
 i

中文摘要

在本報告中，我們分別對於低密度檢測矩陣 (Low-Density Parity Check,

LDPC) 及高密度檢測矩陣 (High-Density Parity Check, HDPC) 提出了數種不

同的解碼方法。

針對低密檢測矩陣碼，我們提出了一系列新穎的退火式 (Annealing-Type)

信度傳遞 (Belief-Propagation) 演算法來改善傳統信度傳遞演算法的收斂狀

況。信度傳遞演算法的收斂點 (Points of Convergence)在熱力學的觀點中等同於

其系統的局部最小自由能 (Local Minimal Free Energy)；因模擬退火

(Simulated Annealing) 演算法有助於計算上述系統之全域最小自由能，藉由信

度傳播計算及自由能計算之間的相互關係，我們將模擬退火演算法中的溫度

(Temperature) 參數引入信度傳遞演算法中成為該演算法中一系列的全新參

數，並在解碼過程中做等同於「降溫」的動態參數調整來改善傳統演算法的收斂

狀況。在此報告中我們總共提出了三種退火式演算法，而實驗結果可證明在運算

複雜度與收斂速度相等的情況下，新的退火式信度傳遞演算法可提供比傳統演算

法更佳的錯誤更正能力。

除了針對低密檢測矩陣碼外，我們亦研究了數種關於具有高密度位元檢測矩

陣之線性方塊碼的隨機解碼法。這些方法可被視為一具有可移動中心的隨機球體

解碼法，它會根據一球體對稱的機率分佈來選取在中心向量附近的候選碼。此機

率分佈中心向量的更新是根據一被稱為交錯熵（Cross-Entropy）方法的蒙地卡

羅法來實現。在每一次的交錯熵方法遞迴過程中，一隨機樣本集合被產生並轉化

為合法碼。根據這些隨機產生的合法碼與接收向量間的歐幾理得距離，我們選擇

E 個較佳的候選碼組成一菁英集合並用來修正機率分佈進而影響往後遞迴中產

生的隨機樣本。為了確保新產生的隨機樣本會越來越集中在正確的傳送碼附近，

不僅中心向量將會移動到傳送碼，其蘊含的機率分佈最終亦會退化為只在傳送碼

有值的奇異函數。此外，每次遞迴被更新的機率分佈參數應該要促使新的機率分

佈與最佳分佈間的庫柏克萊不勒（Kullback-Leibler）距離越來越接近。在本報

告中我們提出了三類隨機解碼法。前兩類是特別針對（n,k）里得所羅門碼所提

 ii

出的設計。在第一種解碼法中，被產生的隨機樣本代表了一隨機錯誤指標向量集

合，其中每一個向量都指出了接收字碼中 n-k 個應該被擦拭的位置。我們將接

收字元中被指定的相對位置擦拭後即可利用只具擦拭（Erasures-Only）解碼器

還原成候選碼。在第二種方法中，n維的實數隨機向量被產生並代表著接收字碼

的可靠度向量，而其中 n-k 個最不可靠的座標會假設為應該要被擦拭。針對每個

隨機樣本，我們將其 k 個最可靠的座標做硬式決策（hard-decision）並利用只

具擦拭解碼器將其還原為合法碼。第三種演算法利用一連續位元翻轉演算法來將

隨機樣本向量轉換為合法碼。值得一提的是前兩種演算法只對可最大距離分離

（Maximum-Distance Separable）碼有用而第三種演算法則沒有這個限制。這些

演算法相對於信度傳遞演算法與部分現有的代數演算法提供了性能與複雜度上

的改善，尤其是針對具有高碼率、高密度位元檢測矩陣的方塊碼。

關鍵字：低密度檢測矩陣碼、自由能、退火式信度傳遞演算法、高密度檢測矩陣、

交錯熵、庫柏克萊不勒距離、里得所羅門碼、隨機解碼法。

Abstract

This report documents our effort in carrying out the NSC-supported project en-

titled “Advanced Error-Control Coding Technologies and Their Applications” under

grant NSC 972221E009082MY3. Our main results are the developments of novel decod-

ing algorithms for both high-density parity-check (HDPC) and low-density parity-check

(LDPC) codes.

For the former class we propose a series of novel annealing-type belief propagation

(BP) algorithms to improve the convergent behavior of the conventional BP for decoding

LDPC codes. By incorporating a dynamic temperature into the free energy formulation,

message passing is performed on a dynamic surface of energy cost. The proposed cooling

process helps BP converge to a stable fixed point with lower energy value, which gives

more accurate estimation of the transmitted codeword. Both the computational com-

plexity and the convergence rate of our algorithms are nearly equal to the conventional

BP algorithm. Furthermore, we derive the message passing rules for general binary

networks consisting of parity check functions. Simulation results indicate that decoding

LDPC and turbo codes using the annealed BP algorithms gives improved performance.

For latter class of codes, we develop several novel stochastic decoding algorithms.

Our approach can be regarded as a randomized sphere decoding with moving center

that selects candidate codewords around a center vector according to a sphere-symmetric

probability distribution. The center (median) vector of the distribution is updated ac-

cording to Monte Carlo based approach called the Cross-Entropy (CE) method. The CE

method produces, in every iteration, a set of random samples which can be transformed

into valid codewords. Based on the Euclidean distances between the received word and

the random codewords, we select the best E candidates to form the elite set which is

then used to modify the probability distribution that govern the generations of the ran-

dom samples in the ensuing iteration. To ensure that the newly generated samples are

concentrated more and more on a small neighborhood of the correct codeword and either

iii

the median vector will move to or the underlying distribution will eventually degenerate

to a singularity at the transmitted codeword, the parameters of the updated distribution

should be such that the new distribution is closest to the optimal distribution in the

sense of the Kullback-Leibler distance (i.e CE).

