FRERTIEELE LT AL

i A

3 F % 5Lt NSC 99-2220-E-009-008-

#oF HOF 9908 01 px 10007 310p

HoFH = FAERREAERTIIRE KE LI

s SN IR o <4

FE LB AR Rl A - HEME AR R
FAAFIEy 4 -JEet@ AR g
AFipmy 4 -f i@ s o 1
LTIy 4 -Jizer® s B oL 2
Blryipmyda-fiEem i fimils
LR G R B
Ay 4 - iEmm R o § ek

~ BOF R ALHET OB

P X R 100& 10 31 p

L 4 3

2 18

FEZETASOR BIRZ IR, - B Y (S 250] A 2 4 P T B
RREH A HE M R R E S 4 R A RE R RA S - HRTE&A A D
e E s BRI > U Fas 2 R R Ry o —
(ERIPANi W IEES s ERSTINE N iy SRS FENSIIEIIY “d(EES
B B TEA S E R EE R TTME T WFRERD
EIEESEIE - AEEEREEEEL - ISR E S SR
E NS

FEATEHET » BRI RS B R R E VTR 7 EE
Uras RS E T —EGAR - 5 ERESSIEENY
A S AR S Ry BV e Ay — 1 - IERRRE 2
T TEHER ZRERVELR) 8 F BE TR T AYATIIRE R
GREERAT—THEEIEIE - A TR EI SR ARG RES EE
TSR A TR B 2 IRy AR fe/ M b - FRAFERHE T — (B2
= THEREDE | #1Y50E o R AR S & TSI EL ST AT
FEEAFHGEER o FIRFEAM S ME I 2 IR S B HUR L H
HYPR] - R EA e E AT SR E T - WL R
BT -

[FRF - HR I R BRI R AE IR 5 B S Stasa il Ry — (R EE
AR > AT AR 5 78 B SRR ST i AR - R
OB R A (o S T 52 A B A feaT 2RI i
SNHVRE S » N AR TSR e E T DA L I 1 AR R Y]
B o 28I > (SHRAEE R SE A PRI A & B R R T &
SRR R FOREE MERIE - NIEEATETES - Bl
S S N SR IEN RS G=- 2 [wWapeniAPN L fusries i)
HE - Bt Bt —(EEE VRSP R B LE
HAE g — AR LA B - FERLER S R (L E - AT L
{5 SR AR IR 5 U AT B2 A S R T - 53 m Ny
THIEL - Bndd REURIAMIHY T EN Z BB FEAEEL 7] DR T
B EAE] 28 {E H 7y EERIEGE

I
FRRATFELRERA TR R .
b § CUOw e R
REZERBErEALEZ LFFRHYE D
SRS R (3/3)
RN L] BRI W Eedls
FEMELCNSC — 99 — 2220 — — 009 — 008
HEHPED 9~ 82 1px 100 TE 3P
FEIE R G Bl R E T
L adFa
RSB AR R R Mikde Mg RS B ~ 20
T 4
AT
S ERFLFN(REF PG ERTI) HFFE BEFL
ﬂ‘d\'%;ﬁ;d. 7#;”—1:}{%3;\%7 xj-fi
(AR L 0§ e @R - 5

[s R L8Py B E - F

N\

ﬂ

(IR REEIE R THRLEF L2572

I:'EQ“]K%S‘A‘ ,F/EHW)J_%H]"/Eﬁ

)

s

HTHE

Wt

=

L ZE -
AR &P E - &S
R ERE T A
[2 &1 H & A7 E
S 100 =

A\
b

" A 3

N

2~ 1

v

FHEAABTFY

; ,E,’f SN

A

10

[(]- 2Pz 87 B

? 20

e

434

-
Ralrd
I8
i
>
gm
™
|
&
?
=
&
(»s.
Y
o
1N
b
Y\h
i
»
D
—
w
~~
w
N

31 %%. 1 NSC99 —2220—E—009—008 4 78 &F : 99 +

£ 8
AFA IR RE RIRE R AL BT
-

Y 3
iRl AR > RO GEPF TR $2 L LV i iga 3

JORIEREACE PB4 o PR e 5 2 ST E B AR ORI A5G

TELHY - ARG B ARNARAA I RER A NI EBIE F B HE

4H<
(H}

q’;
431*
\ak :F"’w

HAfopg3 A Y8R0 2Bt R g @i

AFRY R AAPEHETEFEL R RERPIG e BRERE T - £
e Y BHEL RRUEBALIN YT BERSL S AAG T BFE - A
PAAERELT O THEHELZFORR) AR PR PR L TR ES G R DR E
gt o d AF PRI E R ST AT e ipthe R EFHEE L LB @ oo AP
B - BEAN M ERgg s AV RA RS B AGAT (Feank
5o P PEAP T R A S B BHEMBEED U R EEBR SR T BER
FER > TR HREEA PGS Ko

PpE o 2B EEREBRR S DI RRT - BAER PN TE kR
L BLe vy S brbri il EAR o WEEF L K Sengd g

2
E=
R E A 0 A TR B A RPE I UL ERERFE DRI Ra o B

A
>
—\
-
()
B
b

A A MR L S
ERF Tl PR AMEE L h AN @ TR N Rk TR Bt
FREOAPRED KBEC] FAD RSN B G R AR REESAT O R oF A
A - B s Lrﬂﬁfﬁg 2 ,j‘ uiE v _a; B > bl g?ﬁ;@-_ '}bmkéﬂﬁ'lﬂ? fu F;“‘EEO 4 b
BRAFRE R T LR ARG NS N AT R AR PR T 0 Bk] 0 F ehir ko

FHEER AP 2w G AP T L A He B 28 B b et o

ARG R A B RRCTRIE AR A d T SRR

Abstract

In deep submicron technology, wire delay is no longer negligible and is gradually becoming
a dominant factor of system performance. There have been several approaches proposed in the
past to deal with the critical issue arisen from long interconnects, and the distributed register
architecture is one of them. Several types of distributed register (DR) architectures, where the
whole system is divided into several logic clusters, are also broadly studied. In general, all
DR-based architectures try to keep most interconnects local within a cluster and thus minimize
the number of inter-cluster long interconnects for better area and performance outcome.

In this project, first we develop synthesis frameworks on distributed register-file
microarchitecture (DRFM), which is one of the DR-based architectures. In DRFM, the number of
inter-island connections (IICs) is used as an evaluation metric for quality of result (QoR) at early
design phases. This work proposes a new resource-constrained communication synthesis
algorithm for IIC minimization. An iterative binding-then-rescheduling scheme is used to obtain a
better outcome in the expanded solution space. Furthermore, we add an extra size constraint on
read port of register file to make the underlying architectural assumption of DRFM more realistic.
The experimental results show that up to 24.7% IIC and 12% latency reduction can be achieved
as compared to the previous work.

Also, global interconnect delay is becoming one of the most critical performance obstacles
in system-on-chip (SoC) designs nowadays. Recent years latency-insensitive system (LIS), which
enables multicycle communication to tolerate variant interconnect delay without substantially
modifying pre-designed IP cores, has been proposed to conquer this issue. However, imbalanced
interconnect latency and communication back-pressure residing in an LIS still degrade system
throughput. In this project, we present a throughput optimization technique with minimal queue
insertion. We first model a given LIS as a quantitative graph (QG), which can be further
compacted using the proposed techniques, so that much bigger problems can be handled. On top
of QG, the optimal solution with minimal queue size can be achieved through integer linear
programming based on the proposed constraint formulation in an acceptable runtime. The
experimental results show that our approach can deal with moderately large systems in a

reasonable runtime and save about 28% of queues compared to the prior art.

Keyword
Distributed register architecture, interconnect model, scheduling and binding,

performance-driven, multicycle communication, latency-insensitive system.

=~ ;J'%'J";E} 2 B en

As advancing into the deep-submicron (DSM) era, interconnect delay is becoming inevitable
due to resistance-capacitance delay, coupling effect, inductance, multiple-gigahertz operating
frequency, and so on [1]-[3]. In architectural synthesis, the system clock cycle time is
determined by the maximum sum of delay of both functional units (FUs) and associated
interconnects. If the delay of long wires (especially for global interconnects) is still neglected in
the synthesis flow, unexpected large delay introduced by long wires after physical mapping
(floorplanning, placement, and routing) is very likely to make a serious impact on the whole
system performance due to lengthened clock cycle time. Therefore, global interconnects have
been becoming the performance bottleneck when pursuing higher system speed, which also
brings on so-called interconnect-limited VLSI architectures [4]. To overcome this problem,
several synthesis flows are proposed to estimate long interconnect delay by applying preliminary
floorplanning and thus obtain better synthesis results [5] - [7].

There have been several approaches proposed in the past to deal with the critical issue arisen
from long interconnects. Globally-asynchronous locally-synchronous (GALS) design styles adopt
handshaking protocols for communication over long interconnects [8]. In a synchronous
latency-insensitive system (LIS), special pipelining elements, named relay stations, are inserted to
break a long interconnect into shorter wire segments for sustaining high operating clock
frequency [9][10]. Furthermore, several types of distributed register (DR) architectures, in which
the whole system is divided into several logic clusters, are also broadly studied [11] - [24]. In
general, all DR-based architectures try to keep most interconnects local within a cluster and thus
minimize the number of inter-cluster long interconnects for better area and performance outcome.

