
行政院國家科學委員會專題研究計畫 成果報告

針對 3D 整合之電子設計自動化技術開發--子計畫三：針對
三維規則型邏輯結構之架構探索及穩健合成系統開發(2/2)

研究成果報告(完整版)

計 畫 類 別 ：整合型

計 畫 編 號 ： NSC 99-2220-E-009-037-

執 行 期 間 ： 99 年 08 月 01 日至 100 年 07 月 31 日

執 行 單 位 ：國立交通大學電子工程學系及電子研究所

計 畫 主 持 人 ：黃俊達

計畫參與人員：碩士班研究生-兼任助理人員：劉廣正

碩士班研究生-兼任助理人員：許晉維

碩士班研究生-兼任助理人員：陳怡廷

碩士班研究生-兼任助理人員：謝明廷

碩士班研究生-兼任助理人員：賴鵬先

碩士班研究生-兼任助理人員：林惠珊

碩士班研究生-兼任助理人員：劉揚翔

博士班研究生-兼任助理人員：劉家宏

博士班研究生-兼任助理人員：陳詣航

博士班研究生-兼任助理人員：陳嘉怡

公 開 資 訊 ：本計畫可公開查詢

中 華 民 國 100 年 10 月 31 日

中文摘要： 隨著製程的進步，導線延遲取代了元件的延遲，逐漸主宰著系

統的效率，並且在設計上成為一個非常關鍵的因素。三維電路

架構在垂直方向的可行性提供了電路設計更多的彈性，當然也

同時提高了設計和分析的複雜度。但無可否認的，三維電路架

構在電路設計的領域開啟了新的風貌。不論是從理論分析的角

度或是實驗的角度，三維電路在 VLSI 電路設計上，於導線長

度的緊縮(wire length reduction)、功率消耗的減少(power
reduction)、晶片面積的減少(chip area reduction)及電路元件密度

上升(increased device density)等各項指標都有顯著的改善。然

而，導線的延遲很難在早期的系統設計中預知，必須要等到佈

局完成才可以有初步的分析。因此，在本計劃中，我們會先探

討導線延遲所造成的潛在因素是如何影響系統的效能，並且重

新評估一些具有同成果品質(Quality of Result) 目標的舊有佈局

方法，並在往後的階段中，利用其特性推廣至三維規則型邏輯

架構探索中。
三維規則型邏輯架構之推廣與應用所面臨的眾多挑戰之一是缺

乏量身訂做的設計自動化工具(design automation tools)。本計劃

將針對三維規則型邏輯結構(3D regular logic structure)發展相對

應之自動化設計演算法，並利用這些新開發的工具來進行三維

規則型邏輯結構之架構探索(architecture exploration)，以期在硬

體資源的使用與系統效能之間取得最佳平衡。
英文摘要： The wire delay is gradually dominating the system performance and

becoming one of the most critical design issues. Three-dimensional
integrated circuit (3D IC) technologies enable to stack multiple dies
on a single chip and provide several unique advantages compared to
conventional 2D approaches such as wire length reduction, power
reduction, chip area reduction, and increasing device density.
However, it is hard to precisely estimate the wire delay in early
design stages until floorplan/placement is actually done. In this
project, we first show how the latency incurred by wire delay
dominates system throughput and re-evaluate several exiting
floorplanning strategies which are considered providing the same
quality of result (QoR) in the past. Then we propose new
throughput-aware floorplanning/placement strategies which
dynamically optimizes a set of most critical performance cycles in
the system. These methodologies will be extended into the
architecture exploration in 3D regular structures.
One of the tough challenges for the broad applications of 3D regular
structure is the lack of Electronic Design Automation (EDA) tools.
In this project, we intend to develop the advanced algorithms
targeting 3D regular logic structures. Furthermore, by utilizing the
newly developed dedicated algorithms, we can explore more
advanced architectures for 3D logic structures to achieve the perfect
balance among hardware utilization, fault-tolerance capability and

system performance.

1

行政院國家科學委員會補助專題研究計畫
■ 成 果 報 告
□期中進度報告

針對三維規則型邏輯結構之架構探索及穩健合成系統開發

(2/2)

計畫類別：□ 個別型計畫 ▓ 整合型計畫

計畫編號：NSC 99－ 2220 － E － 009 － 037 －

執行期間： 99 年 8 月 1 日至 100 年 7 月 31 日

計畫主持人：黃俊達 副教授 國立交通大學電子系

共同主持人：

計畫參與人員：劉家宏、陳詣航、陳嘉怡、劉揚翔、劉廣正、許晉維、

陳怡廷、謝明廷、賴鵬先、林惠珊

成果報告類型(依經費核定清單規定繳交)：□精簡報告 ▓完整報告

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外，得立即公開查詢

 □涉及專利或其他智慧財產權，□一年▓二年後可公開查詢

執行單位：

中 華 民 國 100 年 10 月 30 日

2

針對三維規則型邏輯結構之架構探索及穩健合成系統開發 (2/2)

計劃編號：NSC99－2220－E－009－037－ 執行期間：98 年 8 月 1 日至 100 年 7 月 31 日

主持人：黃俊達 副教授 國立交通大學電子所

一、 摘要

中文摘要

隨著製程的進步，導線延遲取代了元件的延遲，逐漸主宰著系統的效率，並且在設計

上成為一個非常關鍵的因素。三維電路架構在垂直方向的可行性提供了電路設計更多的彈

性，當然也同時提高了設計和分析的複雜度。但無可否認的，三維電路架構在電路設計的

領域開啟了新的風貌。不論是從理論分析的角度或是實驗的角度，三維電路在 VLSI 電路

設計上，於導線長度的緊縮(wire length reduction)、功率消耗的減少(power reduction)、晶片

面積的減少(chip area reduction)及電路元件密度上升(increased device density)等各項指標都

有顯著的改善。然而，導線的延遲很難在早期的系統設計中預知，必須要等到佈局完成才

可以有初步的分析。因此，在本計劃中，我們會先探討導線延遲所造成的潛在因素是如何

影響系統的效能，並且重新評估一些具有同成果品質(Quality of Result) 目標的舊有佈局方

法，並在往後的階段中，利用其特性推廣至三維規則型邏輯架構探索中。

三維規則型邏輯架構之推廣與應用所面臨的眾多挑戰之一是缺乏量身訂做的設計自動

化工具(design automation tools)。本計劃將針對三維規則型邏輯結構(3D regular logic

structure)發展相對應之自動化設計演算法，並利用這些新開發的工具來進行三維規則型邏

輯結構之架構探索(architecture exploration)，以期在硬體資源的使用與系統效能之間取得最

佳平衡。

關鍵字

規則型邏輯結構、架構探索、產能最佳化、多時脈溝通、高階合成、設計方法論、設計自

動化。

3

Abstract

The wire delay is gradually dominating the system performance and becoming one of the

most critical design issues. Three-dimensional integrated circuit (3D IC) technologies enable to

stack multiple dies on a single chip and provide several unique advantages compared to

conventional 2D approaches such as wire length reduction, power reduction, chip area reduction,

and increasing device density. However, it is hard to precisely estimate the wire delay in early

design stages until floorplan/placement is actually done. In this project, we first show how the

latency incurred by wire delay dominates system throughput and re-evaluate several exiting

floorplanning strategies which are considered providing the same quality of result (QoR) in the

past. Then we propose new throughput-aware floorplanning/placement strategies which

dynamically optimizes a set of most critical performance cycles in the system. These

methodologies will be extended into the architecture exploration in 3D regular structures.

One of the tough challenges for the broad applications of 3D regular structure is the lack of

Electronic Design Automation (EDA) tools. In this project, we intend to develop the advanced

algorithms targeting 3D regular logic structures. Furthermore, by utilizing the newly developed

dedicated algorithms, we can explore more advanced architectures for 3D logic structures to

achieve the perfect balance among hardware utilization, fault-tolerance capability and system

performance.

Keyword

Regular logic architecture, architecture exploration, throughput optimization, multicycle

communication, high-level synthesis, design methodology, and design automation.

二、 計劃緣由及目的

Introduction

With the advance of semiconductor manufacturing process technology, ever-shrinking feature

size and exponentially growing number of transistors on a single die are raising numerous tough

challenges such as signal integrity, power integrity and dissipation, leakage power, clock

distribution and yield issues [1]. In addition, the global interconnect delay fails to scale as the

device delay does and is gradually dominating the system performance [1]. Therefore, a solution

that can both alleviate the global interconnect delay bottleneck as well as provide new avenues to

enable even advanced device and architecture innovations is eagerly demanded. While

approaching the physical limitations, traditional scaling is no longer the best way for advancing

manufacturing process technology, and hence three-dimensional (3D) technologies have been

emerging in recent years [2]–[5]. 3D integrated circuit technologies enable stacking multiple dies

on a single chip [6][7] and provide several unique advantages compared to those conventional

two-dimensional (2D) ones, such as higher system integration, better heterogeneous integration

4

capability, and shorter global wirelength (i.e., better performance).

However, stacking chips or dies is not a whole new idea. SiPs (system-in-package) and PoPs

(package-on-package), which have been available in industry for several years, can also be

regarded as 3D techniques in the broad sense [8]–[10]. SiPs and PoPs stack multiple chips and

use wire-bonding for vertical signal links while packaging. However, the locations for

wire-bonding are restricted on the periphery of a chip layer and the package substrate. Thus these

kinds of 3D techniques are facing the problems such as limited number of pins for vertical

connections, long and slow vertical signal paths, and chip-package codesign. Among those

state-of-the-art 3D integration technologies, through-silicon via (TSV) is one of the most

promising methods to accomplish vertical interconnects between different layers [4]. Fig. 1

illustrates a typical TSV-based 3D IC structure. By utilizing the wafer/die bonding techniques,

TSVs cut across thinned silicon substrates to make inter-die connections, which results in high

compatibility with the present typical CMOS processes. All external I/O signals must pass

through those metal bumps located at the bottom of the 3D structure to bridge the internal logic

and the external system [11]–[13].