We propose three classes of stochastic decoding algorithms. The first two are specif-

ically designed for decoding (n, k) Reed-Solomon (RS) codes. For the first decoder, the

random samples represent a set of random error locator vectors, each indicates n − k

possible erasure positions within the received word. We associate each error locator

vector with a candidate codeword by erasures-only (EO) decoding the received word,

assuming that erasure locations are those indicated by the error locator vector. The

n-dimensional real random vectors in the second algorithm represent reliability vectors

whose least reliable n − k coordinates are assumed to be erasures. For each sample,

we make component-wise hard-decisions on the most reliable k coordinates and EO-

decoding the resulting binary vector. The third algorithm uses a sequential bit flipping

algorithm to convert each random sample into a legitimate codewords. The first two

algorithms are valid for MDS codes only while the third algorithm can be used for de-

coding any linear block code. Our algorithms offer both complexity and performance

advantage over BP and some existing algebraic decoding algorithms, especially for high

rate linear block codes with HDPC matrices and short or medium lengths.

Index Terms-Low-density parity-check codes, free energy, annealing belief-propagation

algorithm, high-density parity-check matrix, cross-entropy, Kullback-Leibler distance,

Reed-Solomon codes, stochastic decoding algorithm.

iv

Contents

Chinese Abstract i

English Abstract iii

Contents v

List of Figures viii

List of Tables x

1 Introduction 1

2 Constraint Relaxation and Annealed Belief Propagation for Binary

Networks 10

2.1 Minimum Free Energy under Bethe Approximation 10

2.2 Annealing Belief Propagation for Binary Network 14

2.2.1 Local Function Modelling . 15

2.2.2 Factor Function Modelling . 16

2.2.3 Trellis State Modelling . 19

v

2.3 Annealing Belief Propagation Algorithm 19

2.3.1 Local Function Annealing . 21

2.3.2 Factor Function Annealing . 22

2.3.3 Joint Annealing . 22

2.4 Experimental Results and Discussions . 24

3 The Cross-Entropy Method 27

3.1 Introduction . 27

3.2 The CE Method for Rare-Event Simulation 28

3.3 The CE-Method for Optimization Problem 33

3.4 Updating Rules of Some Useful Densities 35

4 Stochastic Erasure-Only List Decoding of RS codes 37

4.1 Preliminary . 37

4.2 Stochastic List Decoding Algorithm . 39

4.2.1 Algebraic Erasures-Only (EO) Decoding 39

4.2.2 A Stochastic List Decoding Idea 41

4.2.3 Convergence and Complexity . 42

4.3 List Decoding via Erasure Location Estimation 44

4.3.1 Importance Density and Sample Format 44

4.3.2 Update Parameters . 45

vi

4.4 List Decoding via Virtual Received Words 46

4.4.1 Importance Density and Sample Format 46

4.4.2 Update Parameters . 47

4.5 Experimental Results and Discussions . 48

5 Stochastic List Decoding of Linear Block Codes 51

5.1 Preliminary . 51

5.2 Sequential Bit-Flipping Algorithm . 54

5.3 Predicament of Decoding via SBF algorithm 58

5.4 SBF Algorithm with Cyclic Shifts . 59

5.5 Stochastic Sequential Bit Flipping Algorithm 59

5.5.1 Importance Density and Sample Format 60

5.5.2 Update Parameters . 60

5.5.3 Stochastic Sequential Bit Flipping Algorithm 61

5.6 Experimental Results and Discussions . 62

6 Conclusions 67

A The Proof of Lemma 5.1 69

B The Proof of Theorem 5.1 70

Bibliography 72

vii

List of Figures

1.1 A correctly decoding example of a bounded distance decoder. 3

1.2 An example of erroneous decoding for a bounded distance decoder. . . . 4

1.3 Decoding failure by a bounded distance decoder. 4

1.4 Decoding beyond FEC bound by enlarging the decoding sphere. 5

1.5 Belief propagation - successful decoding. 6

1.6 Belief propagation - trapped in a pseudo codeword. 7

1.7 A set of random samples are generated and the random samples in the

small dash circle are better directions we want. 8

1.8 After updating the parameter of the random mechanism, the new set of

generated random samples points the correct way more often. 8

2.1 Golay Code N=23 K=12, Code Rate: 0.522, Max Iteration Number: 200,

Frame Error Count: 200. 25

2.2 Mackay 816.33.164, Code Rate: 0.5, Max Iteration Number: 200, Frame

Error Count: 200. 26

4.1 Idea of the algebraic erasures-only decoding. 40

4.2 Flow chart of a stochastic decoder for RS codes. 43

4.3 Virtual received words are generated around the received LLR vector Γ̄ by

hard-limiting the sample vectors generated by an importance probability

density whose parameter values evolved according to the CE principle. . 47

viii

4.4 Codeword error probability performance of the (15,11) Reed-Solomon

code; 10 iterations. 49

4.5 Codeword error probability performance of the (31,25) Reed-Solomon

code; 10 iterations. 50

5.1 An example of the SRSBFP. 57

5.2 Error rate performance of the (15,11) Hamming Code; Ns = 10, Es = 1 . 63

5.3 Error rate performance of the (7,5) RS Code; Ns = 10, Es = 1 64

5.4 Error rate performance of the (22,16) single error correction Code; Ns =

10, Es = 1 . 64

5.5 Error rate performance of the (39,32) single error correction Code; Ns =

10, Es = 1 . 65

5.6 Error rate performance of the (72,64) single error correction Code; Ns =

10, Es = 1 . 65

5.7 Error rate performance of the (31,26) BCH Code. 66

5.8 Error rate performance of the (15,11) RS Code. 66

ix

List of Tables

4.1 A Stochastic List Decoding Algorithm. 43

x

Chapter 1

Introduction

Belief propagation algorithms have been recognized as efficient and powerful inference

tools in computer vision, artificial intelligence, error-correcting code, and digital com-

munications. Lately, the BP type algorithms, e.g. BCJR for turbo decoding and sum-

product algorithm (SPA) for LDPCC, have received significant attention for their near

