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Thewire delay is gradually dominating the system performance and
becoming one of the most critical design issues. Three-dimensional
integrated circuit (3D | C) technologies enable to stack multiple dies
on asingle chip and provide several unique advantages compared to
conventional 2D approaches such as wire length reduction, power
reduction, chip areareduction, and increasing device density.
However, it is hard to precisely estimate the wire delay in early
design stages until floorplan/placement is actually done. In this
project, we first show how the latency incurred by wire delay
dominates system throughput and re-eval uate several exiting
floorplanning strategies which are considered providing the same
quality of result (QoR) in the past. Then we propose new
throughput-aware floorplanning/placement strategies which
dynamically optimizes a set of most critical performance cyclesin
the system. These methodol ogies will be extended into the
architecture exploration in 3D regular structures.

One of the tough challenges for the broad applications of 3D regular
structure isthe lack of Electronic Design Automation (EDA) tools.
In this project, we intend to develop the advanced algorithms
targeting 3D regular logic structures. Furthermore, by utilizing the
newly developed dedicated algorithms, we can explore more
advanced architectures for 3D logic structures to achieve the perfect
balance among hardware utilization, fault-tolerance capability and



system performance.
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Abstract

The wire delay is gradually dominating the system performance and becoming one of the
most critical design issues. Three-dimensional integrated circuit (3D IC) technologies enable to
stack multiple dies on a single chip and provide several unique advantages compared to
conventional 2D approaches such as wire length reduction, power reduction, chip area reduction,
and increasing device density. However, it is hard to precisely estimate the wire delay in early
design stages until floorplan/placement is actually done. In this project, we first show how the
latency incurred by wire delay dominates system throughput and re-evaluate several exiting
floorplanning strategies which are considered providing the same quality of result (QoR) in the
past. Then we propose new throughput-aware floorplanning/placement strategies which
dynamically optimizes a set of most critical performance cycles in the system. These
methodologies will be extended into the architecture exploration in 3D regular structures.

One of the tough challenges for the broad applications of 3D regular structure is the lack of
Electronic Design Automation (EDA) tools. In this project, we intend to develop the advanced
algorithms targeting 3D regular logic structures. Furthermore, by utilizing the newly developed
dedicated algorithms, we can explore more advanced architectures for 3D logic structures to
achieve the perfect balance among hardware utilization, fault-tolerance capability and system

performance.

Keyword
Regular logic architecture, architecture exploration, throughput optimization, multicycle

communication, high-level synthesis, design methodology, and design automation.
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Introduction

With the advance of semiconductor manufacturing process technology, ever-shrinking feature
size and exponentially growing number of transistors on a single die are raising numerous tough
challenges such as signal integrity, power integrity and dissipation, leakage power, clock
distribution and yield issues [1]. In addition, the global interconnect delay fails to scale as the
device delay does and is gradually dominating the system performance [1]. Therefore, a solution
that can both alleviate the global interconnect delay bottleneck as well as provide new avenues to
enable even advanced device and architecture innovations is eagerly demanded. While
approaching the physical limitations, traditional scaling is no longer the best way for advancing
manufacturing process technology, and hence three-dimensional (3D) technologies have been
emerging in recent years [2]-[5]. 3D integrated circuit technologies enable stacking multiple dies
on a single chip [6][7] and provide several unique advantages compared to those conventional

two-dimensional (2D) ones, such as higher system integration, better heterogeneous integration
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capability, and shorter global wirelength (i.e., better performance).

However, stacking chips or dies is not a whole new idea. SiPs (system-in-package) and PoPs
(package-on-package), which have been available in industry for several years, can also be
regarded as 3D techniques in the broad sense [8]-[10]. SiPs and PoPs stack multiple chips and
use wire-bonding for vertical signal links while packaging. However, the locations for
wire-bonding are restricted on the periphery of a chip layer and the package substrate. Thus these
kinds of 3D techniques are facing the problems such as limited number of pins for vertical

connections, long and slow vertical signal paths, and chip-package codesign. Among those

Device layer
[ Block | [ Block |
— - —
Through- = Metal layer
silicon vias [ Biok | [ Block |
== — — Dieletric layer
[ Biock | [ Biock | |
| I = = i W‘/ Bump

Figure 1. A TSV-based 3D structure.

state-of-the-art 3D integration technologies, through-silicon via (TSV) is one of the most
promising methods to accomplish vertical interconnects between different layers [4]. Fig. 1
illustrates a typical TSV-based 3D IC structure. By utilizing the wafer/die bonding techniques,
TSVs cut across thinned silicon substrates to make inter-die connections, which results in high
compatibility with the present typical CMOS processes. All external I/O signals must pass
through those metal bumps located at the bottom of the 3D structure to bridge the internal logic

and the external system [11]-[13].

Observation and Motivation

Compared with a typical 2D design, though a TSV-based 3D design can generally reduce the
global interconnect delay, currently available TSV fabrication processes still suffer from
relatively low yield as well as large TSV pitch size [14]. It is reported that in 22nm technology a
TSV with 8um pitch occupies roughly the same area as 1k SRAM cells (0.061um*) [1], and TSV
yield drops to about 80% in a 3D design with 2k TSVs [15]. Therefore, using less number of
TSVs to complete a 3D design is highly desirable in terms of both yield and area cost. As a
consequence, the issue of TSV minimization must be properly addressed in a design flow as
stepping into the 3D IC era.