Before talking about what is DR architecture, first we introduce what is centralized register
(CR) architecture. In a CR architecture, there exists a large aggregate register file shared by all
FUs and an FU is expected to access any register within one clock cycle. Though the device
speed generally increases as the manufacturing process advances, the wire delay does not scale as
well as the feature size. Global wire delay gradually dominates and significantly lengthens the
system cycle time. Hence, previous studies propose several similar distributed register (DR)
architectures to overcome this issue [11] - [24]. In a DR-based architecture, the whole system is
divided into several clusters and each cluster contains its own local FUs and registers. In general,
all DR-based architectures try to keep most interconnects local within a cluster and thus minimize
the number of inter-cluster long interconnects for better area and performance outcome.

The distributed register-file microarchitecture (DRFM) is one of the DR-based architectures

and is recently proposed in [20]. The DRFM is composed of multiple islands and each of them
has its own register file, functional units (FUs), and data-routing logic. DRFM is particularly
adequate for platforms with a rich set of distributed memory blocks, e.g., modern FPGAs. While
utilizing DRFM, one should be aware that how to map operations of a target system into islands
can have a significant impact on the final outcome in terms of area and performance [20]. Hence,
developing an intelligent synthesis algorithm targeting DRFM is important and needs extensive
studies further.

In this project, first we propose a new resource-constrained resource binding algorithm for
inter-island connection minimization targeting DRFM. Given a resource constraint (i.e., number
of available islands), the proposed algorithm applies an iterative binding-then-rescheduling
process first, and then invokes an access conflict removal procedure. At each control step (cstep),
operation nodes scheduled at the current cstep are appropriately assigned to islands first, and then
rescheduling is applied to expand the solution space so that a better synthesis output can be
produced. The rescheduling and rebinding process also tries to minimize data access conflicts due
to limited read ports at the same time. Finally, an access conflict removal procedure is invoked to
ensure that no data access conflicts are left at the end of the proposed algorithm. The
experimental results confirm that our algorithm does produce better outcomes with 21.0% ~
24.7% fewer 1ICs on average than the prior art.

Moreover, latency-insensitive-design (LID) is a design methodology, which can tolerate
interconnect delay variation at late stages of the design process [3], [9], [25]. LID encapsulates
each IP core (pearl) with an automatically-synthesized interface (shell) and inserts a proper
number of relay stations (RS) to pipeline inter-shell interconnects for sustaining the target
operating frequency. Based on LID, one can derive a corresponding latency-insensitive system
(LIS) from the original plain synchronous system. Thus in this project, we present a throughput
optimization technique with minimal queue insertion. At first, a new representation named
quantitative graph (QG), which is evolved from the marked graph, is proposed for LIS modeling.
Then we develop a series of operations to accomplish the goal, which include: 1) compressing a
QG into a compacted one (CQG) with identical throughput for problem size reduction; 2)
deriving a set of constraints to guarantee the maximal throughput based on the CQG; 3) obtaining
an optimal solution with minimal queue size subject to the above constraint set through integer
linear programming (ILP); 4) transforming the optimal solution for the CQG into the optimal
solution for the original QG. Since our technique employs ILP, unsurprisingly it can outperform
the existing heuristic method in terms of queue size. Also notice that our approach can still handle

reasonably large systems in an acceptable runtime because ILP is merely applied at the CQG

level, which results in a significantly smaller constraint set. The experimental results shown later

can sustain our above claims.

v ET AR

fu

Communication synthesis for interconnect minimization targeting distributed register-file
microarchitecture

In a centralized register (CR) architecture, there exists a large aggregate register file shared
by all FUs and an FU is expected to access any register within one clock cycle. However, if this
assumption is still retained, the increasingly long global interconnect delay can significantly
stretch the clock period as the manufacturing process keeps evolving. Therefore, the distributed
register (DR) architecture is proposed to overcome this issue [11]-[24]. In a DR-based
architecture, the whole system is partitioned into a set of clusters and each cluster contains its
own local register file and FUs. As a result, most register accesses are kept fast within a cluster
while only few accesses require long inter-cluster communication.

Several DR-based architectures are proposed in the recent literature. Regular distributed
register (RDR) architectures are capable of providing accurate delay estimation for inter-cluster
communication at very early design phases. The related studies focusing on behavioral synthesis
as well as transfer scheduling and routing for RDR-based architectures can be found in [13]-[19].
On the other hand, the distributed register-file microarchitecture (DRFM) is first proposed in [20]
to take full advantage of rich distributed embedded memory blocks as register files in modern
FPGA platforms [26][27]. The island architecture in DRFM is shown in Fig. 1. An island contains
input routing logic, local register file, and functional units (FUs). The local register file is used to
store computation results produced by internal FUs. It is also responsible for feeding data
operands to internal FUs and external FUs located in other islands. DRFM assumes that every

operation can be accomplished in any island within one control step and produces exactly one

Data from other islands Data to other islands
Input Routing Logic ‘ ‘ Local Register File
MUX

l !

‘ Functional Units ‘

An island

Fig. 1 The island architecture in DRFM.

output. When implementing a system utilizing DRFM, [20] shows that different implementations
could produce tremendously different results in terms of area and performance. Namely, how to
map operations into islands needs to be handled very carefully. As well, [20] finds that the
number of inter-island connections (IICs), which can properly estimate the cost of global
interconnects, is highly correlated with the resultant resource usage and system performance after
synthesis. Consequently, the number of IICs can be used as the metric to rate the quality of

synthesis output.

Here we reveal two key observations. First, the solution space is quite limited in [20] since
the given scheduled DFG is not allowed being altered, which is also mentioned in [21]. Given a
scheduled DFG as shown in Fig. 2(a), if there are two available islands (la and Ig) and the given
DFG cannot be altered, then the optimal synthesis (i.e., resource binding) result is presented in
Fig. 2(b). The (operation) nodes within the same shaded region are mapped into the same island.
Apparently, the solution in Fig. 2(b) needs two IICs. However, if rescheduling is allowed, a better

solution can be obtained as shown in Fig. 2(c), where only one IIC is demanded. Note that the

B
(@/
\7

Inter-island transfer

—_—
Intra-island transfer

Fig. 2 (a) The scheduled DFG, (b) the scheduled and bound DFG, and
(c) the scheduled and bound DFG after rescheduling.

total number of required control steps in the new solution remains unchanged, which means the
IIC reduction does not come from a tradeoff with system performance.

Be aware the difference between the number of inter-island connections and the number of
inter-island transfers (II'Ts) — the former is usually less than the latter due to resource sharing. For
example, in Fig. 3, those four IITs merely need three IICs (i.e., two for Ia to Iz and the other for Ig
to Ic). That is, multiple IITs can share an IIC as long as they have the same source-destination
island pair as well as different arrival times. For instance, |1T34 from node 3 to node 4 and 11Tg5
from node 6 to node 5 can legitimately share an IIC but 11Ty g and 11T, cannot. This suggests that
the synthesis goal in DRFM is about minimizing the number of IICs instead of IITs if saving
global interconnect resource is the actual target.

Furthermore, the number of write port of a local register file is restricted to one but no
restriction is put on the number of read ports in the original DRFM. However, it is not practical
that the number of read ports is assumed unlimited since a register file with a large number of
read ports is both slow and area-consuming. Assume that each local register file possesses only
two read ports, then as shown in Fig. 4(a), access conflicts on read port occur at cstep 4 because

there are three data transfers want to access the registers in island IA — the data transfer DT3,4,

#IT=4and #IC =3
Fig. 3 The scheduled and bound DFG.

|
cs 1

cs 2

cs 3

cs4

#IIC = 2
(@)

Fig. 4 (a) A scheduled and bound DFG with access conflicts, and
(b) another scheduled and bound DFG without access conflicts.

DT2,7 and DT1,11. Apparently, at least one of these three read accesses has to be postponed,
which consequently increases the latency of the DFG from four to five. The approach in [20]
deals with this problem by data-forwarding, which adds input buffers into the input routing logic.
In that approach, each data-forwarding consumes one read port and takes one cstep. However,
incorporating read port restriction during scheduling and binding can minimize those read access
conflicts without increasing hardware cost (i.e., input buffers). Another DFG, as shown in
Fig. 4(b), demonstrates that it is possible to keep the latency still four without introducing any

data access conflicts if the read port restriction is properly deliberated.

The problem formulation of this work is as follows: Given a DFG and a resource constraint
(the number of islands), obtain a scheduled and bound DFG with the minimized latency as well
as minimize the number of required I1Cs.

The overall flow of the proposed method is shown in Fig. 5. Given a DFG, list-scheduling is
first performed to obtain an initial scheduling result and followed by the iterative cstep-by-cstep
binding-then-rescheduling process. In each iteration, two operations, island assignment (binding)
and 11C refinement (rescheduling), are applied consecutively. The way used for island assignment
in this work is similar to the horizontal assignment adopted in [20]. Namely, island assignment is
formulated as a minimum-weighted bipartite matching problem, where a weight on an edge
represents the number of extra IICs induced by the corresponding matching. However, the
aforementioned algorithm does not allow rescheduling and generally produces a locally
optimized solution. Hence, an IIC refinement process is proposed to look for a better result from
the expanded solution space via rescheduling. More details are described in Section 4.1.

Meanwhile, the IIC refinement procedure is also capable of handling the read port restriction.

DFG

Y
‘ Initial scheduling ‘

¥

‘ Island assigment P—
v

\ IIC refinement ’—

Iterative binding-then-rescheduling

IS S

[] .
: Access conflict removal E
.............. prememmmmeemenaad

\
Scheduled and bound
DFG

Fig. 5 The overall flow of the proposed algorithm.

After the iterative phase, an access conflict removal process is followed to eliminate all

remaining access conflicts, if any. The details are given in Section 4.2. In the very end of the

proposed flow, a scheduled and bound DFG with minimized IICs is derived.

