ratio, we use 
the constrained Delaunay triangulation (CDT) algorithm 
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[1] to triangulate the depth image bounded by external 
contours based on depth information. Furthermore, to 
remove long and narrow triangles in the triangular mesh, 
we assign uniform grid vertices inside the characteristic 
regions before performing the CDT.

4.2 Run-time Stage

In run-time stage, we do the following:
1. At program start-up time, setup a lowest priority thread 

for pre-fetching the geometry and image data in 
neighboring cells. With such pre-fetching scheme, the 
loading time of neighboring cell data is amortize to 
several inside-cell frames.  As a result, we will not be 
interrupted by the loading of newly navigated data 
during the cell transition and obtain a smooth frame 
rates and an unnoticeable transition.

2. Fetch off-line nearby geometries and depth images for 
the currently navigated cell.

3. Render faraway geometry (behind the image cell) by 
warping the depths with texture mapping.

4. Render nearby geometry (inside the image cell) by 
progressive meshes with appropriate resolution.

4.2.1 Image Warping and Morphing

If we map a cached image without depth directly onto a 
virtual image plane, there will be apparent parallax error
while we navigate the scene apart from the cell’s center,
and there are noticeable popping effects while we 
navigate across the cell boundary. The popping effects 
are mainly caused by faraway geometries which are 
represented by different cached images in before- and 
after-crossing-boundary frames, and also the 
image-to-geometry and geometry-to- image transitions.
In addition, invisible geometries may suddenly appear 
while crossing the cell boundary.  Our scheme handles
these problems by mapping the cached images onto the 
corresponding re-projected depth meshes.  Furthermore, 
the folding problem is handled here by hardware
accelerated depth-buffering.

A projective-alike-texture-mapping method is 
developed to map the cached image onto depth meshes. 
The texture coordinate for each vertex can be generated 
automatically by standard OpenGL (glTexGen().)
Texture coordinates (s, t) maps from image coordinates 
(x, y) can be derived by (s, t) = (x/w, y/h), where w and h
are width and height of the cached image, respectively.
The GPU of graphics hardware can also do the 
transformation of re-projection from the source image 
coordinates to the destination image coordinates by 
multiply the inverse of the camera matrix of source 
image (cached image), allowing CPU leisurely does the 
visibility culling, level-of-detail selection, pre-fetching,
and so on.  Moreover, this method reduces the 
bandwidth between CPU and graphics accelerator, and 
does not need additional memory for storing texture 
coordinate at each vertex.

5 EXPERIMENTS

The following methods are used for performance and 
quality comparison:

l Method A: (Geometry) The scene is rendered by 
the traditional graphics using view frustum culling 
and progressive meshes.

l Method B: (Depth Mesh) The proposed hybrid 
scheme.

l Method C: (Image Caching) Similar to method B, 
except that cached images without depth are used.

Our test scene is a statuary park which is formed by 
104 objects with 484,831 polygons; see Figure 2. The 
test platform is a Pentium II 350Mhz with 256MB main 
memory and an nVidia TNT with 16MB graphics 
accelerator.  We compare the performance in term of 
frame time and polygon number for each frame, and 
compare the quality by subjective fidelity criteria 
(human eyes) and objective fidelity criteria 
root-mean-square error erms and signal-to-noise ratio 
SNR(dB). The erms and SNR are defined as follows.

where is the pixel color of the approximated 
image at position (x, y), M and N are the dimensions of 
the image.

5.1 Per formance

Table 1 depicts the average frame time and the average 
polygon number of 3000 frames each for the path 1 and 
the path 2. In polygon-count comparison, the method 
B has in average only 15% of the polygons required by 
A, and slightly more polygons than C.

For a scene in which all geometries are uniformly 
distributed, the polygon number inside each image cell 
will be almost constant. Moreover, the rendering costs 
of a depth mesh and a cached image are mostly 
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dependent on the image resolution. Therefore, the 
rendering time of B and C are almost the same, more 
constant, and much less than that of A (see Figure 3.) 
Note that, the polygon number of A is decreasing with 
the frame number due to the fact that more and more 
polygons are clipped out by the visibility culling in both 
path 1 and path 2.

5.2 Quality

Figure 4 shows the images rendered by method A, B, 
and C respectively.  We see that the positions of 
geometries are correct in B, but there are a few 
differences in shapes and lighting effects.  This is due 
to the fact that depth mesh triangulation algorithm could 
not properly capture small detail features. The method 
C is even worse, the position of the building on the left 
of Figure 4(c) is not correct. This will result in sudden 
jump during cell transition.  In our experiment, we 
often perceive such sudden jumps in C.

Table 2 shows the average quality loss of B and C 
compare to the pure geometric rendering using original 
geometry without LOD. Note that, human eye in general

would not able to distinguish between two images that 
have a signal-to-noise ratio (SNR) greater than 25dB. 
Figure 5 shows the SNR for each frame of the path 1.
We can see that the SNR of B between 14 and 18 and is 
much stable than C. This is mainly due to the fact that 
parallax errors have been removed by re-projecting the 
depth meshes.  As a result, it will have a great quality 
improvement with only a little performance loss in 
re-projecting the depth meshes. Table 3 depicts the 
average erms and SNR between frames before and after 
cell transition. Method B has high average SNR 20.8 

and 22 for path 1 and path 2, respectively.

5.3 Cell Size and Cell Ratio Considerations

We use JPEG algorithm to compress our cached images 
to reduce the storage requirements and reduce the 
loading time as well.  Decompression needed at 
run-time can be supported by the state-of-the-art 
graphics hardware with texture decompression (e.g., 
S3’s S3TC.)  

Since the storage requirement of a depth mesh and a 
cached image are both dependent on the image 
resolution (dimension) and an almost constant amount of 
depth meshes and cached images would be required to 
navigate a scene, the memory requirement for B and C 
will be almost constant; as shown in Table 4.  On the 
other hand, as we mentioned in the Section 3.1.1, we 
could make a tradeoff between the quality and 
performance.  The smaller navigation cell size, the 
smaller amount of local geometries is.  Thus, it should 
have a better performance for a smaller navigation cell 
size. However, with a smaller cell size, there will be
more navigation cells and, in turns, frequent transitions 
and more frequent data loading are required.

6 DISCUSSION & FUTURE WORK

In this project, we propose a hexagonal spatial 
subdivision and a hybrid scheme for navigating complex 
scenes. The method can achieve a smooth, with no 
apparent popping effects, navigation at an almost 
constant and interactive frame rate.  By cooperating 
with the re-projection of depth meshes, parallax error 
and popping effect will be minimized.  Furthermore, 
we could easily make a tradeoff between performance 
and quality requirement by specifying the pixel-error 
tolerance for cell-size ratio.  As the future works, a 
better adaptive triangulation algorithm for the depth 
image which is able to capture the detail features with 
low increase in polygon count will be also of interest.  
Current implementation considers only the constant cell 
ratio.  To utilize the spatial properties, a floating cell 
ratio approach could be considered.
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