In general, 3D IC backend flows can be roughly classified into two categories. The first one is
to combine TSV minimization into later design processes such as floorplanning [16] and
placement [17][18], which aims at both objectives at the same time. However, the above
mix-in-one problem is likely to become too complicated to be well handled. Alternatively, the
authors in [19]-[21] all suggest that it is crucial to make 3D partitioning an independent stage in
the backend flow as shown in Fig. 2. The suggested flow first partitions a given design into
different layers and then solves the remaining problem by classical 2D techniques or their simple
extensions. Hence, this methodology efficiently reduces the problem complexity while keeping
the quality of results nearly at the same level [19][20]. Since the outcome of 3D partitioning

mainly determines the number of required TSVs, several previous studies have been proposed to
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Figure 2. Referenced backend flow for 3D ICs.

tackle the problem of 3D partitioning for TSV minimization. One solution is to solve the problem
using integer linear programming (ILP) [22]. However, it can only solve small-size problem since
its runtime grows exponentially as problem size increases. In [23][24], each of them develops a
modified FM-based [25] partitioning method to obtain the resultant layer assignment. However,
all these methods only focus on minimizing the total amount of TSVs or die area, and do nothing
about evenly distributing TSVs among layers. Meanwhile, the authors of 3D FPGA synthesis
frameworks TPR [26] and 3D MEANDER [27] alternatively use a two-step approach — first
applying the well-known partitioning algorithm hMetis [28] to divide a design into a set of
layer-unaware partitions, and then associating each partition with a layer (i.e., layer assignment) —
to accomplish 3D design partitioning. Though hMetis is an efficient and effective multi-way
min-cut partitioning tool, it lacks for the notion of layer. In general, a typical 2D partitioning
algorithm basically gives a similar weight to a cut between any two partitions, whereas those
weights can vary a lot in 3D partitioning and highly depend on whether two partitions (i.e., layers)
are close or far away from each other.

Indeed, 3D designs can help minimize long interconnects through the extensive use of TSVs.
However, utilizing too few TSVs may limit this benefit and even increase the total wirelength,
while allocating too many TSVs surely enlarges design area size [14]. Though only focusing on
TSV reduction cannot guarantee decrease of wirelength after placement and routing, a

TSV-minimized (also area-minimized) partitioning technique should still be incorporated as a

total_tsv = 28 total_tsv = 21
[] 1o pad 2 6 5 Layer 4
[ 4
cell/block | |
O | cuty=5 ° e cuty=5
Layer 3 ' \ 7
cut; =9 ".“ i cut; =6
e K / / Layer 2 i %\."
cut,=9 "-.. : ; ,-" "._ cut, =5
NB'aY i TT—(2) Layer1 i
TN ROZa8 ;
- : 5 cut; =5 /L/v : T i EEe o T " leut =5
total cut size = 8 " Additional TSVs — | mEgy 8H Layero | H Bg O ]
connecting to 1/0s 1315 16 14 17 13 15 16 14 17

(a) (b) (©
Figure 3 (a) A 4-way min-cut partitioned design, (b) the worst possible, and (c) the best

possible 3D layering outcomes based on the partitioning in (a).
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preprocessing stage in a 3D design flow, which provides a good starting point for further tradeoff
between area and wirelength in the following stages.

Fig. 3 demonstrates a simple 4-layer 3D partitioning example. A given design with its 4-way
min-cut partitioning result is presented in Fig. 3(a). Based on the same initial partitioning result
given in Fig. 3(a), Fig. 3(b) and 3(c) respectively illustrate the worst possible and the best
possible 3D layering outcomes in terms of the number of TSVs. From the observations on Fig. 3,
here we would like to highlight two key ideas.

Firstly, all external I/O terminals must be located in the bottom-most layer. It implies those
square vertices representing I/O pads must always be located in Layer 0. As a result, extra TSVs
are required to properly relocate those I/O pads. As shown in Fig. 3(b), five additional signal
paths (in dotted lines) suggest that 13 more TSVs are further required. Those extra signal paths
are generally unconsidered in conventional multi-way min-cut partitioning algorithms. It also
explains why there is a big difference between the total cut size (=8) in Fig. 3(a) and the number
of total TSVs (=28) in Fig. 3(b).

Secondly, different layer assignments usually result in different TSV requirements even the
given initial partitioning result is identical. For instance, given the partitioning result shown in
Fig. 3(a), the total number of TSVs can range from 21 to 28 after examining all possible layer
assignments. Nevertheless, the best layering result with the minimum number of TSVs shown in
Fig. 6(d) cannot be derived from the initial partitioning outcome shown in Fig. 3(a), which is
obtained from hMetis.

According to the aforementioned discussions, it should be evident that conventional multi-way
min-cut partitioning algorithms virtually have no chances to perform 3D partitioning well in their
original forms due to their unawareness about the fundamentals of vertical die-stacking structure.
Therefore, a layer-aware partitioning algorithm specifically dedicated to 3D structures is strongly
demanded for advanced 3D IC design methodologies.

Meanwhile, according to [1][26][29], the SB has already been the most area-consuming unit
compared to the other elements in 2D FPGAs for a long time. The situation is becoming even
worse in 3D FPGAs because the 3D-SB is exactly where those TSVs locate. As shown in Fig. 4,
as manufacturing technology keeps scaling down, the area share of the 3D-SB is getting more
dominant, which is mainly because TSVs are not scaled well. Moreover, it is found that the TSV

utilization is actually quite low if the 3D-SB with full vertical connectivity is in use. As depicted
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Figure 4. The area ratio for each component in a tile.
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Figure 5. The average TSV utilization in a 3D FPGA architecture with full vertical connectivity.

in Fig. 5, the TSV utilization is still less than 10% even in the 8-layer 3D FPGA. Therefore, there
is a strong motive to optimize the 3D-SB structure and the 3D-SB deployment strategy for area
saving.

3D MEANDER is another design framework for 3D FPGAs. In addition, it also studies the
impact of different deployment strategies for 3D-SBs. It proposes a family of 3D FPGA
architectures in which 2D-SBs and 3D-SBs are mixed up in certain regular spatial patterns.
However, the number of available TSVs within a 3D-SB is assumed fixed in 3D MEANDER.
That is, it does not investigate what the impact of the different number of TSVs in a 3D-SB is.

