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中文摘要： 在深次微米製程的時代，導線的傳導時間延遲已經不再是可以

忽略的並進而成為決定系統整體效能的關鍵。目前已經有不少

研究嘗試解決這樣的問題，分散式暫存器系統架構即為其中一

種。分散式暫存器系統的基本概念是將整個系統切割成數個子

群，每個子群有各自局部的運算單元和儲存元件，並盡量減少

全域的信號傳遞。即是使信號傳遞局部化，以得到更好的合成

面積和系統效能。 
在本子計劃中，首先我們針對無考量群集島信號延遲的分散式

暫存器架構發展了一套合成系統。無考量群集島信號延遲的分

散式暫存器架構本身為分散式暫存器架構的一種，此種架構之

下，「群集島之間的連線」在晶片設計流中的前期被視為評估

合成結果的一項重要指標。而本子計劃的合成系統即是考慮這

項指標而進行群集島之間的連線最小化。我們提出了一個迭代

式「綁定暨排程」的方法，在比較大的解集合中得到比先前研

究更好的結果。同時我們另外增加對多埠暫存器群讀取埠數目

的限制，使得整個問題的設定更符合現實世界，並以實驗佐證

我們的方案。 
同時，由於全域長導線延遲在現今的系統設計成為一個很重要

的問題，近年來延遲容忍系統的研究也漸漸的被重視。延遲容

忍系統的特色在於使已設計完成的智財擁有允許多時脈週期通

訊的能力，不需要修改本來的設計以解決導線延遲過長的問

題。然而，信號延遲長度不平均和通訊的負回授在延遲容忍系

統內必須付出系統效能下降的代價，因此在本子計畫中，我們

提供了安插最小佇列的系統效能優化方法並以實驗佐證我們的

方案。首先，我們針對一個給定的延遲容忍系統建立量化圖，

其可更被建一步的濃縮以簡化問題。在此壓縮量化圖上，可以

使用線性規劃的方式在可接受的運算時間下，得到最小所需的

佇列數。驗結果顯示我們的方法和之前的研究相比可以在佇列

數上得到 28 個百分比的改善。 
英文摘要：  
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一、 摘要 

 

中文摘要 

在深次微米製程的時代，導線的傳導時間延遲已經不再是可以忽略的並進而成為決定

系統整體效能的關鍵。目前已經有不少研究嘗試解決這樣的問題，分散式暫存器系統架構

即為其中一種。分散式暫存器系統的基本概念是將整個系統切割成數個子群，每個子群有

各自局部的運算單元和儲存元件，並盡量減少全域的信號傳遞。即是使信號傳遞局部化，

以得到更好的合成面積和系統效能。 

在本子計劃中，首先我們針對無考量群集島信號延遲的分散式暫存器架構發展了一套

合成系統。無考量群集島信號延遲的分散式暫存器架構本身為分散式暫存器架構的一種，

此種架構之下，「群集島之間的連線」在晶片設計流中的前期被視為評估合成結果的一項重

要指標。而本子計劃的合成系統即是考慮這項指標而進行群集島之間的連線最小化。我們

提出了一個迭代式「綁定暨排程」的方法，在比較大的解集合中得到比先前研究更好的結

果。同時我們另外增加對多埠暫存器群讀取埠數目的限制，使得整個問題的設定更符合現

實世界，並以實驗佐證我們的方案。 

同時，由於全域長導線延遲在現今的系統設計成為一個很重要的問題，近年來延遲容

忍系統的研究也漸漸的被重視。延遲容忍系統的特色在於使已設計完成的智財擁有允許多

時脈週期通訊的能力，不需要修改本來的設計以解決導線延遲過長的問題。然而，信號延

遲長度不平均和通訊的負回授在延遲容忍系統內必須付出系統效能下降的代價，因此在本

子計畫中，我們提供了安插最小佇列的系統效能優化方法並以實驗佐證我們的方案。首先，

我們針對一個給定的延遲容忍系統建立量化圖，其可更被建一步的濃縮以簡化問題。在此

壓縮量化圖上，可以使用線性規劃的方式在可接受的運算時間下，得到最小所需的佇列數。

驗結果顯示我們的方法和之前的研究相比可以在佇列數上得到 28 個百分比的改善。 

 

關鍵字 

分散式暫存器系統、連接模型、排程和資源配置、系統效能最佳化、多時脈週期通訊、延

遲容忍系統。 
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Abstract 

In deep submicron technology, wire delay is no longer negligible and is gradually becoming 

a dominant factor of system performance. There have been several approaches proposed in the 

past to deal with the critical issue arisen from long interconnects, and the distributed register 

architecture is one of them. Several types of distributed register (DR) architectures, where the 

whole system is divided into several logic clusters, are also broadly studied. In general, all 

DR-based architectures try to keep most interconnects local within a cluster and thus minimize 

the number of inter-cluster long interconnects for better area and performance outcome. 

In this project, first we develop synthesis frameworks on distributed register-file 

microarchitecture (DRFM), which is one of the DR-based architectures. In DRFM, the number of 

inter-island connections (IICs) is used as an evaluation metric for quality of result (QoR) at early 

design phases. This work proposes a new resource-constrained communication synthesis 

algorithm for IIC minimization. An iterative binding-then-rescheduling scheme is used to obtain a 

better outcome in the expanded solution space. Furthermore, we add an extra size constraint on 

read port of register file to make the underlying architectural assumption of DRFM more realistic. 

The experimental results show that up to 24.7% IIC and 12% latency reduction can be achieved 

as compared to the previous work. 

Also, global interconnect delay is becoming one of the most critical performance obstacles 

in system-on-chip (SoC) designs nowadays. Recent years latency-insensitive system (LIS), which 

enables multicycle communication to tolerate variant interconnect delay without substantially 

modifying pre-designed IP cores, has been proposed to conquer this issue. However, imbalanced 

interconnect latency and communication back-pressure residing in an LIS still degrade system 

throughput. In this project, we present a throughput optimization technique with minimal queue 

insertion. We first model a given LIS as a quantitative graph (QG), which can be further 

compacted using the proposed techniques, so that much bigger problems can be handled. On top 

of QG, the optimal solution with minimal queue size can be achieved through integer linear 

programming based on the proposed constraint formulation in an acceptable runtime. The 

experimental results show that our approach can deal with moderately large systems in a 

reasonable runtime and save about 28% of queues compared to the prior art. 

 

Keyword 

Distributed register architecture, interconnect model, scheduling and binding, 

performance-driven, multicycle communication, latency-insensitive system. 
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二、 計劃緣由及目的 

 

As advancing into the deep-submicron (DSM) era, interconnect delay is becoming inevitable 

due to resistance-capacitance delay, coupling effect, inductance, multiple-gigahertz operating 

frequency, and so on [1]–[3]. In architectural synthesis, the system clock cycle time is 

determined by the maximum sum of delay of both functional units (FUs) and associated 

interconnects. If the delay of long wires (especially for global interconnects) is still neglected in 

the synthesis flow, unexpected large delay introduced by long wires after physical mapping 

(floorplanning, placement, and routing) is very likely to make a serious impact on the whole 

system performance due to lengthened clock cycle time. Therefore, global interconnects have 

been becoming the performance bottleneck when pursuing higher system speed, which also 

brings on so-called interconnect-limited VLSI architectures [4]. To overcome this problem, 

several synthesis flows are proposed to estimate long interconnect delay by applying preliminary 

floorplanning and thus obtain better synthesis results [5]–[7]. 