Shannon-limit error performance. Recent studies show that fixed points of BP algo-

rithms corresponding to the stationary points of the Bethe approximation of the free

energy for a factor graph [1]. However, loopy BP algorithms do not promise the conver-

gence when the graph containing cycles. Even if BP converges, it is only guaranteed to

converge in a local minimum of Bethe free energy. Some new algorithms attempt to solve

the problem by directly minimizing the free energy [2, 3] through using the conventional

optimization schemes. These algorithms, however, are often slower than the original BP

algorithm.

Inspired by the deterministic annealing methods used in optimization problems [4],

we propose a category of annealed BP algorithms to alleviate the ill-convergent effect. By

incorporating a dynamic temperature into the formulation of free energy, belief networks

start the inference task at higher temperature, which leads to a smoother energy cost

surface. According to the results of statistical physics, when the temperature is above

the critical point, there is only one local minimum of the free energy function. Thus, BP

algorithms can always converge to the unitary minimum at that temperature. However,

1

inference results at high temperature may be poor due to the unfaithful modelling of

actual free energy. On the other hand, there may be more than one local minimum at

low temperature. When searching on the energy cost surface at low temperature, we

can easily get stuck in one of these local extreme points. However, at low temperature,

inference results related with the global minimal free energy turn out to be much more

precise than that at the high temperature. Hence, the idea is to start the inference job at

a high temperature and smoothly decrease the temperature using some cooling strategies

to track the minimum point. Finally, when the temperature approaches to zero, stop

the algorithm and output the estimation results. Such a cooling strategy prevents BP

algorithms from sticking in some local minimum quickly, and helps the algorithms to

converge to the global minimum value with larger probability.

Linear block codes are popular forward error-correcting (FEC) codes due to their

simple structures and satisfactory FEC performance. For instance, Reed-Solomon (RS)

codes [5] are used in a wide variety of commercial applications, most prominently in CDs,

DVDs and Blue-ray discs, in data transmission technologies such as DSL andWiMAX, in

broadcast systems such as DVB and ATSC, and in computer applications such as RAID

6 systems. Low density parity-check (LDPC) codes [6] form another class of linear block

codes which offer FEC capability close to the theoretical maximum–the Shannon limit

[7]. In recent years, LDPC codes have been adopted by several digital broadcast and

communication standards such as the DVB-S2 [8], the IEEE 802.3an (10GBASE-T) [9],

the IEEE 802.16e (WiMAX) [10], and the IEEE 802.11n (WiFi) [11]. Although many

decoding algorithms for block codes are available, more efficient decoding algorithms

which can provide performance enhancement and complexity reduction are still of high

demand.

Most hard-decision decoding algorithms are bounded-distance decoders (BDD). They

select the codeword c, if exits, whose Hamming distance (HD) to the hard-limiting

received word z, say d(z, c), is less than or equal to �(dmin− 1)/2� = tmin, where dmin is

2

cT c1

c2

d m in

z

Figure 1.1: A correctly decoding example of a bounded distance decoder.

the minimum distance of the code C. As shown in Fig. 1.1, if z is within the decoding

sphere centered at the transmitted codeword cT and then the BDD can correctly output

cT . Syndrome decoding for Hamming codes [16], the Berlekamp-Massey (BM) algorithm

[17] and the Euclidean algorithm [18] for RS codes all belong to the class of BDDs. When

z falls into another decoding sphere, e.g., a sphere centered at other legitimate codeword

c1 as shown in Fig. 1.2, a BDD will make an incorrect decision such that a decoding

error occurs. A decoding failure is declared if z does not belong to any decoding sphere

of radius tmin.

In general, a BDD can only correct up to �(dmin − 1)/2� errors while a maximum
likelihood soft-decision based decoding algorithm can easily correct beyond tmin at the

expense of much higher complexity. There are two general approaches to improve the

performance without incurring too much complexity increase. The first one is trying to

enlarge the decoding sphere (see Fig. 1.4) in order to correct errors beyond tmin. For

RS codes, the errors-and-erasures decoding [16], Forney’s generalized minimum distance

3

cT c1

c2

d m in

z

Figure 1.2: An example of erroneous decoding for a bounded distance decoder.

cT c1

c2

d m in

z

Figure 1.3: Decoding failure by a bounded distance decoder.

4

cT c1

c2

d m in

z

Figure 1.4: Decoding beyond FEC bound by enlarging the decoding sphere.

(GMD) decoding [19], the algebraic list decoding algorithm invented by Guruswami and

Sudan (GS) [20] and the algebraic soft decision decoding (SDD) algorithm proposed by

Koetter and Vardy (KV) [21] belong to this category. Note that the latter three algo-

rithms are also members of the so-called list decoding algorithms because the enlarged

decoding sphere may include more than one codewords.

Another idea for performance enhancement is to sequentially modify and move z

from its original position so that the new location becomes closer and closer to cT .

