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Abstract

Nowadays, the 3D image processing has become a trend in the related visual
processing field. Many automatic 2D to 3D conversion algorithms have been
proposed to solve the lack of 3D content. But there is still no fast algorithm that
converts single monocular images well.

In this thesis, we propose a fast conversion algorithm that includes the image
segmentation, image classification, object boundary tracing method, and 3D image
generation. The image segmentation adopts the watershed method to easily collect
the information of depth cue. Then, the image classification recovers the geometry
of scene in the image. With the depth cue and geometry information, the object
boundary tracing method is proposed to detect objects in image efficiently. Finally,
the object result is used to generate depth map and 3D anaglyph image.

To evaluate the results, we compare the stereo images with other 2D to 3D
conversion systems. Experiment result shows that the proposed 2D to 3D conversion
algorithm could perform better than the associated ones in the depth accuracy and

processing speed for converting monocular images.
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1. Report

1-1 Introduction

Video is a widely used multimedia nowadays. After the resolution of video reach
a full HD(1920*1080) level, human starts to seek a more realistic way to enjoy it.
Therefore, the research in 3D video has become more and more popular. However,
the traditional contents are all 2D contents and they cannot fit a 3D display device.
Because of the reason, many automatic 2D to 3D conversion algorithms have been
proposed to solve the lack of 3D content. But there is still no fast algorithm that
converts monocular still images well.

1-2 Target

Our goal is to develop an algorithm that can convert a traditional 2D content
into a 3D one. In order to make our algorithm have a wide application, the target
speed of the algorithm is 30fps for a HD1080(1920*1080) sequence. Furthermore, it
can combine with other sub-project and build a transmission system. By the system, a
3D display technology will become a much easier task and it can also improve the
application in many regions.

1-3 Previous work

Recovering 3D information from a 2D video is a basic problem in computer
vision. Many depth cues can be used to extract the 3D information from a 2D video,
but each cue has its own advantages and disadvantages for different conditions.
linuma et al. [1] used the defocus cue to evaluate depth information by a single frame
and the motion cue to convert the video. Cheng et al. [2] used the geometry cue and
motion cue to evaluate the depth information. The simple concept and low
computational complexity of those methods have enabled it to be adopted in real-time
applications. However, those methods cannot perform well for a monocular still
image.

Another approach is the pattern recognition-based method. In which, an image is
first partitioned into many regions, and each region is categorized into several classes
to be assigned depth. Based on this concept, Battiato et al. [3] classify regions into
indoor, outdoor with geometric elements, and outdoor without geometric elements.
Then, it uses the information collected in the classification step to estimate the depth.
Even through this method could generate the high-quality result for the monocular
still image, this method cannot perform well for many types of scenes. Hoiem et al. [4]
also classify regions into several classes first. Then, they extract the boundary
information of regions to merge small regions into objects, and further assign a
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specific depth to each object according to its classes. This method can generate
high-quality result for many types of scene, but its boundary extraction and object
detection suffer from high computational complexity.

1-4. proposed algorithm

Motivated by above issues, we propose an efficient 2D to 3D conversion
algorithm for monocular still images with the steps of image segmentation, image
classification, object boundary tracing, constraint segmentation .and 3D image
generation. First, we apply the watershed method for image segmentation, and further
merge and reduce segments by texture and color information for the efficiency of
successive steps. Second, we adopt the image classification [5] to recover the
geometry of scene. Third, we propose the object boundary tracing method to increase
the efficiency in the boundary extraction and objection detection. Fourth, we use
constraint segmentation merge incomplete object segments. Finally, we assign depth
for each object and synthesize a stereoscopic image by the depth-based image
rendering (DIBR) algorithm [6]. The experimental results show our proposed
algorithm could deliver better depth map and stereoscopic image, and speed up to
44.4 times of the previous algorithm in [4].

3 R Initial ; . Object boundary
segmentation SHitecellayolt tracing method |
- Input image g
| . Depth assignment ;
Constraint N and 3D image ]

segmentation

construction

[ 4 [ &2 e ARG ol sty
. Left view Right view

Fig.1 illustrates the flow of our 2D to 3D conversion algorithm which consists of
five stages. In our method, we first use the watershed algorithm to compute the initial
segmentation. Even though the watershed segmentation can preserve object boundary
well, it has problems of over segmentation. Due to the problem, neighbor region
merge process is used to solve this. In the second stage, we use the surface layout
algorithm [5] to provide the geometric information for object detection. In the third
stage, we propose the object boundary tracing method to detect object efficiently, but
there are still some incomplete object segments. Thus, in the fourth stage, we perform

Fig. 1. Algorithm overview.
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the constraint segmentation to merge segments by well-defined conditions. Finally,
we assign the depths to the objects, and use the DIBR algorithm [6] to generate the
images for left and right eyes in the final stage.