There have been several approaches proposed in the past to deal with the critical issue arisen 

from long interconnects. Globally-asynchronous locally-synchronous (GALS) design styles adopt 

handshaking protocols for communication over long interconnects [8]. In a synchronous 

latency-insensitive system (LIS), special pipelining elements, named relay stations, are inserted to 

break a long interconnect into shorter wire segments for sustaining high operating clock 

frequency [9][10]. Furthermore, several types of distributed register (DR) architectures, in which 

the whole system is divided into several logic clusters, are also broadly studied [11]–[24]. In 

general, all DR-based architectures try to keep most interconnects local within a cluster and thus 

minimize the number of inter-cluster long interconnects for better area and performance outcome. 

Before talking about what is DR architecture, first we introduce what is centralized register 

(CR) architecture. In a CR architecture, there exists a large aggregate register file shared by all 

FUs and an FU is expected to access any register within one clock cycle. Though the device 

speed generally increases as the manufacturing process advances, the wire delay does not scale as 

well as the feature size. Global wire delay gradually dominates and significantly lengthens the 

system cycle time. Hence, previous studies propose several similar distributed register (DR) 

architectures to overcome this issue [11]–[24]. In a DR-based architecture, the whole system is 

divided into several clusters and each cluster contains its own local FUs and registers. In general, 

all DR-based architectures try to keep most interconnects local within a cluster and thus minimize 

the number of inter-cluster long interconnects for better area and performance outcome. 

The distributed register-file microarchitecture (DRFM) is one of the DR-based architectures 



5 
 

and is recently proposed in [20]. The DRFM is composed of multiple islands and each of them 

has its own register file, functional units (FUs), and data-routing logic. DRFM is particularly 

adequate for platforms with a rich set of distributed memory blocks, e.g., modern FPGAs. While 

utilizing DRFM, one should be aware that how to map operations of a target system into islands 

can have a significant impact on the final outcome in terms of area and performance [20]. Hence, 

developing an intelligent synthesis algorithm targeting DRFM is important and needs extensive 

studies further. 

In this project, first we propose a new resource-constrained resource binding algorithm for 

inter-island connection minimization targeting DRFM. Given a resource constraint (i.e., number 

of available islands), the proposed algorithm applies an iterative binding-then-rescheduling 

process first, and then invokes an access conflict removal procedure. At each control step (cstep), 

operation nodes scheduled at the current cstep are appropriately assigned to islands first, and then 

rescheduling is applied to expand the solution space so that a better synthesis output can be 

produced. The rescheduling and rebinding process also tries to minimize data access conflicts due 

to limited read ports at the same time. Finally, an access conflict removal procedure is invoked to 

ensure that no data access conflicts are left at the end of the proposed algorithm. The 

experimental results confirm that our algorithm does produce better outcomes with 21.0% ~ 

24.7% fewer IICs on average than the prior art. 

Moreover, latency-insensitive-design (LID) is a design methodology, which can tolerate 

interconnect delay variation at late stages of the design process [3], [9], [25]. LID encapsulates 

each IP core (pearl) with an automatically-synthesized interface (shell) and inserts a proper 

number of relay stations (RS) to pipeline inter-shell interconnects for sustaining the target 

operating frequency. Based on LID, one can derive a corresponding latency-insensitive system 

(LIS) from the original plain synchronous system. Thus in this project, we present a throughput 

optimization technique with minimal queue insertion. At first, a new representation named 

quantitative graph (QG), which is evolved from the marked graph, is proposed for LIS modeling. 

Then we develop a series of operations to accomplish the goal, which include: 1) compressing a 

QG into a compacted one (CQG) with identical throughput for problem size reduction; 2) 

deriving a set of constraints to guarantee the maximal throughput based on the CQG; 3) obtaining 

an optimal solution with minimal queue size subject to the above constraint set through integer 

linear programming (ILP); 4) transforming the optimal solution for the CQG into the optimal 

solution for the original QG. Since our technique employs ILP, unsurprisingly it can outperform 

the existing heuristic method in terms of queue size. Also notice that our approach can still handle 

reasonably large systems in an acceptable runtime because ILP is merely applied at the CQG 
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Fig. 1  The island architecture in DRFM. 

level, which results in a significantly smaller constraint set. The experimental results shown later 

can sustain our above claims. 

 

 

三、 研究方法與成果 

 

Communication synthesis for interconnect minimization targeting distributed register-file 

microarchitecture 

In a centralized register (CR) architecture, there exists a large aggregate register file shared 

by all FUs and an FU is expected to access any register within one clock cycle. However, if this 

assumption is still retained, the increasingly long global interconnect delay can significantly 

stretch the clock period as the manufacturing process keeps evolving. Therefore, the distributed 

register (DR) architecture is proposed to overcome this issue [11]–[24]. In a DR-based 

architecture, the whole system is partitioned into a set of clusters and each cluster contains its 

own local register file and FUs. As a result, most register accesses are kept fast within a cluster 

while only few accesses require long inter-cluster communication. 

Several DR-based architectures are proposed in the recent literature. Regular distributed 

register (RDR) architectures are capable of providing accurate delay estimation for inter-cluster 

communication at very early design phases. The related studies focusing on behavioral synthesis 

as well as transfer scheduling and routing for RDR-based architectures can be found in [13]–[19]. 

On the other hand, the distributed register-file microarchitecture (DRFM) is first proposed in [20] 

to take full advantage of rich distributed embedded memory blocks as register files in modern 

FPGA platforms [26][27]. The island architecture in DRFM is shown in Fig. 1. An island contains 

input routing logic, local register file, and functional units (FUs). The local register file is used to 

store computation results produced by internal FUs. It is also responsible for feeding data 

operands to internal FUs and external FUs located in other islands. DRFM assumes that every 

operation can be accomplished in any island within one control step and produces exactly one 
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output. When implementing a system utilizing DRFM, [20] shows that different implementations 

could produce tremendously different results in terms of area and performance. Namely, how to 

map operations into islands needs to be handled very carefully. As well, [20] finds that the 

number of inter-island connections (IICs), which can properly estimate the cost of global 

interconnects, is highly correlated with the resultant resource usage and system performance after 

synthesis. Consequently, the number of IICs can be used as the metric to rate the quality of 

synthesis output. 

 

Here we reveal two key observations. First, the solution space is quite limited in [20] since 

the given scheduled DFG is not allowed being altered, which is also mentioned in [21]. Given a 

scheduled DFG as shown in Fig. 2(a), if there are two available islands (IA and IB) and the given 

DFG cannot be altered, then the optimal synthesis (i.e., resource binding) result is presented in 

Fig. 2(b). The (operation) nodes within the same shaded region are mapped into the same island. 