A

11C refinement

As mentioned above, the algorithm for island assignment generally leads to a locally
optimized solution. However, further improvement can still be achieved by allowing certain
operation rescheduling, as depicted in Fig. 2(b) and Fig. 2(c), as long as the data dependency
is still intact. In this article, a special node (in black) called bubble, is inserted to explicitly
indicate that the corresponding island is idle at that specific cstep. As depicted in Fig. 6(a), the
two bubbles a and b suggest that I is idle at cstep 2 and 4.

The proposed IIC refinement process is based on KL algorithm [28], which is broadly used in
partitioning-related problems. Within the process, nodes and bubbles are swapped for IIC
minimization. A swap can be made between two nodes or between a node and a bubble. A
swap is considered feasible only on two conditions: (i) nodes must be unlocked, and (ii) data
dependency must be preserved after swapping. For example, in Fig. 6(a), the feasible swap
candidates for node 5 are {node 1, node 7, node a}. A feasible swap pair of node u and
node/bubble Vv is denoted as (u, V). The gain of a swap pair is defined as how many IICs it can
reduce, i.e., the difference between the numbers of IICs before and after the swap. The gain of
a swap pair (U, V) is denoted as g, . All feasible swap pairs are collected into the feasible swap
pair set (FSPS). After performing an actual swap, FSPS and gains of swap pairs are updated
accordingly. The key steps of IIC refinement are described as follows:

(1) Set all operation nodes unlocked.

Swap candidates of vs
= {v1, vz, Va}

(a) (b)

Fig. 6 (a) The DFG at the beginning of the iteration, and
(b) the DFG at the end of the iteration.

10

(11) Find a swap pair with the largest gain from FSPS.

(ii1) Swap the pair then lock the operation node.

(iv) Update FSPS and recalculate the gains of pairs in FSPS.

(v) Repeat (ii) to (iv) until FSPS is empty.

(vi) Keep the fist k swaps and undo the rest if the partial gain sum of the first k swaps is
the largest and positive; go to (1).

(vil) Otherwise, terminate IIC refinement.

For example, a partially scheduled and bound DFG is shown in Fig. 6(a) with an IIC number
equal to 4, where FSPS = {(1, 5), (1, 7), (2, @), (2, 8), (3, 6), (3, 9), (4, b), (4,¢), (5, 7), (5, @),
6, 9), (8, a), (9, ¢), (9, b)}. Initially, the gains of all feasible swap pairs in FSPS are
calculated as follows:

015=0 017=-102a=-1028=-1036=0 Q39=-2 Gsp=0 Qac=-1057=-2052=0
U69=—108a=-199c=0 Qgop=1

Then the swap pair (9, b) is selected to be swapped and node 9 is locked after the swap. The
FSPS and the gains are therefore needed to be further updated accordingly. This process is not
terminated until FSPS is empty. Table 1 shows the gain and the partial gain sum of the eight
consecutive feasible swaps in this iteration. As a result, only the first three swaps, including (9,
b), (1, 5) and (2, &), are actually desired. The resultant DFG at the end of this iteration is

shown in Fig. 6(b) and it merely requires two IICs instead of four in Fig. 6(a).

B. Coping with read port restriction

The approach proposed in the previous section neglects the read port restriction. However, as
illustrated in Fig. 4, considering the read port restriction during scheduling and binding can
effectively minimize access conflicts without increasing hardware cost. Therefore, an
augmented IIC refinement process is further presented in this subsection.

During IIC refinement, a secondary gain h,, of the swap pair (u, V) is defined as the

Table 1 Gains and partial gain sums in an iteration

n-th swap 1 2 3 4 5 6 7 8
Swapped
. O.b | 4.5 | Ga | Ga | (7,a | 4c) | (B.b) | (6
pair
Gain 1 0 1 0 -1 -1 1 -2
Partial

1 1 2 2 1 0 1 -1

gain sum

11

decreased number of access conflicts once the swap takes place. The number of access
conflicts of an island at a specific cstep is calculated as the difference between the number of
demanded register-file accesses and the number of read ports a register-file actually owns.
The corresponding equations are given as follows.

conflicts = # demanded accesses — # read ports (1)

h,, = # conflicts before swapping u and v

— # conflicts after swapping U and v

)

= # demanded accesses before swapping U and v

— #demanded accesses after swapping U and v

The restriction on read port size of a register-file is set to two in this work. As revisiting the
case shown in Fig. 4(a), the primary gain (g, 7 is zero and the secondary gain hg 7 is one
because there is one (no) conflict at cstep 4 in island I before (after) node swapping.

The second step of IIC refinement described in Section 4.1 is therefore modified as follows:
find a swap pair with the largest primary gain from FSPS; if there are many pairs with the
same largest primary gain, choose the one with the largest secondary gain. By means of
exploiting the extra secondary gain for tie breaking during scheduling and binding, the read
port restriction is well deliberated, and access conflicts can thus be minimized.

Finally, an access conflict removal procedure is followed after the IIC refinement process to
ensure that absolutely no access conflicts are left. The procedure simply postpones any
conflicted accesses that cannot be removed in the previous iterative

binding-then-rescheduling process.

The proposed method has been implemented in C++/Linux environment and all experiments

were conducted on a workstation with an Intel Xeon 3.2GHz CPU and 4GB RAM. For fair and

DFG Number of islands

@ ‘ List scheduling ‘
IS
£ ¥ ¥
2 Approach Iterative binding-
o in [11] then-rescheduling
]
€ Y L/
£ Access conflict removal
@
3 Flow1 Flow2
i
v

Scheduled and bound DFG

Fig. 7 The experimental flows.

12

comprehensive comparisons, two different synthesis flows are created, as depicted in Fig. 7.
Given an input DFG and a resource constraint, list scheduling is first performed to provide an
initial scheduling result for both flows. Then, Flow1 implements the approach proposed in [20],
while Flow2 carries out the proposed approach. The access conflict removal procedure is then
conducted as a post-processing for both flows.

The test cases are from different benchmark sets [29]-[31], which are frequently used in
high-level synthesis field. The basic information of these test cases (DFGs) is given in Table 2.
The first three columns list the names, number of nodes, and number of edges, respectively. The
last column reports the minimum possible latency obtained by ASAP scheduling with unlimited
available resources. Two configurations are deliberated in our experiments — synthesis is
performed without (with) a resource constraint in Configuration 1 (2), respectively. In
Configuration 1, the number of islands is set as the minimum number that still guarantees the
synthesis outcome with the minimum latency indicated in Table 2; that is, there is in fact no
resource constraint at all. However, the assumption about unlimited available hardware resource
is impractical in the real world. Hence, in Configuration 2, for every test case the number of

available islands is reduced by half as:

€)

#islands in Config. 2 = {# islands 1;1 Config. IJ

Table 3 reports the experimental results without read port restriction, which means that only
the primary gain is deliberated during node swapping. The results show that the proposed Flow?2

achieves on average 21.0% and 24.5% IIC reduction in Configuration 1 and 2 respectively as

Table 2 The basic information of benchmark

Test case | #nodes | #edges Minimum
latency
fir2 40 39 11
firl 44 43 11
lee 49 62 9
cos 82 91
honda 105 104 15
wribmp 106 88 7
dir 127 126 15
chem 342 327 15
fft16 414 672 14
uSml 564 557 26

13

compared with existing Flowl, which clearly demonstrate that the proposed algorithm does
outperform the prior art. Table 3 also suggests that average #IIC reduction in Configuration 2 is
better than that in Configuration 1. It is because the number of available islands in Configuration
2 is roughly a half of that in Configuration 1, which also reduces the total number of required
IICs in Configuration 2. Therefore, the effect of eliminating an IIC is more significant in
Configuration 2 than in Configuration 1.

Table 4 gives the results with the read port restriction, which is set to two for all test cases.
The results conclude that Flow2 achieves on average 21.5% and 24.7% IIC reduction in
Configuration 1 and 2 respectively as compared with Flow1, which is pretty much the same as
the results without the read port restriction. Furthermore, as stated before, the process for access
conflict removal may increase the latency if there do exist non-removable access conflicts after

binding-then-rescheduling. The first three columns for both configurations in Table 4 indicate the

Table 3 The experimental results without the read port restriction

Configuration 1 Configuration 2
Testcase HIIC #IIC . . #IIC HIIC .
#island | latency (Flowl) | (Flow?) #IIC reduction | #island | latency (Flowl) | (Flow2) #IIC reduction

fir2 5 11 7 5 28.6% 2 21 2 1 50.0%
firl 6 11 8 7 12.5% 3 17 4 3 25.0%
lee 6 9 11 10 9.1% 3 18 6 5 16.7%
cos 12 8 27 24 11.1% 6 16 14 12 14.3%
honda 10 15 17 14 17.6% 5 23 9 8 11.1%
wribmp 16 7 18 14 22.2% 8 14 14 10 28.6%
dir 11 15 24 17 29.2% 5 27 11 8 27.3%
chem 24 15 61 38 37.7% 12 29 41 28 31.7%
fft16 32 14 204 180 11.8% 16 27 97 83 14.4%
uSml 29 26 102 71 30.4% 14 42 55 41 25.5%
Avg. 21.0% 24.5%

Table 4 The experimental results with the read port restriction (=2)

Configuration 1 Configuration 2

Test case Latenlcy latency | latency lat inc® #IIC #IIC #II(; Laten]cy latency | latency lat inc® #HIIC #IIC #II(;

LB' | (Flowl) | (Flow2) (Flowl) | (Flow2) | red® | LB' | (Flowl) | (Flow2) (Flow1) | (Flow2) | red’
fir2 11 11 11 0.0% 7 5 28.6% 21 21 21 0.0% 2 1 50.0%
firl 11 12 11 9.1% 8 7 12.5% 17 17 17 0.0% 4 3 25.0%
lee 9 12 9 33.3% 11 10 9.1% 18 22 18 22.2% 6 5 16.7%
cos 8 9 8 12.5% 27 24 11.1% 16 17 16 6.3% 14 12 14.3%
honda 15 16 15 6.7% 17 13 23.5% 23 25 23 8.7% 9 8 11.1%
wribmp 7 8 7 14.3% 18 12 33.3% 14 15 14 7.1% 14 10 28.6%
dir 15 16 15 6.7% 24 18 25.0% 27 29 27 7.4% 11 8 27.3%
chem 15 18 15 20.0% 61 43 29.5% 29 33 29 13.8% 41 26 36.6%
fft16 14 16 14 14.3% 204 184 9.8% 27 41 27 51.9% 97 84 13.4%
uSml 26 27 26 3.8% 102 69 32.4% 42 46 42 9.5% 55 42 23.6%
Avg. 12.1% 21.5% 12.7% 24.7%

': Lower bound of latency; ?: Latency increase of Flow1 over Flow2; 3: #1IC reduction of Flow2 over Flow1

14

lower bound of latency obtained from Table 3 and two resultant latencies given by two different
synthesis flows. The proposed Flow 2 achieves the minimum latency for all test cases in both
configurations while Flowl increases the average latency by about 12%, which clearly
demonstrates that the proposed method can handle the read port restriction very well.