Observation and Motivation

Compared with a typical 2D design, though a TSV-based 3D design can generally reduce the

global interconnect delay, currently available TSV fabrication processes still suffer from

relatively low yield as well as large TSV pitch size [14]. It is reported that in 22nm technology a

TSV with 8μm pitch occupies roughly the same area as 1k SRAM cells (0.061μm2) [1], and TSV

yield drops to about 80% in a 3D design with 2k TSVs [15]. Therefore, using less number of

TSVs to complete a 3D design is highly desirable in terms of both yield and area cost. As a

consequence, the issue of TSV minimization must be properly addressed in a design flow as

stepping into the 3D IC era.

In general, 3D IC backend flows can be roughly classified into two categories. The first one is

to combine TSV minimization into later design processes such as floorplanning [16] and

placement [17][18], which aims at both objectives at the same time. However, the above

mix-in-one problem is likely to become too complicated to be well handled. Alternatively, the

authors in [19]–[21] all suggest that it is crucial to make 3D partitioning an independent stage in

the backend flow as shown in Fig. 2. The suggested flow first partitions a given design into

different layers and then solves the remaining problem by classical 2D techniques or their simple

extensions. Hence, this methodology efficiently reduces the problem complexity while keeping

the quality of results nearly at the same level [19][20]. Since the outcome of 3D partitioning

mainly determines the number of required TSVs, several previous studies have been proposed to

Figure 1. A TSV-based 3D structure.

5

tackle the problem of 3D partitioning for TSV minimization. One solution is to solve the problem

using integer linear programming (ILP) [22]. However, it can only solve small-size problem since

its runtime grows exponentially as problem size increases. In [23][24], each of them develops a

modified FM-based [25] partitioning method to obtain the resultant layer assignment. However,

all these methods only focus on minimizing the total amount of TSVs or die area, and do nothing

about evenly distributing TSVs among layers. Meanwhile, the authors of 3D FPGA synthesis

frameworks TPR [26] and 3D MEANDER [27] alternatively use a two-step approach – first

applying the well-known partitioning algorithm hMetis [28] to divide a design into a set of

layer-unaware partitions, and then associating each partition with a layer (i.e., layer assignment) –

to accomplish 3D design partitioning. Though hMetis is an efficient and effective multi-way

min-cut partitioning tool, it lacks for the notion of layer. In general, a typical 2D partitioning

algorithm basically gives a similar weight to a cut between any two partitions, whereas those

weights can vary a lot in 3D partitioning and highly depend on whether two partitions (i.e., layers)

are close or far away from each other.

Indeed, 3D designs can help minimize long interconnects through the extensive use of TSVs.

However, utilizing too few TSVs may limit this benefit and even increase the total wirelength,

while allocating too many TSVs surely enlarges design area size [14]. Though only focusing on

TSV reduction cannot guarantee decrease of wirelength after placement and routing, a

TSV-minimized (also area-minimized) partitioning technique should still be incorporated as a

Figure 3 (a) A 4-way min-cut partitioned design, (b) the worst possible, and (c) the best

possible 3D layering outcomes based on the partitioning in (a).

Figure 2. Referenced backend flow for 3D ICs.

6

preprocessing stage in a 3D design flow, which provides a good starting point for further tradeoff

between area and wirelength in the following stages.

Fig. 3 demonstrates a simple 4-layer 3D partitioning example. A given design with its 4-way

min-cut partitioning result is presented in Fig. 3(a). Based on the same initial partitioning result

given in Fig. 3(a), Fig. 3(b) and 3(c) respectively illustrate the worst possible and the best

possible 3D layering outcomes in terms of the number of TSVs. From the observations on Fig. 3,

here we would like to highlight two key ideas.

Firstly, all external I/O terminals must be located in the bottom-most layer. It implies those

square vertices representing I/O pads must always be located in Layer 0. As a result, extra TSVs

are required to properly relocate those I/O pads. As shown in Fig. 3(b), five additional signal

paths (in dotted lines) suggest that 13 more TSVs are further required. Those extra signal paths

are generally unconsidered in conventional multi-way min-cut partitioning algorithms. It also

explains why there is a big difference between the total cut size (=8) in Fig. 3(a) and the number

of total TSVs (=28) in Fig. 3(b).

Secondly, different layer assignments usually result in different TSV requirements even the

given initial partitioning result is identical. For instance, given the partitioning result shown in

Fig. 3(a), the total number of TSVs can range from 21 to 28 after examining all possible layer

assignments. Nevertheless, the best layering result with the minimum number of TSVs shown in

Fig. 6(d) cannot be derived from the initial partitioning outcome shown in Fig. 3(a), which is

obtained from hMetis.

According to the aforementioned discussions, it should be evident that conventional multi-way

min-cut partitioning algorithms virtually have no chances to perform 3D partitioning well in their

original forms due to their unawareness about the fundamentals of vertical die-stacking structure.

Therefore, a layer-aware partitioning algorithm specifically dedicated to 3D structures is strongly

demanded for advanced 3D IC design methodologies.

Meanwhile, according to [1][26][29], the SB has already been the most area-consuming unit

compared to the other elements in 2D FPGAs for a long time. The situation is becoming even

worse in 3D FPGAs because the 3D-SB is exactly where those TSVs locate. As shown in Fig. 4,

as manufacturing technology keeps scaling down, the area share of the 3D-SB is getting more

dominant, which is mainly because TSVs are not scaled well. Moreover, it is found that the TSV

utilization is actually quite low if the 3D-SB with full vertical connectivity is in use. As depicted

TSV
20.79%

TSV
35.61%

TSV
49.60%

TSV
58.61%

41.17%

33.49%

26.45%

21.89%
CB

22.10%

CB
17.97%

CB
14.14%

CB
11.66%

CLB
15.94%

CLB
12.93%

CLB
9.81%

CLB
7.85%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

180nm 130nm 90nm 65nm Technology

3D‐SBs

Figure 4. The area ratio for each component in a tile.

7

in Fig. 5, the TSV utilization is still less than 10% even in the 8-layer 3D FPGA. Therefore, there

is a strong motive to optimize the 3D-SB structure and the 3D-SB deployment strategy for area

saving.

3D MEANDER is another design framework for 3D FPGAs. In addition, it also studies the

impact of different deployment strategies for 3D-SBs. It proposes a family of 3D FPGA

architectures in which 2D-SBs and 3D-SBs are mixed up in certain regular spatial patterns.

However, the number of available TSVs within a 3D-SB is assumed fixed in 3D MEANDER.

That is, it does not investigate what the impact of the different number of TSVs in a 3D-SB is.

In this project, we first point out that the utilization of TSVs is actually very low in a 3D

FPGA architecture with full vertical connectivity, which inspires us to discover new architectures

that can achieve a better balance between area and delay. There are basically two ways for area

reduction: reducing the number of TSVs in a 3D-SB, and reducing the number of 3D-SBs. In

combination of above two ideas, we propose two major families of architectures and extensively

evaluate numerous instances through thorough and systematic comparisons to pick out the better

ones. Note that minimizing area only is one thing, but minimizing area without sacrificing delay

is completely another thing.

三、 研究方法與成果

This project indicates the design issues when integrating 3D stacking technology into regular

architectures. This emerging technology allows stacking multiple layers of dies and typically

resolves the vertical inter-layer connection issue by TSVs. However, TSVs also occupy

significant silicon estate as well as incur reliability problems. The deployment of TSVs must be

very judicious in 3D designs. An iterative layer-aware partitioning algorithm, named iLap, for

TSV minimization in 3D structures is proposed. On the other hand, a generic 2D FPGA

architecture can evolve into a 3D one by extending its signal switching scheme from 2D to 3D by

means of TSVs. However, replacing all 2D switch boxes (SBs) by 3D ones with full vertical

connectivity is found both area-consuming and resource-squandering. Therefore, it is possible to

greatly reduce the footprint with only minor delay increase by properly tailoring the structure and

deployment strategy of 3D SB. In this project, we also perform a comprehensive architectural

exploration of 3D FPGAs. Various architectural alternatives are proposed and then evaluated

thoroughly to pick out the most appropriate ones with a better area/delay balance.

0%

5%

10%

15%

2 3 4 5 6 7 8A
vg
. T
SV
 u
ti
liz
at
io
n

Layers

Figure 5. The average TSV utilization in a 3D FPGA architecture with full vertical connectivity.

8

Layer-Aware Iterative Partitioning

A. Problem formulation

A design is modeled as a hypergraph G = (V, E), where V is a set of vertices including a set

of functional cells (or blocks) C and a set of I/O pads I (i.e., V = C ∪ I, C ∩ I = ); and E is a set

of hyperedges. For each vertex v  V, area(v) denotes the area cost of v. Each hyperedge is a

subset of V, i.e., e  V  e  E. A k-layer disjoint partition set of G with all the I/O terminals

residing in the bottom-most layer is represented as L = {L0=I, L1, L2 … Lk}, where Li is the

partition assigned to the i-th layer and is a subset of C; i.e., Li  C  1  i  k; Li ∩ Lj =   i 

j, 1  i, j  k; and L1 ∪ L2 ∪…∪Lk = C.