In this project, we first point out that the utilization of TSVs is actually very low in a 3D
FPGA architecture with full vertical connectivity, which inspires us to discover new architectures
that can achieve a better balance between area and delay. There are basically two ways for area
reduction: reducing the number of TSVs in a 3D-SB, and reducing the number of 3D-SBs. In
combination of above two ideas, we propose two major families of architectures and extensively
evaluate numerous instances through thorough and systematic comparisons to pick out the better
ones. Note that minimizing area only is one thing, but minimizing area without sacrificing delay

is completely another thing.

I FEroasan

This project indicates the design issues when integrating 3D stacking technology into regular
architectures. This emerging technology allows stacking multiple layers of dies and typically
resolves the vertical inter-layer connection issue by TSVs. However, TSVs also occupy
significant silicon estate as well as incur reliability problems. The deployment of TSVs must be
very judicious in 3D designs. An iterative layer-aware partitioning algorithm, named iLap, for
TSV minimization in 3D structures is proposed. On the other hand, a generic 2D FPGA
architecture can evolve into a 3D one by extending its signal switching scheme from 2D to 3D by
means of TSVs. However, replacing all 2D switch boxes (SBs) by 3D ones with full vertical
connectivity is found both area-consuming and resource-squandering. Therefore, it is possible to
greatly reduce the footprint with only minor delay increase by properly tailoring the structure and
deployment strategy of 3D SB. In this project, we also perform a comprehensive architectural
exploration of 3D FPGAs. Various architectural alternatives are proposed and then evaluated

thoroughly to pick out the most appropriate ones with a better area/delay balance.



Layer-Aware Iterative Partitioning

A. Problem formulation

A design is modeled as a hypergraph G = (V, E), where V' is a set of vertices including a set
of functional cells (or blocks) C and a set of /O pads I (i.e., V=C U I, CN I=); and E is a set
of hyperedges. For each vertex v € V, area(v) denotes the area cost of v. Each hyperedge is a
subset of V] i.e., e € V ve € E. A k-layer disjoint partition set of G with all the I/O terminals
residing in the bottom-most layer is represented as L = {Lo=I, L, L, ... Ly}, where L; is the
partition assigned to the i-th layer and is a subset of C; i.e., Lic C v 1<i<kL,NL=C vi#
1<, j<kyand L, U L, U...UL;=C.

For a vertex v, layer(v) indicates which layer v actually resides in. That is, layer(v) =i, v v
€ L;. The range pair of a hyperedge e is defined as rp(e) = (b, ¢) if e connects vertices from the
lower b-th layer to the upper #-th layer; i.e., V v € e, b < layer(v) < t. Then the number of TSVs
required to complete e can be calculated as tsv(e) = ¢ — b. The layer junction jct; is defined as the
junction between the two adjacent layers L, jand L;, V 1 < i < k. The number of TSVs passing
through jct; 1s further defined as cut;. Hence, the total number of TSVs, total tsv, needed for a 3D
partitioning solution L can be determined either by summing the required TSVs for all
hyperedges (Z,agtsw(e)) or by summing TSVs passing through all junctions (Zf=, cut,).
Consider the example shown in Fig. 3(b), rp(e;) = (1, 4) and thus #sv(e;) = 3. Similarly, the total
number of TSVs in Fig. 3(b) is total tsv = Zeut, =5+ 9 +9 + 5 = 28, including 15 TSVs
connecting between cells, and 13 TSVs connecting cells and I/O pads. We would like to
emphasize again that classical partitioning algorithms usually have no idea about the 1/O pad
connection constraint and always underestimate the real TSV demand even excluding those TSVs
for connecting cells and I/O pads (8 vs. 15 in the case shown in Fig. 3(a) and 3(b)) due to their
layer-unawareness. Those are the major reasons why the classical min-cut-based partitioning
solutions are generally not well optimized in 3D cases (shown later).

In this paper, we model the 3D partitioning problem as a layer-aware multi-way partitioning
problem. Given a target 3D structure consisting of k& layers stacking vertically, a design G, and the
I/O pad constraint, our proposed algorithm partitions G into k sub-designs and each sub-design is
explicitly associated with a vertical layer so that the total number of TSVs is minimized. That is,
given G = (V= C U [, E) with layer(v) =0 v v € [, our algorithm directly finds the mapping, 1

<layer(v)<k v v € C,such that total tsv is minimizeds.

B. Proposed algorithm

Here we propose our iterative partitioning framework that gradually constructs the solution
from the bottom-most layer all the way to the topmost one. Consider that all /O pads must reside
in Ly by definition and then the number of TSVs through jct, (i.e., cuty,) is always fixed to || no
matter how other cells (or L;~Ly) get partitioned eventually. As a result, if we define G, by
compacting all the I/O pads into a supervertex vs and keeping all the connected hyperedges
unchanged as shown in Fig. 6(a), it is evident that jct, and cut, should still remain unchanged in
G). Next, an arbitrary conventional k-way area-balanced min-cut partitioning algorithm is applied
on G to get k partitions, where area(v;) is set to zero to avoid disturbing area balancing during

partitioning. Among those & disjoint partitions, exactly one partition p, can contain v,, which
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total_tsv = 19, total cut size =9

() (D
/@ cuty = 4

Figure 6. (a) Compact I/O pads into v, then apply 4-way partitioning, (b) assign {7, 8 ,9} to L;, (¢)
compact L; into v, then apply 3-way partitioning, and (d) show the final layering result

further suggests that the cells residing in p, should be located as close to the I/O pads as possible
for cut minimization and thus should be assigned to L,. For example, the four dashed circles in
Fig. 6(a) indicate the 4-way area-balanced min-cut partitioning result, and hence L; is ultimately
setto {7, 8, 9} as Fig. 6(b) depicts.