Decoding methods based on this idea include the Chase II algorithm [22], and the

combined Chase II-GMD algorithm [23]. The belief propagation (BP) based algorithms

such as the sum product algorithms (SPA) or its less-complex approximation, the min-

sum algorithms (MSA) [24] and their variations are also members of this category. A

successful decoding based on BP algorithm will gradually update the estimated soft

output and move the modified received vector toward the true transmitted codeword

5

cT c1

c2

dmin

z
z

z

z

Figure 1.5: Belief propagation - successful decoding.

cT ; see Fig. 1.5. Unfortunately, the BP process may be trapped in some local minimum

and the modified received vector coincides with a pseudo codeword cp as is shown in

Fig. 1.6. This phenomenon can be prevented by using some modification of the BP

algorithms such as the annealed BP algorithm [25]. Another possible solution combines

the BP algorithm with the BDD such as the algorithms proposed in [12] and [26]. If

the pseudo codeword cp belongs to the decoding sphere of cT , successful decoding is

achieved although the BP algorithm makes z coincides with cp.

We investigate a novel idea of iterative decoding which is a randomized sphere de-

coding with moving center. If statistical information about possible locations of the

transmitted codeword cT around the received word z is given, the order of search should

follow the most possible direction. However, we don’t have such information usually

and hence we search follow a probability distribution which is learned by random sam-

pling. Each sample is transformed into a valid codeword and we choose samples whose

corresponding code words having smaller Euclidean distance (ED) to z to modify the

6

cT c1

c2

dmin

z
z

z

cP

Figure 1.6: Belief propagation - trapped in a pseudo codeword.

distribution and update (move) z. As the iteration goes by, newly generated samples

are concentrated more and more on a small neighborhood of the correct codeword. The

modified distribution becomes closer in the Cross-Entropy (CE) sense to the optimal

(Dirac) distribution centered at the true transmitted codeword. The center thus move

closer to cT accordingly. This concept is implemented by the CE method [33] which has

the following two phases:

1. Explore possible directions pointing the shortest way to the transmitted codeword

cT via a set of random samples generated from a specific random mechanism.

2. Choose better directions to update the parameters of the random mechanism in

order to find better direction in next iteration.

Fig. 1.7 and Fig. 1.8 illustrate the basic principle of the above idea.

The rest of this thesis is organized as follows. Chapter 2 introduces the CE method

which is an elegant practical principle for efficiently simulating rare events and can be

7

cT c1

c2

d m in

z
z

z

z

z z

Figure 1.7: A set of random samples are generated and the random samples in the small
dash circle are better directions we want.

cT c1

c2

d m in

z

z
z

z

z

z

Figure 1.8: After updating the parameter of the random mechanism, the new set of
generated random samples points the correct way more often.

8

converted into an optimization solver. A stochastic erasure-only list decoding (SEOLD)

algorithm uses the extended CE method for optimization problem by considering an

optimal event as a rare event is illustrated in Chapter 3. In Chapter 4, we investigate

another stochastic list decoding algorithm based on a novel sequential bit flipping pro-

cedure. Finally, we summarize our major contributions and suggest some future works

in Chapter 5.

9

Chapter 2

Constraint Relaxation and Annealed
Belief Propagation for Binary
Networks

In section I, we first formulate the free energy of a belief network by taking into consid-

eration the temperature effect. Next, we conduct the BP algorithms using the param-

eterized free energy in section II. Section III develops several cooling strategies when

dealing with binary belief networks, which are commonly used when decoding error

correcting codes especially for turbo-like codes. Section IV discusses several cooling

schedules and their performances. In section V, we gives the simulation results of the

proposed annealing algorithms applied to error correcting codes. Finally, we conclude

the works.

2.1 Minimum Free Energy under Bethe Approxima-

tion

It is well known that the conventional SPA can be derived from the minimization of Bethe

free energy when the temperature equals to one [1]. When developing the annealing

type BP algorithms, we begin with the Bethe free energy formulation, which retains the

temperature parameter. Considering a factor graph illustrated in Fig. 1, the Bethe free

10

energy can be written as

FBethe = U − TH. (2.1)

U in (2.1) is the variational average energy

U = 〈Eμ〉xμ
+ 〈Ek〉xk

, (2.2)

where 〈Eμ〉xμ
and 〈Ek〉xk

are the average energy functions associated with factor node

μ and variable node k respectively,

〈Eμ〉xμ

def
= −

∑
μ

∑
xμ

bμ(xμ) ln fμ(xμ) (2.3)

〈Ek〉xk

def
= −

∑
k

∑
xk

bk(xk) ln gk(xk). (2.4)

fμ(xμ) denotes the factor function with its domain xμ : {xk | xk ∈ neighbors of fμ}.
gk(xk) is the local function associated with variable nodes xk.

The second term H in (2.1) denotes the variational entropy under the Bethe approx-

imation,

H = −
∑
μ

∑
xμ

bμ(xμ) ln bμ(xμ)−
∑
k

ck
∑
xk

bk(xk) ln bk(xk). (2.5)

In (2.5), ck is defined as 1−(numbers of neighbors of xk).