Apparently, the solution in Fig. 2(b) needs two IICs. However, if rescheduling is allowed, a better 

solution can be obtained as shown in Fig. 2(c), where only one IIC is demanded. Note that the 

 

Fig. 2  (a) The scheduled DFG, (b) the scheduled and bound DFG, and 

(c) the scheduled and bound DFG after rescheduling. 
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total number of required control steps in the new solution remains unchanged, which means the 

IIC reduction does not come from a tradeoff with system performance. 

Be aware the difference between the number of inter-island connections and the number of 

inter-island transfers (IITs) – the former is usually less than the latter due to resource sharing. For 

example, in Fig. 3, those four IITs merely need three IICs (i.e., two for IA to IB and the other for IB 

to IC). That is, multiple IITs can share an IIC as long as they have the same source-destination 

island pair as well as different arrival times. For instance, IIT3,4 from node 3 to node 4 and IIT6,5 

from node 6 to node 5 can legitimately share an IIC but IIT1,6 and IIT2,6 cannot. This suggests that 

the synthesis goal in DRFM is about minimizing the number of IICs instead of IITs if saving 

global interconnect resource is the actual target. 

Furthermore, the number of write port of a local register file is restricted to one but no 

restriction is put on the number of read ports in the original DRFM. However, it is not practical 

that the number of read ports is assumed unlimited since a register file with a large number of 

read ports is both slow and area-consuming. Assume that each local register file possesses only 

two read ports, then as shown in Fig. 4(a), access conflicts on read port occur at cstep 4 because 

there are three data transfers want to access the registers in island IA – the data transfer DT3,4, 

 

Fig. 3  The scheduled and bound DFG. 

 
Fig. 4  (a) A scheduled and bound DFG with access conflicts, and 

(b) another scheduled and bound DFG without access conflicts. 
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DT2,7 and DT1,11. Apparently, at least one of these three read accesses has to be postponed, 

which consequently increases the latency of the DFG from four to five. The approach in [20] 

deals with this problem by data-forwarding, which adds input buffers into the input routing logic. 

In that approach, each data-forwarding consumes one read port and takes one cstep. However, 

incorporating read port restriction during scheduling and binding can minimize those read access 

conflicts without increasing hardware cost (i.e., input buffers). Another DFG, as shown in 

Fig. 4(b), demonstrates that it is possible to keep the latency still four without introducing any 

data access conflicts if the read port restriction is properly deliberated. 

 

The problem formulation of this work is as follows: Given a DFG and a resource constraint 

(the number of islands), obtain a scheduled and bound DFG with the minimized latency as well 

as minimize the number of required IICs. 

The overall flow of the proposed method is shown in Fig. 5. Given a DFG, list-scheduling is 

first performed to obtain an initial scheduling result and followed by the iterative cstep-by-cstep 

binding-then-rescheduling process. In each iteration, two operations, island assignment (binding) 

and IIC refinement (rescheduling), are applied consecutively. The way used for island assignment 

in this work is similar to the horizontal assignment adopted in [20]. Namely, island assignment is 

formulated as a minimum-weighted bipartite matching problem, where a weight on an edge 

represents the number of extra IICs induced by the corresponding matching. However, the 

aforementioned algorithm does not allow rescheduling and generally produces a locally 

optimized solution. Hence, an IIC refinement process is proposed to look for a better result from 

the expanded solution space via rescheduling. More details are described in Section 4.1. 

Meanwhile, the IIC refinement procedure is also capable of handling the read port restriction. 

 

Fig. 5  The overall flow of the proposed algorithm. 
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After the iterative phase, an access conflict removal process is followed to eliminate all 

remaining access conflicts, if any. The details are given in Section 4.2. In the very end of the 

proposed flow, a scheduled and bound DFG with minimized IICs is derived. 

 

A. IIC refinement 

As mentioned above, the algorithm for island assignment generally leads to a locally 

optimized solution. However, further improvement can still be achieved by allowing certain 

operation rescheduling, as depicted in Fig. 2(b) and Fig. 2(c), as long as the data dependency 

is still intact. In this article, a special node (in black) called bubble, is inserted to explicitly 

indicate that the corresponding island is idle at that specific cstep. As depicted in Fig. 6(a), the 

two bubbles a and b suggest that IB is idle at cstep 2 and 4. 

The proposed IIC refinement process is based on KL algorithm [28], which is broadly used in 

partitioning-related problems. Within the process, nodes and bubbles are swapped for IIC 

minimization. A swap can be made between two nodes or between a node and a bubble. A 

swap is considered feasible only on two conditions: (i) nodes must be unlocked, and (ii) data 

dependency must be preserved after swapping. For example, in Fig. 6(a), the feasible swap 

candidates for node 5 are {node 1, node 7, node a}. A feasible swap pair of node u and 

node/bubble v is denoted as (u, v). The gain of a swap pair is defined as how many IICs it can 

reduce, i.e., the difference between the numbers of IICs before and after the swap. The gain of 

a swap pair (u, v) is denoted as gu,v. All feasible swap pairs are collected into the feasible swap 

pair set (FSPS). After performing an actual swap, FSPS and gains of swap pairs are updated 

accordingly. The key steps of IIC refinement are described as follows: 

(i) Set all operation nodes unlocked. 

 

Fig. 6  (a) The DFG at the beginning of the iteration, and 

(b) the DFG at the end of the iteration. 
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(ii) Find a swap pair with the largest gain from FSPS. 

(iii) Swap the pair then lock the operation node. 

(iv) Update FSPS and recalculate the gains of pairs in FSPS. 

(v) Repeat (ii) to (iv) until FSPS is empty. 

(vi) Keep the fist k swaps and undo the rest if the partial gain sum of the first k swaps is 

the largest and positive; go to (i). 

(vii) Otherwise, terminate IIC refinement. 

For example, a partially scheduled and bound DFG is shown in Fig. 6(a) with an IIC number 

equal to 4, where FSPS = {(1, 5), (1, 7), (2, a), (2, 8), (3, 6), (3, 9), (4, b), (4, c), (5, 7), (5, a), 

(6, 9), (8, a), (9, c), (9, b)}. Initially, the gains of all feasible swap pairs in FSPS are 

calculated as follows: 

g1,5 = 0 g1,7 = –1 g2,a = –1 g2,8 = –1 g3,6 = 0 g3,9 = –2 g4,b = 0 g4,c = –1 g5,7 = –2 g5,a = 0 

g6,9 = –1g8,a = –1 g9,c = 0 g9,b = 1 

Then the swap pair (9, b) is selected to be swapped and node 9 is locked after the swap. The 

FSPS and the gains are therefore needed to be further updated accordingly. This process is not 

terminated until FSPS is empty. Table 1 shows the gain and the partial gain sum of the eight 

consecutive feasible swaps in this iteration. As a result, only the first three swaps, including (9, 

b), (1, 5) and (2, a), are actually desired. The resultant DFG at the end of this iteration is 

shown in Fig. 6(b) and it merely requires two IICs instead of four in Fig. 6(a). 

B. Coping with read port restriction 

The approach proposed in the previous section neglects the read port restriction. However, as 

illustrated in Fig. 4, considering the read port restriction during scheduling and binding can 

effectively minimize access conflicts without increasing hardware cost. Therefore, an 

augmented IIC refinement process is further presented in this subsection. 