1-4-a. Initial Segmentation

In the proposed 2D to 3D conversion algorithm, the accuracy of object boundary
detection is important. Thus a proper choice of image segmentation algorithm is also
important in our approach. We adopt the watershed image segmentation [7] because it
can preserve edge in the object boundary, and it is suitable for fast application.

Since the number of segments is related to the computational complexity in our
algorithm, we propose a neighbor merge method to reduce the segments. In this
method, we refer to the color and texture information of each small segment to further
merge segments into meaningful ones.

For the color information, we consider the color distance between segments by
their average color. For the color space, we apply the Hue-Saturation-Value (HSV)
color space, and its color difference E.;; is computed by the formula [8]. For the
texture information, we apply a subset of the filter bank in [9] to compute the texture
responses of each pixel. The filter bank consists of 6 edges filters, 6 bars filters, 1
Gaussian filter, and 2 Laplacian of Gaussian filters. With the texture responses, the
histogram of maximum responses is computed for every segment, and then the
symmetrized Kullback-Leibler divergence Er;; is computed for every neighboring
segment.

Finally, we compute the edge cost to combine the above color and texture
information for every neighbor segments by the formula,

edge(i,j) = aEci; + BETy; 1)

where o, [ are the weighting factors to control the amount of color difference
E.i; and divergence Erj;.

With the edge cost, two small segments could be merged if their edge cost is
lower than the threshold T. The threshold is automatically and iteratively refined until
the number of segment is smaller than a constant.

1-4-b Surface layout

After initial segmentation, we apply the surface layout algorithm [5] to estimate
the geometry for each segment. The surface layout algorithm can label the image into
geometry classes, which coarsely describe the 3D scene orientation of each image
region. Every region in the image is categorized into one of three main classes:
“support”, “vertical”, and “sky”. In addition, the “vertical” class is further categorized
into one of five subclasses: “left”, “center”, “right”, “porous”, and “solid”. In the

3



subclasses, a planar surface facing to the “left”, “center” or “right” of the viewer,
while a non-planar surface that are either “porous” or “solid”. With this algorithm, we
could obtain the geometry information from an image.

1-4-c Object boundary tracing method

With above two stages, much information could help us to detect object. However,
a local method is difficult to distinguish the correct boundary, while a global method
has high computational complexity due to much iteration. Therefore, we propose an
object boundary tracing method to solve this problem. There are three stages for the
object boundary tracing method.

In the first stage, we use a set of rule to determine the initial boundaries by the
features of geometry, color, texture, and boundary smoothness. With the initial
boundaries selection, the obvious object boundaries are labeled.

In the second stage, we propose an efficient object boundary tracer to find the
object boundary from the segmentation result in Section 2.1. In which, we starts from
an initial boundary between two segments, and trace its extended boundary between
another two segments. The selected boundary should have higher edge cost, high label
likelihood difference between the two segments. In addition, the orientation of
selected boundary cannot change rapidly. This process repeats until reaching to the
border of image or the object boundary that has already been labeled.

For the proposed object boundary tracer, we defined an energy function that is
formulated by the following three constraints.

Constraint 1: boundary tracing constraint:

Ei:(i,)) = edge(i,)) 2)
Constraint 2: different label constraint:
Ea(i,j) = |P(y; = label,) — P(y; = labely)], (3)

Constraint 3: identical label constraint:

Eq(i,j) = max (P(y; = label,), P(y; = label,)),  (4)

where i and j are the adjacent superpixels, y; and y; are the superpixel label, and
label, is the current object label. The first one is the boundary tracing constraint to
trace strong boundary. The second one is the different label constraint to separate
different object. The third one is the label constraint to penalize surface label in an
object.

y = arg maxy,{aE;(i,j) + BEqi(i,)) + YEq (i, )} (5)

where «, (3, yare the weighting factors to control the amount of each energy.
This cost function could be efficiently minimized by a local method.

In the third stage, we merge the segments without object boundary into one.
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1-4-d Constraint segmentation

With the proposed object boundary tracing method, some segments in the image
are not complete objects. They could be further merged by the event constraints as
listed in Table 1. We could merge the segments if the following conditions are
satisfied.

