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Abstract

Inference of gene regulatory networks (GRNs) plays an important role in molecular biology,
biochemistry, bioengineering, and pharmaceutics in the post genomic research. According to different models
for GRNs with transcription factor (TF) or not, reconstructing GRNs from mathematical models can be
formulated as large-scale parameter optimization problems. The project proposes evolutionary optimization
algorithms to obtain near-optimal solutions to the problems of reconstructing GRNs. (1) GRNs with all
regulations: In reconstruction of GRNs, the regulations contain TF-gene, TF-TF, and gent-TF. Because of it’s
degrees increase and make this reconstruction problem more complex and inconsistent of possible solutions.
To cope with noise and insufficient data problems, we propose 1IAEA based on S-System model to efficiently
reconstruct GRNs; (2) GRNs considering interested genes with TF-gene regulations: The well-known method
as Network Component Analysis (NCA) is used, we propose GRNet based on Intelligent Evolutionary
Algorithm (IEA) and NCA model. In addition to time-series data of gene expression, the connectivity data
between TF and gene is used for both methods to infer GRNSs.

In the first year, we cooperate with regulatory database in sub-project in this integrated research project
for our simulation to develop efficient and robust methods: iTEAP and GRNet+ to cope with noise to
reconstruct GRNs. The stabilities of predicted GRNs are achieved.

We also cooperate with regulatory database in the sub-project III in this integrated research project for
Gene Network Platform (GNP). The GNP with graphics process unit (GPU) clusters achieve about 10 times
faster to reconstruct GRNs. The regulatory network of Escherichia coli is also optimized with GNP and

friendly charts are used for visualization and analysis.

In the last year, we improve our core algorithms continuously with previous experiments and propose an
Intelligent Adaptive-encoding Evolutionary Algorithm (1IAEA) to cope with noise and inconsistent solutions
with domain knowledge as GRNet. Biological experiments of E. coli during transition from anaerobic to
aerobic conditions are used with GNP to predicted unknown regulations that are not found in latest version of
the database RegulonDB. The prediction of GNP is proved from RT-PCR experiments that CRP activates

fumC and Fnr inhibits fumC during the transition.

The extended achievements of this three-year project are good, including several bioinformatics
prediction algorithms and their applications. There are totally 13 published journal papers and 3 submitted
ones, and 14 international conference papers. We package the core modelling method “Intelligent
Evolutionary Algorithm for the Optimization Mechanism of Mathematical Modeling and Prediction” for

transferring the related technologies to industry for various applications in future.

Keywords: Evolutionary Computation, Orthogonal Simulated Annealing, Gene Regulatory Network,

Network Component Analysis, S-System, Compute Unified Device Architecture, Graphics Processing Unit
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0. Introductions

The inference of biochemical networks, such as gene regulatory networks, protein-protein interaction
networks, and metabolic pathway networks, from time-course data is one of the main challenges in systems
biology. The ultimate goal of inferred modeling is to obtain expressions that quantitatively understand every
detail and principle of biological systems. To solve the large-scale and complex reversing engineering
problem, the sub-project would propose intelligent optimization algorithms combined with biological domain
knowledge for coping with noise and insufficient data problems of practical applications. The proposed
methods will be verified using synthesized and real data. In this sub-project, we propose two efficient
methods for inferring various biochemical networks depends on needs and integrate them with biological data

warehouse to build a user-friendly platform, which can also benefit the other sub-projects.

Using Intelligent Evolutionary Algorithm to Reconstruct Gene Network

Related
Synthesized or GN data from GN relation in (c‘ n;c; Whale GN
real GN data literature or knowledge models for S
database base GN
Mithoue TRy With TF Model Collect real data Construct GN E\'aluatmln ane Experimental
Model .\ o - aserin Comparison XEATR
ek, NCA for analysis connectitivies ; analysis for GN
S-System berween models

v

Optimization methods for
GN with existing models

y
Integrated platform for GN Propose new
reconstruction and analysis practical model
\ndl» sis for insufficient data ;
and noise e [
‘I
‘ C Robust and Reliable Platform for GN reconstruction and analeis

VAN l

Figure 0.1: Roadmap and related tasks to reconstruct GRNs. The parallelograms in grey are existed data or
knowledge. The rectangle in blue indicates the improvements we applied or evaluate from current results or
researches. The round- rectangle in orange or green is final goals or finding.

In the first year, IEA was used to develop effective algorithms for various mathematical models. As
mentioned above, we choose two widely used models: S-System and Network Component Analysis (NCA)
for gene network reconstruction considering the details of regulations involved. The major goal is to develop
optimization methods for real experimental data while the performance is evaluated using synthesized data.
We take the problems of insufficient data and measured noise into consideration for modeling from

experimental data of gene network before we start to integrate the gene network platform (GNP). We applied
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statistical and mathematical methods to help us to solve this problem and extend the power of IEA with
successful experiences in gene expression analysis.

Most of the existing models come with limitations [1]. For example, cooperative mechanism and
combinatorial control in gene regulation of gene and TFs occurs in many cases [2] . NCA only implies gene
was regulated by TFs. Comparison and evaluation in models proposed by other researchers will be done in the
second year first. Then, we aim to establish a GNP with anti-noise and efficient methods that need less data
proposed in the first year. Using Biomolecular Interaction Data Warehouse proposed in sub-project 3 to
obtain connectivity of gene-gene or gene-TFs as optimization criteria for initial solutions and try to avoid
from violating known regulations.

At the last year, as success of GNP we start our case study for analysis of reconstructed gene regulatory
networks. We focus on E. coli first due to the availabilities and integrity of experimental data for the first two
years. In this year, biological experiments will help us to verify our results of computational simulation, which

was done by the collaboration of all PIs and co-Pls of this integrated project.