During IIC refinement, a secondary gain hu,v of the swap pair (u, v) is defined as the 

Table 1  Gains and partial gain sums in an iteration 

n-th swap 1 2 3 4 5 6 7 8 

Swapped 

pair 
(9, b) (1, 5) (2, a) (5, a) (7, a) (4, c) (3, b) (6, b) 

Gain 1 0 1 0 –1 –1 1 –2 

Partial 

gain sum 
1 1 2 2 1 0 1 –1 
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decreased number of access conflicts once the swap takes place. The number of access 

conflicts of an island at a specific cstep is calculated as the difference between the number of 

demanded register-file accesses and the number of read ports a register-file actually owns. 

The corresponding equations are given as follows. 

ports read #   accesses demanded #  conflicts #   (1) 

v u

v  u

v u

v upingh vu

 and swappingafter  accesses demanded # 

 and swapping before accesses demanded # 

 and swappingafter  conflicts # 

 and  swap before conflicts # ,







 (2) 

The restriction on read port size of a register-file is set to two in this work. As revisiting the 

case shown in Fig. 4(a), the primary gain g6, 7 is zero and the secondary gain h6, 7 is one 

because there is one (no) conflict at cstep 4 in island IA before (after) node swapping. 

The second step of IIC refinement described in Section 4.1 is therefore modified as follows: 

find a swap pair with the largest primary gain from FSPS; if there are many pairs with the 

same largest primary gain, choose the one with the largest secondary gain. By means of 

exploiting the extra secondary gain for tie breaking during scheduling and binding, the read 

port restriction is well deliberated, and access conflicts can thus be minimized. 

Finally, an access conflict removal procedure is followed after the IIC refinement process to 

ensure that absolutely no access conflicts are left. The procedure simply postpones any 

conflicted accesses that cannot be removed in the previous iterative 

binding-then-rescheduling process. 

 

The proposed method has been implemented in C++/Linux environment and all experiments 

were conducted on a workstation with an Intel Xeon 3.2GHz CPU and 4GB RAM. For fair and 

 

Fig. 7  The experimental flows. 
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comprehensive comparisons, two different synthesis flows are created, as depicted in Fig. 7. 

Given an input DFG and a resource constraint, list scheduling is first performed to provide an 

initial scheduling result for both flows. Then, Flow1 implements the approach proposed in [20], 

while Flow2 carries out the proposed approach. The access conflict removal procedure is then 

conducted as a post-processing for both flows. 

The test cases are from different benchmark sets [29]–[31], which are frequently used in 

high-level synthesis field. The basic information of these test cases (DFGs) is given in Table 2. 

The first three columns list the names, number of nodes, and number of edges, respectively. The 

last column reports the minimum possible latency obtained by ASAP scheduling with unlimited 

available resources. Two configurations are deliberated in our experiments – synthesis is 

performed without (with) a resource constraint in Configuration 1 (2), respectively. In 

Configuration 1, the number of islands is set as the minimum number that still guarantees the 

synthesis outcome with the minimum latency indicated in Table 2; that is, there is in fact no 

resource constraint at all. However, the assumption about unlimited available hardware resource 

is impractical in the real world. Hence, in Configuration 2, for every test case the number of 

available islands is reduced by half as: 







2

1 Config. in islands #
  2 Config. in islands #  (3)

Table 3 reports the experimental results without read port restriction, which means that only 

the primary gain is deliberated during node swapping. The results show that the proposed Flow2 

achieves on average 21.0% and 24.5% IIC reduction in Configuration 1 and 2 respectively as 

Table 2  The basic information of benchmark 

Test case #nodes #edges
Minimum 

latency 

fir2 40 39 11 

fir1 44 43 11 

lee 49 62 9 

cos 82 91 8 

honda 105 104 15 

wribmp 106 88 7 

dir 127 126 15 

chem 342 327 15 

fft16 414 672 14 

u5ml 564 557 26 
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compared with existing Flow1, which clearly demonstrate that the proposed algorithm does 

outperform the prior art. Table 3 also suggests that average #IIC reduction in Configuration 2 is 

better than that in Configuration 1. It is because the number of available islands in Configuration 

2 is roughly a half of that in Configuration 1, which also reduces the total number of required 

IICs in Configuration 2. Therefore, the effect of eliminating an IIC is more significant in 

Configuration 2 than in Configuration 1. 

Table 4 gives the results with the read port restriction, which is set to two for all test cases. 

The results conclude that Flow2 achieves on average 21.5% and 24.7% IIC reduction in 

Configuration 1 and 2 respectively as compared with Flow1, which is pretty much the same as 

the results without the read port restriction. Furthermore, as stated before, the process for access 

conflict removal may increase the latency if there do exist non-removable access conflicts after 

binding-then-rescheduling. The first three columns for both configurations in Table 4 indicate the 

Table 4  The experimental results with the read port restriction ( = 2 ) 

Test case 
Configuration 1 Configuration 2 

Latency 
LB1 

latency 
(Flow1) 

latency 
(Flow2) 

lat inc2 
#IIC 

(Flow1)
#IIC 

(Flow2)
#IIC 
red3

Latency
LB1 

latency
(Flow1)

latency
(Flow2)

lat inc2 
#IIC 

(Flow1) 
#IIC 

(Flow2)
#IIC 
red3

fir2 11 11 11 0.0% 7 5 28.6% 21 21 21 0.0% 2 1 50.0%

fir1 11 12 11 9.1% 8 7 12.5% 17 17 17 0.0% 4 3 25.0%

lee 9 12 9 33.3% 11 10 9.1% 18 22 18 22.2% 6 5 16.7%

cos 8 9 8 12.5% 27 24 11.1% 16 17 16 6.3% 14 12 14.3%

honda 15 16 15 6.7% 17 13 23.5% 23 25 23 8.7% 9 8 11.1%

wribmp 7 8 7 14.3% 18 12 33.3% 14 15 14 7.1% 14 10 28.6%

dir 15 16 15 6.7% 24 18 25.0% 27 29 27 7.4% 11 8 27.3%

chem 15 18 15 20.0% 61 43 29.5% 29 33 29 13.8% 41 26 36.6%

fft16 14 16 14 14.3% 204 184 9.8% 27 41 27 51.9% 97 84 13.4%

u5ml 26 27 26 3.8% 102 69 32.4% 42 46 42 9.5% 55 42 23.6%

Avg.  12.1%  21.5%  12.7%  24.7%

1: Lower bound of latency;    2: Latency increase of Flow1 over Flow2;    3: #IIC reduction of Flow2 over Flow1 

Table 3  The experimental results without the read port restriction 

Test case 
Configuration 1 Configuration 2 

#island latency
#IIC 

(Flow1) 
#IIC 

(Flow2)
#IIC reduction #island latency

#IIC 
(Flow1) 

#IIC 
(Flow2) 

#IIC reduction

fir2 5 11 7 5 28.6% 2 21 2 1 50.0% 

fir1 6 11 8 7 12.5% 3 17 4 3 25.0% 

lee 6 9 11 10 9.1% 3 18 6 5 16.7% 

cos 12 8 27 24 11.1% 6 16 14 12 14.3% 

honda 10 15 17 14 17.6% 5 23 9 8 11.1% 

wribmp 16 7 18 14 22.2% 8 14 14 10 28.6% 

dir 11 15 24 17 29.2% 5 27 11 8 27.3% 

chem 24 15 61 38 37.7% 12 29 41 28 31.7% 

fft16 32 14 204 180 11.8% 16 27 97 83 14.4% 

u5ml 29 26 102 71 30.4% 14 42 55 41 25.5% 

Avg.  21.0%  24.5% 

  



15 
 

lower bound of latency obtained from Table 3 and two resultant latencies given by two different 

synthesis flows. The proposed Flow 2 achieves the minimum latency for all test cases in both 

configurations while Flow1 increases the average latency by about 12%, which clearly 

demonstrates that the proposed method can handle the read port restriction very well. 