Similarly, once the elements of L; are determined, cut, is therefore fixed. The next task then
becomes how to decide which vertices should reside in L,. Again, since Ly and L, are fixed at this
point, jct, and cut, are both fixed no matter how other remaining cells (or L,~Ly) get partitioned
later. As one can easily discover that the situation here is very similar to that of identifying L,
previously. Hence, if we further derive G, from G; by compacting L, into v, and apply (k—1)-way
min-cut partitioning on G, L, can then be identified in the same fashion (as shown in Fig. 6(c)).
That is, at each iteration our proposed algorithm always derives G, from G, by further
compacting L, into v, then applies (k—n)-way area-balanced min-cut partitioning to get L,;. This
iterative process is not terminated until L, ; is identified. Fig. 6(d) illustrates the final result
generated by the proposed algorithm, and the total TSV count is merely 19, which is smaller than
those in Fig. 3(b) and 3(c) (28 and 21, respectively).

The proposed framework possesses following four unique features:

e [t invokes multi-way min-cut partitioning at every iteration. The major reason is to find the

set of cells closest to the previously identified junctions, which potentially minimizes the
TSVs of the current junction. To better mimic the final solution, min-cut partitioning helps
distribute TSVs more evenly among all layers and hence potentially results in a more stable

outcome.



e Once a junction (and thus a cut) is fixed at some iteration, it is never altered at the following
iterations. This ensures that good decisions made previously are never overthrown later.

e At ecach iteration, only one partition is accepted and decisions for other partitions are
actually discarded. Later, the updated graph topology is reexamined and better decisions are
thus dynamically reacquired at the following iterations. For instance, L, = {1, 3, 10} in Fig.
6(d) is not identical to any partition shown in Fig. 6(a). As a consequence, applying any one
of conventional multi-way min-cut partitioning algorithms just once cannot get this kind of
result.

e From the traditional partitioning perspective, the result in Fig. 6(d) has a larger total cut size
than the result given in Fig. 3(a) (9 vs. 8). However, we already show that the former one is
actually a better 3D partitioning solution. Hence, it is obvious that the total cut size, which
is layer-unaware, is apparently not an appropriate metric in 3D partitioning. Again, this is
another evidence that classical multi-way min-cut partitioning algorithms can hardly
compete with the proposed iterative framework.

In this work, we adopt the well-known hMetis as the internal partitioning engine since it is one
of the best partitioning engines we can find today. However, our proposed framework can
obviously co-work with any multi-way min-cut partitioning engines. It implies that a better
engine (if any) may be adopted for better 3D partitioning results in the future.

The pseudo code of the complete algorithm is given in Fig. 7. All I/O pads are first compacted
into a supervertex v, during initialization. Each iteration starts with (k—n+1)-way min-cut
partitioning. Once partitioning is done, the vertices residing in the partition where v; is present are
assigned to the current layer, i.e., Layer n. The number n always increases by one at every
iteration end. At the final iteration, where n = k-1, the elements of Layer k-1 are identified after
2-way partitioning. Finally, the remaining cells are then automatically assigned to the topmost
Layer k and the algorithm ends. That is, exact k—1 invocations of multi-way min-cut partitioning

are required for getting one k-layer 3D partitioning result here.

Initialization

1 n« 1;

2 compact all I/O pads into a supervertex vg;
3 C—CU{vsh

Constructive Loop

4 while(n < k)

5 (k—n+1)-way min-cut partition(C);
6 foreach v; e C —{vs} do

7 if part(v;) == part(vs) do

8 assign v; to Layer n;

9 C—C—{v}

10 compact v; into vg;
11 n«n-+1;

12 foreach v; e C —{vs} do

13 assign v; to Layer k;

Figure 7. Pseudo code of iLap.
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Figure 8. The number of required TSVs in different layers.

C. Experiments

1.

Benchmarks and Experiment Setup

iLap has been implemented in C++/Linux environment. We demonstrate the
effectiveness of iLap through a series of comparisons with three hMetis-based methods:
1) hMetis: partitions are further layered according to their original sequential tags (i.e., in
random order basically); 2) EX-hMetis: partitions are best layered through exhaustively
examining all possible layer permutations; 3) EV-matrix: partitions are layered by the
method described in [26]. Note that the three hMetis-based methods all start with the
same set of partitions and thus the variances among their final results solely come from
different layer assignments. We evaluate the performance of iLap and other three
methods over a set of 14 test cases, consisting of 10 cases from the MCNC benchmark
set [30], three large cases (cfft, aqua, and video) from Altera [31], and one in-house
128-point FFT design (fft/28). They are intended to mimic complicated system designs
integrating a large number of functional blocks. The number of blocks ranges from 1,047
to 53,491. Since the test cases selected in our experiments are all far larger than those
used in [22], comparisons between iLap and the ILP-based approach proposed in [22]
are therefore omitted in this paper. We perform ten experiment runs on every test case

with different random seeds and take the average as the final result.

Results and Analyses

A set of experiments are conducted with various number of layers ranging from two to
ten. Table I reports the TSV demands as the number of layers is set to 4. It seems
EV-matrix just performs equally well as plain hMetis. Meanwhile, given a set of 4
partitions generated by hMetis, EX-hMetis always picks the one with the lowest TSV
count out of 4! = 24 different layer permutations and consequently EX-hMetis on
average attains 16% TSV reduction as compared with hMetis. Nevertheless, iLap can
reduce TSV count by 36% and 24% on average as compared to hMetis and EX-hMetis,
respectively. Moreover, for the largest three test cases (cfft, aqua, and video), iLap even
outperforms AMetis by more than 75%. Though hMetis is an excellent multi-way
min-cut partitioning algorithm, unfortunately it fails to be a good 3D partitioner due to

its layer-unawareness. Even EX-hMetis, with exhaustive layer permutations, still cannot
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defeat iLap. Therefore, it concludes that a dedicated layer-aware 3D partitioning
algorithm, like iLap, should be regarded as one of the essential components while
constructing a sophisticated 3D IC design environment.