For a vertex v, layer(v) indicates which layer v actually resides in. That is, layer(v) = i,  v

 Li. The range pair of a hyperedge e is defined as rp(e) = (b, t) if e connects vertices from the

lower b-th layer to the upper t-th layer; i.e.,  v  e, b  layer(v)  t. Then the number of TSVs

required to complete e can be calculated as tsv(e) = t – b. The layer junction jcti is defined as the

junction between the two adjacent layers Li–1 and Li,  1  i  k. The number of TSVs passing

through jcti is further defined as cuti. Hence, the total number of TSVs, total_tsv, needed for a 3D

partitioning solution L can be determined either by summing the required TSVs for all

hyperedges () or by summing TSVs passing through all junctions ().

Consider the example shown in Fig. 3(b), rp(e1) = (1, 4) and thus tsv(e1) = 3. Similarly, the total

number of TSVs in Fig. 3(b) is total_tsv = = 5 + 9 + 9 + 5 = 28, including 15 TSVs

connecting between cells, and 13 TSVs connecting cells and I/O pads. We would like to

emphasize again that classical partitioning algorithms usually have no idea about the I/O pad

connection constraint and always underestimate the real TSV demand even excluding those TSVs

for connecting cells and I/O pads (8 vs. 15 in the case shown in Fig. 3(a) and 3(b)) due to their

layer-unawareness. Those are the major reasons why the classical min-cut-based partitioning

solutions are generally not well optimized in 3D cases (shown later).

In this paper, we model the 3D partitioning problem as a layer-aware multi-way partitioning

problem. Given a target 3D structure consisting of k layers stacking vertically, a design G, and the

I/O pad constraint, our proposed algorithm partitions G into k sub-designs and each sub-design is

explicitly associated with a vertical layer so that the total number of TSVs is minimized. That is,

given G = (V = C ∪ I, E) with layer(v) = 0  v  I, our algorithm directly finds the mapping, 1

 layer(v)  k  v  C, such that total_tsv is minimizeds.

B. Proposed algorithm

Here we propose our iterative partitioning framework that gradually constructs the solution

from the bottom-most layer all the way to the topmost one. Consider that all I/O pads must reside

in L0 by definition and then the number of TSVs through jct1 (i.e., cut1,) is always fixed to |I| no

matter how other cells (or L1~Lk) get partitioned eventually. As a result, if we define G1 by

compacting all the I/O pads into a supervertex vs and keeping all the connected hyperedges

unchanged as shown in Fig. 6(a), it is evident that jct1 and cut1 should still remain unchanged in

G1. Next, an arbitrary conventional k-way area-balanced min-cut partitioning algorithm is applied

on G1 to get k partitions, where area(vs) is set to zero to avoid disturbing area balancing during

partitioning. Among those k disjoint partitions, exactly one partition ps can contain vs, which

9

further suggests that the cells residing in ps should be located as close to the I/O pads as possible

for cut minimization and thus should be assigned to L1. For example, the four dashed circles in

Fig. 6(a) indicate the 4-way area-balanced min-cut partitioning result, and hence L1 is ultimately

set to {7, 8, 9} as Fig. 6(b) depicts.

Similarly, once the elements of L1 are determined, cut2 is therefore fixed. The next task then

becomes how to decide which vertices should reside in L2. Again, since L0 and L1 are fixed at this

point, jct2 and cut2 are both fixed no matter how other remaining cells (or L2~Lk) get partitioned

later. As one can easily discover that the situation here is very similar to that of identifying L1

previously. Hence, if we further derive G2 from G1 by compacting L1 into vs and apply (k–1)-way

min-cut partitioning on G2, L2 can then be identified in the same fashion (as shown in Fig. 6(c)).

That is, at each iteration our proposed algorithm always derives Gn+1 from Gn by further

compacting Ln into vs, then applies (k–n)-way area-balanced min-cut partitioning to get Ln+1. This

iterative process is not terminated until Lk–1 is identified. Fig. 6(d) illustrates the final result

generated by the proposed algorithm, and the total TSV count is merely 19, which is smaller than

those in Fig. 3(b) and 3(c) (28 and 21, respectively).

The proposed framework possesses following four unique features:

 It invokes multi-way min-cut partitioning at every iteration. The major reason is to find the

set of cells closest to the previously identified junctions, which potentially minimizes the

TSVs of the current junction. To better mimic the final solution, min-cut partitioning helps

distribute TSVs more evenly among all layers and hence potentially results in a more stable

outcome.

Figure 6. (a) Compact I/O pads into vs then apply 4-way partitioning, (b) assign {7, 8 ,9} to L1, (c)

compact L1 into vs then apply 3-way partitioning, and (d) show the final layering result

10

 Once a junction (and thus a cut) is fixed at some iteration, it is never altered at the following

iterations. This ensures that good decisions made previously are never overthrown later.

 At each iteration, only one partition is accepted and decisions for other partitions are

actually discarded. Later, the updated graph topology is reexamined and better decisions are

thus dynamically reacquired at the following iterations. For instance, L2 = {1, 3, 10} in Fig.

6(d) is not identical to any partition shown in Fig. 6(a). As a consequence, applying any one

of conventional multi-way min-cut partitioning algorithms just once cannot get this kind of

result.

 From the traditional partitioning perspective, the result in Fig. 6(d) has a larger total cut size

than the result given in Fig. 3(a) (9 vs. 8). However, we already show that the former one is

actually a better 3D partitioning solution. Hence, it is obvious that the total cut size, which

is layer-unaware, is apparently not an appropriate metric in 3D partitioning. Again, this is

another evidence that classical multi-way min-cut partitioning algorithms can hardly

compete with the proposed iterative framework.

In this work, we adopt the well-known hMetis as the internal partitioning engine since it is one

of the best partitioning engines we can find today. However, our proposed framework can

obviously co-work with any multi-way min-cut partitioning engines. It implies that a better

engine (if any) may be adopted for better 3D partitioning results in the future.

The pseudo code of the complete algorithm is given in Fig. 7. All I/O pads are first compacted

into a supervertex vs during initialization. Each iteration starts with (k–n+1)-way min-cut

partitioning. Once partitioning is done, the vertices residing in the partition where vs is present are

assigned to the current layer, i.e., Layer n. The number n always increases by one at every

iteration end. At the final iteration, where n = k–1, the elements of Layer k–1 are identified after

2-way partitioning. Finally, the remaining cells are then automatically assigned to the topmost

Layer k and the algorithm ends. That is, exact k–1 invocations of multi-way min-cut partitioning

are required for getting one k-layer 3D partitioning result here.

Initialization

1 n ← 1;

2 compact all I/O pads into a supervertex vs;

3 C ← C ∪ {vs};

Constructive Loop

4 while(n < k)

5 (k–n+1)-way min-cut partition(C);

6 foreach vi  C – {vs} do

7 if part(vi) == part(vs) do

8 assign vi to Layer n;

9 C ← C – {vi};

10 compact vi into vs;

11 n ←n + 1;

12 foreach vj  C – {vs} do

13 assign vj to Layer k;

Figure 7. Pseudo code of iLap.

11

C. Experiments

1. Benchmarks and Experiment Setup

iLap has been implemented in C++/Linux environment. We demonstrate the

effectiveness of iLap through a series of comparisons with three hMetis-based methods:

1) hMetis: partitions are further layered according to their original sequential tags (i.e., in

random order basically); 2) EX-hMetis: partitions are best layered through exhaustively

examining all possible layer permutations; 3) EV-matrix: partitions are layered by the

method described in [26]. Note that the three hMetis-based methods all start with the

same set of partitions and thus the variances among their final results solely come from

different layer assignments. We evaluate the performance of iLap and other three

methods over a set of 14 test cases, consisting of 10 cases from the MCNC benchmark

set [30], three large cases (cfft, aqua, and video) from Altera [31], and one in-house

128-point FFT design (fft128). They are intended to mimic complicated system designs

integrating a large number of functional blocks. The number of blocks ranges from 1,047

to 53,491. Since the test cases selected in our experiments are all far larger than those

used in [22], comparisons between iLap and the ILP-based approach proposed in [22]

are therefore omitted in this paper. We perform ten experiment runs on every test case

with different random seeds and take the average as the final result.

2. Results and Analyses

A set of experiments are conducted with various number of layers ranging from two to

ten. Table I reports the TSV demands as the number of layers is set to 4. It seems

EV-matrix just performs equally well as plain hMetis. Meanwhile, given a set of 4

partitions generated by hMetis, EX-hMetis always picks the one with the lowest TSV

count out of 4! = 24 different layer permutations and consequently EX-hMetis on

average attains 16% TSV reduction as compared with hMetis. Nevertheless, iLap can

reduce TSV count by 36% and 24% on average as compared to hMetis and EX-hMetis,

respectively. Moreover, for the largest three test cases (cfft, aqua, and video), iLap even

outperforms hMetis by more than 75%. Though hMetis is an excellent multi-way

min-cut partitioning algorithm, unfortunately it fails to be a good 3D partitioner due to

its layer-unawareness. Even EX-hMetis, with exhaustive layer permutations, still cannot

0

1000

2000

3000

4000

5000

2 3 4 5 6 7 8 9 10
Layers

(a) TSV count

iLap

hMetis

EV-matrix

EX-hMetis

0.5

0.7

0.9

1.1

1.3

1.5

1.7

2 3 4 5 6 7 8 9 10
Layers

(b) Normalized TSV count

iLap

hMetis

EV-matrix

EX-hMetis

Figure 8. The number of required TSVs in different layers.

12

defeat iLap. Therefore, it concludes that a dedicated layer-aware 3D partitioning

algorithm, like iLap, should be regarded as one of the essential components while

constructing a sophisticated 3D IC design environment.

