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The rapid scaling of silicon technology has enabled the dramatic
success of integrated circuit (1C) design during the past few
decades, allowing millions of transistorsto be fully integrated onto a
single chip. However, the gain from technology scaling will be less
and less and the Moore' s Law is predicted to reach the limit in
16nm technology node. The 50-60% system performance
improvement per technology node, historically seen through the
90nm node, will drop to under a 20% improvement per node beyond
45nm node if the system architectures remain planar. Therefore the
best way to lower capacitance, maintain signal integrity, and keep
chips blazing along at ever faster multi-gigahertz speedsisto find a
shorter distance between two points: going vertical. A three-
dimensional chip (3D IC) isastack of multiple dies with many
direct connections tunneling through them (Through-silicon-via,



TSV), dramatically reducing global interconnect lengths and
increasing the number of transistors that are within one clock cycle
of each other. Other advantages for 3D integration include the
following: power efficiency, significant produce miniaturization,
cost reduction, and modular design for improved time to market.
Consequently, we need to have corresponding EDA toolsto help
such designs effectively.

In this project, we have proposed five research topics to resolve
some core issues in 3D integration design automation to assist
current incomplete EDA researches and tools, including:

1) Stochastic electro-thermal simulation and power optimization for
3D ICs

2) Physical designin 3D IC integration

3) Architecture exploration and robust synthesis framework for 3D
regular logic structure

4) 3D-SIC and 3D-SIP design planning

5) Computational-intelligence-based test pattern generation for
verification and test of 3D integration

This proposed project has provided a set of methodology on
thermal, physical design, architecture, package design, and
verification/testing for 3D integrated circuit. This project has
generated 10 journal papers and 41 international conference papers.
We have also filed/acquired 5 patents (2 ROC patensan 3 US
patents).
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Abstract

The rapid scaling of silicon technology has enabled the dramatic success of integrated circuit (IC)
design during the past few decades, allowing millions of transistors to be fully integrated onto a single chip.
However, the gain from technology scaling will be less and less and the Moore’s Law is predicted to reach
the limit in 16nm technology node. The 50-60% system performance improvement per technology node,
historically seen through the 90nm node, will drop to under a 20% improvement per node beyond 45nm
node if the system architectures remain planar. Therefore the best way to lower capacitance, maintain signal
integrity, and keep chips blazing along at ever faster multi-gigahertz speeds is to find a shorter distance
between two points: going vertical. A three-dimensional chip (3D IC) is a stack of multiple dies with many
direct connections tunneling through them (Through-silicon-via, TSV), dramatically reducing global
interconnect lengths and increasing the number of transistors that are within one clock cycle of each other.
Other advantages for 3D integration include the following: power efficiency, significant produce
miniaturization, cost reduction, and modular design for improved time to market. Consequently, we need to
have corresponding EDA tools to help such designs effectively.

In this project, we have proposed five research topics to resolve some core issues in 3D integration
design automation to assist current incomplete EDA researches and tools, including:

1) Stochastic electro-thermal simulation and power optimization for 3D ICs

2) Physical design in 3D IC integration

3) Architecture exploration and robust synthesis framework for 3D regular logic structure

4) 3D-SIC and 3D-SIP design planning

5) Computational-intelligence-based test pattern generation for verification and test of 3D integration

This proposed project has provided a set of methodology on thermal, physical design, architecture,
package design, and verification/testing for 3D integrated circuit. This project has generated 10 journal
papers and 41 international conference papers. We have also filed/acquired 5 patents (2 ROC patens an 3 US

patents).

Keywords: 3D Integration, Electronic Design Automation, Beyond Moore’s Law, TSV
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Advanced packaging trends: 3D IC, SiP & SoC
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Comparison of routing result with via-first TSV

Cong [1] Zhang [2] Kim [3] Ours
NCTU-gr 1.08 1.03 1.03 1
SOC Encounter 1.05 1.04 1.02 1
Comparison of routing result with via-last TSV
Cong [1] Zhang [2] Kim [3] Ours
NCTU-gr 1.17 1.04 1.06 1
SOC Encounter 1.10 1.03 1.03 1
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1. Layer-aware design partitioning for through-silicon via minimization

Three-dimensional (3D) design technology, which has potential to significantly improve design
performance and ease heterogeneous system integration, has been extensively discussed in recent years. This
emerging technology allows stacking multiple layers of dies and typically resolves the vertical inter-layer
connection issue by through-silicon vias (TSVs). However, TSVs also occupy significant silicon estate as
well as incur reliability problems. Therefore, the deployment of TSVs must be very judicious in 3D designs.