Next, Fig. 8(a) depicts the average TSV count over 14 test cases as a function of the
number of layers; and three points are worth pointing out. Firstly, the more layers a
design gets partitioned into, the more TSVs it generally requires. Secondly, iLap is the
all-time winner from 2 layers to 10 layers among four methods. Thirdly, unlike the other
three methods, the number of TSVs required by iLap raises very smoothly as the number
of layers increases. Taking hMetis as the baseline, Fig. 8(b) reveals the average ratios of
TSV count over the number of layers; and two points are worth mentioning here. Firstly,
iLap constantly and steadily outperforms hMetis by about 35% in TSV count regardless
of the number of layers. Secondly, EX-hMetis always outperforms hMetis, as expected.
Meanwhile, Fig. 9(a) presents the average standard deviations of TSV count over a
different number of layers. Through constructing its outcome layer by layer, iLap can
better balance the TSV count among junctions. From Fig. 9(a), it is evident that the
standard deviation of TSV count associated with iLap is far better than those of the other
three. As previously mentioned, a TSV occupies significant silicon estate so that high
standard deviation of TSV count potentially worsens area imbalance among individual
layers and even lowers the yield of a design. Fig. 9(b) reports the average maximum
TSV count at some junction of a design over a different number of layers; and iLap
always possesses the lowest values regardless of the number of layers. In other words, a
lower TSV count implies a smaller total area (including TSV area) after partitioning, and
a smaller standard deviation of TSV count results in a more area-balanced partitioning
outcome. The above two facts suggest that iLap tends to generate a smaller overall

footprint of a 3D chip implementation. From another perspective, for some 3D logic

TABLEI. TOTAL NUMBER OF TSVS WITHK =4

4 layers *Total TSVs Normalized to hMetis

Design iLap hMetis EV-matrix EX-hMetis iLap EV-matrix EX-hMetis
Tseng 3042 356.3 361.2 346.1 0.85 1.01 0.97
Diffeq 2449 3445 351.0 270.3 0.71 1.02 0.78
Des 4455 8575 876.1 834.5 0.52 1.02 0.97
Bigkey 629.2 666.2 669.2 650.6 0.94 1.00 0.98
Frisc 6552 714.1 719.0 688.7 0.92 1.01 0.96
elliptic 590.3 7099 690.0 643.1 0.83 0.97 0.91
pdc 973.4 1049.5 1059.0 986.8 0.93 1.01 0.94
fft128 1313.9 1506.0 1524.8 1489.2 0.87 1.01 0.99
s38417 2494 364.7 389.6 324.6 0.68 1.07 0.89
s38584.1 3914 673.8 762.6 536.7 0.58 1.13 0.80
clma 4914 7212 654.6 496.5 0.68 0.91 0.69
cfft 2444  999.2 480.3 338.5 0.24 0.48 0.34
aqua 909.6 7026.5 7167.4 49358 0.13 1.02 0.70
video 763.8 8370.7 8757.1 7255.0 0.09 1.05 0.87
Average - - - - 0.64 0.98 0.84

*The reported number is the average of 10 experiment runs.
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structures, like 3D FPGAs, the number of pre-fabricated inter-layer TSVs is fixed. Hence
a design mapping attempt is considered a failure as long as the required TSVs exceed the
available ones only at one junction; and a high maximum TSV count definitely increases
such chances. Lower maximum TSV count is considered a big plus especially in design
flows for 3D regular logic structures such as 3D FPGAs.

Regarding the runtime efficiency issue, Fig. 9(c) gives the average runtime of 14 test
cases in second over a different number of layers. It is evident that both ~Metis and
EV-matrix are very time-efficient. The runtime required by iLap grows linearly as the
number of layers increases. It is mainly because the number of invocations for multi-way
partitioning inside iLap also grows linearly as the number of layers increases. However,
given the tremendous performance in TSV minimization, the time complexity of iLap
should be acceptable. For example, it only takes about fifty seconds for iLap to partition
the largest test case video into ten layers. As for EX-hMetis, since it has to check all
possible layer permutations to find out the best one, the required runtime is thus
exponential to the number of layers. Even if EX-hMetis can be further improved (e.g., by
pruning) so that not all permutations need to be examined, the improvement is limited to
runtime efficiency only, while other TSV-related performance would still remain the

same.
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Architectural Exploration of 3D FPGAs towards a Better Balance between Area and Delay

A. Architectures and synthesis framework for 3D FPGAs

A classic 2D FPGA is composed of logic elements (configurable logic blocks, CLBs) and
routing resources (switch boxes, SBs; connection boxes, CBs). The basic unit is called a tile,
which consists of a CLB, an SB, and associated CBs. As shown in Fig.10, the generic 3D FGPA
architecture in this work is similar to the one used in TPR and 3D MEANDER, which basically
stacks multiple identical 2D FPGA layers and then extends the structure of 2D-SB to provide
inter-layer connectivity. Fs is set to 3 in a 2D-SB and 5 in a 3D-SB, where Fs is the maximum
allowable fan-outs of a channel in an SB.

The reference synthesis flow used in this work is shown in Fig. 11. A given design (in blif
format) is first packed into a netlist file composed of CLBs by T-VPack, which is a part of the 2D
FPGA synthesis framework VPR [32][33]. The netlist file is then fed into a 3D FPGA synthesizer,
which includes three steps: initial layering, timing-driven 3D placement and 3D routing. The
initial layering partitions the netlist into different layers with the objective of TSV minimization
[34]. The 3D placement and routing processes, which are adapted from TPR, are then conducted
on the layered netlist. The framework also takes an input file, setting the architectural parameters

of the target 3D FPGA, and generates the placement and routing results in the end.