As previously mentioned, the number of inter-island connections (IICs) is different from the
number of inter-island transfers (IITs). In general, the number of IITs is commonly used for
power estimation of on-chip communication, while the number of IICs is mostly used to estimate
the cost of global interconnects. Nevertheless, during synthesis, it is not always possible to reduce
both IICs and IITs at the same time; in other word, there is a tradeoff between area/performance
(IIC) and power (IIT) optimization. Obviously, the synthesis algorithm proposed in this article

focuses on IIC minimization.

Throughput optimization for latency-insensitive system with minimal queue insertion

Throughput optimization for LIS has been extensively discussed in recent years. Several
research works are done based on different hardware architecture assumptions and different
physical layout assumptions. Earlier works (before 2003) regard every LIS as an ideal system,
which assumes infinite queue size and thus no back-pressure. To the best of our knowledge, Lu
and Koh are the first ones who propose the method to deal with the throughout optimization of
LIS with back-pressure arising from the effect of finite queue size on communication channel
[32], [33]. They show a practical LIS with finite queue size can still achieve the same maximal
sustainable throughput of its ideal LIS counterpart if proper queue sizing is performed. After that,
Collins et al. use a marked graph to model an LIS alternatively [34], [35]. They propose a
heuristic approach for queue sizing that can produce fairly good solutions with a short runtime. In
addition, they also make a different assumption on hardware architecture of communication
channel compared with the one used in [9], [10]. In our opinion, Collins’ assumption better fits
the real-world design environment. However, their method is heuristic-based, order-dependent,
and thus does not guarantee the optimality. Casu and Macchiarulo avoid queue sizing issue by
scheduling the activation of IP cores, instead [36], [37]. However, one limitation is that planning
a schedule needs enough knowledge about the overall system behavior, which is not necessarily
available to engineers at this design stage. Bufistov et al. propose a method that combines both
queue sizing and relay station insertion techniques to achieve optimal throughput [38]. However,

they assume channel latency gets increased as queue size becomes large, which is not generally

15

appropriate in real design cases. Therefore, we present a throughput optimization technique with

minimal queue insertion.

Latency-insensitive design (LID) is a design methodology for sophisticated system-on-chip
(SoC) development. It enables post-refinement to a given synchronous system so that the refined
system (i.e., LIS) can tolerate variant interconnect latency, which cannot be precisely estimated at
early design stages. An LIS can be derived from an original synchronous system by encapsulating
each IP core (pearl) within an automatically-synthesized interface (shell) and inserts repeaters to
segment (i.e., pipeline) long interconnects. Those repeaters are referred to as relay stations (RS).
In an LIS, every IP core must have stallability, meaning that it can be stalled temporarily without
ruining correct functionality. Relay stations are clocked buffer queues utilized to pipeline a long
interconnect so that the desired clock frequency can be achieved. After proper RS insertion, the
resultant LIS will be still functionally equivalent to its original synchronous system [32], [33].
That is, if ignoring stalled (void) events in the output sequence, the rest informative (valid) events
on each channel of an LIS are exactly the same with the informative events on every
corresponding channel of its original counterpart.

An LIS example is given in Fig. 8(a). Green rectangles represent IP cores, blue rectangles
represent relay stations, a small red rectangle inside an IP core or an RS represents a queue on
each input channel, a red number beside a communication channel labels a valid event, and a blue
number marks a stalled event. Those numbers specify the sequential IDs of events generated by
corresponding IP cores. Since an RS merely forwards its received events from input to output, it

never generates any new valid events. Hence a symbol ‘1’ is used to indicate a non-generated

T 1 2
1|—"a ._Dﬂ 1 EI—"a..Dﬂ 1 3[—". .D—l .
> /A Timel C> > /A Time2 TC—’—"‘ A Time3 :*C_i‘

1]_,_ B1_T 2|—>__BE—T 3|_’3 BZ_T
3 3
3|—'L-. Dﬁ . 4[_.’;‘ - Dﬁ " : P core : Relay station

= A Timed4 ~C>—>_A Time5 —C—

(a) al_,__BS_T 4I_’—-B;T

: Queue on channel

1 1 2 |3 44)4/)5)] 647

(b) T1|T2|T3| T4 TS| T6|T7|T8|T9

Fig. 8 (a) Progressive trace of an LIS. (b) Output event sequence of core C.

16

void event at every RS output initially. At timestamp 1, all IP cores produce their first valid
events; while every RS just puts a 1 at its output. At timestamp 2, core C receives a valid event
from one of its two input channels, but core C needs both first valid events from each of its input
channels for producing its own second valid event. As a result, the first valid data produced by
core B is stored in the internal queue within core C and then waits. Meanwhile core C is stalled
and outputs a void event. Since the queue of lower input channel of core C becomes full at the
end of timestamp 2, core C must compel core B to stall at the next timestamp to avoid valid event
loss due to queue overflow. This effect of finite queue size is referred to as back-pressure. The
channels with back-pressure in Fig. 8(a) are colored in red. At timestamp 3, core C receives both
valid events from its two input channels so that it can produce its own next valid output event;
whereas core B is stalled at this timestamp due to back-pressure from core C. Fig. 8(b) depicts the
output event sequence of core C. It is evident that core C produces three valid events every four
timestamps. In other words, the throughput of this system is three fourth. This example explicitly
confirms that even for an acyclic synchronous system, the throughput can still be less than one
due to the effect of back-pressure.

Here we summarize the pros and cons of LIS. LIS is a promising approach for coping with
variant and unknown latency incurred by global interconnects at early design stages. By properly
encapsulating IP cores and inserting relay stations, this approach guarantees correctness of system
functionality. However, this approach does not guarantee to achieve the maximal possible system

throughput due to back-pressure.

Marked graph (MG) is a conventional representation for modeling concurrent operations
within a system. Its simplicity makes it quite amenable for analyzing the behaviors of

synchronous systems like LIS. A marked graph consists of two different types of nodes: places

) | R
_/ l —/
Relay station Shell
D A D
R 3
= c _" =
w L— B 1 C‘;

Fig. 9 (a) The models used in marked

17

and transitions. By definition, a place is capable of holding none or multiple tokens. On the
contrary, a transition cannot hold any tokens but may fire to forward tokens on certain conditions.
More detailed definitions and operations of MG can be found in [39], [40].

Fig. 9(a) exhibits the corresponding marked graph models of a relay station and a shell [34], a
circle represents a place, a dot represents a token, a vertical bar represents a transition, and the
integer q indicates the total number of tokens in that place. For an RS, the place on solid edge
(indicating actual data flow) possesses no token since an RS produces a void event initially; and
the place on dashed edge (indicating back-pressure flow) has two tokens because every RS
contains a two-entry queue. For a shell, the place on solid edge holds one token because a shell
produces a valid event initially; and the number of tokens (i.e., q) in the place on dashed edge is
set to the actual queue size that the shell reserves for this specific channel [34].

Fig. 9(b) illustrates how to transform an LIS (same one as in Fig. 8) into its MG
representation, assuming that the queue size of all channels in shells is set to one. Furthermore, it
has been proved that the maximal sustainable throughput (MST) of an LIS is bound to the lowest
token-to-place ratio (TPR) of all cycles in its corresponding MG [34], [35]. In Fig. 9(b), the most
throughput-critical cycle {A, D, C, B, A} contains four places but only three tokens, so the MST
of this LIS is 3/4. Fortunately, proper queue sizing at right places can increase the TPR of such
critical cycles and therefore boost the overall system throughput. For example, if the queue size
of core B is increased to two, then the TPR of the aforementioned cycle rises from 3/4 to 1, which
achieves the optimal MST (i.e., 1) of this system. It also has been proved that MST of an acyclic
synchronous system can always be boosted to one via proper queue insertion. Heuristic methods
that try to minimize additional queue insertion for throughput optimization can be found in [34],

[35].

Then we present our throughput optimization methodology with minimal additional queue
insertion. A new representation named quantitative graph (QG) is first proposed for LIS modeling
because QG is, in our opinion, more convenient for later mathematical manipulations. Then we
show how to derive a constraint set from a QG so that the optimal solution with minimal queue
size can be achieved through integer linear programming (ILP). Though ILP guarantees the
optimality, it may fail to find a solution if the size of constraint set is too large. To overcome this
problem, we further develop a polynomial-time technique to condense an original QG into a
compacted one (CQG) so that a moderately large QG (i.e., a large practical LIS) can still be
resolved using ILP. At last, we again present a polynomial-time approach to transform an optimal

solution for a CQG back into the corresponding optimal solution for the QG counterpart.

