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Abstract

This paper proposes a robust intelligent tracking controller (RITC) for a class of unknown nonlinear systems. The proposed RITC system is

comprised of a neural controller and a robust controller. The neural controller is designed to approximate an ideal controller using a

proportional–integral–derivative (PID)-type learning algorithm in the sense of Lyapunov function, and the robust controller is designed to

achieve L2 tracking performance with desired attenuation level. Finally, to investigate the effectiveness of the RITC system, the proposed design

methodology is applied to control two chaotic dynamical systems. The simulation results verify that the proposed RITC system using PID-type

learning algorithm can achieve faster convergence of the tracking error and controller parameters than that using I-type learning algorithm.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Neural networks (NNs) that make use of the organiza-
tional principles of human brains are widely known for the
powerful abilities, such as learning and adaptation
capabilities, fault tolerance, parallelism and generalization.
Recently, NN-based control technique has represented an
alternative method to solve the control problems
[3,4,6,9,10,13]. The most useful property of NNs is their
ability to approximate any continuous function to a desired
degree of accuracy through learning. Choosing a satisfying
tuning algorithm to improve the system performance is the
main issue in the NN-based control approaches. Some
researchers used the backpropagation method to derive the
learning laws; however, it is difficult to guarantee the
stability and robustness in the closed-loop system. To
tackle this problem, some researchers developed the
learning algorithms based on the Lyapunov stability
theorem. Although the closed-loop control system stability
can be guaranteed, the learning algorithm is in the integral
e front matter r 2007 Elsevier B.V. All rights reserved.

ucom.2007.01.002

ing author.

esses: fei@chu.edu.tw (C.-F. Hsu),

ctu.edu.tw (G.-M. Chen), ttlee@ntut.edu.tw (T.-T. Lee).
(I)-type form, which should make the convergence of the
tracking error and the controller parameters slowly.
Since the number of hidden neurons is not infinite for the

real-time practical applications, the approximation errors
introduced by the NN approximator cannot be inevitable.
In order to ensure the closed-loop control system stability
and robustness, a compensation controller will be designed
to dispel the approximation error. The most frequently
used of compensation controller is like a sliding-mode
control, which requires the bound of the approximation
error. If the bound of the approximation error is chosen
too small, it cannot guarantee the system stabilization in
the Lyapunov sense. So, the bound of approximation error
is chosen large enough to avoid instability in the practical
applications. It can be seen that a large bound of
approximation error will result in substantial chattering
of the control effort. The chattering phenomena in control
efforts will wear the bearing mechanism and excite
unmodelled dynamics. To tackle this problem, an error
estimation mechanism is investigated to estimate the bound
of approximation error so that the chattering phenomenon
of the control effort can be reduced [7,12]. However, the
adaptive law for the estimation error bound will make it go
to infinity.
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In the past decade, robust control techniques have been
applied extensively in the efficient treatment of robust
stabilization and disturbance rejection problems. The
L2-norm has been widely used as a measure of the
robustness for a given feedback control system. It has
been shown that the L2-norm bound (desired L2 perfor-
mance) can be achieved if an associated Hamilton–Jacobi
inequality admits a positive-definite solution. The smaller L2-
norm means the larger degree of robustness. Combing the
robust control with NN-based control, some robust NN-
based control approaches have been proposed to attenuate
the effects of approximation error to a prescribed level [1,15].

In this paper, a robust intelligent tracking controller
(RITC), which combines adaptive control, NN control and
robust control techniques, is proposed for a class of unknown
nonlinear systems. All the controller parameters are online
tuned based on the Lyapunov function to achieve favorable
approximation performance. A proportional–integral–deriva-
tive (PID)-type learning algorithm is used to speed up the
convergence of the tracking error and the controller para-
meters. By the L2 control design technique, the approximation
error can be attenuated to arbitrary specified level. Simulation
results are performed to demonstrate the effectiveness of the
proposed RITC design method. The major contributions of
this paper are: (1) the successful development of an RITC
system via L2 tracking performance is used to compensate the
residual of the approximation error; (2) the convergence of the
tracking error and control parameter is accelerated by the
PID-type learning algorithm, and (3) the successful application
of the RITC to control two chaotic dynamic systems.