B. Evaluation environment

1. Architectural Settings
The basic architectural settings are shown in TABLE II. Most of the parameters are set
according to existing commercial FPGAs, well-known FPGA synthesizers, and related

3D-SB
2D-SB connection

connection

Figure 10. The gereric 3D FPGA architecture.
blif file netlist I
TSV-driven 3D layering

timing-driven 3D placement

arch. file

timing-driven 3D routing

|
A 4

P&R results |

Figure 11. The reference synthesis framework.
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TABLE II.

THE ARCHITECTURAL SETTINGS

Architectural Parameters Value
# of LUTs in a CLB (N) 2
# of inputs of a CLB (/) 8
(Altera Stratix IV) -
# of inputs of a LUT (K) 6
SB )
Connection type Subset
(Xilinx Spartan)
Channel width
Both Wyand Wy 32
(Xilinx)

# of wire segments

X-Y direction

(L1, L2, L4, L8)

(12,12,4,4)

Z direction

L1 only

Delay model Lly:Llyy 1:10
TSV Pitch 10 um
Process Technology 65 nm
TABLE III. THE BENCHMARK INFORMATION (PARTIAL)
Design #CLBs | #Nets | #1/Os
$38584.1' 3224 5419 342
clma' 4192 6869 144
mem_ctrl Omv_b’ 7344 10865 | 265
usb_funct Omv b 7440 11372 | 234
tv80 Oabc_ch? 8809 12987 | 46
b20° 9844 15557 55
b21° 10016 15713 55
aes_core’ 10400 16706 386
oc_des perf opt opt abc resyn’ 10641 17150 185
systemcaes_Oabc_ch’ 13480 19634 388
b22’ 14585 23114 | 55
b17° 15390 24986 | 135

bottom-most layer.

Benchmark Set
There are 24 test cases in our benchmark set — 14 are from MCNC and the other 10
larger ones are from IWLS2005, ITC99 and Altera [30][31]. The basic information for a

16

' MCNC; *IWLS2005;

research works [26][27][29], [35]-[38]. The number of LUTs (lookup tables) in an CLB
(N) is set to 2 instead of 1 in the previous works [26][29], which is considered more
realistic. The channel widths in the X-Y directions are both set to 32; the multi-segment
routing structure is adopted: the possible wire lengths are L/, L2, L4 and LS8; and the
numbers of channels are 12, 12, 4 and 4, respectively. In the vertical direction (Z), only

L1 is available to maximize the routability. Finally, I/O pads are located only around the

3 ITC99; *: Altera



partial set of test cases is shown in TABLE III; the numbers of CLBs and nets are
derived from T-VPack with the parameters (¥, I, K) = (2, 8, 6), which is specified in
TABLE II.

In our evaluation environment, the X-Y dimension (D) of a 3D FPGA architecture varies

according to the number of layers (L) and the overall capacity of CLBs (C), as given in
(D:

p = |[Jc7L] (M)

During every evaluation run, the capacity of CLBs (C) is dynamically adjusted to ensure

that the value is around 80%.

3. Baseline Architecture (BSL)
In the baseline architecture, every SB is a 3D-SB; and every 3D-SB is with full vertical
connectivity, which means there are 32 TSVs (identical to the number of channels in the
X-Y direction) within a 3D-SB. In the BSL, though the vertical routability is maximized
(which is best to delay), the utilization of TSVs is extremely low (< 10%) as indicated in
Fig. 5. This fact also suggests there is still a big room for further architecture
improvements. Hereafter in this paper, the BSL would serve as a baseline for

comparisons with the proposed architectures in the next two sections.

C. Proposed sparse architectures

Basically there are two ways to reduce the area occupied by 3D-SBs in a 3D FPGA. The first
one is to decrease the number of TSVs in a 3D-SB. Such kind of 3D-SBs are called partially

fully connected *
3D-SB

partially connected’
3058 HEERN

iy . (a)

2D-SB |
| -

e HN
e (H N
e BN
e (H N
(b) (c)
Figure 12.  The different SB patterns of (a) BSL, (b) IS, and (c) ES.
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connected 3D-SBs. The other one, also used in 3D MEANDER, is to reduce the number of
3D-SBs in a 3D FPGA. That is, some SBs become 3D ones, and others are still 2D ones. The
internally-spare (IS) architectures are those utilizing the former method, while the
externally-sparse (ES) ones are those utilizing the latter method. Different configurations of SBs,
also referred as patterns in this paper, are shown in Fig. 12. In the BSL, as shown in Fig. 12(a),
all SBs are fully connected 3D-SBs. An IS architecture adopts the same type of partially
connected 3D-SBs for all SBs instead, as in Fig. 12(b). In an ES architecture as shown in Fig.
12(c), fully connected 3D-SBs are partially distributed in a regular fashion. Note that the patterns
are set identical for all layers in all proposed architectures. In addition to IS and ES architectures,
the sparse architecture (SP), which is a hybrid of the above two, is proposed to further reduce the

area. More details and evaluations are available in the following sub-sections.

1. Internally-Sparse Architecture (IS)
IS# represents an instance of the IS architecture, where the postfix # specifies the
number of TSVs available in a 3D-SB. For example, every 3D-SB in /576 has only 16
TSVs inside, while 1532 is actually equivalent to the BSL. As mentioned in Section III,
the multi-segment routing structure is adopted and there are four different wire lengths
with different amount of channels in the X-Y direction. In the BSL, it makes no

differences since each X-Y channel has its own vertical connection. However, in an IS

100% 1 90.89% SB OITile
90% - w1 81.78%
8oy 999 ] 72.67%
79.98% 2!
70% - 63.57%
gso% . GIZR | 54.46%
3 50% - 593t . 96; 45.35%
3 0
40% - 39/98%
a 30% -
P20% -
R 20% -
0% ; ; ; ; . .
1S28  1S24  1S20  IS16  IS12 158
Figure 13. The normalized area of different IS architectures.

