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Abstract. Let E and F be idempotent operators on a complex Hilbert space,
and let a and b be nonzero scalars with a + b �= 0. We prove that aE + bF
is Fredholm if and only if E + F is, thus answering affirmatively a question
asked by Koliha and Rakočević.
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In recent years, there has been some interest in the study of the invertibility
and the Fredholmness of linear combinations of two idempotent operators on a
complex Hilbert space. For example, if E and F are idempotents (E2 = E and
F 2 = F ) on a finite-dimensional Hilbert space and a and b are nonzero scalars
with a+b �= 0, then it was shown in [1] that the invertibility of aE+bF and E +F
are equivalent. This is further strengthened in [5] to the equality of the nullities of
aE + bF and E + F . For E and F on a not necessarily finite-dimensional space,
the equivalence of the invertibility is also true as proved in [3]. In connection with
this, Koliha and Rakočević asked in [5] whether the Fredholmness of aE + bF and
E + F are equivalent. The purpose of this note is to give an affirmative answer to
this question.

Recall that an operator T on a Hilbert space is Fredholm if the nullities of
T and T ∗ are finite and the range of T is closed. For a Fredholm T , its index,
indT , is by definition nullity T − nullity T ∗. It is known that the Fredholmness
of T is preserved under compact perturbations and is equivalent to the existence
of an operator T ′ with TT ′ − I and T ′T − I compact. An excellent reference for
properties of Fredholm operators is [2, Chapter XI].

The main result of this note is the following theorem.

Theorem 1. Let E and F be idempotents on a Hilbert space H, and a and b be
nonzero scalars with a + b �= 0. Then aE + bF is Fredholm if and only if E + F
is. In this case, ind (aE + bF ) = ind (E + F ).

For its proof, we need the next lemma.
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Lemma 2. Let T =
[

A B
C D

]
on H ⊕ K, where A is Fredholm with A′ on H

satisfying AA′ = I + K1 and A′A = I + K2 for some compact operators K1

and K2. Then T is Fredholm if and only if D − CA′B is. In this case, indT =
indA + ind (D − CA′B).

This is due to Zhang [6, Theorem 1]. Here we give a much simplified proof.
Note that this is an analogue of the invertible case: if T =

[
A B
C D

]
with A

invertible, then T is invertible if and only if D − CA−1B, the Schur complement
of A in T , is. In analogy to this, we may call, for the Fredholm case, D − CA′B
the essential Schur complement of A in T , which is, of course, determined only up
to compact perturbations.

Proof of Lemma 2. Since
[

I 0
CA′ I

] [
A 0
0 D − CA′B

] [
I A′B
0 I

]

=
[

A AA′B
CA′A CA′AA′B + D − CA′B

]

=
[

A (I + K1)B
C(I + K2) C(I + K2)A′B + D − CA′B

]

=
[

A B
C D

]
+

[
0 K1B

CK2 CK2A
′B

]
,

where [
I 0

CA′ I

]
and

[
I A′B
0 I

]

are invertible and [
0 K1B

CK2 CK2A
′B

]

is compact, we infer that T is Fredholm if and only if A ⊕ (D − CA′B) is. The
latter is the case if and only if D − CA′B is. In this case, we have

ind T = ind (A ⊕ (D − CA′B)) = indA + ind (D − CA′B),

completing the proof. �

Note that, in the preceding lemma, the Fredholmness of T does not imply
that of A as the operator T =

[
0 I
I 0

]
on l2 ⊕ l2 shows. However, if T is positive

semidefinite, then we do have this implication.

Corollary 3. Let T =
[

A B
C D

]
on H ⊕ K be positive semidefinite. Then T is

Fredholm if and only if A and D−CA′B are, where A′ is any operator on H with
AA′ − I and A′A − I compact.
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Proof. In light of Lemma 2, we need only prove that the Fredholmness of T implies
that of A. Let T = A0⊕0 and P = 0⊕I on ranT ⊕kerT . Since T is Fredholm, A0

is invertible and hence so is T +P = A0⊕I. Thus W (T + P ) = σ(T +P )∧ ⊆ [ε,∞)
for some ε > 0, where W (T + P ) and σ(T +P )∧ denote the closure of the numerical
range and the convex hull of the spectrum of T +P , respectively, and their equality
is by [4, Problem 216]. Since

T + P =
[

A B
C D

]
+

[
P1 P2

P3 P4

]
=

[
A + P1 B + P2

C + P3 D + P4

]
on H ⊕ K,

we infer that σ(A + P1) ⊆ W (A + P1) ⊆ W (T + P ) ⊆ [ε,∞) (cf. [4, Problem
214]). This shows that A + P1 is also invertible. Note that P is of finite rank and
thus so is P1. Therefore, A is Fredholm as asserted. �

We are now ready to prove Theorem 1. The proof models after the one for
the invertible case as given in [3, Theorem 1].