1. Motivations

Reconstructing gene regulatory networks (GRNs) plays an important role in many research disciplines
such as molecular biology, biochemistry, bioengineering, and pharmaceutics. In order to help biologists to
study and analyze specific biological mechanisms, benefit pharmacy, and disease therapy from a systematic
viewpoint, it is necessary to clarify the regulatory relationship of genes and transcription factors. Recently, we
have proposed efficient evolutionary algorithms for identifying dynamic pathways from time-course gene
expression profiles. The methods iTEA and GRNet are shown to be efficient for synthesized data sets. The
objective of this sub-project is to develop various problem-specific intelligent optimization algorithms as well
as an integrated platform for reconstructing biochemical networks such as gene regulatory networks and
figure out the regulatory relationship between genes. With the help of the structural information from
sub-project 1 and knowledge of biological database from sub-project 3, the feasible range of parameters is
restricted and makes the proposed methods to acquire accurate regulatory relationship. By the cross validation
of related literatures, biological experiments, simulation results, and biological knowledge from sub-project 3,
the reliable regulatory relationships can be further confirmed. Furthermore, additional analysis of the problem
caused by insufficient data and noise of experiments data is conducted to propose an adding-noisy-duplicate
technique to solve the ill conditioned and system uncertainty problems, which can therefore reduce the
required experimental resource. This analysis is expected to provide the information about a minimal number
of gene expression profiles for reconstructing a reliable gene network mode. In addition to silicon simulation,
an overview of whole genes for species may find something new and biological experiments would be applied

to verify the findings.

2. Related works

The inference of biochemical networks would focus on gene networks first. Several models had been
proposed to reconstruct complex gene networks, and used for understanding the activation, inhibition, and

transcriptional strength between genes and transcription factors. In general, gene network is reconstructed by
2



gene expression data measured by Real-Time Polymerase Chain Reaction (RT-PCR). The numerous
mathematical algorithms and models were proposed to describe biochemical networks include[3]: the Boolean
network model [4, 5] the Bayesian network [6-9], and the differential model or S-system model [3, 10-24]. In
Boolean network models, gene expression levels can refer to two situations: true or false. The Bayesian
network model is able to deal with linear, nonlinear, and combinatorial problems and is also used to infer
genetic networks. However, similarly to Boolean networks, it suffers from the same dilemma and is only
applicable to acyclic structures. The most popular model is referred to as NCA and S-system model, which

have been applied to reconstruct various fundamental gene regulatory networks in many researches.

Pt Genes

Figure 2.1: Illustration of Gene Regulatory Network[25]

2.1 Reconstruct GRNs with all regulations: S-system model

The S-system model has been considered suitable to characterize non-linear regulatory network systems
and is able to reflect gene expression continual variation dynamics. It is a set of non-linear differential

equations of the following form:

dXi X &ij o hi/'
E:O@HXJ. —ﬂl-HX,-‘ s i=l, o, N, (1)
J= J=

Where X; represents the expression level of gene i and N is the number of genes in a genetic network. a;
and f; are rate constants, which indicate the direction of mass flow and must be positive. g; and 4;; are kinetic
orders which reflect the intensity of interaction from gene j to i. For inferring an S-system model, it is
necessary to estimate all the 2N(N+1) S-system parameters (a;, Si, gij, hij) from experimental time-series data
of gene expression. However, reconstructing large-scale (N > 50) gene regulatory networks is more important
than reconstructing small-scale gene regulatory networks in biological researches. Because there involve
many genes in a biological function process.

Therefore, reconstructing large-scale gene regulatory networks using S-system model became large
number parameter simultaneously optimize problems. Many researchers proposed diverse methods using
numerical methods such as steady-state analysis[26] and evolutionary algorithms[3, 13, 17, 20, 23, 24, 27] to
solve the optimization problem. The genetic algorithm (GA) plays an important role in solving the

optimization problem of dynamic modeling of gene regulatory network using the S-system model.



2.2 Reconstruct GRNs with TFs-genes regulations: Network Component Analysis

Network component analysis (NCA) is known as a model-based decomposition method for GRN to
deduce information of TF activities and control strength (CS) of TF-gene connectivity network. Gene
expression data is real microarray data and TF-gene connectivity is collected from literature or public
database. This decomposition matrix can be solved by singular value decomposition [28-30]. Conventional
approaches, such as PCA and ICA, typically seek a matrix of /CS/ such that the resulting reconstructed signal
matrix [TFA] satisfies orthogonality or independence criteria, respectively [1, 31, 32]. To ensure unique
solutions of matrix decomposition, NCA requires some criteria to be satistied. In practice, some information,
such as relationship of TF-gene regulation or potential unknown regulation, is ignored to prevent from the
uncertainty of matrix computation. Due to criteria used for matrix reduction, up or down regulation may be
incorrect in some case. Therefore, biologists need some prior knowledge to determine if invert observed TF
activities or not. In addition to that, the predicted TFs are not equal to competent TFs (a.k.a. TFAs) that have
ability to bind promoter, so the amount of TFAs should identify to match real biological system. However,
TFAs are still hard to determine through experiments approach thus NCA is still a good model to determine
TFAs [33].

NCA can uncover hidden regulatory signals from outputs of networked systems, when only a partial
knowledge of the underlying network topology is available [1]. The author implements a Matlab package for
biologist to study regulations beyond interesting gene regulatory network. The NCA adopts alternative
method with QR factorization to solve minimizing least square problem. It’s not very stable depends on initial
value of TF-gene connectivity [25, 34, 35] and may exist multiple local minima [33, 34]. The subsequently
developed NCAr algorithm with Tikhonov regularization can help solve the first issue but cannot completely
handle the second one [25]. The total number of source signal components was limited to the total number of
experiments rather than the total number of biological regulators in NCA. In most case, biologist would like to
analyze regulatory network as many important TF as possible to prevent from loss of regulation in regulatory
network. However, networks that have less transcriptome data points than the number of regulators are
common. There is an enhanced release to replace these constraints with the TFs regulating each gene must be
linearly independent in the available experiments [35]. NCA package would take lots of time while applying
to large regulatory network, one make an enhanced FastNCA to reduce the time cost NCA needed [34] . They
claim FastNCA is more accurate and is not sensitive to the correlation among the input signals than that of
NCAr and comparable to that of properly converged NCA. Although NCA model comes with some short
comes, NCA is one of feasible model that can infer a conceptual GRNs [36] [38], or reveal new TF-gene

regulations [39].