18

A. Quantitative Graph (QG)

A quantitative graph with respect to a given MG is a quadruple (V, E, w, q), where V is the set
of vertices corresponding to the transitions in that MG; E < V X V is the set of edges
representing the place pairs in that MG; w : E — Z specifies the number of valid tokens for
an edge e, denoted as w(e); and g : E — Z" indicates the queue size for an edge €, denoted as
g(e). That is, for an edge e = (v, V2), W(e) specifies the number of tokens in the place on solid
edge from transition Vv; to transition V, and q(e) specifies the one on dashed edge from
transition V; to transition V; in the original MG, respectively. Fig. 10 gives an example about
the transformation from an MG to a QG.

As mentioned, the MST of a system is bound by the lowest TPR of all cycles in its MG. For a
QG, the MST can also be determined in a similar way. First, identify all cycles in a QG,
assuming that all edges are undirected. By doing so, every cycle C’ in an original MG can
always find its counterpart cycle C in the corresponding QG. Next, a cycle C in QG is
represented as a set of edges. The edges in C can be partitioned into two disjoint set F and R,
where F contains the edges being traversed in its regular direction while R contains those
being traversed in its revere direction. Then, for every edge e along a cycle C in QG,
accumulating either w(e) or g(e) depends on whether it belongs to F or R, and the resultant
value is actually equal to the number of tokens in the counterpart cycle C’ in MG. As well, the
number of edges in C (i.e., |C|) is the same as the number of places in C’. Similarly, the TPR

of'a cycle C in QG is further defined as:

D_w(e)+ > a(e)

TPR(C) _ eeF ecR (4)
Cl=[F[+[R]

It becomes apparent that finding the lowest TPR of all cycles in MG is now equivalent to

identifying the lowest TPR of all cycles in QG because both of them are indeed identical.

A b C w,q)=(1,1)
Y
L
o= -D : 3
¥0! , o
T Oy FE i - e
S w,q)=(1,1)_J W.q)=(1,1)

Fig. 10 Transformation from an MG to a QG.

19

B. Compacted Quantitative Graph (CQG)

As described, a smaller QG is highly preferred since ILP is employed for optimization later.
However, it is not trivial to derive an equivalent reduced QG whose resultant MST is still the
same as that of the original QG. Therefore, here we present a technique including two
operations for QG compaction while still keeping MST unaltered so that our approach can
deal with large practical systems.

With respect to a QG G, a compacted quantitative graph (CQG) H is defined as a sextuple (V,
E, w, g, b, ¢), where (V, E, w, q) is identical to that of G; ¢ : E — Z* assigns an extra
compaction factor regarding an edge e to record the compaction level, denoted as c(e); and b :
E — Z' specifies an extra burden factor regarding an edge e to register the load level due to
compaction, denoted as b(e). Both factors are initialized to one for all edges in CQG. Besides,

the TPR of a cycle C in CQG is defined as:

D w(e)+ > q(e)
TPR(C) _ eeF ecR (5)

2.c(®)

eeC

Since c(e) is set to one initially, the summation of c(e) along any cycle C in H is equal to |C| at
the very beginning. In other words, (5) returns the same value as (4) does for any cycle C,
which concludes that MST in H is identical to that in G. We further define the token-place
difference (TPD) of a cycle C in either QG or CQG as:

g(e)—c(e),foree RincycleC

TPD.(e) = {W(e) —c(e),foree FincycleC ©

Property 1: Given a cycle C in a QG representing any arbitrary acyclic synchronous
system, TPR(C) is no less than one (> 1) if and only if the summation of TPD¢(e) is no less

than zero (> 0).

Path Condensation:

A simple path p = (vy, Va, ..., V) in CQG is condensable if k > 3, v # vy, id(vi) = 1 for 2 <i <k;
and od(v;) = 1, for 1 <i <k — 1; where id(v;) and od(v;) gives input degree and output degree
of vj, respectively. Then, given a CQG H, a condensable path p in H, and E(p) is the set of
edges in p, the operation path condensation derives a new CQG H’ from H by replacing p

with a condensed edge ey(vi, Vi), where:

20

w(e,)= > we), ae,)= D q(e),

ecE(p) ecE(p)

c(e,)= Y.c(e). b(e,)= min[b(e)

ecE(p)

()

Property 2: If CQG H’ is derived from CQG H by applying path condensation, then MST
in H’ is identical to that in H.

Fig. 5(a) illustrates an example of path condensation. It is apparent that the size of CQG (in
terms of vertices and edges) can be effectively reduced, while MST remains unaltered for

both CQGs before and after path condensation.

Edge Unification:

After applying path condensation, there may be multiple edges between two vertices in CQG,
as shown in Fig. 11(a). For such pair of vertices v; and Vj, En(Vj, Vj) is the set containing all
parallel edges from V; to vj. An edge €4 € En(V;, V;) is called a dominating edge if c(eq) — w(eq)
> c(ex) — W(ex) for every edge ex € Em(Vvi, Vj). Then, given a CQG H and En(vi, vj), the
operation edge unification derives a new CQG H’ from H by removing all edges in En(Vi, Vj)
except leaving one dominating edge e4 and modifying b(ey) as:

b(ed)= Zb(ek)

ec€En (Vi,v))

(8)

Property 3: Given a CQG H representing any arbitrary acyclic system, a CQG H’ derived
from H by applying edge unification, a cycle C passing through that specific dominating edge
€4, then the total queue size along C suggested by H’ with target MST of H’ = 1 is also
mandatory for any cycle C’ in H derived from C by replacing e4 with other parallel edge to
ensure MST of H=1.

The proofs of above three properties are omitted due to page limitation. Fig. 11(b) illustrates
an example of edge unification, and as a result the number of edges is reduced. Moreover,
after edge unification shown in Fig. 11(b), path condensation can again be applied along the
path (Vi, Va4, Vs) to further reduce the size of CQG. That is, these two operations can be
performed repeatedly until no further reduction can be made. Fig. 11(c) gives the final

minimal CQG, which contains only two vertices and an edge.

21

C. ILP Formulation

After a series of path condensation and edge unification operations, a CQG H with minimal
vertices and edges can be derived. Next, the issue becomes how to allocate a minimal number
of queues to every edge in H while keeping MST of H still one. We resolve this issue via
integer linear programming (ILP). The objective and the corresponding constraint set for ILP

is formulated as follows:

Minimize: Zq(e))
ecE

Subject to:

Z:TPDC (e) >0 foreverycycleCin H (10)

eeC

w(e)+q(e)—2xc(e) =0, forevery edgeein H (11)

It 1s obvious that the number of constraints generated by (10) is proportional to the number of

(w.q.6,¢)=(0,q;,7,1

(W.q.b,c)=(1,q,1,1) (W.q.6,¢)=(1,9;= q:%95 1,2

1.1) ‘ (w.q.b,c)=(2, qg 951G4 1,.2) \

@ Wabo)=(1q5117) \ /(quf«‘) (7’%,77)(qu0)—(7%77)\ /(quc‘)—ﬁ%”)

(wgbo)=(1,9,12)

(w.9,6,¢)=(1,95,2.2)
(quC)—(fq& 12)

®) (q.6,0)= (7%77)\ /(quc‘)—(?%,f 7)(w.q.b,¢)=(1,951,7) (%.9,6,6)=(1.951,7)

®(w,g.b,c)=(1, qg,Zr?))@ _® (w,q.5,¢)=(2,q151.3)

>/V\<) V
(.9.6,0)=(1,g5 1, IN_AW.9.b.0)=(1,951,7) (.0.6.0)=(1,5 1, UO(

Vv
; (W,9.6,0)=(2.915,1,3)

()(mc;cb,c)=(.2q ,2,3)0
» V1 77 e V5
(c) (w.q.b,¢)=(1,951, 1)(::)

Fig. 11 (a) The path condensation operation. (b) The edge unification operation. (¢) The

22

(w,q,b,¢c)=(2,4,1,3)
(w,q.b,¢c)=(2,4,2,3)
(v) » (v,

(w,q.b,c)=(1,1+4-3=2.1.1)

P (w,q.b,c)=(24,1.3) >V,
(w.q.b,c)=(12"2-1=322)
b ()
® (w.q.b.c)=(12,1,1) s

(w.q.b,c)=(1,2.1,1) \Vy(wq,b,c) =(14-3=1,1,1)

(w.9.5,0)=(1,3.1.2)

7
(w.g.b,c)=(1,32.2)
(w.q.b,c) -(2 2+3-2=3,1,2)
= \/5 =

rd <

(w.q.b.c)=(1,2,117) \ /(W,q,b,f:)‘(f, 7.7.7) (wq.bc)=(12171) qu o=(1,1.1.7)

(w.q.b,c)=(1,3.1.2) 0.21,17) (1.1,1,7)

‘ (wqbc} =(2312) \ (1.2.1,1) (1.1,1,7)

(w.q,b.c)=(121, 1)\ /(quc) =(1,1,1,1) (1.2.1.1) ’\V5/‘(1, 1.1.7)

Fig. 12 (a) The edge split operation. (b) The path expansion operation. (¢) The solution
for original QG.

cycles in H, and this number can increase extremely fast even if the graph size just grows a
bit. Thus, it now becomes clear that why we have to compact a given QG by all means before
performing ILP. Meanwhile, since one or more cycles may be compacted into a single edge,
e.g., Fig. 11(c). Thus, (11) gives the constraint for a special kind of cycle that contains only
one edge, where the cycle is formed by traversing that edge in its normal (forward) direction

as well as its reverse direction.