Parameter T in (2.1) tends to mimic the temperature effect in the field of statistic

physics. Under the marginalization and normalization constraints which state that

∑
xμ\xk

bμ(xμ) = bk(xk) (2.6)

∑
xμ

bμ(xμ) = 1 (2.7)

∑
xk

bk(xk) = 1, (2.8)

the Bethe free energy minimization problem can be translated to the Lagrangian LBethe

LBethe = FBethe +
∑
k

∑
μ∈N (k)

∑
xk

λμk(xk)

⎛
⎝
⎡
⎣bk(xk)−

∑
xμ\xk

bμ(xμ)

⎤
⎦
⎞
⎠

+
∑
μ

γμ

⎡
⎣1−∑

xμ

bμ(xμ)

⎤
⎦+∑

k

γk

[
1−
∑
xk

bk(xk)

]
, (2.9)

11

where λμk, γμ, and γk are the Lagrange multipliers associated with constraints (2.6),(2.7),

and (2.8) respectively. N (k) denotes the set of neighbors of xk.

To find the minimum value of LBethe, we first take derivatives with respect to beliefs

b(xμ) and b(xk), and set the results to zero. We have

∂LBethe

∂bμ(xμ)
= − ln fμ(xμ) + T [1 + ln bμ(xμ)]− γμ −

∑
k∈N (μ)

λμk(xk) = 0. (2.10)

∂LBethe

∂bk(xk)
= − ln gk(xk) + Tck [1 + ln bk(xk)]− γk +

∑
μ∈N (k)

λμk(xk) = 0 (2.11)

Solving (2.10) and (2.11), we have the optimum values of beliefs

b(∗)μ (xμ) = fβ
μ (xμ) exp

⎧⎨
⎩β

⎡
⎣γμ + ∑

k∈N (μ)

λμk(xk)

⎤
⎦− 1

⎫⎬
⎭ (2.12)

b
(∗)
k (xk) = g

β
ck
k (xk) exp

⎧⎨
⎩ β

ck

⎡
⎣γk − ∑

μ∈N (k)

λμk(xk)

⎤
⎦− 1

⎫⎬
⎭ , (2.13)

where β
def
= 1/T is a parameter used to model the temperature effect.

To conduct the BP algorithms, we have to derive the Lagrange duality function of

the Bethe free energy (2.9). The dual function GBethe is defined as

GBethe
def
= inf

bμ(xμ),bk(xk)
LBethe (2.14)

Substituting (2.12) and (2.13) back to LBethe, we have

GBethe = LBethe(b
(∗)
μ (xμ), b

(∗)
k (xk), λμk(xk), γμ, γk)

= −
∑
μ

∑
xμ

b(∗)μ (xμ) ln fμ(xμ)−
∑
k

∑
xk

b
(∗)
k (xk) ln gk(xk)

+T
∑
μ

∑
xμ

b(∗)μ (xμ) ln b
(∗)
μ (xμ) + T

∑
k

ck
∑
xk

b
(∗)
k (xk) ln b

(∗)
k (xk)

+
∑
k

∑
μ∈N (k)

∑
xk

λμk(xk)

⎡
⎣b(∗)k (xk)−

∑
xμ\xk

b(∗)μ (xμ)

⎤
⎦

+
∑
μ

γμ

⎡
⎣1−∑

xμ

b(∗)μ (xμ)

⎤
⎦+∑

k

γk

[
1−
∑
xk

b
(∗)
k (xk)

]
(2.15)

12

Combining (2.15) with (2.12) and (2.13), the dual energy function can be rewritten

as

GBethe = −T
∑
μ

∑
xμ

b(∗)μ (xμ)− T
∑
k

∑
xk

ckb
(∗)
k (xk) +

∑
μ

γk +
∑
k

γk (2.16)

=
∑
μ

γμ +
∑
k

γk − T
∑
μ

∑
xμ

fβ
μ (xμ) exp

⎡
⎣β
⎛
⎝γμ + ∑

k∈N (μ)

λμk(xk)

⎞
⎠− 1

⎤
⎦

−T
∑
k

ck
∑
xk

g
β
ck
k (xk) exp

⎡
⎣ β
ck

⎛
⎝γk − ∑

μ∈N (k)

λμk(xk)

⎞
⎠− 1

⎤
⎦ . (2.17)

Taking derivative of (2.17) with respect to λμk, γμ, and γk gives the following optimum

equations,

∂GBethe

∂λμk
=
∑
xμ\xk

⎧⎨
⎩fβ

μ (xμ) exp

⎡
⎣β
⎛
⎝γμ + ∑

j∈N (μ)

λμj(xj)

⎞
⎠− 1

⎤
⎦
⎫⎬
⎭

−g
β
ck
k (xk) exp

⎡
⎣ β
ck

⎛
⎝γk − ∑

ξ∈N (k)

λξk(xk)

⎞
⎠− 1

⎤
⎦ = 0 (2.18)

∂GBethe

∂γμ
= 1−

∑
xμ

fβ
μ (xμ) exp

⎡
⎣β
⎛
⎝γμ + ∑

k∈N (μ)

λμk(xk)

⎞
⎠− 1

⎤
⎦ = 0 (2.19)

∂GBethe

∂γk
= 1−

∑
xk

g
β
ck
k (xk) exp

⎡
⎣ β

ck

⎛
⎝γk − ∑

μ∈N (k)

λμk(xk)

⎞
⎠− 1

⎤
⎦ = 0. (2.20)

(2.19) and (2.20) are normalization equations that give the two partition functions

∑
xμ

⎧⎨
⎩fβ

μ (xμ) exp

⎡
⎣β ∑

k∈N (μ)

λμk(xk)

⎤
⎦
⎫⎬
⎭ = exp (1− βγμ) , (2.21)

∑
xk

⎧⎨
⎩g

β
ck
k (xk) exp

⎡
⎣− β

ck

∑
μ∈N (k)

λμk(xk)

⎤
⎦
⎫⎬
⎭ = exp

(
1− β

ck
γk

)
. (2.22)