3. Methods

These proposed models describe the networks through their inner parameters. When the scale of network
is increased, the number of parameters that need to be optimized is also significantly increased. An effective
computational gene network model should realize the observed dynamic gene expression and reflect the
regulatory relationship between genes. For this reason, gene network is often reconstructed from the observed
gene expression profiles. To describe the network appropriately, it is inevitable to optimize the inner
parameters of model through the observed data. Because of limited resource and time, the available data is too

4



few to prevent model uncertainty. Optimization methods will be proposed to solve the problem of model

uncertainty when modeling gene networks from insufficient data and noise.

3.1 Efficient and robust method: GRNet

NCA is known as a useful analysis tool for GRNs. The main concept of NCA is shown as Figure 1.2.
The gene expression level is determined from transcription factor (TF) activities and control strength (CS) for

specific gene. The linear model of NCA is shown in equation (2):
E=CS-TFA+T (2)

where E is the expression profiles of genes that measured by DNA microarray. CS is composed of the
regulation between TFs and genes. 7FA represents activities of associated transcription factors. NCA
decomposes data matrix £ into CS and 7FA by minimizing I' under the constraints that the network
structure or the non-zero pattern of the matrix CS is conserved [1]. E is the known M % T matrix that contains
M genes and T time points under specific condition. CS is the unknown M X N matrix considers N
transcription factors regulate to M genes. Corresponding to E and CS, TFA shows that activities of N

transcription factors at 7 time points.

E, K E, ) (CS, K CS, Y\ (TFA, K TFA,
MO M|zl MO MK M 0O M 3)
E, L E | |\CS, L CS, ||TFA, L TFA,

3.1.1 Evaluations of GRNet

An efficient and robust evolutionary method GRNet is investigated to reconstruct GRNs from gene
expression data and known TF-gene connectivity. A mathematical model of NCA is defined as equation (3).
We aim to optimize both signs and magnitudes of TF activities and CS while considering noisy gene
expression data. The initial values of CS are known regulation between gene and TF from public literature and
database and in the set of [1, -1, 0] to represent up-regulation, down-regulation, and no regulation respectively.
The model reconstruction is formulated as an optimization problem where least square error (LSE) between
the known and estimated expression data is used as an objective function to be minimized. LSE is defined in
equation(4). High performance of GRNet arises mainly from an orthogonal simulated annealing algorithm [36]

to solve the large-scale optimization problem.
LSE=( E|-[es| #a)’ (4)

With achievements of the lower LSE, the regulation between TFs and genes should be noticed for better
understanding of estimated GRN. An evaluation function is defined in equation(5). We check the signs of
final /es/] to [CS] from prior knowledge that demonstrate if 7F induce or repress specific gene or not. This
information will help us to identify precise TF-gene network structure for unknown or violated information
from literature or published database.



M T
CS,. = >, > Sign(cs,;,CS,) (5)

i=1 j=1

However, the regulations in GRNs include TF-gene, TF-TF, and gene-TF in physiological process. In
NCA, TFA matrix is defined as activities of TF. In equation(2), the /[TFA] is described as activities for
standalone TF. Regarding to TFs act in combination on promoter, it’s also an important regulations to control
gene expression. Hence, Temporal GRNet (tGRNet) is proposed for more straightforward GRNs. The idea of
tGRNet is based on the strength of /CS/ should be determined as time goes by. The control strength for each
gene can be summarized with TFs, TFs in combination, and even feedback by gene in next time points. This
model is extended from NCA and defined as temporal NCA (tNCA). tGRNet implements tNCA to validate
the practicability for GRNSs.

3.2 Efficient and robust method: iAEA

To effectively reconstruct gene network using S-system model and avoid the problem of model
uncertainty, sufficient data for modeling is required. In order to increase the number of data, L sets of
additional data are produced by adding k% random Gaussian noises to real experimental data using the
following equation,

X =X

pseudo it obs,it

+N(O,0'2), (6)

where X, 18 experimental observed expression level of gene i at time ¢, and X,’] is the /-th produced

seudo,i t
pseudo expression data, N(0, ¢°) is a normal distributed random number function with zero mean and variance
. Here, o is assigned as Xyps,i¢ X £%.

The extended optimization method we proposed in the second year (named iTEAP) bases on iTEA to

infer the S-system models of genetic networks from a time-series real data set of gene expression profiles
using SOS DNA microarray data in E. coli as an example. The algorithm iTEAP generated additionally
multiple data sets of gene expression profiles by perturbing the given data set. The results reveal that 1)
iITEAP can obtain S-system models with high-quality profiles to best fit the observed profiles; 2) the
performance of using multiple data sets is better than that of using a single data set in terms of solution quality,
and 3) the effectiveness of iTEAP using a single data set is close to that of iTEA using two real data sets. The
obtained model can be validated by biological experiments and known knowledge.

The goal of iIAEA, an improved version of iTEA and iTEAP, in GNP is to solve the infinite solutions of
the S-system model for efficiently establishing large-scale GRNs by incorporating the domain knowledge of
gene regulation into the proposed evolutionary computation method. The novel encoding chromosomes used
the intelligent genetic algorithm. Because of the connectivity of the genetic network has been known to be
sparse, domain knowledge was provided for the encoding chromosome. Let / is a maximum in-degree of the
maximal number of genes that directly affect gene. The 1AEA uses a hybrid encoding method that consists of

regulation strength, gene number regulated, and binary control parameters in a chromosome.