118% f\
115% / \,/._.\ -8-1S8

. / 41512

p106% /‘\‘/‘\%ﬁ 1516

Q 103%

i 1520
100% ; 1 f

2 3 4 5 6 7 8 # Layers

Q=NDO. OB

Figure 14. The average normalized dealy of different IS architectures.
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Figure 15. The ES architecture with
(a) the oblique stripes pattern and (b) the vertical stripes pattern.

architecture, some of TSVs in a 3D-SB are removed. Be precisely, the vertical
connections (TSVs) are taken out from each type of X-Y channels proportionally
whenever possible. For example, the numbers of channels with vertical (Z) connectivity
for (L1, L2, L4, LS) are (9, 9, 3, 3) in 1S24, while the remaining 8 channels merely
provide 2D (X-Y) connectivity.

Fig. 13 reports the area of different IS architectures, in which all values are normalized
to that of the BSL. It shows that both the sizes of an SB and a tile basically decrease
linearly as the number of TSVs in a 3D-SB decreases. However, though reducing the
number of TSVs in an 3D-SB can save area, it is very likely to harm delay at the same
time. To realize what the exact impact on delay is, the benchmark circuits are mapped
onto different IS architectures and the BSL through the reference synthesis framework.
Fig. 14 illustrates the delay of different IS architectures, in which every value represents
the average of normalized-to-the-BSL delay over the entire benchmark set. Since the
curves of 1528, 1524, and 1S20 are almost overlapped therefore only the one of 1520 is
depicted. Note that some test cases fail to be mapped onto /S/2 due to insufficient
vertical routing channels. Most of the test cases fail in /S8; one even succeeds, the delay
increases significantly. Finally, since 1S20 achieves about 30% overall area reduction
only with a delay penalty less than 1.5% as compared to the BSL, it should be the one

with a better area/delay balance among all IS architectures.

. Externally-Sparse Architecture (ES)

An ES architecture replaces a part of fully connected 3D-SBs with 2D-SBs for area
saving. There are various ways, or patterns, for mixing 2D-SBs and 3D-SBs. The pattern
used in the ES architecture is obligue stripes, which is the same as the one used in 3D
MEANDER. ES# represents an instance of the ES architecture, where the postfix #
specifies the maximum distance between two adjacent 3D-SBs in either X or Y direction.
Therefore, ES1 is actually equivalent to the BSL, and ES2 is the one shown in Fig. 15(a).

Different from the vertical or horizontal stripes patterns, it is guaranteed that each 3D-SB
in the oblique stripes pattern can reach some other 3D-SBs within a fixed distance in any
directions, which surely provides much better routability. From the perspective of a

2D-SB, the shaded region covers the area where a 2D-SB can access vertical links in the
19
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Figure 17. The average normalized dealy of different ES architectures.

shortest distance as shown in Fig. 15(a). However, with the same shaded region, only
two 3D-SBs can be reached for a 2D-SB in an architecture with vertical stripes patterns,
as shown in Fig. 15(b). The analyses and conclusions are also similar also from the

perspective of a 3D-SB.

Fig. 16 reports the area of different ES architectures. As the distance increases, the area
reduction is significant at first and then becomes flat gradually. The curve appears like a
harmonic sequence. Fig. 17 illustrates the delay of different ES architectures. As the
distance increases, the delay is increased badly. As a result, ES2, ES3 and ES4 are all
regarded as good instances since they can achieve around 35%~55% area reduction only
with a delay penalty less than 5%. Moreover, if the delay penalty is constrained below
3%, ES2 becomes the best choice because it achieves an area reduction of 35% with a

delay penalty less than 1.5%.
Sparse Architecture (SP)

For IS and ES architectures, we try to reduce the area with just a single strategy — either
purely reducing the number of TSVs in each 3D-SB or purely reducing the number of
3D-SBs. Here we present the sparse architecture, which takes above two strategies
simultaneously. SP(#, #) is used to name an specific instance of this hybrid architecture,
which is the combination of IS#; and ES#. This notation can be generalized to represent
IS and ES architectures as well. For example, SP(32, 1) is equivalent to the BSL, SP(16,

1) implies IS16, and SP(32, 2) is actually ES2. Meanwhile, the 7SV density of an
20



architecture is defined as the average number of TSVs in a tile, and can be calculated
through (2).

TSV density = IS#/ ES# )

As mentioned, ES4=SP(32, 4) with TSV density of 8 is still regarded as a good instance.
Note that, the lower the TSV density is, the worse the delay is likely to be. Hence, only
those SP architectures with TSV density no less than 8 are selected for evaluation. Fig.
18 shows the area of selected SP architectures. As expected, the lower the TSV density is,
the smaller the area is. Fig. 19 reports the delay of same selected SP architectures, and
conforms that the lower the TSV density is, the worse the delay is. Finally, SP(28, 2),
SP(24, 2), and SP(20, 2), are our reccommended SP architectures under the constraint that
the delay penalty cannot exceed 3%.

D. Proposed sunny egg architecture

Though SP(20, 2) has already achieved an area reduction of 50% with minor delay loss, there
is still room for improvement. Fig. 20 shows the average TSV distribution in a 6-layer BSL over

6 test cases. The results suggest that the TSV demand is much bigger in the central region than
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d 40% - Y| 4498% | 43340 5 5
30% - 40.00% | 39.97%
20% -
0 10% -
0% T T T T T 1
(28,2)  (24,2) (20,2) (283) (243) (16,2)
TSV density: 14 12 10 9.3 8 8
Figure 18. The normalized area of different SP architectures.
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Figure 19. The average normalized dealy of different SP architectures.
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Figure 20. The average TSV utilization in a 6-layer BSL.
Between: (a) Layer 2 and 3, (b) Layer 3 and 4, and (c) Layer 4 and 5.
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Figure 21. The average normalized dealy with different TSV distributions.
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Figure 22. The average normalized dealy with different R's.

that in the peripheral zone; and thus inspire us to further propose the sunny egg (SE) architecture.