2. Description of neural network approximator

A general function of a three-layer NN as shown in
Fig. 1 can be represented in the following form [4]:

y ¼
Xm

j¼1

wjxjðzi; vij ; cj ; sjÞ, (1)
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Fig. 1. The structure of neural network.
where z ¼ ½z1z2 . . . zn�
T and y are the input and output

variables, respectively; xj represents the active function of
the jth neuron in the hidden layer; vij denotes the weight
between the input layer and hidden layer; wj denotes the
weight between the hidden layer and output layer; and ci

and si are the center and width of the jth active function,
respectively. The active function of the jth hidden neuron
can be represented as

xj ¼ exp �
Sn

i¼1zivij � cj

� �2
s2j

 !
. (2)

Define the vectors c, s and v collecting all parameters of
the hidden layer as

c ¼ ½c1c2 . . . cm�
T, (3)

s ¼ ½s1s2 . . . sm�
T, (4)

v ¼ ½v1v2 . . . vm�, (5)

in which vi ¼ ½v1i . . . vni�
T. Then, the output of the NN can

be represented in a vector form

y ¼ wTnðvTz; c; sÞ, (6)

where w ¼ ½w1w2 . . .wm�
T and n ¼ ½x1x2 . . . xm�

T.
The main property of NN regarding feedback

control purpose is the universal function approximation
property. It implies that there exists an expansion of (6)
such that it can uniformly approximate a nonlinear even
time-varying function Y. By the universal approximation
theorem, there exists an optimal NN approximator y* such
that [14]

Y ¼ y� þ D ¼ w�Tn�ðv�Tz; c�; s�Þ þ D, (7)

where w* and n* are the optimal vectors of w and n,
respectively; c*, s* and v* are the optimal vectors of c, s and
v, respectively; and D denotes the approximation error. In
fact, the optimal vector that is needed to best approximate
a nonlinear function is difficult to determine and even
might not be unique. Thus, a NN estimator is defined as

ŷ ¼ ŵ
Tn̂ðv̂Tz; ĉ; ŝÞ, (8)

where ŵ and n̂ are the estimation vector of w* and n*,
respectively; ĉ, ŝ and v̂ are the estimation vectors
of c*, s* and v

*, respectively. The approximation error is
denoted as

~y ¼ Y� ŷ ¼ w�Tn� � ŵ
Tn̂þ D ¼ ~wTn̂þ ŵ

T ~nþ ~wT ~nþ D;
(9)

where ~w ¼ w� � ŵ and ~n ¼ n� � n̂. In the following, some
adaptive laws will be proposed to online tune the
parameters of the NN estimator to achieve favorable
approximation performance. To achieve this goal, the
Taylor linearization technique is employed to transform
the nonlinear active function into partially linear form so
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that the expansion can be expressed as [4]
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~x1
~x2

..

.

~xm

2
6666664

3
7777775
¼

qx1
qðvTzÞ

qx2
qðvTzÞ

..

.

qxm

qðvTzÞ

2
6666666666664

3
7777777777775

������������������
vTz¼v̂

T
z

ðv�Tz� v̂
T
zÞ

þ

qx1
qc
qx2
qc

..

.

qxm

qc

2
666666666664

3
777777777775

�����������������
c¼ĉ
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or

~n ¼ nTv ~v
Tzþ nTc ~cþ nTs ~sþ h, (11)

where h represents the higher-order term; ~v ¼ v� � v̂;
~c ¼ c� � ĉ; ~s ¼ s� � ŝ and

nv ¼
qx1

qðvTzÞ
qx2

qðvTzÞ
� � �

qxm

qðvTzÞ

� �����
vTz¼v̂

T
z

, (12)

nc ¼
qx1
qc

qx2
qc
� � �

qxm

qc

� �����
c¼ĉ

, (13)

ns ¼
qx1
qs

qx2
qs
� � �

qxm

qs

� �����
s¼ŝ

. (14)