3.2.1 Chromosome encoding method

The chromosome representation for each gene i, shown in Figure 3.1, consist of three parts: 1) rate

constants, 2) kinetic orders, and 3) control parameters. o; and f; are rate constants that indicate the direction of
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mass flow. giz; and A;z; are kinetic orders that reflect the intensity of interaction from gene L; to i, where L;
belongs to {1, 2, ..., N} and j=1,.., . Mg; is a mask parameter of a positive kinetic order which the value 1
represents the edge of gene L; to 7 in the structure of the gene regulatory network is connected. And zero
represents the edge is disconnected. Similarly, Mh;; is a mask parameter of a negative kinetic order. Mg; and
Mh;; belong to {0,1}. The two sets {a;, Bi, QiLit,---» Girit, hivits - -, hivir } and {Lis, ..., Li, Mgis,..., Mgy Mhy, ...,
Mhj; } of S-system parameters are real and integer values, respectively. There are 2x/+2 real variables and 3%/

integer variables in our genetic algorithm.

a | Bi | gitit> | hirit, | Lir | Mgi | Mhy;
gitir | hiir | ... | Mg | Mhi;

Lil

’

Figure 3.1: Chromosome representation.

3.2.2 iAEA Algorithm

The algorithm for solving subproblems is given as follows:
Step 1:Randomly set the connected state of gene regulation in each subproblem.

Step 2:Initiation: Randomly generate an initial population with N,,, feasible individuals of 2x(/+1)
real-valued parameters and 3%/ integer-value parameters.

Step 3:Evaluation: Evaluate fitness values of all individuals.

Step 4:Selection: Use the simple ranking selection that replaces the worst PyxN,,, individuals with the best
PxNpep individuals to form a new population, where Py is a selection probability. Let 1, be the best
individual in the population.

Step 5:Crossover: Randomly select P.XN,,, individuals including /.y, where P. is a crossover probability.
Perform perturbation intelligent crossover operations for all selected pairs of parents.

Step 6:Mutation: Apply the two different mutation operators to real-value and integer-value of the population
using a mutation probability P,. To prevent the best fitness value from deteriorating, mutation is not
applied to the best individual.

Step 7:Repeat 50 times from step2 to step 6.

Step 8:Selected the fitness of subproblem was solved good enough from the 50 times experiments, then
counted the number of gj;, and 4;;

Step 9: Termination test: If fitness evaluation is achieved in this 50 times experiments, then stop the algorithm.
Otherwise, according statistical result from Step 8, set the connected state was fixed or unfixed in each

gene, then go to step 2.

3.3 Integration of gene network platform

The architecture of GNP is shown as Figure 3.2. The optimization core was completed at the first year
based on proposed methods for gene networks reconstruction considering with or without transcription factors.
The two tasks in this year are integration of biomolecular interaction data warehouse built in sub-project 3 and

improvement of GNP with more accurate models for real applications if possible.
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Main components in GNP are described as follows:

® Optimization core: this unit serves as computational core based on proposed methods. Different
groups used to share information and balance the computation load. Parallel computation is
introduced to optimize gene network based on our previous work “Developing a parallel intelligent
optimization system based on evolutionary algorithm for genetic network modeling”
(NSC-95-2221-E-009-116). In addition to our achievements, we consider transcription factors in
dedicated application of GRNs, insufficient data and experimental noise for modeling in this
project.

® GNP portal site: A portal server to provide user-friendly interface for biologists.

® Platform controller: The controller can determine how our system to work. Query from data
warehouse or activate optimization core to inference gene network based on information for specific
gene network.

® Biomolecular Interaction Data Warehouse: In sub-project 3, a data warehouse of GN was built and

up-to-date from latest literature and databases.

GNP allows biologists to select interesting genes to reconstruct their gene network before performing
experiments. In Figure 1.2, grey arrow indicates the working flow between components of GNP and the
number is execution order when requests come in. GNP portal let them to select species they want in GNP if
no more prior knowledge provided. Additional option for TFs, constraints of gene-gene or gene-TF
interaction can also be input in GNP. The GNP controller receives command to reconstruct gene network for
user and performs query from biomolecular interaction data warehouse if data is sufficient or not (steps 3 and
4) and response the correct gene network information to user. Otherwise, GNP controller forwards the
conditions to optimization core to perform optimization of specific gene network (step 7) and asks user to wait
for computation results. The computational cost depends on the scale of gene network and may take very long
time to find out a nearly optimized solution. GNP controller controls Job scheduler and resource allocation
between computational groups. After optimization is done, optimization core will update best results to data
warehouse (steps 8 and 9) and notify biologists by email that query results are available (step 10).

Due to the inter-exchange between components of GNP, it may involve lots of data and computational
costs. Two queue systems are used for the optimization core: divide and conquer, and paralleling computing.
We use distributed architecture of GNP which can do benefit from:

® [t’s easy to extend if computational power is insufficient. Cluster for hyper computational

requirements is ready for years.

® GNP controller will dispatch tasks to optimization core and update data warehouse automatically. In

additional to collect from other databases and literature, data warehouse for gene network will be

up-to-date frequently if more biologists use GNP.



Year 1
Year 2 / Optimization Core

Figure 3.2: The architecture of GNP for reconstructing gene network: the yellow, green, and blue areas

represent the involved parts for first to third year in our sub-project. The red area is done by other project.

4. Results and Discussions

4.1 Analysis of gene regulatory networks modeling using insufficient data and noise

One of important objective for reconstructing gene network is to minimize the error between the
observed expression and computational simulated one. However, the truly regulatory relationship of genes is
the major concern of biologists. Due to insufficient data, the obtained model may suffer from model
uncertainty. In order to clarify the reliability of the obtained model, a large scale analysis is practiced from
several viewpoints, such as number of genes; number of experimental data used, noise degree, etc.