The sunny egg architecture divides a horizontal plane into two regions — center (egg yolk)
and periphery (egg white). Two regions are implemented using different SP architectures — the
TSV density in the center is set larger than that in the periphery. SE(ISc#, ESc#, R, ISp#, ESp#)
indicates a specific SE architecture, where SP(ISc# and ESc#)/SP(ISp# and ESp#) is for the
center/periphery respectively, and R is the ratio between the dimension of the center and D
(defined in Section II1.B). For example, SE(32, 2, 0.5, 16, 4) specifies an SE architecture: 1) in
the central/peripheral region, the number of TSVs in a 3D-SB is 32/16 and the distance between
two 3D-SBs in the X/Y directions is 2/4; and 2) the ratio between the dimension of center and D
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TABLEIV . SE ARCHITECURES UNDER EVALUATION (PARTIAL)

ISc# ESc# R I1Sp# ESp#
32 2 0.3 16 4
32 2 0.3 8 2
16 1 0.3 16 4
16 1 0.3 8 2
32 2 0.7 16 4
32 2 0.7 8 2
16 1 0.7 16 4
16 1 0.7 8 2

1s 0.5.

A total of 20 different SE architectures are evaluated in this study. They are generated in the
following way: 2 SP instances with higher TSV densities (SP(32, 2), SP(16, 1)) for the center, 2
SP instances with lower TSV densities (SP(16, 4), SP(8, 2)) for the periphery, and R ranges from
0.3 to 0.7. TABLE III just lists 8 of them due to page limitation. Meanwhile, given the same TSV
density, SP(16, 1) distributes TSVs more evenly than SP(32, 2) in the center. Similarly, SP(8, 2)
distributes TSVs more evenly than SP(16, 4) in the periphery.

Fig. 21 demonstrates how the different TSV distributions can impact the delay. First, it
suggests that it is better to distribute TSVs unevenly in the center, i.e., SP(32, 2) is preferred.
Second, the delay is slightly better if TSVs are evenly distributed in the periphery, i.e., SP(8, 2) is

preferred.

The ratio R also does matter. As mentioned previously, the TSV density in the center is
always larger than that in the periphery. Hence, the bigger the ratio R is, the larger the footprint is.
Meanwhile, as shown in Fig. 22, the delay gets better as R increases due to richer routing
resources. Consequently, as usual, it is still a trade-off between delay and area. Again, to keep the
delay penalty less than 3% compared to the BSL, R must be set to higher than 0.6. As a result, the
best choice here should be SE(32, 2, 0.6, 8, 2).

All the architectures mentioned above are compared and evaluated thoroughly. The one with

the smallest 3D-SBs area while keeping the performance (i.e., the delay penalty is less than 3%
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Figure 23. The average normalized area of different architectures.
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compared to BSL) are chosen as the representation of each architectural style. As shown in Fig.

23, the normalized (to IS20 instead of BSL in the previous evaluations) area consumptions of
1520, ES2, SP(20, 2) and SE(32, 2, 0.6, 8, 2) are depicted. The average normalized delay (to BSL)

is shown in Fig. 24. The hybrid architectures, which utilize both the techniques of IS and ES, can

save more than 35% area of SBs compared to /S20. Especially, the difference of delay penalty

between SE(32, 2, 0.6, 8, 2) and 1520 is less than 2%. Therefore, the hybrid architectures SP(20, 2)
and SE(32, 2, 0.6, 8, 2) are the most recommended.

T~ B

-

In this project, we present an iterative layer-aware partitioning algorithm iLap targeting TSV
minimization for 3D structures. It utilizes a multi-way min-cut partitioning engine inside its
iterative framework to gradually construct the final solution layer by layer in the bottom-up
fashion. The experimental results clearly demonstrate that iLap is capable of reducing total TSV
count by about 35% compared to layer-unaware hMetis, experiencing a smoother TSV increase as
the number of layers raises, distributing TSVs more evenly among different vertical layers,
preventing any layer junction from having a burst number of TSVs, and only requires an
acceptable runtime. Consequently, compared to the prior art, we believe iLap can generate a
better TSV-minimized solution, which serves as a good starting point for further tradeoff between
wirelength and number of TSVs in upcoming state-of-the-art 3D IC/FPGA design flows.

Moreover, we show that the utilization of TSVs is actually very low in the baseline 3D
FPGA architecture where the fully connected 3D-SBs are fully distributed. Therefore the area of
3D FPGAs can be further reduced while the performance is still guaranteed. There are two simple
approaches to reduce the area of 3D-SBs. The internal-sparse architecture (IS) is to reduce the
number of TSVs in each single 3D-SB and the external-sparse 3D-SBs architecture (ES) is to
reduce the number of 3D-SBs. The hybrid methods, including sparse architecture (SP) and sunny
egg (SE), are also proposed to further minimize the area of 3D FPGAs by using the techniques of
IS and ES at the same time. Those architectures are explored thoroughly and evaluated
objectively. After comparing all these architectures, two generic 3D FPGA architectures are
suggested, that is, the SP architecture (20, 2) and SE architecture (32, 2, 0.6, 8, 2), which save the
most area with acceptable delay penalty. SP(20, 2) reduces 55% (to BSL) and 35% (to 1S20) of
SB area; SE(32, 2, 0.6, 8, 2) reduces 58% (to BSL) and 39% (to 1S20) of SB area. Both of them

are with (less than) 3% increase delay.
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Figure 24. The average normalized dealy of different architectures.
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