We propose an iterative layer-aware partitioning algorithm, named iLap, for TSV minimization in 3D
structures. iLap iteratively applies multi-way min-cut partitioning to gradually divide a given design layer by
layer in the bottom-up fashion. iLap applies layer-aware partitioning at each iteration utilizing hMetis as the
kernel of its partitioning engine. Meanwhile, iLap also properly fulfills a specific 1/O pad constraint incurred
by 3D structures to further improve its outcome. Moreover, our proposed framework can obviously co-work
with any multiway min-cut partitioning engines. It implies that a better engine (if any) may be adopted for
better 3D partitioning results in the future.

Next, Fig. 9(a) depicts the average TSV count over 14 test cases as a function of the number of layers;
and three points are worth pointing out. Firstly, the more layers a design gets partitioned into, the more TSVs
it generally requires. Secondly, iLap is the all-time winner from 2 layers to 10 layers among four methods.
Thirdly, unlike the other three methods, the number of TSVs required by iLap raises very smoothly as the
number of layers increases. From Fig. 9(b), it is evident that the standard deviation of TSV count associated
with iLap is far better than those of the other three. As previously mentioned, a TSV occupies significant
silicon estate so that high standard deviation of TSV count potentially worsens area imbalance among
individual layers and even lowers the yield of a design. We believe a good TSV-minimized 3D partitioning
solution can serve as a good starting point for further tradeoff operations between TSV count and wirelength.
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Figure 9. Experimental results of our proposed framework.
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2. Architectural exploration of 3D regular structures

The emerging 3D technology, which stacks multiple dies within a single chip and utilizes through-silicon
vias (TSVs) as vertical connections, is considered a promising solution for achieving better performance and
easy integration. Similarly, a generic 2D FPGA architecture can evolve into a 3D one by extending its signal
switching scheme from 2D to 3D by means of TSVs. However, replacing all 2D switch boxes (SBs) by 3D
ones with full vertical connectivity is found both area-consuming and resource-squandering. Therefore, it is
possible to greatly reduce the footprint with only minor delay increase by properly tailoring the structure and
deployment strategy of 3D SB. We perform a comprehensive architectural exploration of 3D FPGAs.
Various architectural alternatives are proposed and then evaluated thoroughly to pick out the most
appropriate ones with a better area/delay balance. In the baseline BSL, as shown in Fig. 10(a), all SBs are
fully connected 3D-SBs. An IS architecture adopts the same type of partially connected 3D-SBs for all SBs
instead, as in Fig. 10(b). In an ES architecture as shown in Fig. 10(c), fully connected 3D-SBs are partially
distributed in a regular fashion.

| Ky
fully connected
3D-SB

A2 EEEE SDeme H R
y HEEE S (HH
N=EE=—u 1 | | BE=I"I"I"B0 =

P EEEE EE=E ((HH

3D-SB
0581 » (@) (b) (0

Figure 10. Different proposed 3D regular structures.

Fig. 11 reports the area and delay of different IS architectures, in which all values are normalized to that
of the BSL. It shows that both the sizes of an SB and a tile basically decrease linearly as the number of TSVs
in a 3D-SB decrease. However, though reducing the number of TSVs in an 3D-SB can save area, it is very
likely to harm delay at the same time. To realize what the exact impact on delay is, the benchmark circuits
are mapped onto different IS architectures and the BSL through the reference synthesis framework.

0,
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Figure 11. Area and delay trade-off among different architectures.

Moreover, the hybrid methods, including sparse architecture (SP) and sunny egg (SE), are also
proposed to further minimize the area of 3D FPGAs by using the techniques of IS and ES at the same time.
Those architectures are explored thoroughly and evaluated objectively. After comparing all these
architectures, two generic 3D FPGA architectures are suggested, which save the most area with acceptable

delay penalty.
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2. Enhancing Energy-Efficient Task Scheduling on 3D Multi-Core Processors by Dynamic Remapping
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