As previously mentioned, the number of inter-island connections (IICs) is different from the 

number of inter-island transfers (IITs). In general, the number of IITs is commonly used for 

power estimation of on-chip communication, while the number of IICs is mostly used to estimate 

the cost of global interconnects. Nevertheless, during synthesis, it is not always possible to reduce 

both IICs and IITs at the same time; in other word, there is a tradeoff between area/performance 

(IIC) and power (IIT) optimization. Obviously, the synthesis algorithm proposed in this article 

focuses on IIC minimization. 

 

 

Throughput optimization for latency-insensitive system with minimal queue insertion 

 

Throughput optimization for LIS has been extensively discussed in recent years. Several 

research works are done based on different hardware architecture assumptions and different 

physical layout assumptions. Earlier works (before 2003) regard every LIS as an ideal system, 

which assumes infinite queue size and thus no back-pressure. To the best of our knowledge, Lu 

and Koh are the first ones who propose the method to deal with the throughout optimization of 

LIS with back-pressure arising from the effect of finite queue size on communication channel 

[32], [33]. They show a practical LIS with finite queue size can still achieve the same maximal 

sustainable throughput of its ideal LIS counterpart if proper queue sizing is performed. After that, 

Collins et al. use a marked graph to model an LIS alternatively [34], [35]. They propose a 

heuristic approach for queue sizing that can produce fairly good solutions with a short runtime. In 

addition, they also make a different assumption on hardware architecture of communication 

channel compared with the one used in [9], [10]. In our opinion, Collins’ assumption better fits 

the real-world design environment. However, their method is heuristic-based, order-dependent, 

and thus does not guarantee the optimality. Casu and Macchiarulo avoid queue sizing issue by 

scheduling the activation of IP cores, instead [36], [37]. However, one limitation is that planning 

a schedule needs enough knowledge about the overall system behavior, which is not necessarily 

available to engineers at this design stage. Bufistov et al. propose a method that combines both 

queue sizing and relay station insertion techniques to achieve optimal throughput [38]. However, 

they assume channel latency gets increased as queue size becomes large, which is not generally 
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appropriate in real design cases. Therefore, we present a throughput optimization technique with 

minimal queue insertion. 

 

Latency-insensitive design (LID) is a design methodology for sophisticated system-on-chip 

(SoC) development. It enables post-refinement to a given synchronous system so that the refined 

system (i.e., LIS) can tolerate variant interconnect latency, which cannot be precisely estimated at 

early design stages. An LIS can be derived from an original synchronous system by encapsulating 

each IP core (pearl) within an automatically-synthesized interface (shell) and inserts repeaters to 

segment (i.e., pipeline) long interconnects. Those repeaters are referred to as relay stations (RS). 

In an LIS, every IP core must have stallability, meaning that it can be stalled temporarily without 

ruining correct functionality. Relay stations are clocked buffer queues utilized to pipeline a long 

interconnect so that the desired clock frequency can be achieved. After proper RS insertion, the 

resultant LIS will be still functionally equivalent to its original synchronous system [32], [33]. 

That is, if ignoring stalled (void) events in the output sequence, the rest informative (valid) events 

on each channel of an LIS are exactly the same with the informative events on every 

corresponding channel of its original counterpart. 

An LIS example is given in Fig. 8(a). Green rectangles represent IP cores, blue rectangles 

represent relay stations, a small red rectangle inside an IP core or an RS represents a queue on 

each input channel, a red number beside a communication channel labels a valid event, and a blue 

number marks a stalled event. Those numbers specify the sequential IDs of events generated by 

corresponding IP cores. Since an RS merely forwards its received events from input to output, it 

never generates any new valid events. Hence a symbol ‘τ’ is used to indicate a non-generated 

(b) 

(a) 

Fig. 8 (a) Progressive trace of an LIS. (b) Output event sequence of core C. 
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void event at every RS output initially. At timestamp 1, all IP cores produce their first valid 

events; while every RS just puts a τ at its output. At timestamp 2, core C receives a valid event 

from one of its two input channels, but core C needs both first valid events from each of its input 

channels for producing its own second valid event. As a result, the first valid data produced by 

core B is stored in the internal queue within core C and then waits. Meanwhile core C is stalled 

and outputs a void event. Since the queue of lower input channel of core C becomes full at the 

end of timestamp 2, core C must compel core B to stall at the next timestamp to avoid valid event 

loss due to queue overflow. This effect of finite queue size is referred to as back-pressure. The 

channels with back-pressure in Fig. 8(a) are colored in red. At timestamp 3, core C receives both 

valid events from its two input channels so that it can produce its own next valid output event; 

whereas core B is stalled at this timestamp due to back-pressure from core C. Fig. 8(b) depicts the 

output event sequence of core C. It is evident that core C produces three valid events every four 

timestamps. In other words, the throughput of this system is three fourth. This example explicitly 

confirms that even for an acyclic synchronous system, the throughput can still be less than one 

due to the effect of back-pressure. 

Here we summarize the pros and cons of LIS. LIS is a promising approach for coping with 

variant and unknown latency incurred by global interconnects at early design stages. By properly 

encapsulating IP cores and inserting relay stations, this approach guarantees correctness of system 

functionality. However, this approach does not guarantee to achieve the maximal possible system 

throughput due to back-pressure. 

 

Marked graph (MG) is a conventional representation for modeling concurrent operations 

within a system. Its simplicity makes it quite amenable for analyzing the behaviors of 

synchronous systems like LIS. A marked graph consists of two different types of nodes: places 

(a) 

(b) 

Fig. 9 (a) The models used in marked 
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and transitions. By definition, a place is capable of holding none or multiple tokens. On the 

contrary, a transition cannot hold any tokens but may fire to forward tokens on certain conditions. 

More detailed definitions and operations of MG can be found in [39], [40]. 

Fig. 9(a) exhibits the corresponding marked graph models of a relay station and a shell [34], a 

circle represents a place, a dot represents a token, a vertical bar represents a transition, and the 

integer q indicates the total number of tokens in that place. For an RS, the place on solid edge 

(indicating actual data flow) possesses no token since an RS produces a void event initially; and 

the place on dashed edge (indicating back-pressure flow) has two tokens because every RS 

contains a two-entry queue. For a shell, the place on solid edge holds one token because a shell 

produces a valid event initially; and the number of tokens (i.e., q) in the place on dashed edge is 

set to the actual queue size that the shell reserves for this specific channel [34]. 