For correctly verifying the obtained model, the observed data is replaced with synthesized one that is
generated from predefined synthesized model. Therefore, the reliability is able to evaluate by model error

between synthesized models and reconstructed one. The analysis results are expected to give further related
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researches a guideline for supplying enough real experimental data and to prevent the discovered regulatory
relationship from model uncertainty. The small number of gene expression profiles is expanded by adding the
pseudo samples which are generated by perturbing the original observed samples. It is benefit to find the real
regulatory relationship of genes.

There are three datasets used in Table 4.1. First dataset is original data within NCA package from Kao,
[37]. There are 16 TFs covering 100 genes results in 140 regulations. In this dataset, some of the regulations
between TFs and genes are ignored from RegulonDB 3.2. Unlike the RegulonDB 3.2, the connectivity array
in the reduced dataset comes with activators and repressors as 1 and -1 respectively. As to the Kao’s dataset,
the second dataset is created from RegulonDB 3.2. There are 120 TFs covering 828 genes for E. coli. K12.
The difference compared to first dataset is there are no activators or repressors in connectivity matrix. GRNet
is adaptive for different optimization policies as shown in Table 1. The last one is silico-data that the
connectivity data is same as first dataset. We construct the /CS/ randomly in range of -10 and 10 with regards
to the regulations. We generate random numbers between 0 to 10 for activators and 0 to -10 for repressors. All
elements in /[TFA] are generated between -10 and 10 randomly. As a result, we obtain a simulated expression
profile /E], from [CS] and [TFA].

For evaluating the robustness ability of GRN, Various Gaussian perturbations (0%, 5%, and 10%) are
added to the gene expression data. Our results in Figure 4.1, 4.2 reveal that GRNet is significantly superior to
NCAr in both aspects of least square error and CS mismatch rate for noise-free and noisy expression data
using the same dataset of Escherichia coli used by NCA [19].

Comparison of LSE
T T T T T T
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LSE
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NCAr (0%) GRNet (0%) NCAr (5%) GRNet (5%)  NCAr (10%) GRMNet (10%)
Experiments with perturbation

Figure 4.1: Comparisons of LSE between GRNet and NCAr.
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Figure 4.2: Comparisons of CSgisr between GRNet and NCArr.
We run 30 silico-experiments for NCAr, GRNet, and GRNet+. In datasets: Kao PNAS and
RegulonDB 3.2, GRNet is accurate than NCAr with changing fewer regulations. As increasing LSE, /CS]

array in GRNet+ comes with constraints regarding to the regulations in vivo, literature, and public database.

Table 4.1: Silico and experimental results comparison

i NCAr GRNet GRNet+
E. coli LSE CS(%) LSE CS(%) LSE  CS(%)
Kao PNAS 1466 2702 1291 2195 2204 0
RegulonDB 32 733 3689 681 2852  l14.64 0
Kao_Silico 160227 114 3809 022 2342 0

Considering the first two dataset come with unknown control strength and TF activities, the
Kao_Silico i1s simulated for known solution to validate the efficiency of GRNet. There are 10 randomly
generated data in this dataset. We also take 30 runs in each dataset for both NCAr. GRNet, and GRNet+ and
manipulate the average LSE, CS difference rate, and TF standard deviation (TF-SD) of [TFA]. A low
standard deviation indicates that the data points tend to be very close to the mean (real /[TFA] matrix). In our
experiments, TF-SD in GRNet is 0.6876 compare to 44.60 in NCAr in average. In addition to GRNet, we find
GRNet+ achieves no conflicts in /CS] with less LSE than GRNet. Therefore, GRNet+ can find better
solutions than GRNet if the /CS] matrix is given with reliable knowledge.
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Figure 4.3: Comparison of LSE between NCAr and GRNet for 10 silico-datasets
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Figure 4.4: Comparison of CS conflicts between NCAr and GRNet for 10 silico-datasets
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Figure 4.5: Comparison of standard deviation to real TF activities between NCAr and GRNet for 10
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silico-datasets

4.2 Improved performance by GPU

Large-scale GRNs involved with plenty of genes and TFs. In GNP, we have try two dataset for
evaluating large-scale GRNs. Dataset #1 comes with 158 TFs over 2758 genes with 77 time points. Dataset #2
is similar to Dataset #1 but scale up to 30 times faster with 800 TFs over 1600 genes with 800 time points.
Obviously, dataset #2 is extremely large one for simulation. In general, dataset #1 needs one week to find
predicted GRNs. We manage to evaluate to time costs to manipulate matrixes multiplication in CPUs and
GPUs as shown in Figure 4.6. Although the time cost to copy data from host computer and GPU device is
high, we still gain about 10 times speedup for dataset #1. It means we can get GRNS with 16~17 hours for
dataset #1.

Both methods in GNP: GRNet and iAEA can be parallel computed by GPU device to improve
performance of reconstruction of GRNs. We plan to build GPU clusters if the requirements are increasing and
budget is allowed. Currently, we only apply GPU computing of GRNs reconstruction for experimental

purpose not in online services.

Speedup

53.62119265
CPU: E5420

15.38693264

Geforce 9400m 9.15494368

‘65.88 16082

Tesla C1060 159.01*3913

0 50 100 150 200 250 300 350 400

Figure 4.6: Speedup with CUDA architecture.

4.3 Validations of temporal GRNet

In this part, we use the Escherichia coli transition from glucose to acetate media as an example from
NCA[1]. The dataset involves 16 TFs over 100 genes with 10 time points. The dynamics for 16 TFs from

glucose to acetate transition is shown as Figure 4.7 from NCA.
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Figure 4.7: Time course of TF activities from NCA[1].

In purpose to comparison, partial information of regulations between TFs and genes are used in CS. TFA
is defined as positive number to illustrating TF activities. However, large amounts of error in connectivity
may lead to TFA profiles that are inconsistent with other existing physiological data[1]. In order to reduce
the inconsistent of connectivity data and dimension, 7F4 is defined as positive number to prevent from
inconsistent of CS in tGRNet.
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Figure 4.8: TF activities deduced from tGRNet.