Substituting (11) into (9), it is obtained that

~y ¼ ~wTn̂þ ŵ
TnTv ~v

Tzþ ŵ
TnTc ~cþ ŵ

TnTs ~sþ �1, (15)

where �1 ¼ ŵ
T
hþ ~wT ~nþ D. To speed up the convergence

of NN learning, the optimal vector w* is decomposed into
three parts as

w� ¼ bPX
�
P þ bIX

�
I þ bDX�D, (16)

where X�P, X�I and X�D are the proportional, integral and
derivative terms of w*, respectively; bp, bI, and bD are
positive constants; X�I ¼

R
X�P dt and X�D ¼ dX�P

�
dt. The

estimation vector ŵ is given as

ŵ ¼ bPX̂P þ bIX̂I þ bDX̂D, (17)

where X̂P, X̂I and X̂D are the proportional, integral and
derivative terms of ŵ, respectively; X̂I ¼

R
X̂P dt and

X̂D ¼ dðX̂P=dtÞ. Thus, ~w can be expressed as

~w ¼ bI ~XI � bPX̂P � bDX̂D þ �2, (18)
where ~XI ¼ X�I � X̂I and �2 ¼ bPX
�
P þ bDX�D. Substituting

(18) into (15), we obtain that

~y ¼ bI ~X
T

I n̂� bPX̂
T

P n̂� bDX̂
T

Dn̂þ ŵ
TnTv ~v

Tz

þ ŵ
TnTc ~cþ ŵ

TnTs ~sþ �

¼ bI ~X
T

I n̂� bPX̂
T

P n̂� bDX̂
T

Dn̂þ ŵ
TnTv ~v

Tz

þ ~cTncŵþ ~s
Tnsŵþ �, ð19Þ

where ŵ
TnTc ~c ¼ ~cTncŵ and ŵ

TnTs ~s ¼ ~s
Tnsŵ since they are

scalars, and the uncertain term � ¼ �T2 n̂þ �1.

3. Design of robust intelligent tracking controller

3.1. Description of ideal control

Consider an nth-order nonlinear system of the control-
lable canonical form

xðnÞ ¼ F ðxÞ þ GðxÞu, (20)

where x ¼ ½x _x . . . xðn�1Þ�T is the state vector of the system,
which is assumed to be available for measurement, F(x)
and G(x) are the nonlinear system dynamics which can be
unknown, and u is the input of the system. Since the
nonlinear dynamics cannot be exactly obtained, the
considered system poses an interesting and challenging
dilemma to the control problem. Assume that the system
dynamics in the controlled system (20) are exactly known.
The nominal model of (20) can be represented as

xðnÞ ¼ f nðxÞ þ gnðxÞu, (21)

where fn(x) and is the nominal value of F(x), and gn(x)40
is a nominal constant of G(x). In the presence of
uncertainties, the considered system (20) can be described
as

xðnÞ ¼ ½f nðxÞ þ Df ðxÞ� þ ½gnðxÞ þ DgðxÞ�u

¼ f ðxÞ þ gnðxÞu, ð22Þ

where Df(x) and Dg(x) denote the uncertainties; f(x) is
defined as f ðxÞ � f nðxÞ þ Df ðxÞ þ DgnðxÞu.
The tracking control problem of the system is to find a

control law so that the state trajectory x can track a reference
command xc closely. The tracking error is defined as

e ¼ xc � x. (23)

There exits an ideal controller defined as [11]

u� ¼
1

gnðxÞ
½�f ðxÞ þ xðnÞc þ kTe�, (24)

where e ¼ ½e_e . . . eðn�1Þ�T is the tracking error vector and
k ¼ ½kn . . . k2k1�

T, in which ki, i ¼ 1; 2; . . . ; n are positive
constants. Applying the ideal controller (24) to system (22)
results in the following error dynamics

eðnÞ þ k1e
ðn�1Þ þ � � � kne ¼ 0. (25)

If ki are chosen such that all roots of the polynomial
hðsÞD sn þ k1s

n�1 þ � � � kn lie strictly in the open left half of
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the complex plane, then it implies that limt!1e ¼ 0 for any
starting initial conditions. However, since the system
dynamics f(x) may be unknown or perturbed in practical
applications, the ideal controller (24) cannot be precisely
obtained. So a model-free design method termed as the
RITC will be developed for the unknown nonlinear systems.