Fig. 9(b) illustrates how to transform an LIS (same one as in Fig. 8) into its MG 

representation, assuming that the queue size of all channels in shells is set to one. Furthermore, it 

has been proved that the maximal sustainable throughput (MST) of an LIS is bound to the lowest 

token-to-place ratio (TPR) of all cycles in its corresponding MG [34], [35]. In Fig. 9(b), the most 

throughput-critical cycle {A, D, C, B, A} contains four places but only three tokens, so the MST 

of this LIS is 3/4. Fortunately, proper queue sizing at right places can increase the TPR of such 

critical cycles and therefore boost the overall system throughput. For example, if the queue size 

of core B is increased to two, then the TPR of the aforementioned cycle rises from 3/4 to 1, which 

achieves the optimal MST (i.e., 1) of this system. It also has been proved that MST of an acyclic 

synchronous system can always be boosted to one via proper queue insertion. Heuristic methods 

that try to minimize additional queue insertion for throughput optimization can be found in [34], 

[35]. 

 

Then we present our throughput optimization methodology with minimal additional queue 

insertion. A new representation named quantitative graph (QG) is first proposed for LIS modeling 

because QG is, in our opinion, more convenient for later mathematical manipulations. Then we 

show how to derive a constraint set from a QG so that the optimal solution with minimal queue 

size can be achieved through integer linear programming (ILP). Though ILP guarantees the 

optimality, it may fail to find a solution if the size of constraint set is too large. To overcome this 

problem, we further develop a polynomial-time technique to condense an original QG into a 

compacted one (CQG) so that a moderately large QG (i.e., a large practical LIS) can still be 

resolved using ILP. At last, we again present a polynomial-time approach to transform an optimal 

solution for a CQG back into the corresponding optimal solution for the QG counterpart. 
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A. Quantitative Graph (QG) 

 

A quantitative graph with respect to a given MG is a quadruple (V, E, w, q), where V is the set 

of vertices corresponding to the transitions in that MG; E  V × V is the set of edges 

representing the place pairs in that MG; w : E → Z* specifies the number of valid tokens for 

an edge e, denoted as w(e); and q : E → Z+ indicates the queue size for an edge e, denoted as 

q(e). That is, for an edge e = (v1, v2), w(e) specifies the number of tokens in the place on solid 

edge from transition v1 to transition v2 and q(e) specifies the one on dashed edge from 

transition v2 to transition v1 in the original MG, respectively. Fig. 10 gives an example about 

the transformation from an MG to a QG. 

As mentioned, the MST of a system is bound by the lowest TPR of all cycles in its MG. For a 

QG, the MST can also be determined in a similar way. First, identify all cycles in a QG, 

assuming that all edges are undirected. By doing so, every cycle C’ in an original MG can 

always find its counterpart cycle C in the corresponding QG. Next, a cycle C in QG is 

represented as a set of edges. The edges in C can be partitioned into two disjoint set F and R, 

where F contains the edges being traversed in its regular direction while R contains those 

being traversed in its revere direction. Then, for every edge e along a cycle C in QG, 

accumulating either w(e) or q(e) depends on whether it belongs to F or R, and the resultant 

value is actually equal to the number of tokens in the counterpart cycle C’ in MG. As well, the 

number of edges in C (i.e., |C|) is the same as the number of places in C’. Similarly, the TPR 

of a cycle C in QG is further defined as: 

RFC

eqew
CTPR ReFe









)()(
)(  (4) 

It becomes apparent that finding the lowest TPR of all cycles in MG is now equivalent to 

identifying the lowest TPR of all cycles in QG because both of them are indeed identical. 

 

 

Fig. 10 Transformation from an MG to a QG. 
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B. Compacted Quantitative Graph (CQG) 

 

As described, a smaller QG is highly preferred since ILP is employed for optimization later. 

However, it is not trivial to derive an equivalent reduced QG whose resultant MST is still the 

same as that of the original QG. Therefore, here we present a technique including two 

operations for QG compaction while still keeping MST unaltered so that our approach can 

deal with large practical systems. 

With respect to a QG G, a compacted quantitative graph (CQG) H is defined as a sextuple (V, 

E, w, q, b, c), where (V, E, w, q) is identical to that of G; c : E → Z+ assigns an extra 

compaction factor regarding an edge e to record the compaction level, denoted as c(e); and b : 

E → Z+ specifies an extra burden factor regarding an edge e to register the load level due to 

compaction, denoted as b(e). Both factors are initialized to one for all edges in CQG. Besides, 

the TPR of a cycle C in CQG is defined as: 










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Since c(e) is set to one initially, the summation of c(e) along any cycle C in H is equal to |C| at 

the very beginning. In other words, (5) returns the same value as (4) does for any cycle C, 

which concludes that MST in H is identical to that in G. We further define the token-place 

difference (TPD) of a cycle C in either QG or CQG as: 









CFeecew

CReeceq
eTPDC  cycle in for  ),()(

 cycle in for  ),()(
)(

 
(6) 

 

Property 1: Given a cycle C in a QG representing any arbitrary acyclic synchronous 

system, TPR(C) is no less than one ( 1) if and only if the summation of TPDC(e) is no less 

than zero ( 0). 

 

Path Condensation: 

A simple path p = (v1, v2, …, vk) in CQG is condensable if k ≥ 3, v1  vk, id(vi) = 1 for 2 ≤ i ≤ k; 

and od(vi) = 1, for 1 ≤ i ≤ k – 1; where id(vi) and od(vi) gives input degree and output degree 

of vi, respectively. Then, given a CQG H, a condensable path p in H, and E(p) is the set of 

edges in p, the operation path condensation derives a new CQG H’ from H by replacing p 

with a condensed edge ep(v1, vk), where: 
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Property 2: If CQG H’ is derived from CQG H by applying path condensation, then MST 

in H’ is identical to that in H. 

Fig. 5(a) illustrates an example of path condensation. It is apparent that the size of CQG (in 

terms of vertices and edges) can be effectively reduced, while MST remains unaltered for 

both CQGs before and after path condensation. 

 

Edge Unification: 

After applying path condensation, there may be multiple edges between two vertices in CQG, 

as shown in Fig. 11(a). For such pair of vertices vi and vj, Em(vi, vj) is the set containing all 

parallel edges from vi to vj. An edge ed  Em(vi, vj) is called a dominating edge if c(ed) – w(ed) 

≥ c(ek) – w(ek) for every edge ek  Em(vi, vj). Then, given a CQG H and Em(vi, vj), the 

operation edge unification derives a new CQG H’ from H by removing all edges in Em(vi, vj) 

except leaving one dominating edge ed and modifying b(ed) as: 





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)()(
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Property 3: Given a CQG H representing any arbitrary acyclic system, a CQG H’ derived 

from H by applying edge unification, a cycle C passing through that specific dominating edge 

ed, then the total queue size along C suggested by H’ with target MST of H’ = 1 is also 

mandatory for any cycle C’ in H derived from C by replacing ed with other parallel edge to 

ensure MST of H = 1. 