Next, Fig. 8(a) depicts the average TSV count over 14 test cases as a function of the

number of layers; and three points are worth pointing out. Firstly, the more layers a

design gets partitioned into, the more TSVs it generally requires. Secondly, iLap is the

all-time winner from 2 layers to 10 layers among four methods. Thirdly, unlike the other

three methods, the number of TSVs required by iLap raises very smoothly as the number

of layers increases. Taking hMetis as the baseline, Fig. 8(b) reveals the average ratios of

TSV count over the number of layers; and two points are worth mentioning here. Firstly,

iLap constantly and steadily outperforms hMetis by about 35% in TSV count regardless

of the number of layers. Secondly, EX-hMetis always outperforms hMetis, as expected.

Meanwhile, Fig. 9(a) presents the average standard deviations of TSV count over a

different number of layers. Through constructing its outcome layer by layer, iLap can

better balance the TSV count among junctions. From Fig. 9(a), it is evident that the

standard deviation of TSV count associated with iLap is far better than those of the other

three. As previously mentioned, a TSV occupies significant silicon estate so that high

standard deviation of TSV count potentially worsens area imbalance among individual

layers and even lowers the yield of a design. Fig. 9(b) reports the average maximum

TSV count at some junction of a design over a different number of layers; and iLap

always possesses the lowest values regardless of the number of layers. In other words, a

lower TSV count implies a smaller total area (including TSV area) after partitioning, and

a smaller standard deviation of TSV count results in a more area-balanced partitioning

outcome. The above two facts suggest that iLap tends to generate a smaller overall

footprint of a 3D chip implementation. From another perspective, for some 3D logic

TABLE I. TOTAL NUMBER OF TSVS WITH K = 4

4 layers *Total TSVs Normalized to hMetis

Design iLap hMetis EV-matrix EX-hMetis iLap EV-matrix EX-hMetis

Tseng 304.2 356.3 361.2 346.1 0.85 1.01 0.97
Diffeq 244.9 344.5 351.0 270.3 0.71 1.02 0.78
Des 445.5 857.5 876.1 834.5 0.52 1.02 0.97
Bigkey 629.2 666.2 669.2 650.6 0.94 1.00 0.98
Frisc 655.2 714.1 719.0 688.7 0.92 1.01 0.96
elliptic 590.3 709.9 690.0 643.1 0.83 0.97 0.91
pdc 973.4 1049.5 1059.0 986.8 0.93 1.01 0.94
fft128 1313.9 1506.0 1524.8 1489.2 0.87 1.01 0.99
s38417 249.4 364.7 389.6 324.6 0.68 1.07 0.89
s38584.1 391.4 673.8 762.6 536.7 0.58 1.13 0.80
clma 491.4 721.2 654.6 496.5 0.68 0.91 0.69
cfft 244.4 999.2 480.3 338.5 0.24 0.48 0.34
aqua 909.6 7026.5 7167.4 4935.8 0.13 1.02 0.70
video 763.8 8370.7 8757.1 7255.0 0.09 1.05 0.87

Average - - - - 0.64 0.98 0.84

*The reported number is the average of 10 experiment runs.

13

structures, like 3D FPGAs, the number of pre-fabricated inter-layer TSVs is fixed. Hence

a design mapping attempt is considered a failure as long as the required TSVs exceed the

available ones only at one junction; and a high maximum TSV count definitely increases

such chances. Lower maximum TSV count is considered a big plus especially in design

flows for 3D regular logic structures such as 3D FPGAs.

Regarding the runtime efficiency issue, Fig. 9(c) gives the average runtime of 14 test

cases in second over a different number of layers. It is evident that both hMetis and

EV-matrix are very time-efficient. The runtime required by iLap grows linearly as the

number of layers increases. It is mainly because the number of invocations for multi-way

partitioning inside iLap also grows linearly as the number of layers increases. However,

given the tremendous performance in TSV minimization, the time complexity of iLap

should be acceptable. For example, it only takes about fifty seconds for iLap to partition

the largest test case video into ten layers. As for EX-hMetis, since it has to check all

possible layer permutations to find out the best one, the required runtime is thus

exponential to the number of layers. Even if EX-hMetis can be further improved (e.g., by

pruning) so that not all permutations need to be examined, the improvement is limited to

runtime efficiency only, while other TSV-related performance would still remain the

same.

14

0

50

100

150

200

250

300

3 4 5 6 7 8 9 10
Layers

(a) Standard deviation of TSV count

iLap

hMetis

EV-matrix

EX-hMetis

0

100

200

300

400

500

600

700

800

900

1000

2 3 4 5 6 7 8 9 10
Layers

(b) Maximum T SV count

iLap

hMetis

EV-m atrix

EX-hMetis

0

500

1000

1500

2000

2500

3000

3500

2 3 4 5 6 7 8 9 10
Layers

(c) Runtime (seconds)

iLap

hMetis

EV-matrix

EX-hMetis

0

2

4

6

8

10

12

2 3 4 5 6 7 8 9 10

Figure 9. More statistics from the experiments.

15

Architectural Exploration of 3D FPGAs towards a Better Balance between Area and Delay

A. Architectures and synthesis framework for 3D FPGAs

A classic 2D FPGA is composed of logic elements (configurable logic blocks, CLBs) and

routing resources (switch boxes, SBs; connection boxes, CBs). The basic unit is called a tile,

which consists of a CLB, an SB, and associated CBs. As shown in Fig.10, the generic 3D FGPA

architecture in this work is similar to the one used in TPR and 3D MEANDER, which basically

stacks multiple identical 2D FPGA layers and then extends the structure of 2D-SB to provide

inter-layer connectivity. Fs is set to 3 in a 2D-SB and 5 in a 3D-SB, where Fs is the maximum

allowable fan-outs of a channel in an SB.

The reference synthesis flow used in this work is shown in Fig. 11. A given design (in blif

format) is first packed into a netlist file composed of CLBs by T-VPack, which is a part of the 2D

FPGA synthesis framework VPR [32][33]. The netlist file is then fed into a 3D FPGA synthesizer,

which includes three steps: initial layering, timing-driven 3D placement and 3D routing. The

initial layering partitions the netlist into different layers with the objective of TSV minimization

[34]. The 3D placement and routing processes, which are adapted from TPR, are then conducted

on the layered netlist. The framework also takes an input file, setting the architectural parameters

of the target 3D FPGA, and generates the placement and routing results in the end.

B. Evaluation environment

1. Architectural Settings

The basic architectural settings are shown in TABLE II. Most of the parameters are set

according to existing commercial FPGAs, well-known FPGA synthesizers, and related

CLB SB
2D‐SB

connection

3D‐SB
connection

Figure 10. The gereric 3D FPGA architecture.

timing‐driven 3D routing
TR
P
‐b
as
ed

P
&
R

TSV‐driven 3D layering

P&R results

timing‐driven 3D placement

netlistT‐VPackblif file

arch. file

Figure 11. The reference synthesis framework.

16

research works [26][27][29], [35]–[38]. The number of LUTs (lookup tables) in an CLB

(N) is set to 2 instead of 1 in the previous works [26][29], which is considered more

realistic. The channel widths in the X-Y directions are both set to 32; the multi-segment

routing structure is adopted: the possible wire lengths are L1, L2, L4 and L8; and the

numbers of channels are 12, 12, 4 and 4, respectively. In the vertical direction (Z), only

L1 is available to maximize the routability. Finally, I/O pads are located only around the

bottom-most layer.

2. Benchmark Set

There are 24 test cases in our benchmark set – 14 are from MCNC and the other 10

larger ones are from IWLS2005, ITC99 and Altera [30][31]. The basic information for a

TABLE II. THE ARCHITECTURAL SETTINGS

Architectural Parameters Value

CLB

(Altera Stratix IV)

of LUTs in a CLB (N) 2

of inputs of a CLB (I) 8

of inputs of a LUT (K) 6

SB

(Xilinx Spartan)
Connection type Subset

Channel width

(Xilinx)
Both WX and WY 32

of wire segments
X-Y direction (L1, L2, L4, L8) (12, 12, 4, 4)

Z direction L1 only -

Delay model L1Z : L1X-Y 1 : 10

TSV Pitch 10 um

Process Technology 65 nm

TABLE III. THE BENCHMARK INFORMATION (PARTIAL)

Design # CLBs # Nets # I/Os

s38584.11 3224 5419 342

clma1 4192 6869 144

mem_ctrl_0mv_b2 7344 10865 265

usb_funct_0mv_b2 7440 11372 234

tv80_0abc_ch2 8809 12987 46

b203 9844 15557 55

b213 10016 15713 55

aes_core2 10400 16706 386

oc_des_perf_opt_opt_abc_resyn4 10641 17150 185

systemcaes_0abc_ch2 13480 19634 388

b223 14585 23114 55

b173 15390 24986 135

1: MCNC; 2:IWLS2005; 3: ITC99; 4: Altera

17

partial set of test cases is shown in TABLE III; the numbers of CLBs and nets are

derived from T-VPack with the parameters (N, I, K) = (2, 8, 6), which is specified in

TABLE II.

In our evaluation environment, the X-Y dimension (D) of a 3D FPGA architecture varies

according to the number of layers (L) and the overall capacity of CLBs (C), as given in

(1):

(1)

During every evaluation run, the capacity of CLBs (C) is dynamically adjusted to ensure

that the value is around 80%.