Condition 1: Event 1 N Event 2

Condition 2: Event 1 n Event 2 N Event 6

Condition 3: Event 2 N Event3 N Event4

Condition 4: Event 2 N Event5

We seriatim check these conditions, and merge the segments. After the constraint
segmentation process, the object-based segmentation is done.

Table 1. Events of constraint segmentation

Event 1: the color of the segment is similar to the other.
Event 2: the label confidence of segment is similar.
Event 3: the shape of the segment is similar to the other.
Event 4: the y axis position of the segment is similar
Event 5: the segment is inside of the other segment.
Event 6: the segment is small enough.

1-4-e Depth assignment and 3D image construction

Finally, we assign the depth to the objects according to the object segmentation
result and the geometry information in Section 2.3. Our model in the 3-dimensional
space consists of a ground plane and objects are orthogonal to the ground and sky.

At first, for each region, we fit a set of line segments to the ground-vertical
boundary by using the Hough transform. Those line segments are used to determine
that the “vertical” segments are planar or not. If a “vertical” segment contains the line
segments, it is a planar. Otherwise a “vertical” segment is a non-planar.

Then, we assign different depth for segment according to their conditions. For the
“ground” segment and the planar “vertical” segment, we assign gradient depth. Then,
we assign corresponding depth according to the position of horizontal line and the
behavior of ground-vertical boundary. For the “sky” segment and the non-planar
“vertical” segment, we assign constant depth according to its position in the image
coordinate.

After the depth assignment, we have the disparity map and further generate an
anaglyph image for left and right eyes by the depth-based image rendering (DIBR)
algorithm [6].



1-6. Result

The proposed algorithm was tested on the images with the sizes from 352x288 to
1024x768, and its computation time is measured on the Intel Core i7 3.33 GHz CPU
as listed in Table 2. In this table, the texture computation is bottleneck in our
proposed algorithm. It is greatly increased, especially for large images. Nevertheless,
the texture computation could be easily accelerated using a parallel processor.
Compared to the time distribution of Hoiem’s method [4], the proposed 2D to 3D
conversion algorithm could reduce the computation of object boundary tracer and
constraint segmentation. Thus, our proposed algorithm is more efficient, and only
needs 2.25% of the computation time in Hoiem’s method.

Fig. 2 to Fig. 7 show the our generated disparity maps, the left-view and
right-view synthesis images, and the anaglyph images. The sequences in the Fig 2 and
Fig 3 are from the standard MPEG-4 video test sequences, and the other sequences
are from the databases of [4]. In the depth maps and synthesized view, our proposed
algorithm could deliver better results.

Table 2. Computation time on CPU in second

Frame Size CIF VGA SVGA XGA Our Time | [4]’s Time
(sec) (sec) (sec) (sec) | Distribution | Distribution
(%) (%)
Initial 0.078 0.294 0.585 1.137 0.359 0.0003
segmentation
Texture 1.349 4.713 7.342 12.01 99.26 9.0750
computation
Surface 0.148 0.353 0.515 0.607 0.352 2.2687
labeling
Object 0.015 0.045 0.064 0.060 0.004 88.541
boundary
tracer
Constraint 0.000 0.002 0.002 0.003 0.000
segmentation
Depth 0.000 0.010 0.015 0.019 0.000 0.0000
assignment
Total times 1.590 5.409 7.660 13.82 - -
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1-7. Conclusion

In this paper, we proposed an efficient 2D to 3D conversion algorithm which
automatically converts a still 2D image into a 3D one. With the proposed object
boundary tracing method, the computation time is much reduced to 2.25%. The
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proposed 2D to 3D conversion algorithm could deliver better depth map and
stereoscopic images, compared to the typical algorithm.

This project has already proposed as a paper in CVGIP, 2011. The paper’s name
is as follow:
Yi-Chun Chen et. al. “Efficient 2D to 3D conversion with Object-Based
Segmentation”, Computer Vision, Graphics, and Image Processing (CVGIP), 2011
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3. Self-assessment

We successfully proposed a high speed algorithm compared to other
object-based ones. Under object-based algorithm, we can make a complete object in
the same depth. That is, we will feel that every part in the object is at the same
distance with us. It is very important for a comfortable 3D experience.

This algorithm was also published in CVGIP, 2011 as an oral paper. It will be a
good reference for someone who expects to do further research in this area.