From (2.18), we define mμk as message passing from factor node μ to variable node

13

k, and nkμ as message passing from variable node k to factor node μ,

mμk(xk)
def
= g

β
ck

k (xk) exp

⎡
⎣−βλμk(xk)− β

ck

∑
ξ∈N (k)

λξk(xk)

⎤
⎦ (2.23)

(2.18)
=

∑
xμ\xk

⎧⎨
⎩fβ

μ (xμ) exp

⎡
⎣β
⎛
⎝γμ + ∑

j∈N (μ)\k
λμj(xj)

⎞
⎠− β

ck
γk

⎤
⎦
⎫⎬
⎭ (2.24)

nkμ(xk)
def
= exp [βλμk(xk)] (2.25)

Combining (2.24) and (2.25), we have

mμk(xk) ∝
∑
xμ\xk

⎧⎨
⎩fβ

μ (xμ)
∏

j∈N (μ)\k
nμj(xj)

⎫⎬
⎭ . (2.26)

Also, from (2.23) and (2.25), message nkμ can be updated by

gβk (xk) ·
∏

ξ �=μ,ξ∈N (k)

mξk(xk) = exp (βλμk(xk)) (2.27)

= nkμ(xk). (2.28)

Equations (2.26) and (2.28) recover the original BP algorithm when β equals to 1.

According to (2.13) and (2.23), belief of the variable node can be estimated as

b
(∗)
k (xk) ∝ mμk(xk) · exp(βλμk(xk)) (2.29)

= gβk (xk) ·mμk ·
∏

ξ �=μ,ξ∈N (k)

mξk(xk) (2.30)

= gβk (xk)
∏

μ∈N (k)

mμk (2.31)

From (2.26) and (2.28), we conclude that the BP algorithm can be generalized by

incorporating a temperature parameter T , and replace the factor function fμ(xμ) by

fβ
μ (xμ), and local function gk(xk) by gβk (xk).

2.2 Annealing Belief Propagation for Binary Net-

work

From the discussions in section II, we know that the first step to implement the annealing

type BP algorithm is to parameterize the original local and factor functions with an

14

artificial parameter β, i.e., (1/T). In the following, we develop the parameterization

methodologies for decoding error correcting codes. It can also be extended to many

other fields, for example, signal processing, speech processing and pattern recognition.

2.2.1 Local Function Modelling

Considering a low density parity check code (LDPCC) in Gaussian environment using

BPSK modulation, the local likelihood function gk(xk) associated with each code node

xk is modelled as,

gk(xk) = p(xk|yk) =
√

1

2π
exp

(−(yk − xk)
2

2σ2

)
. (2.32)

The likelihood ratio of xk is

lk =
gk(xk = −1)
gk(xk = 1)

=
exp
(
− (yk+1)2

2σ2

)
exp
(
− (yk−1)2

2σ2

) = exp

(
−2yk

σ2

)
. (2.33)

According to (2.28), the generalized likelihood function for Gaussian channel can be

rewritten as,

gβk (xk) ∝ exp

(
β · −(yk − xk)

2

2σ2

)
. (2.34)

Hence, the generalized likelihood ratio becomes

lβk =
gβk (xk = −1)
gβk (xk = 1)

=
exp
(
−β (yk+1)2

2σ2

)
exp
(
−β (yk−1)2

2σ2

) = exp

(
−β 2yk

σ2

)
. (2.35)

When β changes, (2.35) converges to three interesting limiting points,

lβk =

⎧⎨
⎩

1 ,when β → 0 (i.e., T → +∞)
lk ,when β → 1 (i.e., T → 1)

φ(yk < 0) · ∞ ,when β → +∞ (i.e., T → 0), yk
= 0.
(2.36)

φ(·) denotes the indicator function, where

φ(A) =

{
1 , if event A is true,
0 , if event A is false.

(2.37)

15

Equation (2.36) generalizes the statistical modelling of variable function. Obviously,

the conventional likelihood ratio lk is only a special case when T → 1. As T → 0, which

means the code node is in a low temperature state. The generalized likelihood ratio

lβk approaches an impulse function and gives a deterministic decision of yk. Otherwise,

when T → +∞, the likelihood ratio tends to be a constant. That means every code

node is equally probable when the artificial temperature T approaches to infinity. In

other words, by changing the temperature parameter T , we actually model the local

likelihood ratio lβk in different quantization precisions.

2.2.2 Factor Function Modelling

When decoding an error correcting code, factor function fμ(xμ) can be described by an

indicator function of parity check equation associated with vector xμ, i.e.,

fμ(xμ) = δ(
{⊕j∈N (μ)cj

}
), where cj =

{
0 , if xj = 1
1 , if xj = −1 . (2.38)

⊕ is the exclusive-or operation, and δ(·) is the delta function

δ(y) =

{
1 , if y = 0
0 , otherwise

. (2.39)

Since a delta function will not changed by any power other than zero, i.e., δ(·) = δβ(·)
for β > 0, it is meaningless to replace the conventional factor function fμ(xμ) by fβ

μ (xμ).

An alternative way to parameterize the factor function is to approximate a delta

function by the limit of a Gaussian density of a real variable. Alternatively, the Dirac

delta function can be rewritten as

δ(y) = lim
β→∞

√
β

2π
exp

(
−β

2
y2
)
. (2.40)

In (2.40), since the delta function is just a limit case when β →∞, we can generalize it

by defining a new function δβ(·) as

δβ(y)
def
=

√
β

2π
exp

(
−β

2
y2
)
. (2.41)

16

Under such an approximation, we naturally incorporate the temperature effect β into

the modelling of the factor function fβ
μ (xμ). Significantly, when 0 ≤ β < +∞, δβ(y) has

non zero value for any y of finite value. Hence, in the view of probability, we translate

a “deterministic” parity check function fμ(xμ) = δ(y) into a “stochastic” parity check

function fβ
μ (xμ) = δβ(y).