3.2. Design of RITC

For achieving a favorable tracking performance and an
arbitrarily small attenuation level simultaneously, the
developed RITC system shown in Fig. 2 is assumed to
take the following form

urt ¼ unc þ urc, (26)

where unc is the neural controller and urc is the robust
controller. The neural controller is the principal controller,
which uses a NN to approximate the ideal controller in (24).
The input of the NN is the tracking vector, and the output of
the NN is the neural controller, which uses a NN to
approximate the ideal controller. The robust controller is
designed to achieve a specified L2 robust tracking perfor-
mance. Substituting (26) into (22) and using (24) yields

_e ¼ Aeþ gnbðu
� � unc � urcÞ, (27)

where

A ¼

0 1 0 � � � 0

..

. . .
. . .

. . .
.

0

0 � � � � � � 0 1

�kn �kn�1 � � � � � � �k1

2
66664

3
77775

and b ¼ ½00 . . . 1�T. By the approximation theorem of the
NN (19), (27) can be rewritten as

_e ¼ Aeþ gnbðbI ~X
T

I n̂� bPX̂
T

P n̂� bDX̂
T

Dn̂þ ŵ
TnTv ~v

Te

þ ~cTncŵþ ~s
Tnsŵþ �� urcÞ. ð28Þ

In the following theorem, we show how to determine the
control law, ensuring the stability and robustness of the
closed-loop system.
neural controller

robust intelligent tracking

robust controller

u

unxc + e

sc ,ˆ,ˆ
ˆˆˆ

adaptive law

ΩP, ΩI, ΩD,
. .

�

Fig. 2. RITC for unknow
Theorem. Consider a SISO nonlinear system represented by

(22) and the control system is designed as (26). The neural

controller is given as unc ¼ ŵ
Tn̂ðv̂Te; ĉ; ŝÞ, in which

ŵ ¼ bPX̂P þ bIX̂I þ bDX̂D, with

X̂P ¼ eTPbn̂, (29)

X̂I ¼

Z t

0

eTPbn̂dt, (30)

X̂D ¼
d

dt
ðeTPbn̂Þ (31)

and the adaptive laws are designed as

_̂v ¼ �_~v ¼ bve
TPbeŵ

Tnv, (32)

_̂c ¼ �_~c ¼ bce
TPbncŵ, (33)

_̂s ¼ �_~s ¼ bse
TPbnsŵ, (34)

where learning rates bv, bc, and bs are positive constants. The

robust controller is given as

urc ¼
1

2gnd
bTPe, (35)

where the symmetric positive definite matrix P satisfies the

following Riccati-like equation

ATPþ PAþQþ Pb
1

r2
�

1

d

� 	
bTP ¼ 0, (36)

where Q is a symmetric positive matrix and r24d. Then the

RITC system can guarantee the global stability and

robustness of the closed-loop system and achieve the

following L2 criterionZ t

0

eTedtp
2

lminðQÞ
V ð0Þ þ

g2
nr

2

lminðQÞ

Z t

0

�2 dt, (37)

where lminðQÞ is the minimal eigenvalue of Q.
urt unknown

nonlinear

system

x

 control

rc

c +
+

v̂
.

n nonlinear system.
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Proof. Define the Lyapunov function candidate as