The proofs of above three properties are omitted due to page limitation. Fig. 11(b) illustrates 

an example of edge unification, and as a result the number of edges is reduced. Moreover, 

after edge unification shown in Fig. 11(b), path condensation can again be applied along the 

path (v1, v4, v5) to further reduce the size of CQG. That is, these two operations can be 

performed repeatedly until no further reduction can be made. Fig. 11(c) gives the final 

minimal CQG, which contains only two vertices and an edge. 
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C. ILP Formulation 

 

After a series of path condensation and edge unification operations, a CQG H with minimal 

vertices and edges can be derived. Next, the issue becomes how to allocate a minimal number 

of queues to every edge in H while keeping MST of H still one. We resolve this issue via 

integer linear programming (ILP). The objective and the corresponding constraint set for ILP 

is formulated as follows: 

Minimize: 
Ee

eq )(  (9) 

Subject to: 

HCeTPD
Ce

C in   cycleevery for   0)( 


 (10) 

Heeceqew  in  edgeevery for   ,0)(2)()(   (11) 

It is obvious that the number of constraints generated by (10) is proportional to the number of 

(a) 

(c) 

Fig. 11 (a) The path condensation operation. (b) The edge unification operation. (c) The 

(b) 
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cycles in H, and this number can increase extremely fast even if the graph size just grows a 

bit. Thus, it now becomes clear that why we have to compact a given QG by all means before 

performing ILP. Meanwhile, since one or more cycles may be compacted into a single edge, 

e.g., Fig. 11(c). Thus, (11) gives the constraint for a special kind of cycle that contains only 

one edge, where the cycle is formed by traversing that edge in its normal (forward) direction 

as well as its reverse direction. 

 

D. Recovery Phase 

 

Once ILP produces an optimal solution for a given CQG, certain operations should follow to 

further derive the optimal solution for the original QG. Then, we present two operations, edge 

split and path expansion, for this purpose. 

 

Edge Split: 

Assume an edge ed(wd, qd, cd) is a selected dominating edge and ek(wk, qk, ck) is ed’s removed 

Fig. 12 (a) The edge split operation. (b) The path expansion operation. (c) The solution 

for original QG. 

(b) 

(a) 

(c) 
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parallel edge. After applying ILP, qd is set large enough to ensure that (10) holds for every 

cycle C passing through ed in reverse direction. When putting ek back to CQG, qk must also be 

properly set to ensure that (10) still holds for any newly generated cycle C’ derived from C by 

just replacing ed with ek. It follows that (10) is guaranteed to hold for every such cycle C’ if 

the following inequality can be satisfied: 

qk – ck  qd – cd    (or qk  ck + qd – cd) (12) 

Therefore, minimal queue size of an edge removed by edge unification previously can be 

derived using (12). For example, in Fig. 12(a), queue size of the blue selected dominating 

edge (v1, v5) is set to 4 after ILP. After edge splitting, the minimal queue size of the lower red 

non-dominating edge is set to 1 + 4 – 3 = 2 by (12). 

 

Path Expansion: 

While recovering from a condensed edge ep regarding the condensable path p, (7) ensures that 

(10) automatically holds for any cycle C originally passing through ep in forward direction 

and now passing through p. Hence, a path expansion operation merely has to further ensure 

that (10) also holds for such cycle C but in reverse direction; and this can be done if the 

following constraint can be satisfied: 

)()(
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eqeq 
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In general, the way for distributing q(ep) to those edges along p is not unique. However, the 

following proposed strategy must be adopted to guarantee minimal queue insertion. Let em  

E(p) be the edge with lowest burden factor along a condensable path p, i.e., b(em)  b(e) for 

all e  E(p), then q(e) of each edge e along p can be determined as: 
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If there are two or more edges with lowest burden factor, pick one arbitrary. It is apparent that 

using (14) for queue sizing can ensure that (13) always holds. Fig. 12(b) illustrates an 

Fig. 13 Overall flow of the proposed method. 
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example of path expansion. At last, as shown in Fig. 12(c), edge split and path expansion can 

be performed repeatedly until the complete optimal solution for the original QG is obtained. 

At the end of this section, Fig. 13 summarizes the overall flow of our proposed method for 

minimal queue insertion. Unlike [34], [35], identifying strongly connected components (SCCs) 

is unnecessary here since the testcases are acylic. 

 

The proposed approach has been implemented in C++/Linux environment. Since it is difficult 

for us to get a bunch of real-world systems, alternatively, we decide to randomly build a set of 

different-sized directed acyclic graphs (DAGs) as QGs for evaluation, which is similar to the 

approach used in the experimental setup of [35]. Furthermore, latency of every edge in a DAG 

(i.e., communication channel in a system) is also randomly assigned with an integer within the 

interval [1, L]; that is, the number of relay stations required inserting at each edge (channel) is 

within the range [0, L – 1]. All experiments are conducted on a workstation with an AMD 

1.81GHz CPU and 2GB RAM. The package lp_solve is adopted when solving ILP [41]. 

Our first experiment is to verify whether the proposed compaction techniques are effective. 

Johnson’s algorithm [42] is applied to identify all cycles in both the original QG and the minimal 

CQG. The experimental results shown in Table 5 clearly indicate that the proposed technique can 

successfully reduce the number of vertices and edges as well as achieve a remarkable reduction 

of cycle count. Before compaction, the cycle count for several test cases even exceeds one 

million, which makes ILP virtually impossible to find a feasible solution. 

In our second experiment, we compare our proposed method with Collins’ heuristic method 

roposed in [35]. Table 6 and Table 7 report the results with L = 3 and 16, respectively. The results 

show that our proposed method can achieve an average reduction of 23% and 28% in queue size 

Table 5  Experimental results of cycle reduction. 

Case Name 
Original QG Minimal CQG 

(V, E) #Cycles (V, E) #Cycles 

Testcase1 (11,15) 55 (8,11) 12 

Testcase2 (17,21) 51 (13,17) 14 

Testcase3 (45,61) 30540 (20,35) 10123 

Testcase4 (58,76) 48590 (39,45) 10497 

Testcase5 (104,121) 42435 (56,73) 19754 

Testcase6 (126,172) > 1Million (77,98) 132415 

Testcase7 (175,201) > 1Million (66,84) 15423 

Testcase8 (297,318) > 1Million (116,142) 23862 
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for L = 3 and 16 respectively as compared to Collins’ method. The results also imply that the 

improvement can slightly increase as fabrication process keeps scaling (i.e., L increases). 

Meanwhile, our method needs about 58% more runtime than Collins’ on average. However, it 

should be acceptable since all test cases can be completed within 24 minutes. Table 2 also shows 

that ILP fails in several test cases (denoted as ‘*’) if it directly applies to QG instead of minimal 

CQG. The reason is obvious that the size of the constraint set is too large at QG level. It is also 

worth to mention that several test cases contain hundreds of vertices and edges, which positively 

suggests our approach is capable of handling moderately large systems in practice. 

 

四、 結論 

 

First of all, the number of IICs has been reported to better model the global interconnect cost 

and then can be considered as a major QoR evaluation metric at early design stages in DRFM. In 

this project, we propose a resource-constrained synthesis algorithm for IIC minimization. The 

iterative binding-then-rescheduling procedure is first utilized for island assignment. A better 

island binding result can be expected because the solution search space is significantly expanded 

through rescheduling. The proposed algorithm also incorporates the consideration of read port 

restriction into scheduling and binding procedures to minimize the potential access conflicts. A 

post-processing procedure is then conducted to eliminate all remaining access conflicts. 