Compare to previous work GRNet, the several of /CS] and /[TFA] are increasing as expected but the trend for
control strength and TF are similar In Figure 4.8.

In addition to the previous results we obtain from tGRNet, we need some more evidence to check if our
results act as real transcription factor activities. Most of TF activities are hard to measure expect CRP. The TF
activities of CRP can be deduced from cAMP concentration level[37]. In Figure 4.9, CRP’s activity is similar
to cAMP.
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Figure 4.9: Comparisons of cAMP concentration during glucose to acetate transition are made between
experiment and tGRNet. Left side is observed from biological experiment[37]. Right size is the TF activities
from tGRNet.

4.4 User guidance to use GNP

GNP is used for user to analysis GRNs with interested genes. Therefore, we simplified the complexity of
operations and provide a flowchart to guide user how to start. Figure 4.10 is the flowchart of GNP. First of all,
user must have microarray data for their research topics. They can choose only interested genes for analysis.
GNP currently support .csv file only. The first raw is the definitions of time points and followed by expression
profiles for each genes. The expression level can be log ratio number and separated by ‘\t’. Then, you can
submit to GNP to retrieve connectivity data from our database or specify regulations by your own domain
knowledge. The most important step is choosing the regulations you interested that is not published yet. With
GNP, we can predict the regulations of unknown and show the control strength for each regulation.

After all, all you need to do is waiting for email to access your results. You may need to wait hours or days,
even weeks depends on the scale of GRNs. Finally, the results contains a network topology as Figure 4.11 and
two detailed /CS] and [TFA].
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Figure 4.10: Flowchart to use GNP for reconstructing GRNs. Orange rectangles are actions user need to
handle.
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Figure 4.11: E. coli (from Kao’s data) GRNs predicted by GNP.

4.5 Case study with experimental validations

When obtaining gene regulatory networks with the regulatory control strategy, the biological

experiments for validation should be conducted. To validate the regulations between genes we found, one step
inactivation of chromosomal genes is performed to knock out investigated gene once per time. We use

RT-PCR to measure amounts of mRNA expression in small scale with heavy and complicated routines for
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large scale GN in our experimental validation. Through these real experiments, the obtained computational
model and regulatory control strategy can be verified. For some complex biological mechanism researches,
this approach can help them to clarify the interesting topics.

Our Co-Pls, Prof. Tseng’s Lab provide us microarray data of E. coli during transition from anaerobic
to aerobic conditions for analysis. The expression profiles are shown in Figure 4.12. In this part, we aim to
figure out what GNP is capable with our IAEA and GRNet. Hence, we discuss the unknown regulations GNP
predicted of CRP and Fnr over fumC.
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Figure 4.12: The experssion profiles for both involved genes and TFs.

Domain knowledge
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fumA - + -
fumB + ? +
fumC - + -
arcA ? - ?
crp ? -

fnr - ? -

Figure 4.13: Connectivity data of E. coli data is shown. There are 6 regulations are mark as unknown with

symbol x.

In Table 4.2 and 4.3, we compare the known regulations between GRNet, iIAEA, Tseng’s Lab, and
RegulonDB. We found our predictions for CRP over fumC and Fnr are matched. In case of the dimensions of
the known variables are lower than the unknown (in this example we have 3x4 unknown in /E] v.s. 3x3
partial known in /CS] and 3x4 unknown in /[TFA]), the solutions are not fixed very well. But GRNet provides
stable solutions for biologists to analysis before they start to perform microarray experiments. GNP intends to
find sufficient solutions to support us to reconstruct GRNSs.
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Table 4.2: Comparison between GRNet, RegulonDB, and Tseng’s Lab in 30 runs

Tseng’s Lab RegulonDB 7.2 GRNet
ArcA CRP Fnr ArcA CRP Fnr ArcA CRP Fnr
fumA - + - - + - - + -
fumB + X + + + + + + +
fumC - + - - X X - + -
Table 4.3: Comparison between 1IAEA, RegulonDB, and Tseng’s Lab in 50 runs
Tseng’s Lab RegulonDB 7.2 iAEA
ArcA CRP Fnr ArcA CRP Fnr ArcA CRP Fnr
fumA - + - - + - - + -
fumB + ? + + + + + - +
fumC - + - - X X - + -
arcA ? + ? X X +- X + +-
crp ? + ? X +- X +- + -
fnr - ? - - X - - +- -
In Table 4.4, we have different combinations in regulation of CRP and Fnr over fumC, ‘X’, -+, ‘¥’

present no regulation, repressor, activator, and unknown regulations respectively. GRNet can satisfy the

expression profiles sufficiently no matter of the hypothesis we have in the beginning.

Table 4.4: Combination of regulations for Fnr and CRP over fumC.

Fnr\CRP X - + ?
X 2.95E-12 1.27E-12 4.20E-13 7.29E-13
- 1.21E-12 1.32E-12 1.38E-12 1.54E-12
+ 5.59E-12 1.02E-12 2.59E-12 1.11E-12
4.40E-12 3.99E-12 2.70E-12 1.41E-12
fumA fumB fumC
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Figure 4.14: Expression profiles with different priori knowledge in /CS].
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In different combitions of Fnr and CRP over fumC, comparions are shown in Figure 4.14. There are four
data in this figure, the purple and blue line represent real and predicted expression profile respectively. We
run 30 runs of GRNet and get the average of /CS] and [TFA] to obtaion predicted expression profile. As
shown in the figure, the expression profiles are fitted well even the various are in /CS/ and [TFA]. Also, the
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red and green lines present mutation of CRP and Fnr over fumC. We think the red line make sense to the
mutation of CRP over fumB and fumC but not to fumA after discussion with Tseng’s Lab. The concentrations
of specific genes are similar to real expression profiles of fumA, fumB, and fumC as show in Figure 4.14.
With helps of GNP, we found the new regulations of CRP and Fnr over fumC and verified in biological

experiments.
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Figure 4.15: Expression profiles with different priori knowledge in /CS/ with knock-out of CRP and Fnr.