. Recovery Phase

Once ILP produces an optimal solution for a given CQG, certain operations should follow to
further derive the optimal solution for the original QG. Then, we present two operations, edge

split and path expansion, for this purpose.

Edge Split:

Assume an edge e4(Wqg, (d, Cq) 1s a selected dominating edge and ex(Wk, Ok, Ck) 1S €¢’s removed

23

parallel edge. After applying ILP, qq is set large enough to ensure that (10) holds for every
cycle C passing through €4 in reverse direction. When putting ek back to CQG, gk must also be
properly set to ensure that (10) still holds for any newly generated cycle C’ derived from C by
just replacing eq with €. It follows that (10) is guaranteed to hold for every such cycle C’ if
the following inequality can be satisfied:

Qc—Ck=0qa—Cy (or Qx> Ck+ g — Ca) (12)
Therefore, minimal queue size of an edge removed by edge unification previously can be
derived using (12). For example, in Fig. 12(a), queue size of the blue selected dominating
edge (v, Vs) is set to 4 after ILP. After edge splitting, the minimal queue size of the lower red

non-dominating edge is setto 1 +4 — 3 =2 by (12).

Path Expansion:

While recovering from a condensed edge €, regarding the condensable path p, (7) ensures that
(10) automatically holds for any cycle C originally passing through e, in forward direction
and now passing through p. Hence, a path expansion operation merely has to further ensure
that (10) also holds for such cycle C but in reverse direction; and this can be done if the

following constraint can be satisfied:

D q(e) = q(e,) (13)

ecE(p)

In general, the way for distributing q(e,) to those edges along p is not unique. However, the
following proposed strategy must be adopted to guarantee minimal queue insertion. Let ey, €
E(p) be the edge with lowest burden factor along a condensable path p, i.c., b(en) < b(e) for

all e € E(p), then q(e) of each edge € along p can be determined as:
2xc(e)—w(e), fore #e,
a®) =1q(e,)- a(e), fore=e, (14)

ecE(p),exe,

If there are two or more edges with lowest burden factor, pick one arbitrary. It is apparent that

using (14) for queue sizing can ensure that (13) always holds. Fig. 12(b) illustrates an

modelin compaction
LIS i QG W) CQG

phase
constraint
formulation

Optimal recovery Optimal ILP Conctraint
solution for Solution for set
QG phase caG

Fig. 13 Overall flow of the proposed method.

24

example of path expansion. At last, as shown in Fig. 12(c), edge split and path expansion can
be performed repeatedly until the complete optimal solution for the original QG is obtained.
At the end of this section, Fig. 13 summarizes the overall flow of our proposed method for
minimal queue insertion. Unlike [34], [35], identifying strongly connected components (SCCs)

is unnecessary here since the testcases are acylic.

The proposed approach has been implemented in C++/Linux environment. Since it is difficult
for us to get a bunch of real-world systems, alternatively, we decide to randomly build a set of
different-sized directed acyclic graphs (DAGs) as QGs for evaluation, which is similar to the
approach used in the experimental setup of [35]. Furthermore, latency of every edge in a DAG
(i.e., communication channel in a system) is also randomly assigned with an integer within the
interval [1, L]; that is, the number of relay stations required inserting at each edge (channel) is
within the range [0, L — 1]. All experiments are conducted on a workstation with an AMD
1.81GHz CPU and 2GB RAM. The package Ip_solve is adopted when solving ILP [41].

Our first experiment is to verify whether the proposed compaction techniques are effective.
Johnson’s algorithm [42] is applied to identify all cycles in both the original QG and the minimal
CQG. The experimental results shown in Table 5 clearly indicate that the proposed technique can
successfully reduce the number of vertices and edges as well as achieve a remarkable reduction
of cycle count. Before compaction, the cycle count for several test cases even exceeds one
million, which makes ILP virtually impossible to find a feasible solution.

In our second experiment, we compare our proposed method with Collins’ heuristic method
roposed in [35]. Table 6 and Table 7 report the results with L = 3 and 16, respectively. The results

show that our proposed method can achieve an average reduction of 23% and 28% in queue size

Table 5 Experimental results of cycle reduction.

Original QG Minimal CQG
Case Name

(V, E) #Cycles (V, E) #Cycles
Testcase1 (11,15) 55 (8,11) 12
Testcase2 (17,21) 51 (13,17) 14
Testcase3 (45,61) 30540 (20,35) 10123
Testcase4 (58,76) 48590 (39,45) 10497
Testcaseb (104,121) 42435 (56,73) 19754
Testcase6 (126,172) | > 1Million (77,98) 132415
Testcase7 (175,201) > 1Million (66,84) 15423
Testcase8 (297,318) > 1Million (116,142) 23862

25

Table 6 Experimental results with L=3.

L L=3
Proposed Method Collins’ Method [12] ILP directly to QG
Case Name #Queues Bun- #Queues Bun- #Queues Bun-
time time time
Testcase1 20 0 20 0 20 1
Testcase?2 9 0 9 0 9 0
Testcase3 51 5 80 4 51 14
Testcase4 43 14 46 13 43 44
Testcaseb 29 40 78 27 29 340
Testcase6 77 867 90 542 * *
Testcase7 84 32 90 23 * *
Testcase8 114 73 141 47 * *
Ratio 0.77 1.57 1 1 - -

for L = 3 and 16 respectively as compared to Collins’ method. The results also imply that the
improvement can slightly increase as fabrication process keeps scaling (i.e., L increases).
Meanwhile, our method needs about 58% more runtime than Collins’ on average. However, it
should be acceptable since all test cases can be completed within 24 minutes. Table 2 also shows
that ILP fails in several test cases (denoted as ‘*’) if it directly applies to QG instead of minimal
CQG. The reason is obvious that the size of the constraint set is too large at QG level. It is also
worth to mention that several test cases contain hundreds of vertices and edges, which positively

suggests our approach is capable of handling moderately large systems in practice.

7~ %

-

Ed

First of all, the number of IICs has been reported to better model the global interconnect cost
and then can be considered as a major QoR evaluation metric at early design stages in DRFM. In
this project, we propose a resource-constrained synthesis algorithm for IIC minimization. The
iterative binding-then-rescheduling procedure is first utilized for island assignment. A better
island binding result can be expected because the solution search space is significantly expanded
through rescheduling. The proposed algorithm also incorporates the consideration of read port
restriction into scheduling and binding procedures to minimize the potential access conflicts. A
post-processing procedure is then conducted to eliminate all remaining access conflicts.

The experimental results indicate that the proposed algorithm reduces the number of I1ICs by

21.0% ~ 24.7% on average as compared to the prior art. While adopting the read port restriction,
26

Table 7 Experimental results with L=16.

L L=16
Proposed Method Collins’ Method [12] ILP directly to QG
Case Name #Queues Bun- #Queues Bun- #Queues Bun-
time time time
Testcase1 68 1 68 0 68 1
Testcase2 76 0 77 0 76 0
Testcase3 290 9 437 6 290 19
Testcase4 291 31 351 19 291 52
Testcaseb 256 77 386 48 256 459
Testcaseb 519 1438 793 913 * *
Testcase7 673 69 753 40 * *
Testcase8 641 131 1035 83 * *
Ratio 0.72 1.58 1 1 - -

the proposed method also outperforms the previous work by about 12% in terms of average
latency. As a result, the proposed algorithm should be regarded as a better alternative while
performing architectural synthesis targeting DRFM.

Furthermore, a throughput optimization technique for LIS with minimal queue size is
presented. First, an LIS is transformed as a newly proposed quantitative graph; next, the size of
QG can be minimized through the developed compaction operations; ILP then follows to get an
exact solution of minimal queue size, which can further be converted into an optimal solution for
the original LIS. The experimental results demonstrate that our algorithm can achieve an average
reduction of up to 28% in queue size as compared to the prior art. Moreover, the required runtime
is merely about half an hour for a system with hundreds of cores. Consequently, we believe that
the proposed technique is a better alternative to resolve the issue of queue sizing for moderately
large systems in practice. The proposed algorithm can only handle acyclic systems at this
moment. We are currently working on developing on improved version that can deal with cyclic

systems as well.

27

I~q
\\\Xr
ol
d
T
/‘.—

[1] International Technology Roadmap for Semiconductors. Semiconductor Industry
Association, 2007.

[2] Matzke, “Will physical scalability sabotage performance gains?”’ IEEE Computer, vol.20, pp.
37-39, 1997.

[3] L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Coping with latency in SOC design,”
IEEE Micro, vol. 22, pp. 24-35, 2002.

[4] W. J. Dally, “Interconnect-limited VLSI architecture,” IEEE Int’l Conf. Interconnect
Technology, 1999.

[5] Y. Mori, V. Moshnyaga, H. Onodera, and K. Tamaru, “A performance-driven macro-block
placer for architectural evaluation of ASIC designs,” Proc. Annual IEEE Int’l ASIC Conf.
and Exhibit, pp. 233-236, Sep. 1995.

[6] V. Moshnyaga and K. Tamaru, “A placement driven methodology for high-level synthesis of
sub-micron ASIC’s,” Proc. Int’l Symp. Circuits and Systems, vol. 4, pp. 572575, May
1996.

[7] P. Prabhakaran and P. Banerjee, “Parallel algorithms for simultaneous scheduling, binding
and floorplanning in high-level synthesis,” Proc. of Int’l Symp. Circuits and Systems, vol. 6,
pp. 372-376, May 1998.

[8] D. M. Chapiro, “Globally-asynchronous locally-synchronous systems,” Ph.D. dissertation,
Stanford Univ., Stanford, CA, 1984.