The experimental results indicate that the proposed algorithm reduces the number of IICs by 

21.0% ~ 24.7% on average as compared to the prior art. While adopting the read port restriction, 

Table 6  Experimental results with L=3. 

L L=3 

Case Name 

Proposed Method Collins’ Method [12] ILP directly to QG 

#Queues 
Run- 

time 
#Queues 

Run- 

time 
#Queues 

Run- 

time 

Testcase1 20 0 20 0 20 1 

Testcase2 9 0 9 0 9 0 

Testcase3 51 5 80 4 51 14 

Testcase4 43 14 46 13 43 44 

Testcase5 29 40 78 27 29 340 

Testcase6 77 867 90 542 * * 

Testcase7 84 32 90 23 * * 

Testcase8 114 73 141 47 * * 

Ratio 0.77 1.57 1 1 - - 
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the proposed method also outperforms the previous work by about 12% in terms of average 

latency. As a result, the proposed algorithm should be regarded as a better alternative while 

performing architectural synthesis targeting DRFM. 

Furthermore, a throughput optimization technique for LIS with minimal queue size is 

presented. First, an LIS is transformed as a newly proposed quantitative graph; next, the size of 

QG can be minimized through the developed compaction operations; ILP then follows to get an 

exact solution of minimal queue size, which can further be converted into an optimal solution for 

the original LIS. The experimental results demonstrate that our algorithm can achieve an average 

reduction of up to 28% in queue size as compared to the prior art. Moreover, the required runtime 

is merely about half an hour for a system with hundreds of cores. Consequently, we believe that 

the proposed technique is a better alternative to resolve the issue of queue sizing for moderately 

large systems in practice. The proposed algorithm can only handle acyclic systems at this 

moment. We are currently working on developing on improved version that can deal with cyclic 

systems as well. 

 

Table 7  Experimental results with L=16. 

L L=16 

Case Name 

Proposed Method Collins’ Method [12] ILP directly to QG 

#Queues 
Run- 

time 
#Queues 

Run- 

time 
#Queues 

Run- 

time 

Testcase1 68 1 68 0 68 1 

Testcase2 76 0 77 0 76 0 

Testcase3 290 9 437 6 290 19 

Testcase4 291 31 351 19 291 52 

Testcase5 256 77 386 48 256 459 

Testcase6 519 1438 793 913 * * 

Testcase7 673 69 753 40 * * 

Testcase8 641 131 1035 83 * * 

Ratio 0.72 1.58 1 1 - - 
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國科會補助計畫衍生研發成果推廣資料表
日期:2011/10/31

國科會補助計畫

計畫名稱: 子計畫一：符合次世代晶片上通訊思維之具備幾何考量的系統架構合成技術
(3/3)

計畫主持人: 黃俊達

計畫編號: 99-2220-E-009-008- 學門領域: 晶片科技計畫--整合型學術研究
計畫

無研發成果推廣資料



99 年度專題研究計畫研究成果彙整表 

計畫主持人：黃俊達 計畫編號：99-2220-E-009-008- 
計畫名稱：後次微米時代新興電子設計自動化技術之研究--子計畫一：符合次世代晶片上通訊思維之

具備幾何考量的系統架構合成技術(3/3) 
量化 

成果項目 實際已達成

數（被接受

或已發表）

預期總達成
數(含實際已
達成數) 

本計畫實

際貢獻百
分比 

單位 

備 註 （ 質 化 說

明：如數個計畫
共同成果、成果
列 為 該 期 刊 之
封 面 故 事 ...
等） 

期刊論文 0 0 100%  
研究報告/技術報告 0 0 100%  
研討會論文 3 3 100% 

篇 
 

論文著作 

專書 0 0 100%   
申請中件數 1 1 100%  

專利 
已獲得件數 2 2 100% 

件 
 

件數 0 0 100% 件  
技術移轉 

權利金 0 0 100% 千元  

碩士生 4 4 100%  
博士生 3 3 100%  
博士後研究員 0 0 100%  

國內 

參與計畫人力 
（本國籍） 

專任助理 0 0 100% 

人次 

 
期刊論文 1 1 100%  
研究報告/技術報告 0 0 100%  
研討會論文 3 3 100% 

篇 
 

論文著作 

專書 0 0 100% 章/本  
申請中件數 1 1 100%  

專利 
已獲得件數 1 1 100% 

件 
 

件數 0 0 100% 件  
技術移轉 

權利金 0 0 100% 千元  
碩士生 0 0 100%  
博士生 0 0 100%  
博士後研究員 0 0 100%  

國外 

參與計畫人力 
（外國籍） 

專任助理 0 0 100% 

人次 

 



其他成果 
(無法以量化表達之成

果如辦理學術活動、獲
得獎項、重要國際合
作、研究成果國際影響
力及其他協助產業技
術發展之具體效益事
項等，請以文字敘述填
列。) 

*參與教育部主「九十九學年度大學校院積體電路電腦輔助設計(CAD)軟體製作

競賽」榮獲 定題組 佳作 

 作品名稱：3D IC Design Partitioning with Power Consideration, 得獎年

月：100 年 6 月 

 成果項目 量化 名稱或內容性質簡述 
測驗工具(含質性與量性) 0  
課程/模組 0  
電腦及網路系統或工具 0  
教材 0  
舉辦之活動/競賽 0  
研討會/工作坊 0  
電子報、網站 0  

科 
教 
處 
計 
畫 
加 
填 
項 
目 計畫成果推廣之參與（閱聽）人數 0  

 



國科會補助專題研究計畫成果報告自評表 

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）、是否適

合在學術期刊發表或申請專利、主要發現或其他有關價值等，作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估 
■達成目標 
□未達成目標（請說明，以 100 字為限） 

□實驗失敗 

□因故實驗中斷 
□其他原因 

說明： 

2. 研究成果在學術期刊發表或申請專利等情形： 
論文：■已發表 □未發表之文稿 □撰寫中 □無 

專利：■已獲得 □申請中 □無 

技轉：□已技轉 □洽談中 ■無 

其他：（以 100 字為限） 
3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500 字為限） 
在深次微米製程的時代，導線的傳導時間延遲已經不再是可以忽略的，並進而成為決定系

統整體效能的關鍵。在本計畫中我們提出「無考量群集島信號延遲之分散式暫存器架構」

將整個系統切割成數個子群，每個子群有各自局部的運算單元和儲存元件。並針對無考量

群集島信號延遲之分散式暫存器架構，我們提供一套以連線資源和系統效能為考量之合成

系統，協助自動設計流程能夠具備考量因為深次微米後對於導線延遲所產生的影響的能

力。另一方面，由於全域長導線延遲在現今的系統設計成為一個很重要的問題，近年來延

遲容忍系統的研究也漸漸的被重視。延遲容忍系統的特色在於使已設計完成的智財擁有允

許多時脈週期通訊的能力，不需要修改本來的設計以解決導線延遲過長的問題。在本研究

成果中，我們提供了安插最小佇列的系統效能優化方法以解決在延遲容忍系統中信號延遲

長度不平均和通訊的負回授所造成系統效能下降的問題，提升電路的品質及競爭力。 

 