5. Conclusions and future works

As a convenient and efficient platform of reconstructing gene regulatory network is available, biologists
can obtain accurate computational models of gene networks to simulate the dynamics of interested gene
expressions. With the help of simulated dynamics, the desired regulatory control mechanism can be designed
for drug design and other purposes. However, the complex regulatory relationships between genes make the
optimal regulatory control difficult to realize manually. Discussions of predicted GRNs are interested for

biologists to define the range of control strength or transcription factors activities between regulations.

5.1 Refining the platform incrementally

A use-friendly, reliable, and fast-response multi-user platform would be evaluated and tested from many
users using various kinds of applications. The provided functions of the platform would be increased
gradually after rigorous tests. To maintain the platform work continuously, it is desirable to carefully design
and test the system. Therefore, sufficient resources such as human resource and computer servers are
necessary. Some tasks are listed as follows:

® (Collect experimental data from web lab for specific species for testing and refining the system.

® (ollect the achievement of using the platform for increasing the experience of inferring GRNs.
® Prepare the documents and help service for using the platform.
o

Maintain and manage the gene network platform.

5.2 Experimental validations

When obtaining gene regulatory networks with the regulatory control strategy, the biological
experiments for validation should be conducted. To validate the regulations between genes we found, one step
inactivation of chromosomal genes is performed to knock out investigated gene once per time. We use
RT-PCR to measure amounts of mRNA expression in small scale with heavy and complicated routines for
large scale GRNs in our experimental validation. Through these real experiments, the obtained computational
model and regulatory control strategy can be verified. For some complex biological mechanism researches,

this approach can help them to clarify the interesting topics.
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6. Related research achievements

6.1 Journal papers

Journal papers are from 2008 (* corresponding author) as follows:

1.

10.

11.

12.

H.-L. Huang, F.-L. Chang, S.-J. Ho, L.-S. Shu, W.-L. Huang, and S.-Y. Ho*, “FRKAS: Knowledge
Acquisition Using a Fuzzy Rule Base Approach to Insight of DNA-Binding Domains/Proteins,” accepted
by Protein and Peptide Letters, 2011. (SCI)

S.-Y. Ho, C.-Y. Chao, H.-L. Huang, T.-W. Chiu, P. Charoenkwan, and E. Hwang*, “NeurphologylJ: an
automatic neuronal morphology quantification method and its application in pharmacological discovery,”
BMC Bioinformatics, 12:230, 2011. (SCI)

H.-L. Huang, I-C. Lin, Y.-F. Liou, C.-T. Tsai, K-T. Hsu, W,-L. Huang, S.-J. Ho, and S.-Y. Ho*,
“Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of
informative physicochemical and biochemical properties”, BMC Bioinformatics, 12(Suppl 1):S47, 2011.
(SCI)

Hsin-Nan Lin, Ting-Y1i Sung, S.-Y. Ho and Wen-Lian Hsu, “Improving protein secondary structure
prediction based on short subsequences with local structure similarity,” BMC Genomics, 11(Suppl 4):54,
2010 (SCI)

C.-H. Hung, H.-L. Huang, K.-T. Hsu, S.-J. Ho and S.-Y. Ho, “Prediction of non-classical secreted
proteins using informative physicochemical properties." Interdiscip Sci Comput Life Sci 2: 263-270,
2010.

Hsin-Nan Lin, Ching-Tai Chen, Ting-Yi Sung, S.-Y. Ho, and Wen-Lian Hsu* "Protein subcellular
localization prediction of eukaryotes using a knowledge-based approach," BMC Bioinformatics,
10(Suppl 15):S8, 2009. (SCI)

W.-L Huang, C.-W Tung , H.-L Huang and S.-Y. Ho*, "Predicting protein subnuclear localization using
GO-amino-acid composition features," BIOSYSTEMS, Vol 98 (2), pp. 73-79, 2009. (SCI)

H.-Y Huang, H.-Y Chang, C.-H Chou, C.-P Tseng, S.-Y. Ho, C.-D Yang, Y.-W Ju and H.-D Huang*,
"sRNAMap: genomic maps for small non-coding RNAs, their regulators and their targetsin microbial
genomes," Nucleic Acids Research, vol. 37, Database issue, 2009. (SCI)

C.-T. Tsai, W.-L. Huang, S.-J. Ho, L.-S. Shu and S.-Y. Ho*, "Virulent-GO: Prediction of virulent
proteins in bacterial pathogens utilizing Gene Ontology terms," International Journal of Biological and
Life Sciences, vol. 5, no. 4 pp. 159-166, 2009. (SCI)

C.-W. Tung and S.-Y. Ho*, "Computational identification of ubiquitylation sites from protein
sequences,” BMC Bioinformatics, 9:310, 2008. (SCI)

W.-L. Huang, C.-W. Tung, S.-W. Ho, S.-F. Hwang and S.-Y. Ho*, ’ProLoc-GO: Utilizing informative
Gene Ontology terms for sequence-based prediction of protein subcellular localization,” BMC
Bioinformatics, 9:80, 2008. (SCI)

M.-H. Hung, L.-S. Shu, S.-J. Ho, S.-F. Hwang and S.-Y. Ho*, “A novel intelligent multiobjective
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13.

simulated annealing algorithm for designing robust PID controllers,” IEEE Trans. Systems, Man, and
Cybernetics Part A —Systems and Humans 38 (2), pp. 319-330, 2008. (SCI, EI)

S.-Y. Ho, H.-S. Lin, W.-H. Liauh and S.-J. Ho*, "OPSO: Orthogonal Particle Swarm Optimization and
Its Application to Task Assignment Problems," IEEE Trans. Systems, Man, and Cybernetics Part A

—Systems and Humans 38 (2), pp. 288-298, 2008. (SCI, EI)

6.2 Submitted and under revision papers

14.