[9] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli, “A
methodology for correct-by-construction latency insensitive design,” Proc. Int’l Conf.
Computer Aided Design, pp. 309-315, 1999.

[10] J.-D. Huang, Y.-S. Huang, L. Wang, and G.-W. Lee, “Throughput-Aware Floorplanning via
Dynamic Optimization on Performance-Critical Loops,” Intl. Journal of Electrical
Engineering, vol. 17, no.1, pp. 33—42, Feb. 2010.

[11] Kim, J. Jung, S. Lee, J. Jeon, and K. Choi, “Behavior-to-placed RTL synthesis with
performance-driven placement,” Proc. Int’l Conf. Computer Aided Design, pp. 320-325,
Nov. 2001.

[12] J. Jeon, D. Kim, D. Shin, and K. Choi, “High-level synthesis under multi-cycle interconnect
delay,” Proc. Asia and South Pacific Design Automation Conf., pp. 662—667, Jan. 2001.

[13] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Architecture and synthesis for on-chip

multicycle communication,” IEEE Trans. on Computer-Aided Design Integrated Circuits

28

and Systems, vol. 23, no. 4, pp. 550-564, Apr. 2004.

[14] C.-I Chen and J.-D. Huang, “A Hierarchical Criticality-Aware Architectural Synthesis
Framework for Multicycle Communication,” IEICE Trans. on Fundamentals, vol. E93-A, no.
7, pp- 1300-1308, Jul. 2010.

[15] S.-H. Huang, C.-H. Chiang, and C.-H. Cheng, “Three-dimension scheduling under
multi-cycle interconnect communications,” IEICE Electronics Express, vol. 2, no. 4
pp-108—114, Feb. 2005.

[16] J. Cong, Y. Fan, and Z. Zhang, “Architecture-level synthesis for automatic interconnect
pipelining,” Proc. Design Automation Conf., pp. 602—-607, Jun. 2004.

[17] W.-S. Huang, Y.-R. Hong, J.-D. Huang, and Y.-S. Huang, “A multicycle communication
architecture and synthesis flow for global interconnect resource sharing,” Proc. Asia and
South Pacific Design Automation Conf., pp. 16-21, Jan. 2008.

[18] Y.-S. Huang, Y.-J. Hong, and J.-D. Huang, “Communication Synthesis for Interconnect
Minimization in Multicycle Communication Architecture,” IEICE Trans. on Fundamentals.
vol. E92-A, no. 12, pp. 3143-3150, Dec. 2009.

[19] Ohchi, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “High-level synthesis algorithms with
floorplaning for distributed/shared-register architectures,” Proc. Int’l Symp. VLSI Design,
Automation and Test, pp. 164-167, Apr. 2008.

[20] J. Cong, Y. Fan, and J. Xu, “Simultaneous resource binding and interconnection optimization
based on a distributed register-file microarchitecture,” ACM Trans. Design Automation
Electronics Systems vol. 14, no. 3, pp. 1-31, May. 2009.

[21] K. Lim, Y. Kim, and T. Kim, “Interconnect and communication synthesis for distributed
register-file microarchitecture,” Proc. Design Automation Conf., pp. 765-770, Jun. 2007.

[22] J.-D. Huang, C.-I Chen, Y.-T. Lin, and W.-L. Hsu, “Communication synthesis for
interconnect minimization targeting distributed register-file microarchitecture,” IEICE Trans.
on Fundamentals, vol. E94-A, no. 4, pp. 11511155, Apr. 2011.

[23] S. Gao, K. Seto, S. Komatsu, and M. Fujita, “Pipeline scheduling for array based
reconfigurable architectures considering interconnect delays,” Proc. Int’l Conf.
Field-Programmable Technology, pp. 137—-144, Dec. 2005.

[24] Terechko, E. L. Thenaff, M. Garg, J. van Eijndhoven, and H. Corporaal, “Inter-cluster
communication models for clustered VLIW processors,” Proc. Int’l Symp. High
Performance Computer Architecture, 2003.International Technology Roadmap for

Semiconductors. Semiconductor Industry Association, 2007.
[25] L. P. Carloni, K. L. McMillan and A. L. Sangiovanni-Vincentelli, “Theory of
latency-insensitive design,” IEEE Trans. on CAD, vol. 20, no. 9, pp. 1059-1076, Sep. 2001.
29

[26] Altera website. [Online]. Available: http://www.altera.com

[27] Xilinx website. [Online]. Available: http://www.xilinx.com

[28] B. Kernighan, and S. Lin, “An efficient heuristic procedure for partitioning graphs,” Bell
System Technical Journal, pp. 291-307, Feb. 1970.

[29] MCAS: multicycle architectural ~ synthesis system. [Online]. Available:
http://cadlab.cs.ucla.edu/software _release/mcas/

[30] ExPRESS group. [Online]. Available:http://express.ece.ucsb.edu/

[31] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to algorithms, 2nd edition,
the MIT press, 2001

[32] R. Lu and C.-K. Koh, “Performance optimization of latency insensitive systems through
buffer queue sizing of communication channels,” in Proc. Intl. Conf. on Computer-Aided
Design, Nov. 2003, pp. 227-231.

[33] R. Lu and C.-K. Koh, “Performance analysis of latency-insensitive system,” IEEE Trans. on
CAD, vol. 25, no. 3, pp. 469—483, Mar. 2006.

[34] R. L. Collins and L. P. Carloni, “Topology-based optimization of maximal sustainable
throughput in a latency-insensitive system,” in Proc. of the Design Automation Conf., 2007,
pp. 410-415.

[35] R. L. Collins and L. P. Carloni, “Topology-based performance analysis and optimization of
latency-insensitive systems,” IEEE Trans. on CAD, vol. 27, no. 12, pp. 2277-2290, Dec.
2008.

[36] M. R. Casu and L. Macchiarulo, “A new approach to latency insensitive design,” in Proc. of
the Design Automation Conf., 2004, pp. 576-581.

[37] M. R. Casu and L. Macchiarulo, “Issues in implementing latency insensitive protocols,” in
Proc. of the Design, Automation and Test in Europe Conf., 2004, pp. 1390-1391.

[38] D. Bufistov, J. Julvez, and J. Cortadella, “Performance optimization of elastic systems using
buffer resizing and buffer insertion,” in Proc. Intl. Conf. on Computer-Aided Design, Nov.
2008, pp. 442—448.

[39] T. Murata, “Circuit theoretic analysis and synthesis of marked graphs,” IEEE Trans. on
Circuit and Systems, vol. 24, no. 7, pp. 400—405, Jul. 1977.

[40] T. Murata, “Petri nets: Properties, analysis and applications,” Proc. of the IEEE, vol. 77, no.
4, pp. 541-580, Apr. 1989.

[41] Ip_solve. http://Ipsolve.sourceforge.net/5.5/

[42] D. B. Johnson, “Finding All the Elementary Circuits of a Directed Graph,” SIAM Journal on
Computing, vol. 4, no. 1, pp.77-84, Mar. 1975.

30

BERHYE AR, A ERAPEL T T REERD

1.

z

1.

Che-Hua Shih, Ya-Ching Yang, Chia-Chih Yen, Juinn-Dar Huang, and Jing-Yang Jou,
“FSM-Based Formal Compliance Verification of Interface Protocols,” Journal of Information
Science and Engineering, vol. 26, no. 5, pp. 1601-1617, Sep. 2010.

Juinn-Dar Huang, Chia-I Chen, Yen-Ting Lin, and Wan-Lin Hsu, “Communication synthesis
for interconnect minimization targeting distributed register-file microarchitecture,” IEICE
Trans. on Fundamentals, vol. E94-A, no. 4, pp. 11511155, Apr. 2011.

Juinn-Dar Huang, Chia-I Chen, Wan-Ling Hsu, Yen-Ting Lin, and Jing-Yang Jou,
“Performance-driven architectural synthesis for distributed register-file microarchitecture

with inter-island delay,” IEICE Trans. on Fundamentals, to appear.

" R 6

Ya-Shih Huang and Juinn-Dar Huang, “Throughput-Driven Hierarchical Placement for
Two-Dimensional Regular Multicycle Communication Architecture,” Asia Symposium on
Quality Electronic Design, pp. 134-139, Aug. 2010.

Juinn-Dar Huang, Chia-I Chen, Wan-Ling Hsu, Yen-Ting Lin, and Jing-Yang Jou,
“Inter-Island Delay Aware Communication Synthesis for Island-Based Distributed Register
Architecture,” Proc. of the 16th Workshop on Synthesis and System Integration of Mixed
Information Technologies, pp. 58—63, Oct. 2010.

Juinn-Dar Huang, Yi-Hang Chen, and Ya-Chien Ho, “Quantitative Graph-Based Minimal
Queue Sizing for Throughput Optimization in Latency-Insensitive Designs,” Proc. of the
16th Workshop on Synthesis and System Integration of Mixed Information Technologies, pp.
430-435, Oct. 2010.

Juinn-Dar Huang, Yi-Hang Chen, and Ya-Chien Ho, “Throughput Optimization for
Latency-Insensitive System with Minimal Queue Insertion,” Proc. of IEEE Asia and South
Pacific Design Automation Conference, pp.585-590, Jan. 2011.

Juinn-Dar Huang, Yi-Hang Chen, and Wan-Hsien Lin, “Performance-Optimal Behavioral
Synthesis with Degenerable Compound Functional Units,” Proc. of IEEE International
Symposium on VLSI Design, Automation, and Test, pp. 337-340, Apr. 2011. (Best Paper
Candidate)

31

bd IS G A HTRP S

LoF@d a7t 2Re- 244 “Hoiagor fE2 15027 ¢ s
Bl %)% 55 13326152010 & 11 7 1 p o

2. Juinn-Dar Huang and Chia-I Chen, “Dynamical sequentially-controlled low-power
multiplexer device,” US 7881241 B2, Feb. 2011.