V ¼
1

2
eTPeþ

gn

2bv

tr ~vT ~v

 �

þ
gn

2bc

~cT ~cþ
gn

2bs

~sT~s

þ
gnbD
2

X̂T
PX̂P þ

gnbI
2

~XT
I
~XI. ð38Þ

Differentiating (38) with respect to time and using (28)
yields

_V ¼
1

2
eTP_eþ

1

2
_eTPeþ

gn

bv

tr ~vT _~v

 �

þ
gn

bc

~cT _~c

þ
gn

bs
~sT_~sþ gnbDX̂T

P
_̂XP þ gnbI ~X

T

I
_~XI

¼
1

2
eTðATPþ PAÞeþ gne

TPbðbI ~X
T

I n̂

� bPX̂
T

P n̂� bDX̂
T

Dn̂þ ŵ
TxTv ~v

Teþ ~cTxcŵ

þ ~sTnsŵþ �� urcÞ þ
gn

bv

tr ~vT _~v

 �

þ
gn

bc

~cT _~cþ
gn

bs

~sT_~sþ gnbDX̂T
P
_̂XP þ gnbI ~X

T
I
_~XI

¼
1

2
eTðATPþ PAÞeþ gne

TPbð�bPX̂
T

P n̂

� bDX̂
T

Dn̂þ �� urcÞ þ gnbI ~X
T

I ðe
TPbn̂þ _~XIÞ

þ tr gn ~v
T eTPbeŵ

Tnv þ
_~v

bv

� 	� 


þ gn ~c
T eTPbncŵþ

_~c

bc

� 	

þ gn~s
T eTPbnsŵþ

_~s

bs

� 	
þ gnbDX̂T

P
_̂XP. ð39Þ

Using (29)–(34), (39) can be rewritten as

_V ¼ 1
2
eTðATPþ PAÞeþ gne

TPbð�� urcÞ

� gnbPX̂
T

Pe
TPbn̂� gnbDX̂

T

De
TPbn̂

þ gnbDX̂T
P
_̂XP

¼ 1
2
eTðATPþ PAÞeþ gne

TPbð�� urcÞ

� gnbPX̂
T

PX̂P � gnbDX̂
T

DX̂P

¼ 1
2
eTðATPþ PAÞeþ gne

TPbð�� urcÞ

� gnbPX̂
T

PX̂P. ð40Þ

Substituting (35) into (40), (40) can be rewritten as

_V ¼
1

2
eT ATPþ PA�

1

d
PbbTP

� 	
e

þ gn�b
TPe� gnbPX̂

T

PX̂P

¼
1

2
eT �Q�

1

r2
PbbTP

� 	
eþ gn�b

TPe� gnbPX̂
T

PX̂P

¼ �
1

2
eTQe�

1

2

1

r
bTPe� gnr�

� 	2

þ
1

2
g2

nr
2�2
� gnbPX̂
T

PX̂P

p�
1

2
eTQeþ

1

2
g2

nr
2�2. ð41Þ

Integrating the above inequality (41) yields

V ðtÞ � V ð0Þp�
1

2

Z t

0

eTQedtþ
g2

nr
2

2

Z t

0

�2 dt: (42)

Since V ðtÞX0, we obtain the following L2 criterion

1

2

Z t

0

eTQedtpV ð0Þ þ
g2

nr
2

2

Z t

0

�2 dt. (43)

The knowledge that Q is a positive definite matrix and
the fact lminðQÞe

TepeTQe implyZ t

0

eTedtp
2

lminðQÞ
V ð0Þ þ

g2
nr

2

lminðQÞ

Z t

0

�2 dt. (44)

Using Barbalat’s lemma, one can see that the tracking
error converges to zero in an infinite time. &

Remark 1. The inequality (43) reveals that the integrated
squared error of e is less than or equal to the sum of V(0)
and the integrated squared error of e. Since the V(0) is
finite, if e is squared integrable then we can conclude that e
will approach to zero.

Remark 2. From (44), if the systems starts with the initial
condition V(0) ¼ 0, i.e., e(0) ¼ 0, ~vð0Þ ¼ 0, ~cð0Þ ¼ 0,
~sð0Þ ¼ 0, ~XIð0Þ ¼ 0, and X̂Pð0Þ ¼ 0, the L2 gain must satisfy

sup
�2L2½0;t�

jjejj

jj�jj
p

gnrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lminðQÞ

p (45)

where jjejj2 ¼
R t

0
eTedt and jj�jj2 ¼

R t

0
�2 dt. Inequality (45)

indicates that when a smaller attenuation level r is
specified, a better tracking performance can be achieved.