3. Baseline Architecture (BSL)

In the baseline architecture, every SB is a 3D-SB; and every 3D-SB is with full vertical

connectivity, which means there are 32 TSVs (identical to the number of channels in the

X-Y direction) within a 3D-SB. In the BSL, though the vertical routability is maximized

(which is best to delay), the utilization of TSVs is extremely low (< 10%) as indicated in

Fig. 5. This fact also suggests there is still a big room for further architecture

improvements. Hereafter in this paper, the BSL would serve as a baseline for

comparisons with the proposed architectures in the next two sections.

C. Proposed sparse architectures

Basically there are two ways to reduce the area occupied by 3D-SBs in a 3D FPGA. The first

one is to decrease the number of TSVs in a 3D-SB. Such kind of 3D-SBs are called partially

(a)

(b) (c)

fully connected
3D‐SB

partially connected
3D‐SB

2D‐SB

Figure 12. The different SB patterns of (a) BSL, (b) IS, and (c) ES.

18

connected 3D-SBs. The other one, also used in 3D MEANDER, is to reduce the number of

3D-SBs in a 3D FPGA. That is, some SBs become 3D ones, and others are still 2D ones. The

internally-spare (IS) architectures are those utilizing the former method, while the

externally-sparse (ES) ones are those utilizing the latter method. Different configurations of SBs,

also referred as patterns in this paper, are shown in Fig. 12. In the BSL, as shown in Fig. 12(a),

all SBs are fully connected 3D-SBs. An IS architecture adopts the same type of partially

connected 3D-SBs for all SBs instead, as in Fig. 12(b). In an ES architecture as shown in Fig.

12(c), fully connected 3D-SBs are partially distributed in a regular fashion. Note that the patterns

are set identical for all layers in all proposed architectures. In addition to IS and ES architectures,

the sparse architecture (SP), which is a hybrid of the above two, is proposed to further reduce the

area. More details and evaluations are available in the following sub-sections.

1. Internally-Sparse Architecture (IS)

IS# represents an instance of the IS architecture, where the postfix # specifies the

number of TSVs available in a 3D-SB. For example, every 3D-SB in IS16 has only 16

TSVs inside, while IS32 is actually equivalent to the BSL. As mentioned in Section III,

the multi-segment routing structure is adopted and there are four different wire lengths

with different amount of channels in the X-Y direction. In the BSL, it makes no

differences since each X-Y channel has its own vertical connection. However, in an IS

89.99%
79.98%

69.98%

59.97%

49.96%
39.95%

90.89%

81.78%

72.67%

63.57%

54.46%

45.35%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

IS28 IS24 IS20 IS16 IS12 IS8

N
o
rm
a
liz
e
d
 a
re
a

SB Tile

Figure 13. The normalized area of different IS architectures.

100%

103%

106%

109%

112%

115%

118%

2 3 4 5 6 7 8A
vg
. n
o
rm
a
li
ze
d
 d
e
la
y

Layers

IS8

IS12

IS16

IS20

Figure 14. The average normalized dealy of different IS architectures.

19

architecture, some of TSVs in a 3D-SB are removed. Be precisely, the vertical

connections (TSVs) are taken out from each type of X-Y channels proportionally

whenever possible. For example, the numbers of channels with vertical (Z) connectivity

for (L1, L2, L4, L8) are (9, 9, 3, 3) in IS24, while the remaining 8 channels merely

provide 2D (X-Y) connectivity.

Fig. 13 reports the area of different IS architectures, in which all values are normalized

to that of the BSL. It shows that both the sizes of an SB and a tile basically decrease

linearly as the number of TSVs in a 3D-SB decreases. However, though reducing the

number of TSVs in an 3D-SB can save area, it is very likely to harm delay at the same

time. To realize what the exact impact on delay is, the benchmark circuits are mapped

onto different IS architectures and the BSL through the reference synthesis framework.

Fig. 14 illustrates the delay of different IS architectures, in which every value represents

the average of normalized-to-the-BSL delay over the entire benchmark set. Since the

curves of IS28, IS24, and IS20 are almost overlapped therefore only the one of IS20 is

depicted. Note that some test cases fail to be mapped onto IS12 due to insufficient

vertical routing channels. Most of the test cases fail in IS8; one even succeeds, the delay

increases significantly. Finally, since IS20 achieves about 30% overall area reduction

only with a delay penalty less than 1.5% as compared to the BSL, it should be the one

with a better area/delay balance among all IS architectures.

2. Externally-Sparse Architecture (ES)

An ES architecture replaces a part of fully connected 3D-SBs with 2D-SBs for area

saving. There are various ways, or patterns, for mixing 2D-SBs and 3D-SBs. The pattern

used in the ES architecture is oblique stripes, which is the same as the one used in 3D

MEANDER. ES# represents an instance of the ES architecture, where the postfix #

specifies the maximum distance between two adjacent 3D-SBs in either X or Y direction.

Therefore, ES1 is actually equivalent to the BSL, and ES2 is the one shown in Fig. 15(a).

Different from the vertical or horizontal stripes patterns, it is guaranteed that each 3D-SB

in the oblique stripes pattern can reach some other 3D-SBs within a fixed distance in any

directions, which surely provides much better routability. From the perspective of a

2D-SB, the shaded region covers the area where a 2D-SB can access vertical links in the

(a) (b)

fully connected
3D‐SB

2D‐SB

Figure 15. The ES architecture with

(a) the oblique stripes pattern and (b) the vertical stripes pattern.

20

shortest distance as shown in Fig. 15(a). However, with the same shaded region, only

two 3D-SBs can be reached for a 2D-SB in an architecture with vertical stripes patterns,

as shown in Fig. 15(b). The analyses and conclusions are also similar also from the

perspective of a 3D-SB.

Fig. 16 reports the area of different ES architectures. As the distance increases, the area

reduction is significant at first and then becomes flat gradually. The curve appears like a

harmonic sequence. Fig. 17 illustrates the delay of different ES architectures. As the

distance increases, the delay is increased badly. As a result, ES2, ES3 and ES4 are all

regarded as good instances since they can achieve around 35%~55% area reduction only

with a delay penalty less than 5%. Moreover, if the delay penalty is constrained below

3%, ES2 becomes the best choice because it achieves an area reduction of 35% with a

delay penalty less than 1.5%.

3. Sparse Architecture (SP)

For IS and ES architectures, we try to reduce the area with just a single strategy – either

purely reducing the number of TSVs in each 3D-SB or purely reducing the number of

3D-SBs. Here we present the sparse architecture, which takes above two strategies

simultaneously. SP(#1, #2) is used to name an specific instance of this hybrid architecture,

which is the combination of IS#1 and ES#2. This notation can be generalized to represent

IS and ES architectures as well. For example, SP(32, 1) is equivalent to the BSL, SP(16,

1) implies IS16, and SP(32, 2) is actually ES2. Meanwhile, the TSV density of an

100%

103%

106%

109%

112%

115%

118%

121%

2 3 4 5 6 7 8

A
vg
. n
o
rm
a
li
ze
d
 d
e
la
y

Layers

ES9

ES8

ES7

ES6

ES5

ES4

ES3

ES2

Figure 17. The average normalized dealy of different ES architectures.

60.01%

46.68%
40.04%

36.08% 33.40% 31.53% 30.16% 29.09%

63.60%

51.47%
45.43% 41.83% 39.39% 37.69% 36.43% 35.46%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ES2 ES3 ES4 ES5 ES6 ES7 ES8 ES9

N
o
rm
al
iz
e
d
 a
re
a

SB Tile

Figure 16. The normalized area of different ES architectures.

21

architecture is defined as the average number of TSVs in a tile, and can be calculated

through (2).

TSV density = IS# / ES# (2)

As mentioned, ES4=SP(32, 4) with TSV density of 8 is still regarded as a good instance.

Note that, the lower the TSV density is, the worse the delay is likely to be. Hence, only

those SP architectures with TSV density no less than 8 are selected for evaluation. Fig.

18 shows the area of selected SP architectures. As expected, the lower the TSV density is,

the smaller the area is. Fig. 19 reports the delay of same selected SP architectures, and

conforms that the lower the TSV density is, the worse the delay is. Finally, SP(28, 2),

SP(24, 2), and SP(20, 2), are our recommended SP architectures under the constraint that

the delay penalty cannot exceed 3%.

D. Proposed sunny egg architecture

Though SP(20, 2) has already achieved an area reduction of 50% with minor delay loss, there

is still room for improvement. Fig. 20 shows the average TSV distribution in a 6-layer BSL over

6 test cases. The results suggest that the TSV demand is much bigger in the central region than

55.00%
49.99%

44.98% 43.34% 40.00% 39.97%

59.04%
54.49%

49.93% 48.43% 45.39% 45.37%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(28,2) (24,2) (20,2) (28,3) (24,3) (16,2)

N
o
rm
al
iz
e
d
 a
re
a

SB Tile

TSV density: 14 12 10 9.3 8 8

Figure 18. The normalized area of different SP architectures.

100.0%

100.5%

101.0%

101.5%

102.0%

102.5%

103.0%

103.5%

104.0%

104.5%

105.0%

2 3 4 5 6 7 8

A
vg
. n
o
rm
al
iz
ed
 d
e
la
y

Layers

(16,2) 8

(24,3) 8

(28,3) 9.3

(20,2) 10

(24,2) 12

(28,2) 14

TSV density:

Figure 19. The average normalized dealy of different SP architectures.

22

that in the peripheral zone; and thus inspire us to further propose the sunny egg (SE) architecture.