15.

16.

W.-L. Huang, C.-W. Tung, C. Liaw and S.-Y. Ho*, “Predicting subcellular localization of eukaryotic
and prokaryotic proteins using increasingly informative Gene Ontology terms,” PLoS ONE, 2011. (under
revision) (SCI)

C.-W. Tung, M. Ziehm, A. Kdmper, O. Kohlbacher* and S.-Y. Ho*, “POPISK: T-cell reactivity
prediction using support vector machines and string kernels,” BMC Bioinformatics, 2011 (under
revision). (SCI)

W.-L. Huang, C.-W. Tung and S.-Y. Ho*, “Predicting promoters by designing an informative feature set
of DNA sequence descriptors and using an inheritable bi-objective genetic algorithm,” Submitted to
Information Science, 2011. (SCI)

6.3 International Conference papers

Conference papers are from 2009 as follows:

1.

H.-L. Huang, T.-F. Kao', P. Charoenkwan’, W.-L. Huang, S.-J. Ho and S.-Y. Ho*, 2012, “Estimating
solubility scores of dipeptides and residues for predicting proteins solubility,” The Tenth Asia Pacific
Bioinformatics Conference, Melbourne, Australia, 17-19 January 2012.

C.-T. Tsai, W.-L. Huang, C. Liaw, C.-W. Tung, H.-L. Huang and S.-Y. Ho*, 2012, “Virulence-iGO:
Predicting virulence factors in pathogenic bacteria using informative Gene Ontology terms,” The Tenth
Asia Pacific Bioinformatics Conference, Melbourne, Australia, 17-19 January 2012.

H.-C. Lee, S.-J. Ho, L.-S. Shu, F.-L. Chang, S.-Y. Ho and H.-L. Huang*, 2012, “Optimization method of
predicting enzyme mutant activity from sequences by identifying a set of informative physicochemical
properties,” The Tenth Asia Pacific Bioinformatics Conference, Melbourne, Australia, 17-19 January
2012.

H.-L. Huang, Y.-H. Lin, W.-L. Huang and S.-Y. Ho*, 2011, “Intelligent triple-objective genetic
algorithm for selecting informative Tag SNPs,” The 22™ International Conference on Genome
Informatics, Korea, Dec. 5-7, 2011.

H.-L. Huang, S.-B. C., Y.-H. Chen, and S.-Y. Ho*, 2011, “Optimization approach to estimation of
kinetic parameters for modelling metabolic pathways of muscle glycogenolysis,” The 22™ International
Conference on Genome Informatics, Korea, Dec. 5-7, 2011.

L.-S. Shu, H.-L. Huang, S.-J. Ho, and S.-Y. Ho*, 2011, “Establishing large-scale gene regulatory
networks using a gene-knowledge-embedded evolutionary computation method,” IEEE International
Conference on Computer Science and Automation Engineering, June 10-12, 2011, Shanghai, China.
H.-L. Huang, F.-L. Chang, S.-J. Ho, L.-S. Shu, and S.-Y. Ho*, 2011, “Interpretable knowledge

acquisition for predicting DNA-binding domains using an evolutionary fuzzy classifier method,” IEEE
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10.

11.

12.

13.

14.

15.

International Conference on Computer Science and Automation Engineering, June 10-12, 2011,
Shanghai, China.

H.-L. Huang, I-C. Lin, Y.-F. Liou, C.-T. Tsai, K.-T. Hsu, W.-L. Huang, S.-J. Ho, and S.-Y. Ho*, 2011,
“Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of
informative physicochemical and biochemical properties, APBC 2011, Korea, Jan. 11-14.

C. Liaw, C.-W. Tung, S.-J. Ho and S.-Y. Ho*, 2010, “Sequence-based Prediction Of Gamma-turn Types
Using A Physicochemical Property-based Decision Tree Method”, International Conference on
Computational Biology, WASET 2010 Tokyo, May 26-28, 2010, Japan.

C.-W. Tung, C. Liaw, S.-J. Ho and S.-Y. Ho*, 2010, “Prediction of protein subchloroplast locations
using Random Forests”, International Conference on Computational Biology, WASET 2010 Tokyo, May
26-28, 2010, Japan.

Y.-J. Lin, H.-L. Huang, K.-T. Hsu, and S.-Y. Ho*, 2010, “Designing predictors of DNA-binding proteins
using an efficient physicochemical property mining method,” The 2nd International Conference on
Computer and Automation Engineering (ICCAE2010), Singapore, Feb. 26-28.

W-L Huang, C-W Tung, S-Y Ho*, 2010, "Human Pol II promoter prediction by using nucleotide
property composition features.” The International Symposium on Biocomputing (ISB) Feb 15-16,
Calicut, Kerala, India.

C.-H. Hung, H.-L. Huang, K.-T. Hsu, S.-J. Ho and S.-Y. Ho*, 2009, Prediction of non-classical
secreted proteins using informative physicochemical properties." The International Conference on
Computational and Systems Biology (ICBB) October 9-11, Shanghai, China.

K.-T. Hsu, H.-L. Huang, C.-W. Tung, Y.-H. Chen, and S.-Y. Ho*, 2009, "Analysis of physicochemical
properties on prediction of RS, X4 and R5X4 HIV-1 coreceptor usage," International Conference on
Bioinformatics and Bioengineering (ICBB), May 27-29, Tokyo, Japan.

C.-T. Tsai, W.-L. Huang, S.-J. Ho, L.-S. Shu, and S.-Y. Ho*, 2009, "Virulent-GO: Prediction of virulent
proteins inbacterial pathogens utilizing Gene Ontology terms," International Conference on

Bioinformatics and Bioengineering (ICBB), May 27-29, Tokyo, Japan.
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