4. Simulation results

In this section, the proposed RITC is applied to control
two chaotic dynamic systems to verify its effectiveness.
Chaotic systems have been known to exhibit complex
dynamical behaviors. Several control techniques have been
proposed for the chaotic systems [2,5,8]. It should be
emphasized that the development of the RITC does not
need to know the dynamics of the controlled system.

Example 1. Consider a second-order chaotic system such
as the Duffing’s equation describing a special nonlinear
circuit or a pendulum moving in a viscous medium [2,5]

€x ¼ �p _x� p1x� p2x
3 þ q cosðwtÞ þ u ¼ f ðxÞ þ u, (46)

where x ¼ ½x _x�T is the state vector of the system which is
assumed to be available; f ðxÞ ¼ �p _x� p1x� p2x3 þ

q cosðwtÞ is the system dynamic function; u is the control
effort; and p, p1, p2, q and w are real constants. Depending
on the choices of these constants, it is known that the
solutions of system (46) may display complex phenomena,
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including various periodic orbits behaviors and some
chaotic behaviors [2]. For observing the these complex
phenomena, the open-loop system behavior with u ¼ 0 was
simulated with p ¼ 0.4, p1 ¼ �1.1, p1 ¼ 1.0 and w ¼ 1.8.
The phase plane plots from an initial condition point (0, 0)
are shown in Figs. 3(a) and (b) for q ¼ 2.1 (chaotic) and
q ¼ 7.0 (period 1), respectively. The active function of
hidden neuron are given with c ¼ ½�1:0;�0:6;�0:3;
0:0; 0:3; 0:6; 1:0�T and s ¼ ½0:5; 0:5; 0:5; 0:5; 0:5; 0:5; 0:5�T;
and the interconnection weights between the input and
hidden layers are initiated from ones; and interconnection
weights between the hidden and output layers are initiated
from zeros. If the learning rates are chosen to be small,
then the parameters convergence of the NN will be easily
achieved; however, this will result in slow learning speed.
On the other hand, if the learning rates are chosen to be
large, then the learning speed will be fast; however, the NN
may become more unstable for the parameter convergence.
The initial settings are chosen through some trials to
achieve favorable transient control performance. The
control parameters of RITC are selected as
bv ¼ bc ¼ bs ¼ 30; bI ¼ 50; bP ¼ 5; bD ¼ 0:05, and d ¼
1:0. For a choice of Q ¼ I, k1 ¼ 2 and k2 ¼ 1, solve the
Riccati-like Eq. (34), then

P ¼
1:5 0:5

0:5 0:5

� �
. (47)

To compare the tracking efficiency, the RITC with an
I-type learning algorithm is applied to control the chaotic
system. This is a special case of the developed RITC design
method for bP ¼ 0 and bD ¼ 0. The I-type learning
algorithm can be found in most previous research works.
The simulation results of the RITC with I-type learning
algorithm for q ¼ 2:1 and q ¼ 7:0 are shown in Figs. 4 and
5, respectively. It is shown that the RITC with I-type
learning algorithm can achieve favorable tracking perfor-
mance. Then, the simulation results of the RITC with PID-
type learning algorithm for q ¼ 2:1 and q ¼ 7:0 are shown
in Figs. 6 and 7, respectively. A performance index I is
q=2.1
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Fig. 3. Phase plane of unco
defined as I ¼
R

e2 dt. The performance indexes of I-type
and PID-type learning algorithm with q ¼ 2:1 and 7:0 are
shown in Fig. 8. It is shown that the performance index of
the proposed PID-type learning algorithm is smaller than
that of the I-type learning algorithm. In other words, RITC
using the PID-type learning algorithm can achieve better
q=7.0
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tracking performance than that using I-type learning
algorithm.