From (2.26) and (2.41), the message mμk,β(xk) passing from factor node fβ
μ (xμ) to

variable node xk can be written as

mμk,β(xk) ∝
∑
{cj}

j∈N (μ),j �=k

⎧⎨
⎩exp

[
−β

2

((⊕j∈N (μ),j �=kcj
)⊕ ck

)2] ∏
j∈N (μ),j �=k

njμ(xk)

⎫⎬
⎭ , (2.42)

and the likelihood ratio of mμk(xk) is expressed as

lmμk,β

def
=

mμk,β(xk = −1)
mμk,β(xk = 1)

(2.43)

=

∑
{cj}

j∈N (μ),j �=k

{
exp
[
−β

2

((⊕j∈N (μ),j �=kcj
)⊕ 1

)2]∏
j∈N (μ),j �=k njμ(xk)

}
∑

{cj}
j∈N (μ),j �=k

{
exp
[
−β

2

((⊕j∈N (μ),j �=kcj
)⊕ 0

)2]∏
j∈N (μ),j �=k njμ(xk)

} .(2.44)

Similarly, there are numbers of limit points when β changes from 0 to +∞.

lmμk,β
=

{
1 ,when β → 0

lmμk
,when β → +∞,

(2.45)

where

lmμk

def
=

∑
{cj}

j∈N (μ),j �=k

{
δ
[((⊕j∈N (μ),j �=kcj

)⊕ 1
)]∏

j∈N (μ),j �=k njμ(xk)
}

∑
{cj}

j∈N (μ),j �=k

{
δ
[((⊕j∈N (μ),j �=kcj

)⊕ 0
)]∏

j∈N (μ),j �=k njμ(xk)
} (2.46)

denotes the likelihood ratio when the factor node is a delta function, i.e., fμ(xμ) = δ(xμ).

Also, when the temperature is high, the probabilities of xk = 1 and xk = −1 are equally
likely. In the following, we give an example to further study the proposed idea of

“stochastic” parity check node.

17

Example

Consider a factor node fβ
μ (xμ) associated with a parity check equation

c1 ⊕ c2 ⊕ c3 = 0. (2.47)

According to (2.42), we have

mμ1,β(x1 = 1) ∝ n2μ(x2 = 1)n3μ(x3 = 1)e−
β
2
·0 + n2μ(x2 = −1)n3μ(x3 = 1)e−

β
2
·1

+ n2μ(x2 = 1)n3μ(x3 = −1)e−
β
2
·1 + n2μ(x2 = −1)n3μ(x3 = −1)e−

β
2
·0(2.48)

mμ1,β(x1 = −1) ∝ n2μ(x2 = 1)n3μ(x3 = 1)e−
β
2
·1 + n2μ(x2 = −1)n3μ(x3 = 1)e−

β
2
·0

+ n2μ(x2 = 1)n3μ(x3 = −1)e−
β
2
·0 + n2μ(x2 = −1)n3μ(x3 = −1)e−

β
2
·1(2.49)

In (2.48) and (2.49), we find that when β
= +∞, i.e., T
= 0+, there is a non-

zero probability e−
β
2 accompanied with the terms that disappear in the calculation of

mμ1 in the deterministic case. Such a probability explains the idea of a “stochastic”

parity check, since we allow the existence of non-zero parity check value with a specified

probability.

Interestingly, when we decrease the temperature T from +∞ to 0+, stochastic parity

check will reach two limit states. First, when T = +∞ (i.e., β = 0+), both e−
β
2
·0 and

e−
β
2
·1 equal to 1 such that mμ1(xk = 1) = mμ1(xk = −1). Hence, the message provided

by check node μ at T = +∞ is equally probable. That means we cannot gain any

information about code node x1 from fβ
μ .

On the other hand, as T = 0+ (i.e., β = +∞), e−
β
2
·0 = 1 and e−

β
2
·1 = 0. Message

mμ1,β(xk) will become

mμ1,β=0(x1 = 1) ∝ n2μ(x2 = 1)n3μ(x3 = 1) + n2μ(x2 = −1)n3μ(x3 = −1)(2.50)

mμ1,β=0(x1 = −1) ∝ n2μ(x2 = −1)n3μ(x3 = 1) + n2μ(x2 = 1)n3μ(x3 = −1),(2.51)

which gives exactly the deterministic parity check function. Hence, as T → 0, the

stochastic parity check will approach the deterministic case. This can also be explained

as the natural result of (2.40).

18

2.2.3 Trellis State Modelling

2.3 Annealing Belief Propagation Algorithm

The basic principle of annealing type algorithms is to start the inference task at high tem-

perature and iteratively decrease the temperature according to some chosen annealing

schedules. In the literatures, there are two main categories when applying the anneal-

ing type algorithms. First, the simulated annealing (SA), based on the Markov Chain

Monte Carlo (MCMC) method, is quite useful in non-convex optimization problems. In

theory, the simulated annealing method generates a sequence of random walks to reach a

new state with an acceptance probability that depends on the current state. Intuitively,

SA directly simulates the system dynamics. Although SA can theoretically converge

to the global optimum value, convergence is only guaranteed under a proper annealing

schedule, which starts at a high enough initial temperature. In theory, exponential-time

execution is needed for SA to converge to the global optimum. However, such a long

annealing time is often not realistic for many applications in practice.