Proof of Theorem 1. Since the idempotency and the Fredholmness are preserved
under the similarity of operators, we may assume that one of E and F , say, F
is an (orthogonal) projection (F 2 = F = F ∗). We can express E and F on H =
ranE ⊕ kerE∗ as

E =
[

I E1

0 0

]
and F =

[
F1 F

1/2
1 DF

1/2
2

F
1/2
2 D∗F 1/2

1 F2

]
,

where D is a contraction (‖D‖ ≤ 1) from kerE∗ to ranE. We further decompose
F1 and F2 as F1 = 0 ⊕ I ⊕ F11 and F2 = F22 ⊕ I ⊕ 0 on ranE = kerF1 ⊕ ker (I −
F1) ⊕ (ran E � (kerF1 ⊕ ker (I − F1))) and kerE∗ = (kerE∗ � (kerF2 ⊕ ker (I −
F2)))⊕ker (I −F2)⊕kerF2, respectively. Since F is positive semidefinite, we have

F = 0 ⊕ I ⊕
[

F11 F
1/2
11 D1F

1/2
22

F
1/2
22 D∗

1F
1/2
11 F22

]
⊕ I ⊕ 0

for some contraction D1 from kerE∗ � (kerF2 ⊕ ker (I −F2)) to ranE � (kerF1 ⊕
ker (I − F1)). From

[
F11 F

1/2
11 D1F

1/2
22

F
1/2
22 D∗

1F
1/2
11 F22

]2

=

[
F11 F

1/2
11 D1F

1/2
22

F
1/2
22 D∗

1F
1/2
11 F22

]
,

we obtain
F 2

11 + F
1/2
11 D1F22D

∗
1F

1/2
11 = F11,

F
3/2
11 D1F

1/2
22 + F

1/2
11 D1F

3/2
22 = F

1/2
11 D1F

1/2
22

and
F

1/2
22 D∗

1F11D1F
1/2
22 + F 2

22 = F22.

It can be derived using the injectivity of Fjj and I − Fjj , j = 1, 2, that

(∗) D1D
∗
1 = I, D∗

1D1 = I and D∗
1(I − F11)D1 = F22
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(cf. [3, p. 1454]). Note that

(∗∗) aE + bF =




aI aE11 aE12 aE13
(a + b)I aE21 aE22 aE23

aI + bF11 aE31 + bF
1/2
11 D1F

1/2
22 aE32 aE33

bF
1/2
22 D∗

1F
1/2
11 bF22

bI
0


.

We claim that aE+bF is Fredholm if and only if I−F11 is invertible, I−E31D
∗
1(I−

F11)−1/2F
1/2
11 is Fredholm and dim kerF2 < ∞. Indeed, if aE + bF is Fredholm,

then, letting A be an operator on H such that K ≡ (aE + bF )A − I is compact,
we have, with

A =
[

A1 A2

A3 A4

]
and K =

[
K1 K2

K3 K4

]
on H = ranE ⊕ kerE∗,

[
aI + bF1 aE1 + bF

1/2
1 DF

1/2
2

bF
1/2
2 D∗F 1/2

1 bF2

] [
A1 A2

A3 A4

]
=

[
I + K1 K2

K3 I + K4

]
.

Carrying out the multiplication here yields

bF
1/2
2 D∗F 1/2

1 A2 + bF2A4 = I + K4

or
bF

1/2
2 (D∗F 1/2

1 A2 + F
1/2
2 A4) = I + K4.

This shows that F
1/2
2 is Fredholm and hence so is F2. Therefore, F22 is invertible

and thus so is I −F11 by (∗). From Lemma 2, we derive that the Fredholmness of
aE + bF is equivalent to that of[

aI + bF11 aE31 + bF
1/2
11 D1F

1/2
22

bF
1/2
22 D∗

1F
1/2
11 bF22

]

together with the finiteness of dimkerF2. The Fredholmness of this latter operator
is in turn equivalent to that of

aI + bF11 − (aE31 + bF
1/2
11 D1F

1/2
22 )F−1

22 (F 1/2
22 D∗

1F
1/2
11 )

by Lemma 2. This is equal to

aI + bF11 − (aE31 + bF
1/2
11 D1D

∗
1(I − F11)1/2D1)D∗

1(I − F11)−1/2D1D
∗
1F

1/2
11 ,

which can be further simplified to

a(I − E31D
∗
1(I − F11)−1/2F

1/2
11 )

by (∗). This proves one direction. For the other, if I−F11 is invertible, I−E31D
∗
1(I−

F11)−1/2F
1/2
11 is Fredholm and dim kerF2 < ∞, then we can reverse the above

arguments to show that aE+bF is Fredholm. The equivalence of the Fredholmness
of aE + bF and E + F follows easily. Finally, we also have

ind (aE + bF ) = ind (I − E31D
∗
1(I − F11)−1/2F

1/2
11 ) = ind (E + F ),

which completes the proof. �
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The relation between the Fredholmness of aE+bF with a+b = 0 and a+b �= 0
is given in the next final corollary.

Corollary 4. Let E and F be idempotents on H.
(a) If E − F is Fredholm, then so is E + F and, in this case, ind (E − F ) =

ind (E + F ) + dim (ranE ∩ ranF ). The converse is false.
(b) If dim (ran E ∩ ranF ) < ∞, then E − F is Fredholm if and only if E + F is.

Proof. As in the proof of Theorem 1, E+F (resp., E−F ) is Fredholm if and only if
I −F11 is invertible, I −E31D

∗
1(I −F11)−1/2F

1/2
11 is Fredholm and dim kerF2 < ∞

(and, in addition, dim ker (I − F1) < ∞). Since ker (I − F1) = ranE ∩ ranF , the
assertions in (a) and (b) follow easily. �
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