Example 2. A third-order Chua’s chaotic circuit, as shown
in Fig. 9, is a simple electronic system that consists of one
linear resistor (R), two capacitors (C1, C2), one inductor
(L), and one nonlinear resistor (l). It has been shown to
own very rich nonlinear dynamics such as chaos and
bifurcations. The dynamic equations of Chua’s circuit are
written as [7]

_vC1
¼

1

C1

1

R
ðvC2
� vC1

Þ � lðvC2
Þ

� 	
,

_vC2
¼

1

C2

1

R
ðvC1
� vC2

Þ þ iL

� 	
,

_iL ¼
1

L
ð�vC1

� R0iLÞ, ð48Þ

where the voltages vC1
, vC2

and current iL are state
variables, R0 is a constant, and l denotes the nonlinear
resistor, which is a function of the voltage across the two
terminals of C1. The l is defined as a cubic function as

lðvC1
Þ ¼ avC1

þ cv3C1
ðao0; c40Þ. (49)
The state equations in (48) are not in the standard
canonical form. Therefore, a linear transformation is
needed to transform them into the form of (20). Then,
the dynamic equations of transformed Chua’s circuit can
be rewritten as

_x1 ¼ x2,

_x2 ¼ x3,

_x3 ¼ f ðxÞ þ u, ð50Þ

where x ¼ ½x1x2x3�
T is the state vector of the system which

is assumed to be available; the system dynamic function

f ðxÞ ¼
14

1805
x1 �

168

9025
x2 þ

1

38
x3

�
2

45

28

361
x1 þ

7

95
x2 þ x3

� 	
3

and u is the control effort. The active function of hidden
neuron are given with c ¼ ½�1:0;�0:6;�0:3; 0:0; 0:3;
0:6; 1:0�T and s ¼ ½0:5; 0:5; 0:5; 0:5; 0:5; 0:5; 0:5�T; and the
interconnection weights between the input and hidden
layers are initiated from ones; and interconnection weights
between the hidden and output layers are initiated from
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zeros. Similar to Example 1, the choice of learning rates
will influence the convergent speed of the NN. The initial
settings are chosen through some trials to achieve favorable
transient control performance. The control parameters are
selected as bv ¼ bc ¼ bs ¼ bI ¼ 10; bP ¼ 1, and
bD ¼ 0:01. For a choice of Q ¼ I, k1 ¼ 5, k2 ¼ 7 and
k3 ¼ 3, we solve the Riccati-like Eq. (36) and obtain

P ¼

1:9323 1:2865 0:1667

1:2865 2:1667 0:2552

0:1667 0:2552 0:1510

2
64

3
75. (51)
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The simulation results of the RITC with PID-type
learning algorithm for d ¼ 1:0 and 0:1 and are shown in
Figs. 10 and 11, respectively. It can be observed that
satisfying tracking performance is achieved for different d.
A performance index I is defined as I ¼

R
e2 dt. The

performance indexes for d ¼ 1:0 and d ¼ 0:1 are shown in
Fig. 12. It is shown that the performance index for d ¼ 0:1
is smaller than that for d ¼ 1:0. In other words, the better
tracking performance can be achieved if the specified
attenuation level d is chosen smaller.

5. Conclusions

In this paper, a robust intelligent tracking controller
(RITC) for a class of unknown nonlinear systems is
proposed. The RITC is comprised of a neural controller
and a robust controller. The neural controller is designed
to approximate an ideal controller with a PID-type
learning algorithm, and the robust controller is designed
to achieve L2 tracking performance with attenuation of
disturbances including approximation errors and external
uncertainties. Finally, the proposed RITC is applied to
control two chaotic dynamic systems to investigate its
effectiveness. Simulations verify that favorable tracking
performance can be achieved. From the simulation results,
three main contributions of this research are concluded: (1)
RITC system with PID-learning algorithm can achieve
favorable tracking performance in controlling complex
nonlinear systems; (2) the convergence of the tracking error
and control parameter is accelerated by the PID-type
learning algorithm; and (3) an arbitrarily small attenuation
level can be achieved if a weighting factor of the robust
controller is chosen adequately.
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