The sunny egg architecture divides a horizontal plane into two regions – center (egg yolk)

and periphery (egg white). Two regions are implemented using different SP architectures – the

TSV density in the center is set larger than that in the periphery. SE(ISC#, ESC#, R, ISP#, ESP#)

indicates a specific SE architecture, where SP(ISC# and ESC#)/SP(ISP# and ESP#) is for the

center/periphery respectively, and R is the ratio between the dimension of the center and D

(defined in Section III.B). For example, SE(32, 2, 0.5, 16, 4) specifies an SE architecture: 1) in

the central/peripheral region, the number of TSVs in a 3D-SB is 32/16 and the distance between

two 3D-SBs in the X/Y directions is 2/4; and 2) the ratio between the dimension of center and D

(a) (b) (c)

11‐12

9‐10

7‐8

5‐6

≦ 4

Figure 20. The average TSV utilization in a 6-layer BSL.

Between: (a) Layer 2 and 3, (b) Layer 3 and 4, and (c) Layer 4 and 5.

100.0%

101.5%

103.0%

104.5%

106.0%

2 3 4 5 6 7 8A
vg
. n
o
rm
a
li
ze
d
 d
e
la
y

Layers

unevenly
(center)

evenly
(center)

unevenly
(periphery)

evenly
(periphery)

Figure 21. The average normalized dealy with different TSV distributions.

100.0%

101.5%

103.0%

104.5%

106.0%

107.5%

2 3 4 5 6 7 8A
vg
. n
o
rm
al
iz
e
d
 d
e
la
y

Layers

R=0.3

R=0.4

R=0.5

R=0.6

R=0.7

Figure 22. The average normalized dealy with different R's.

23

is 0.5.

A total of 20 different SE architectures are evaluated in this study. They are generated in the

following way: 2 SP instances with higher TSV densities (SP(32, 2), SP(16, 1)) for the center, 2

SP instances with lower TSV densities (SP(16, 4), SP(8, 2)) for the periphery, and R ranges from

0.3 to 0.7. TABLE III just lists 8 of them due to page limitation. Meanwhile, given the same TSV

density, SP(16, 1) distributes TSVs more evenly than SP(32, 2) in the center. Similarly, SP(8, 2)

distributes TSVs more evenly than SP(16, 4) in the periphery.

Fig. 21 demonstrates how the different TSV distributions can impact the delay. First, it

suggests that it is better to distribute TSVs unevenly in the center, i.e., SP(32, 2) is preferred.

Second, the delay is slightly better if TSVs are evenly distributed in the periphery, i.e., SP(8, 2) is

preferred.

The ratio R also does matter. As mentioned previously, the TSV density in the center is

always larger than that in the periphery. Hence, the bigger the ratio R is, the larger the footprint is.

Meanwhile, as shown in Fig. 22, the delay gets better as R increases due to richer routing

resources. Consequently, as usual, it is still a trade-off between delay and area. Again, to keep the

delay penalty less than 3% compared to the BSL, R must be set to higher than 0.6. As a result, the

best choice here should be SE(32, 2, 0.6, 8, 2).

All the architectures mentioned above are compared and evaluated thoroughly. The one with

the smallest 3D-SBs area while keeping the performance (i.e., the delay penalty is less than 3%

TABLE IV . SE ARCHITECURES UNDER EVALUATION (PARTIAL)

ISC# ESC# R ISP# ESP#

32 2 0.3 16 4

32 2 0.3 8 2

16 1 0.3 16 4

16 1 0.3 8 2

32 2 0.7 16 4

32 2 0.7 8 2

16 1 0.7 16 4

16 1 0.7 8 2

100.00%

85.76%

64.28% 60.17%

100.00%

87.52%

68.70%
65.10%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

IS20=(20,1) ES2=(32,2) (20,2) (32,2,0.6,8,2)N
o
rm
a
liz
e
d
 a
re
a
 (t
o
 I
S2
0)

SB Tile

Figure 23. The average normalized area of different architectures.

24

compared to BSL) are chosen as the representation of each architectural style. As shown in Fig.

23, the normalized (to IS20 instead of BSL in the previous evaluations) area consumptions of

IS20, ES2, SP(20, 2) and SE(32, 2, 0.6, 8, 2) are depicted. The average normalized delay (to BSL)

is shown in Fig. 24. The hybrid architectures, which utilize both the techniques of IS and ES, can

save more than 35% area of SBs compared to IS20. Especially, the difference of delay penalty

between SE(32, 2, 0.6, 8, 2) and IS20 is less than 2%. Therefore, the hybrid architectures SP(20, 2)

and SE(32, 2, 0.6, 8, 2) are the most recommended.

四、 結論

In this project, we present an iterative layer-aware partitioning algorithm iLap targeting TSV

minimization for 3D structures. It utilizes a multi-way min-cut partitioning engine inside its

iterative framework to gradually construct the final solution layer by layer in the bottom-up

fashion. The experimental results clearly demonstrate that iLap is capable of reducing total TSV

count by about 35% compared to layer-unaware hMetis, experiencing a smoother TSV increase as

the number of layers raises, distributing TSVs more evenly among different vertical layers,

preventing any layer junction from having a burst number of TSVs, and only requires an

acceptable runtime. Consequently, compared to the prior art, we believe iLap can generate a

better TSV-minimized solution, which serves as a good starting point for further tradeoff between

wirelength and number of TSVs in upcoming state-of-the-art 3D IC/FPGA design flows.

Moreover, we show that the utilization of TSVs is actually very low in the baseline 3D

FPGA architecture where the fully connected 3D-SBs are fully distributed. Therefore the area of

3D FPGAs can be further reduced while the performance is still guaranteed. There are two simple

approaches to reduce the area of 3D-SBs. The internal-sparse architecture (IS) is to reduce the

number of TSVs in each single 3D-SB and the external-sparse 3D-SBs architecture (ES) is to

reduce the number of 3D-SBs. The hybrid methods, including sparse architecture (SP) and sunny

egg (SE), are also proposed to further minimize the area of 3D FPGAs by using the techniques of

IS and ES at the same time. Those architectures are explored thoroughly and evaluated

objectively. After comparing all these architectures, two generic 3D FPGA architectures are

suggested, that is, the SP architecture (20, 2) and SE architecture (32, 2, 0.6, 8, 2), which save the

most area with acceptable delay penalty. SP(20, 2) reduces 55% (to BSL) and 35% (to IS20) of

SB area; SE(32, 2, 0.6, 8, 2) reduces 58% (to BSL) and 39% (to IS20) of SB area. Both of them

are with (less than) 3% increase delay.

100.00%

100.75%

101.50%

102.25%

103.00%

2 3 4 5 6 7 8A
vg
. n
o
rm
a
li
ze
d
 d
e
la
y

Layers

(20, 2)

(32,2,0.6,8,2)

ES2

IS20

Figure 24. The average normalized dealy of different architectures.

25

五、 參考文獻

[1] International Technology Roadmap for Semiconductor. Semiconductor Industry Association,

2009.

[2] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: a novel chip design for

improving deep submicron interconnect performance and systems-on-chip integration,” Proc.

IEEE, vol. 89, no. 5, pp. 602–633, 2001.

[3] A. W. Topol, D. C. La Tulipe, L. Shi, D. J. Frank, K. Bernstein, S. E. Steen, A. Kumar, G. U.

Singco, A. M. Young, K. W. Guarini and M. Ieong, “Three-dimensional integrated circuits,”

IBM J. of Research and Development, vol. 50, no. 4/5, pp. 491–506, Jul./Sep. 2006.

[4] G. Philip, B. Christopher, and P. Ramm, Handbook of 3D integration. Wiley-VCH, 2008.

[5] S. Das, A. P. Chandrakasan, and R. Reif, “Calibration of rent's rule models for

three-dimensional integrated circuits,” IEEE Trans. Very Large Scale Integration Systems,

vol. 12, no. 4, pp. 359–366, Apr. 2004.

[6] M. Lin, A. El Gamal, Y.-C. Lu, and S. Wong, “Performance benefits of monolithically

stacked 3-D FPGA,” IEEE Trans. Computer-Aided Design Integrated Circuits and Systems,

vol.26, no.2, pp.216–229, Feb. 2007.

[7] C. Dong, D. Chen, S. Haruehanroengra, and W. Wang, “3-D nFPGA: A Reconfigurable

Architecture for 3-D CMOS/Nanomaterial Hybrid Digital Circuits,” IEEE Trans. Circuit and

System I: Regular Papers, vol. 54, no. 11, pp. 2489–2501, Nov. 2007.

[8] R. R. Tummala and V. K. Madisetti, “System on chip or system on package?” IEEE Design

& Test of Computers, vol. 16, no. 2, , pp. 48–56, Apr.–Jun., 1999.

[9] P. H. Shiu and K. S. Lim, “Multi-layer floorplanning for reliable system-on-package,” Proc.

2004 Int’l Symp. Circuits and System, May 2004, pp. 23–26.

[10] K. L. Tai, “System-in-package (SIP): challenges and opportunities,” Proc. Asia and South

Pacific Design Automation Conf., 2000, pp. 191–196.

[11] W. R. Davis et al., “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Design

and Test of Computers, vol. 22, no. 6, pp. 498–510, Nov.–Dec., 2005.

[12] I. Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A low-overhead fault tolerance scheme

for TSV-based 3D network on chip links,” Proc. Int’l Conf. Computer-Aided Design, 2008,

pp. 598–602.

[13] C. Ferri, S. Reda, and R. I. Bahar, “Parametric yield management for 3D ICs: models and

strategies for improvement,” J. Emerging Technologies in Computing Systems, vol. 4, no. 4,

Article ID 19, Oct. 2008.