3. FkE OMEN . "MHESIBEAA IR P FARE {5 1342670 > 2011
E5%21p -

o EAE A F B AP R AL A S FPGA SR i B i 7
Zormm ok R I TEECEANEE DN ERBRAMEEL B
%3~ FAZ 4% 7 - % F4 > Delay optimal compressor tree synthesis for LUT-based

Aok e P g A AR R Y IR AR R AP A RS E R PR A RAR
FAH, REAENLEIF LG FAETER -CGEH P RLIF LA - FRSELEY e

ZHERGERY)

32

VORAER 2P R T A

v sy W 7RiEBE 100 10" 30 p

VR
FEaeff PEAREL ERGh Y Rk SRS > H

Rt gt g FRAFL R RE BlRE R d A FR I
33 %% NSC99 —2220 —E — 009 — 008
BFAR KT EF

PRI Ef (R BHE L GBS BRI 2 69 b

FRA/RTEA |FhE mEL

v >

ARG B ARG R S B e S
FHEFEPAIDELFH Ao AE T ZERC 2B DT
o THE B EEBEL IV 1 ,E’E'J{i&mé‘. = ® ﬁg'fr L ALATRL o
P 2R B R AP TEYEEES G5
RV EEVAS T %I?E’giﬁﬁf-J HARES TEHE L2 Fand | 54

g S AT A e $ S A B B s 0
o REEBRIESR L B ERALR

A

E o

Y Several types of distributed register (DR) architectures, where the
whole system is divided into several logic clusters, are also broadly
studied. In general, all DR-based architectures try to keep most
interconnects local within a cluster and thus minimize the number of]
inter-cluster long interconnects for better area and performance
outcome. In this project, we develop synthesis frameworks on
distributed register-file microarchitecture (DRFM) in order to decrease
the number of inter-island connections (IICs), which is used as an
evaluation metric for quality of result (QoR) at early design phases.
Furthermore, we add an extra size constraint on read port of register
file to make the underlying architectural assumption of DRFM more
realistic.

7 ‘T'J)* LAR 1. Electronic Design Automation (EDA) (EDA # %)
2. Integrated Circuit Design (IC %32 %)

TR RELE G SRR G S B Aok - A G

B R R LA B EBIHEBIHEG L p R

Hpeig [BRE ARG AR SREYERAD RRUE MY E
A R BRAT R R R TR B A Gk

33

A GET LG AR BRI RR R 2B B B
o FONLRS D A R TR e
BA2E

KO LAFAFSEGFER -6 - PREFFFLEHEAE - PE FHEDE
SRR E e (s d o)o
KOLAEFPESIEEFT A GEN FHIBBTEHFEZALAG o

M3 AAFEAEE Y o P AHE R

34

"'7

[7¥ %1l

IR 2

B 7R

I_FE -Qc <kl 4

pao100# 10" 30 P

R A3

VR

FEAE RS PEALEL ER G Y Lk SRS
VRIS TR AR FI A AFT S

3+ % HE 0 NSC99 — 2220 —E— 009 — 008

BFAR KT EF

i/ il 1E 24

BB F L AR 2 AN R e 2 B A 2

BT A/RITEA

¥R M P

R

¢ 2

d N RBEFREBER S ARG - BREL DR
ERUMBEF L G RPFT S b E AL W B L S B d A
Wik ?**mf‘&"?’fﬁ“—ﬁ LF SRR i 4 A TR
BT A j\m";{;l—llﬁ*,i—%-ﬁﬂbf@jn R R o ﬁ_j\gﬂgz =N N
FHETXEE] FI R B R AR L R

PORBLAERE R T Ia el AN w R &k Siaka T el

A

B=iged

As manufacturing processes are constantly moving toward very deep
submicron (VDSM) technology, global interconnect delay is becoming
one of the most critical performance obstacles in system-on-chip (SoC)
designs nowadays. Recent years latency-insensitive-design (LID),
which enables multicycle communication to tolerate variant
inter-connect delay without substantially modifying pre-designed IP
cores, has been proposed to conquer this issue. In this work, we present
a throughput optimization technique with minimal queue insertion to
solve the problem of degraded system throughput resident in LID.

1. Electronic Design Automation (EDA) (EDA # %)
2. Integrated Circuit Design (IC %32 ¥)

B

We first model a given LIS as a quantitative graph (QG), which can be
further compacted using the proposed techniques, so that much bigger
problems can be handled. On top of QG, the optimal solution with
size can be achieved through

minimal queue integer linear

programming based on the proposed constraint formulation in an

acceptable runtime.

35

ﬁ&;ﬁ?ﬁ@

In this work, a throughput optimization technique for LIS with minimal
queue size is presented. Also our approach can still handle reasonably

large systems in an acceptable runtime.

KO LAFAFSEGFER -6 - PREFFFLEHEAE - PE FHEDE
SRR E e (s d o)o
KOLAEFPESIEEFT A GEN FHIBBTEHFEZALAG o

O3 AAEI IR o AMERT .

36

E“]ﬁi g FftﬁuEégL%j;{—i FIE N %#&% ?\7}’, 3
P #:2011/10/31
PR VE - RERE ALY PEARBZ LG AR R SRS A
(3/3)
Bt 4T o435 % (phase dag
% ¥ 99-2220-E-009-008- : ;%‘: TSPy

EFPF L ERR TR

PeERLHEFTIEFT

=& RE 2

PHEAA Fu 34 %3 99-2220-E-009-008-
*li S BERMAERATER IR A BRI P R ERY AP AL R
ER S RY R AEEE S H(3/3)
£ i B (F o
AR AR 3
I PR LS pags | BERT | g |7 PR
fe (L (E(ZRES | R E T 2
pegd) | 2998 #oeowF
+)
97 2 0 0 100%
o e [PAEEE AR |0 0 100% -8
¥m ¥ FE
Pt g2 3 3 100%
%2 0 0 100%
v o2dg 4 0
541 R = 1 1 100% .
S EE 2 2 100%
B e 0 0 100% g
HEAS
AT 0 0 100% + =
R 4 4 100%
fgrat g A4 (B2 3 3 100% L
(~HE) [BLismgh 0 0 100%
LiEmm 0 0 100%
P 2 1 1 100%
L. By AR R 2 |0 0 100%
wmy EIE
it g 3 3 100%
%3 0 0 100% 314
Ve s 0
541 * e 1 1 100% "
S EE gk 1 1 100%
AW {,}
" i 0 0 100% &
B
#11 4 0 0 100% + =
e 0 0 100%
PR R 0 0 100% o
(PR |[BLismg R 0 0 100%
LiEm 0 0 100%

H 2%
(i Bt iigz &
5 hoyE B s d S
WEn L ER%EE
AT A R R
SRR N S R £
B2 E M E R
EE G F A

}ljo)

¥5B v T4 AL B 2R A EREFHTEE T Gl 22 2% 3 (CAD) e 8 i+
WE) ORE TAME FF

e &4+ 3D IC Design Partitioning with Power Consideration, % #
1100 & 67

’i X538 P

[l
1%
%‘\
2
=
ke
¥
g
==
P

R E(FFHEEEN)

i/ e

Re|grga g A1 8

21

Fi

Byr A0 iR

R LI

3
1
4e
g |FiHE/ iy
i
p

PEASHAEZ S (BR) Ak

OO O OO O o (o

R 640 %A] 7 h S R 2

ﬁﬁpiﬁgh'iéﬁﬁﬁﬁ\& FFHPIHRTR L S22 FHS iy
E(Fﬁﬁﬁ$%wﬁiaia‘TE‘%§é@*ﬁ%%Lvuﬁ) TR
BRI FEARY FRICAEFRAL L FHEES > (T- FEER o

xd

1 ?‘;F RSN REREAABERE C ERIEH P RFRIT- A
W= Pk
(I & p e (P » 2 100 % 5 °2)
ELEEE:
C1Mg 5 o
EERD-13
o :
2. P S % a4 &Y g IR
we e wE Oawdes i OFERY O
s W kw05 O
B[] HE D/r’Ma M=
Hi (1100 F 5%)

&%@?ﬁ&%\ﬁﬁﬂ%\ﬁg%§$%&’?%Ffﬁ%aﬁﬁﬁ@?”
A S ETREAZIERE - FEAE-HFRE2Z T) (M

500 F 5 *2)
EMCE AR R ERB U TR KA L AT ULk T ika

Kl :
§Wx s e AP FEP APRD TES EEE L SR B2 AN EE
MR R B B E B G L P K I IRE

x N

K -ﬁﬁﬁ%#%%m'oiﬁﬁﬁii

E3 SR SIS PPN R £ ﬁ»ﬂwﬁp—iu@ﬁ%%#}ﬁﬁﬁé%§i€$
JoR o B BT IRARA L & R F) LR MO 1 %*%ﬁﬁ@%§4ﬁ%§ﬁf
P e ¥ -2 o d WP EERUEB AR, D IARF L - BRER DN T E Rt

7 %,

@?Nhnﬁﬁﬁﬁﬁﬁﬁﬂﬁ%€ﬁ°&@§3h&%ﬁ%5éﬁﬁ%gﬁﬁ%ﬁﬁﬁWﬁﬁﬁﬁ
FEIREWREHE AN A 0P FRB AR TRIUEA RS BFEE O AAEY
ﬁ%a,ﬁwﬁ@niﬁ&+@ﬂﬁﬁ&ﬁﬁ%ﬂ%%uﬁ%i&@?&;iﬂ@%&@
£ RF T) mgRTE AR TR RE TR E L 4 o