However, this algorithm cannot reach our final goal — the real time application.
Although we believe that the parallel computation can speed up the algorithm a lot, it
may not reach 30fps when handling a full HD sequence. For a realistic application, we
should try to simplify and speed up this algorithm.

The other question is that there is no standard for evaluating the qualities of 2D
to 3D conversion algorithm since there is no ground truth for a real 2D sequence.
Furthermore, the confortable 3D content is a complex issue because it will depend on
human’s feeling. The judgment way should be different from the traditional 2D
sequence. We believe that to establish a fair computation method to judge which
algorithm is better will be an important issue in the related research.

® Published paper
Yi-Chun Chen et. al. “Efficient 2D to 3D conversion with Object-Based
Segmentation”, Computer Vision, Graphics, and Image Processing (CVGIP), 2011
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AN EFFICIENT MODE PRE-SELECTION ALGORITHM FOR H.264/AVC SCALABLE
VIDEO EXTENSION FRACTIONAL MOTION ESTIMATION

Gwo-Long Li and Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

ABSTRACT

H.264/AVC scalable video extension (SVC) adopts various
advanced prediction modes to exploit the data redundancies
between layers for better coding efficiency but at the cost of
significantly increased computational complexity, especially
for hardware realization of fractional motion estimation.
This paper proposes an efficient and hardware friendly
mode pre-selection algorithm which only preserves the
possible prediction modes for fractional motion estimation
through the pre-selection rules proposed in this paper.
Simulation results demonstrate that our proposed algorithm
can reduce up to 72.92% prediction modes with only 1.24%
bitrate increase and 0.02dB PSNR degradation.

Index Terms— Fractional motion estimation, Mode
pre-selection, Inter-layer prediction, H.264/AVC Scalable
Extension

1. INTRODUCTION

Fractional motion estimation (FME) is one of the commonly
adopted techniques in video coding system to further
improve the rate distortion performance [1]. The operation
of FME is mainly composed by two stages called half-pixel
stage and quarter-pixel stage and each stage executes search
and interpolation process to find out the best prediction
results. Although FME only checks several positions around
the best motion vectors produced by integer motion
estimation (IME), the computational complexity of IME and
FME are almost equal to each other especially in hardware
realization due to the complicated interpolation process and
a lot of prediction modes need to be checked by FME [2].
As a result, the operations of IME and FME are usually
divided into two different pipeline stages in hardware design
[3] to aim at higher coding performance.

In H.264 video coding standard [1], seven block sizes are
supported in inter prediction mode and each partition size
has to be checked by IME and FME one by one to select the
best prediction result as shown in Fig.1. Thus, 41 blocks
have to go through IME and FME operation. In addition to
the inherent prediction modes in H.264, the mechanism of
inter-layer prediction adopted in SVC [4] significantly
increases the computational complexity of FME as shown in
Fig.2, including inter-layer motion prediction (ILM), and

inter-layer motion residual prediction (ILM+R). As a result,
41x4=164 blocks have to be examined by FME in SVC.

To simplify the design complexity in hardware realization,
the small blocks ranged from 8x8 to 4x4 are early decided
in IME stage to derive a Sub-mode and thus only partition
sizes of 16x16, 16x8, 8x16, and Sub-mode (9 blocks in
minimum and 21 blocks in maximum) have to be examined
by FME operation as Fig.3(a) shown. Similarly, the idea of
Sub-mode early decision can be also applied to SVC for
easing the overhead of hardware implementation. As a result,
only 36 to 84 blocks have to be examined by FME for SVC
as shown in Fig.4. Although the early decision method for
Sub-mode can efficiently reduce the overheads of FME, the
computational complexity of FME is still high. Several
works [5-8] have been proposed to increase the coding
speed of FME in hardware implementation. In contrast to
check all prediction modes, [9,10] proposed a mode pre-
selection method as shown in Fig.3(b) to pre-selecting the
potential skippable prediction modes before entering FME
prediction process in H.264. However, none of above
literature has addressed the issues of SVC. Thus, this paper
proposes an efficient mode pre-selection algorithm to
lighten the computational complexity of FME for SVC
through the statistical observations.

The rests of this paper are organized as follows. In
Section 2, some observations are introduced to indicate the
rate distortion cost relationship between different prediction
modes. Afterwards, the mode pre-selection algorithm is
proposed according to the observations. Simulation results
are shown in Section 3 to demonstrate the efficiency of our
proposed algorithms. The conclusions are made in Section 4.
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Fig.1 Illustration of mode selection process of H.264
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2. PROPOSED MODE PRE-SELCTION ALGORITHM
In this section, we conduct several analyses to observe the
relationship between the rate distortion costs (RDCosts) of
IME and FME of different prediction modes.