26

[14] M. Pathak, Y.-J. Lee, T. Moon, and S. K. Lim, “Through-silicon via management during 3D

physical design: when to add and how many?” Proc. Int’l Conf. on Computed-Aided Design,

pp. 387–394, 2010.

[15] A.-C. Hsieh, T. Hwang, M.-T. Chang, M.-H. Tsai, C.-M. Tseng and H.-C. Li, “TSV

redundancy: architecture and design issues in 3D IC,” Proc. Design, Automation & Test in

Europe Conf. & Exibit., pp. 166–171, 2010.

[16] Z. Li, X. Hong, Q. Zhou, S. Zeng, J. Bian, W. Yu, H. H. Yang, V. Pitchumani, and C.-K.

Cheng, “Efficient thermal via planning approach and its application in 3-D floorplanning,”

IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 4,

pp. 645–658, Apr. 2007.

[17] B. Goplen and S. Sapatnekar, “Placement of 3D ICs with thermal and interlayer via

considerations,” Proc. Design Automation Conf., pp. 626–631, 2007.

[18] J. Cong and G. Luo, “A multilevel analytical placement for 3D ICs,” Proc. Asia and South

Pacific Design Automation Conf., pp. 361–366, 2009.

[19] Z. Li, X. Hong, Q. Zhou, Y. Cai, J. Bian, H. H. Yang, V. Pitchumani, and C.-K. Cheng,

“Hierarchical 3-D floorplanning algorithm for wirelenth optimization,” IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems, vol. 53, no. 12, pp. 2637–2646,

Dec. 2006.

[20] V. F. Pavlidis and E. G. Friedman, “Interconnect-based design methodology for

three-dimensional integrated circuits,” Proc. IEEE, vol. 97, no. 1, pp. 123–140, Jan. 2009.

[21] C. Chiang and S. Sinha, “The road to 3D EDA tool deadiness,” Proc. Asia and South Pacific

Design Automation Conf., pp. 429–436, 2009.

[22] I. H.-R. Jiang, “Generic integer linear programming formulation for 3D IC partitioning,”

22nd IEEE Int’l SOC Conf., pp. 321–324, 2009.

[23] D. H. Kim, K. Athikulwongse, and S. K. Lim, “A study of through-silicon-via impact on the

3D stacked IC layout,” Proc. Int’l Conf. on Computer-Aided Design, pp. 674–680, 2009.

[24] Y. C. Hu, Y. L. Chung, and M. C. Chi, “A multilevel multilayer partitioning algorithm for

three dimensional integrated circuits,” Proc. Int’l Symp. on Quality Electronic Design, pp.

483–487, 2010.

[25] C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic for improving network

partitions,” Proc. Design Automation Conf., pp.175–181, 1982.

[26] C. Ababei, H. Mogal, and K. Bazargan, “Three-dimensional place and route for FPGAs,”

IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 6,

pp. 1132–1140, Jun. 2006.

27

[27] K. Siozios, A. Bartzas, and D. Soudirs, “Architecture-level exploration of alternative

interconnection schemes targeting to 3D FPGAs: a software-supported methodology,” Int’l J.

of Reconfigurable Computing, vol. 2008, Article ID 764942, 2008.

[28] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph partitioning:

applications in VLSI domain,” IEEE Trans. on VLSI Systems, vol. 7, no. 1, pp. 69–79, Mar.

1999.

[29] TPR: three-dimensional placement and route for FPGAs. [Online]. Available:

http://www.ece.umn.edu/users/kia/mount/Download/

[30] S. Yang, “Logic synthesis and optimization benchmarks user guide,” Technical Report

1991-IWLS-UG-Saeyang, Microelectronics Center of North Carolina, 1991.

[31] http://www.eecs.berkeley.edu/~alanmi/benchmarks/altera/old/altera12_blif_baf.zip..

[32] A. Marquardt, V. Bets, and J. Rose, “Timing-driven placement for FPGAs,” Proc. Int’l Symp.

Field Programmable Gate Arrays, Feb. 2000, pp. 203–213.

[33] VPR: versatile packing, placement and routing for FPGAs. [Online]. Available:

http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html

[34] Y.-S. Huang, Y.-H. Liu, and J.-D. Huang, “Iterative 3D partitioning for through-silicon via

minimization,” Proc. 16th Workshop on Synthesis and System Integration of Mixed

Information Technologies, Oct. 2010.

[35] K. Siozios, V. F. Pavlidis, and D. Soudris, “A software-supported methodology for exploring

interconnection architectures targeting 3-D FPGAs.” Proc. Design, Automation & Test in

Europe Conf. and Exhibition, 2009, pp. 172–177.

[36] Altera. [Online]. Available: http://www.altera.com/

[37] Xilinx. [Online]. Available: http://www.xilinx.com/

[38] C. S. Tan, R. J. Gutmann, and L. R. Reif, Editors, Wafer level 3-D ICs process technology,

MA: Springer, 2008.

六、 成果自評

我們於計劃第二年的這段期間（99 年 8 月 1 日至 100 年 7 月 31 日），在學術論文發表

方面，在今年度我們發表了以下國際會議論文：

1. Ya-Shih Huang and Juinn-Dar Huang, “Throughput-Driven Hierarchical Placement for

Two-Dimensional Regular Multicycle Communication Architecture,＂ Asia Symposium on

Quality Electronic Design, pp. 134–139, Aug. 2010.

2. Ya-Shih Huang, Yang-Hsiang Liu, and Juinn-Dar Huang, “Iterative 3D Partitioning for

Through-Silicon Via Minimization,＂ Proc. of the 16th Workshop on Synthesis and System

Integration of Mixed Information Technologies, pp. 154–159, Oct. 2010.

28

3. Chia-I Chen, Bau-Cheng Lee, Juinn-Dar Huang, “Architectural Exploration of 3D

FPGAs towards a Better Balance between Area and Delay,＂ Proc. of Design, Automation

& Test in Europe Conference and Exhibition, pp. 587–590, Mar. 2011. (Best Paper

Candidate)

4. Juinn-Dar Huang, Yi-Hang Chen, and Wan-Hsien Lin, “Performance-Optimal Behavioral

Synthesis with Degenerable Compound Functional Units,” Proc. of IEEE International

Symposium on VLSI Design, Automation, and Test, pp. 337–340, Apr. 2011.

5. Ya-Shih Huang, Yang-Hsiang Liu and Juinn-Dar Huang, “ Layer-Aware Design

Partitioning for Vertical Interconnect Minimization,＂ Proc. of IEEE Computer Society

Annual Symposium on VLSI, pp. 144–149, Jul. 2011. (Best Paper Award)

還有以下國內會議論文：

1. Ya-Shih Huang, Yang-Hsiang Liu, and Juinn-Dar Huang, “Layer-Aware Partitioning for

Through-Silicon Via Minimization in 3D ICs,＂ Proc. of the 21st VLSI Design/CAD

Symposium, Aug. 2010.

在專利方面，通過以下國內外專利：

1. 黃俊達，林步青，李耿維，周景揚，“精細頻寬調控的仲裁器及其仲裁方法＂ 中華民

國專利案號 I332615，2010 年 11 月 1 日。

2. Juinn-Dar Huang and Chia-I Chen, “Dynamical sequentially-controlled low-power

multiplexer device,” US 7881241 B2, Feb. 2011.

3. 黃俊達，陳嘉怡，“低功率動態序向控制多工器＂ 中華民國專利案號 I342670，2011

年 5 月 21 日。

並有以下專利正在申請中：

1. 黃俊達、呂智宏、林步青、周景揚，“應用於查找表式 FPGA 的壓縮樹延遲最佳化”。

2. 黃俊達、王毓翔、林步青、周景揚，“可參數化管線式快速傳利葉轉換硬體產生器”。

3. 黃俊達、呂智宏、林步青、周景揚，Delay optimal compressor tree synthesis for LUT-based

FPGAs

.

和我們當初在計劃提案中的預計的目標相比較，我們自評今年度計劃的完成度相當不

錯,其中更有一篇論文獲得 ISVLSI 2011 會議之最佳論文獎(Best paper award)，一篇論文於

VLSI-DAT 2011 會議中獲最佳論文候選(Best paper candidate)，在學術論文發表及專利方面

皆有不錯的表現，。

29

可供推廣之研發成果資料表
□ 可申請專利 ▓ 可技術移轉 日期：100 年 10 月 31 日

國科會補助計畫

計畫名稱：

針對三維規則型邏輯結構之架構探索及穩健合成系統開發

計畫主持人：黃俊達 副教授 國立交通大學電子系

計畫編號：NSC99－2220－E－009－037－

學門領域：微電學門

技術/創作名稱
適用於三維電路之層級感知矽穿孔最小化設計分割法

(Layer-Aware Design Partitioning for Vertical Interconnect

Minimization)

發明人/創作人 黃雅詩、劉揚翔、黃俊達

技術說明

中文：

我們針對三維積體電路發展一套能夠最佳化矽穿孔數目之迭代式

層級感知分割演算法。此演算法應用多路最小切割法將電路以迭代

的方式逐層分配至適合的層級中，使其更能考慮全域的分佈狀況，

而達到更好的效果。同時也在不違反輸入及輸出腳位必須在晶片底

層的限制下，進而改善三維的積體電路。

英文：

We propose an iterative layer-aware partitioning algorithm, named
iLap, for TSV minimization in 3D structures. iLap iteratively applies
multi-way min-cut partitioning to gradually divide a given design layer
by layer in the bottom-up fashion. Meanwhile, iLap also properly
fulfills a specific I/O pad constraint incurred by 3D structures to further
improve its outcome.