2.1. Analysis for Inter-layer and Inter prediction modes

Fig. 5 shows the relationship between RDCosts of IME and
FME of different prediction modes. In this figure, the
vertical axis indicates the RDCosts and the horizontal axis is
the index of macroblocks. The Inter! and ILMI individually
stand for the IME RDCosts of Inter and ILM mode; the
InterF and ILMF are the FME RDCosts of Inter and ILM
mode, respectively. From this figure, we can derive a
property that the RDCosts of IME and FME are very close
to each other for the same prediction mode. For example,

the RDCost of IME is very close to the RDCost of FME for
Inter mode and the same situation can be seen from /LM
prediction mode. Therefore, if the IME RDCost of Inter
mode is sufficiently larger than that of IME RDCost of ILM
mode, the FME RDCost of Inter mode will be larger than
FME RDCost of ILM mode and vice versa. As a result, we
conduct several simulations to confirm the property that we
observed and the statistical results are shown in Table 1. In
this table, the conditional probability of P(4|E) is defined as
follows.

P(ANE
P(AIE) = "/ (1)
where
P(E) = P(Inter Iy o4 + w < ILMIy;04, OT
ILMIyjpqe + @ < Interlyoge) 2)
P(A)=P(InterFypqe < ILMFy;p40 OT
ILM Fyoqe < InterFyoqe) 3)

0= argmax{Dif fuoac}
lefMode = abs(lnterIMode - ILMIMode)
Mode € {16x16,16x8,8x16,Sub — mode} ))

From the statistical results shown in Table 1, we can
observe that the conditional probability of Eq.(1) could
achieve up to 85.74% on average. In summary, we conclude
that if IME RDCost of Inter (ILM) mode is sufficiently
larger than that of IME RDCost of ILM (Inter) mode, the
FME of Inter (ILM) mode can be skipped.
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Fig.5 Relationship between RDCosts of IME and FME of
different prediction modes (a) Football, (b) Foreman
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2.2. Analysis for partition size

We further analyze the relationship between RDCosts of
IME and FME in different partition size. Four cases listed in
Eq.(5) to Eq.(8) are used to produce the analytic results
shown in Table 2. From this table, if IME RDCost of 16x16
is less than IME RDCost of 16x8 or 8x16, more than
95.83% of probability that FME RDCost of 16x16 will less
than FME RDCost of 16x8 or 8x16. Therefore, we can
further filter off some modes before FME by using the
observed results.

st =30 it < iterfon) )

Case2 = (30 it S e ©
— <

Cased = {0 = pinrans < ey
— <

cases = ) Z P S, ®

2.3. Proposed Algorithm

Fig.6 reveals the proposed FME mode pre-selection concept
and Fig.7 shows the flowchart of our proposed mode pre-
selection algorithm in which the candidate set of prediction
modes O is defined as follows.

& = {®;;|i € {Inter,ILM},
j €{16 x 16,16 x 8,8 x 16,Sub — mode}}  (9)

In this flowchart, all pre-selection rules derived from
previous sections are classified into two parts. The upper
part is derived from the observation of the relationship
between Inter and ILM predictions. The bottom part is
obtained from the observation of the relationship between
different partition sizes. A macroblock after /ME operation
will go through all determination process to filter out the
potentially skippable prediction modes.

3. SIMULATION RESULTS

In this section, several simulation results are shown to
demonstrate the performance of our proposed FME mode
pre-selection algorithm. The simulation settings are
summarized in Table 3 and 12 test sequences including
various motion activities are used to produce the simulation
results. Table 4 shows the bit rate comparison of our
proposed algorithm with JSVM9.17[11]. From this table, the
bit rate increasing of our proposed algorithm is only 1.24%
on average. For PSNR comparison as shown in Table 5, our
proposed algorithm only conducts 0.02dB PSNR
degradation on average when compared to JSVM. The
percentage of mode reduction of our proposed algorithm is
listed in Table 6. Our proposed algorithm can achieve
72.92% mode reductions when compared to JSVM on
average. For the high motion sequences such as Stefan,
Soccer and Football, we can observe that the mode
reductions are much higher than slow and median motion
sequences. This situation is because that RDCost difference
between two modes in high motion sequences is much
larger than RDCost difference between two modes in slow
motion sequences. Therefore, it is easy to distinguish the
skippable modes by our proposed mode pre-selection rules
listed in Eq.(1) to Eq.(4). Similarity, since RDCost
difference between two modes in slow motion sequences is
marginal, less prediction modes could be skipped by our
proposed mode pre-selection algorithm.

Table 1. Statistical results of Eq.(1)

Sequences | P(AJE)x100% | Sequences | P(AE)x100%
Akiyo 97.81 Tempete 83.52
Dancer 96.71 Football 83.62
Coastguard 78.53 Foreman 81.59
Table 85.51 M&D 97.26
Mobile 70.61 Soccer 80.11
News 97.37 Stefan 76.25

Table 2. RDCost relationship between partition sizes

16x16 16x8 8x16 Sub-mode Sequences | P(AJE)x100% | Sequences | P(A|E)x100%

Akiyo 99.31% Tempete 91.77%

Dancer 98.80% Football 92.74%

Coastguard 97.03% Foreman 97.61%

Table 97.62% M&D 99.53%

! ! ! ! Mobile 88.12% Soccer 98.12%

IME for IME for Inter | [ e 1 [ IME for ILM + News 98.79% Stefan 90.54%
Inter mode | | mode + Residual Residual

,J - - - Table 3. Simulation settings

Mode filtering for FME

Reference software JSVMO.17 [11]
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Fig.6 Illustration of mode FME mode pre-selection for SVC

QP for spatial base layer 38

QP for Spatial enh. layer 32
Frame size in spatial base layer QCIF
Frame size in spatial enh. ayer CIF

Frames to be encoded 150

GOP 8




Table 4. Bitrate comparison of proposed algorithm

JSVM Proposed | Increasing (%)
Akiyo 29.23 29.72 1.69 %
Dancer 117.11 118.58 1.26 %
Coastguard 264.93 267.03 0.79 %
Table 181.62 184.12 1.38 %
Tempete 225.52 227.77 1.00 %
Football 332.05 335.79 1.13 %
Foreman 111.12 113.16 1.84 %
MD 45.89 46.79 1.96 %
Mobile 338.48 341.41 0.86 %
News 68.92 69.66 1.07 %
Soccer 186.04 187.56 0.82 %
Stefan 284.97 287.91 1.03 %

Table 5. PSNR comparison of proposed algorithm
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[ mitialize V &,~Trucia, < @ |

Mode pre-selection for Inter-layer and Inter prediction

modes
W YES

NOJ— Puus-ss=False

<>

NO Dyergx16=False

NO

JSVM Proposed Difference (dB)
Akiyo 39.94 39.92 -0.02
Dancer 41.00 41.00 -0.00
Coastguard 33.97 33.96 -0.01
Table 35.33 35.31 -0.02
Tempete 34.37 34.35 -0.02
Football 35.69 35.68 -0.01
Foreman 36.69 36.68 -0.01
MD 38.95 38.91 -0.04
Mobile 33.51 33.49 -0.02
News 38.24 38.22 -0.01
Soccer 35.77 35.74 -0.03
Stefan 34.85 34.84 -0.01

Table 6 Averaged mode reduction of our proposal (Unit: %)

NO f—{ Prrpssub-mose=False

Diysersub-mode=Lalse

&>

NO

&>

NO Dpyersxis=False

Diutsub-mode=False

NO

Akiyo | Dancer | Coastguard | Table | Tempete | MD
62.50 68.75 75.00 75.00 75.00 68.75 Dianss=False

Football | Mobile | Foreman | News | Stefan | Soccer Modelpnesselectionlfoupariionlsize
81.25 75.00 75.00 68.75 75.00 75.00

4. CONCLUSION

In this paper, an efficient mode pre-selection algorithm for
fraction motion estimation is proposed to reduce the
computational complexity of fraction motion estimation in
SVC. By observing the relationship between IME RDCosts
and FME RDCosts of different prediction modes, several
mode pre-selection rules are proposed to reject some
potentially skippable modes before FME operation. In
addition, since our proposed mode pre-selection algorithm is
only composed by several simple additions, subtractions,
and comparators, it can be easily realized in hardware form.
Simulation results demonstrate that our proposed algorithm
can reduce 72.92% prediction modes on average before
entering FME operation. In addition, the bitrate increasing
and PSNR degradation of our proposed algorithm is only
1.24% and 0.02dB, respectively.

Execute FME for @

Fig.7 Flowchart of our proposed FME mode pre-selection
algorithm
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