可利用之產業

及

可開發之產品

1. Electronic Design Automation (EDA) (EDA 產業)

2. Integrated Circuit Design (IC 設計產業)

技術特點

針對三維積體電路的結構及腳位限制，並考量面積龐大的矽穿孔所

造成的影響，有效且快速的在分配電路時減少矽穿孔所需數目，並

且能夠迅速的代換核心分割法，延伸至各種不同分割目標而產生設

計者所需的結果。

推廣及運用的價值

此演算法能夠幫助設計三維電路時能具有較低的使用面積。這項優

點不管是針對特定用途而設計的特殊應用積體電路(ASIC)或是規

則型架構的電路來說，都可以減少面積以及資源上的損失並且提高

生產良率及可靠度。

※ 1.每項研發成果請填寫一式二份，一份隨成果報告送繳本會，一份送 貴單位

研發成果推廣單位（如技術移轉中心）。

※ 2.本項研發成果若尚未申請專利，請勿揭露可申請專利之主要內容。

※ 3.本表若不敷使用，請自行影印使用。

30

可供推廣之研發成果資料表
□ 可申請專利 ▓ 可技術移轉 日期：100 年 10 月 31 日

國科會補助計畫

計畫名稱：

針對三維規則型邏輯結構之架構探索及穩健合成系統開發

計畫主持人：黃俊達 副教授 國立交通大學電子系

計畫編號：NSC99－2220－E－009－037－

學門領域：微電學門

技術/創作名稱
為取得面積與延遲間較佳平衡之三維可程式邏輯閘陣列架構探索

(Architectural Exploration of 3D FPGAs towards

a Better Balance between Area and Delay)

發明人/創作人 陳嘉怡、李寶鑑、黃俊達

技術說明

中文：

將標準的二維可程式邏輯閘陣列(2D FPGAs)使用同樣的方式，將訊

號切換模式從二維的架構拓展至三維，而構成三維可程式邏輯閘陣

列(3D FPGAs)架構。並藉由適當調整三維切換箱的排列方式以及其

內部直通矽穿孔的連接數目，可以犧性極少量時間延遲而大幅度的

減少所佔面積。

英文：

We propose a generic 2D FPGA architecture can evolve into a 3D one
by extending its signal switching scheme from 2D to 3D. Furthermore,
by conducting architectural explorations for 3D FPGAs, we greatly
reduce the footprint with only minor delay increase by properly
tailoring the structure and deployment strategy of 3D-SBs.

可利用之產業

及

可開發之產品

1. Electronic Design Automation (EDA) (EDA 產業)

2. Integrated Circuit Design (IC 設計產業)

技術特點

針對三維可程式邏輯閘陣列提供了一個完整的架構探索。探討在不

同的切換箱架構下因矽穿孔的分布不同而造成時間延遲的交互影

響，並且利用典型分布的結論提出節省硬體資源之複合型的架構。

推廣及運用的價值

提出省面積的新架構，並針對同一架構內不同的直通矽穿孔擺放方

式做一個完整評估，目的是為了找出在不同架構內面積與時間延遲

間更具平衡的擺放方式。所提出的新架構可犧性極少量時間延遲而

大幅度的減少所佔面積資源。

※ 1.每項研發成果請填寫一式二份，一份隨成果報告送繳本會，一份送 貴單位

研發成果推廣單位（如技術移轉中心）。

※ 2.本項研發成果若尚未申請專利，請勿揭露可申請專利之主要內容。

※ 3.本表若不敷使用，請自行影印使用。

國科會補助計畫衍生研發成果推廣資料表
日期:2011/10/31

國科會補助計畫

計畫名稱: 子計畫三：針對三維規則型邏輯結構之架構探索及穩健合成系統開發(2/2)

計畫主持人: 黃俊達

計畫編號: 99-2220-E-009-037- 學門領域: 晶片科技計畫--整合型學術研究
計畫

研發成果名稱
(中文) 為取得面積與延遲間較佳平衡之三維可程式邏輯閘陣列架構探索

(英文) Architectural Exploration of 3D FPGAs towards a Better Balance between Area and
Delay

成果歸屬機構
國立交通大學 發明人

(創作人)

黃俊達,陳嘉怡,李寶鑑

技術說明

(中文) 將標準的二維可程式邏輯閘陣列(2D FPGAs)使用同樣的方式，將訊號切換模式從
二維的架構拓展至三維，而構成三維可程式邏輯閘陣列(3D FPGAs)架構。並藉由
適當調整三維切換箱的排列方式以及其內部直通矽穿孔的連接數目，可以犧性極
少量時間延遲而大幅度的減少所佔面積。

(英文) We propose a generic 2D FPGA architecture can evolve into a 3D one by extending its
signal switching scheme from 2D to 3D. Furthermore, by conducting architectural
explorations for 3D FPGAs, we greatly reduce the footprint with only minor delay
increase by properly tailoring the structure and deployment strategy of 3D-SBs.

產業別 電機及電子機械器材業

技術/產品應用範圍
1. Electronic Design Automation (EDA) (EDA 產業)
2. Integrated Circuit Design (IC 設計產業)

技術移轉可行性及
預期效益

提出省面積的新架構，並針對同一架構內不同的直通矽穿孔擺放方式做一個完整評估，
目的是為了找出在不同架構內面積與時間延遲間更具平衡的擺放方式。所提出的新架構
可犧性極少量時間延遲而大幅度的減少所佔面積資源。

註：本項研發成果若尚未申請專利，請勿揭露可申請專利之主要內容。

99 年度專題研究計畫研究成果彙整表

計畫主持人：黃俊達 計畫編號：99-2220-E-009-037-
計畫名稱：針對 3D 整合之電子設計自動化技術開發--子計畫三：針對三維規則型邏輯結構之架構探索

及穩健合成系統開發(2/2)
量化

成果項目 實際已達成

數（被接受

或已發表）

預期總達成
數(含實際已
達成數)

本計畫實

際貢獻百
分比

單位

備 註 （ 質 化 說

明：如數個計畫
共同成果、成果
列 為 該 期 刊 之
封 面 故 事 ...
等）

期刊論文 0 0 100%
研究報告/技術報告 0 0 100%
研討會論文 0 0 100%

篇

論文著作

專書 0 0 100%
申請中件數 1 1 100%

專利
已獲得件數 2 2 100%

件

件數 0 0 100% 件
技術移轉

權利金 0 0 100% 千元

碩士生 7 7 100%
博士生 3 3 100%
博士後研究員 0 0 100%

國內

參與計畫人力
（本國籍）

專任助理 0 0 100%

人次

期刊論文 0 0 100%
研究報告/技術報告 0 0 100%
研討會論文 5 5 100%

篇

論文著作

專書 0 0 100% 章/本
申請中件數 1 1 100%

專利
已獲得件數 1 1 100%

件

件數 0 0 100% 件
技術移轉

權利金 0 0 100% 千元
碩士生 0 0 100%
博士生 0 0 100%
博士後研究員 0 0 100%

國外

參與計畫人力
（外國籍）

專任助理 0 0 100%

人次

其他成果
(無法以量化表達之成

果如辦理學術活動、獲
得獎項、重要國際合
作、研究成果國際影響
力及其他協助產業技
術發展之具體效益事
項等，請以文字敘述填
列。)

1. 100 年 4 月

 於 IEEE International Symposium on VLSI Design, Automation, and Test

2011 國際會議

 榮獲 Best Paper Candidate 論文名稱：Performance-Optimal Behavioral
Synthesis with Degenerable Compound Functional Units

2. 100 年 6 月

 參與教育部主辦之「九十九學年度大學校院積體電路電腦輔助設計(CAD)軟

體製作競賽」

 榮獲 定題組 佳作 作品名稱：3D IC Design Partitioning with Power
Consideration

3. 100 年 7 月

 於 IEEE Computer Society Annual Symposium on VLSI 2011 國際會議

 榮獲 Best Paper Award 論文名稱：Layer-Aware Design Partitioning for
Vertical Interconnect Minimization

 成果項目 量化 名稱或內容性質簡述

測驗工具(含質性與量性) 0
課程/模組 0
電腦及網路系統或工具 0
教材 0
舉辦之活動/競賽 0
研討會/工作坊 0
電子報、網站 0

科
教
處
計
畫
加
填
項
目 計畫成果推廣之參與（閱聽）人數 0

國科會補助專題研究計畫成果報告自評表

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）、是否適

合在學術期刊發表或申請專利、主要發現或其他有關價值等，作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估
■達成目標
□未達成目標（請說明，以 100 字為限）

□實驗失敗

□因故實驗中斷
□其他原因

說明：

2. 研究成果在學術期刊發表或申請專利等情形：
論文：■已發表 □未發表之文稿 □撰寫中 □無

專利：■已獲得 □申請中 □無

技轉：□已技轉 □洽談中 ■無

其他：（以 100 字為限）
3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500 字為限）
在本計畫中所提出的設計分割演算法能夠幫助設計三維電路時能具有較低的使用面積，這

項優點能夠協助在 IC 設計領域在推進至三維製程時有極大的助益。不管是針對特定用途

而設計的特殊應用積體電路(ASIC)或是規則型架構的電路，都可以減少面積以及資源上的

損失並且提高生產良率及可靠度。而再針對三維規則型架構方面，針對同一架構內不同的

直通矽穿孔擺放方式做一個完整評估，目的是為了找出在不同架構內面積與時間延遲間更

具平衡的擺放方式。此架構探索流程能夠在尚未進行量產的三維架構上進行較完整的分析

及探討，並在最後提出的新架構，使得在犧性極少量時間延遲下大幅度的減少所佔面積資

源，有助於降低製造時耗費的硬體成本。