On the other hand, deterministic annealing (DA), the second category of annealing

methods, has deterministic processing time. Instead of simulating the stochastic dynam-

ics of the system, DA directly minimizes the expected free energy while avoiding many

poor local minima of the cost. According to [4], the DA method performs annealing

as it maintains the free energy at the thermal equilibrium while gradually lowering the

temperature. Since the processing time of DA is deterministic and controllable, we can

take DA as one of the candidate solutions if the implementation of annealing algorithms

must be constrained below a fixed processing delay. Lately, DA has already been suc-

cessfully employed to solve numbers of optimization problems in source coding, pattern

recognition, pattern classification, and many other fields.

In this paper, when decoding error correcting codes, we adopt DA to anneal the

belief network for numbers of reasons. First, communication systems normally have

19

constraints on the decoding delay in order to maintain the total system latency. Second,

DA combined with the proposed annealing belief propagation (ABP) algorithms needs

only minor modification of the conventional BP. In fact, ABP generalizes BP while

keeping most of the implementations details, including schedules of message passing,

the way that message exchanges, or even total iteration numbers. We describe below

the basic ABP framework.

1. Initialize :

Set initial temperature Tinit, minimum temperature Tmin.

Set maximum iteration number imax, iteration index i = 1, temperature index

Ti = Tinit, and βi =
1
Ti
.

2. Update :

Calculate the local function gβi

k (xk) of variable node xk for all k.

Calculate the factor function fβi
μ (xμ) of the μ-th factor node for all xμ.

Calculate messages mμk,βi
(xk) and nkμ,βi

(xk) for all μ, k.

3. Check Temperature : If Ti ≤ Tmin, set Ti = 0.

4. Cooling Step : Calculate Ti+1 and βi+1 by decreasing Ti according to the specific

annealing schedule.

5. Check Status : Set i = i+1. Stop the algorithm when i > imax or some convergent

check is passed.

6. Go to 2).

Following the basic framework of ABP, we propose three types of ABP algorithms:

local function annealing (LFA), factor function annealing (FFA), and joint annealing

(JA). For different types of ABP algorithms, the function nodes are generalized according

to different models described in section III.

20

2.3.1 Local Function Annealing

Local function annealing can also be called code node annealing when applying ABP to

decode error correcting codes. At first, we model the local function by its generalized

model. For LDPCC, local functions of code nodes are set to the generalized Gaussian

model described in Section III-A. The factor nodes, however, retain the deterministic

definition, which means that we still use deterministic parity checks for LDPCC when

applying local function annealing. In this case, the exchanged message mμk,βi
equals to

mμk,0 and nkμ,βi
equals to nkμ,0. Local function annealing follows the basic framework

of ABP: start at a high temperature, perform message exchange, and finally check the

convergence and decrease the temperature further. Since the ways message exchanges at

factor nodes are the same for LFA and BP, the only difference between them is that the

former changes the local functions in iterations, while the latter keeps them unchanged.

Because LFA only modifies the exponent of local function, the computational complexity

is almost the same for LFA and BP.

Based on three previous observations in (2.36), we propose two schedule rules for

LFA. First, the initial temperature can be set as high as needed. Second, the lower limit

of temperature is bounded by one. An empirical annealing schedule which satisfies both

rules is suggested as

Tlocal,(j+1)η = T γj+1

local,init = T γ
local,jη, (2.52)

and Tlocal,i = Tlocal,jη for jη ≤ i < (j + 1)η. (2.53)

j is the update index and 0 < γ ≤ 1 is a constant used to control the annealing rate. The

initial temperature is defined as T0
def
= Tlocal,init. η denotes the update period of annealing

process, and i is the iteration index of ABP algorithms. The artificial parameter η fixes

the temperature Ti = Tlocal,jη during jη ≤ i < (j + 1)η to ensure the ABP algorithm

converging to a lower energy state at that temperature. As γ equals to 1, Tlocal,i equals to

Tlocal,init for any iteration i. When γ is small, Tlocal,i approaches 1, the low temperature

21

limit, in few iterations.

2.3.2 Factor Function Annealing

Similarly, factor function annealing is also called check node annealing when applying

ABP to decode error correcting codes. The reason for the name “factor function an-

nealing” is that we only perform annealing on the factor nodes. For LDPCC, we replace

the deterministic parity check function by the stochastic one described in Section III-B.

Local function gk(xk) is kept constant during the iteration, i.e.,

gk(xk) = δ

(
p(xk|yk) =

√
1

2π
exp

(−(yk − xk)
2

2σ2

))
. (2.54)

According to (2.45), the generalized parity check function reaches two limits when

T = +∞, and T = 0. Hence, we suggest the following geometric schedule for FFA

Tfactor,(j+1)η = αj+1 · Tfactor,init = α · Tfactor,jη, (2.55)

and Tfactor,i = Tfactor,jη for jη ≤ i < (j + 1)η. (2.56)

Similar to LFA, j is the update index and η is the corresponding update period of

the annealing process. i denotes the iteration index of ABP algorithms and the initial

condition is set as T0
def
= Tfactor,init. 0 < α ≤ 1 is a scaling constant that controls the

annealing rate. As α = 1, temperature Tfactor,i equals to Tfactor,init for all iteration. On

the other way, Tfactor,i approaches 0 in few iterations when α is small. Empirically, the

geometric scaling factor α is set between 0.8 and 0.99 [29].

A stopping criterion of the LFA and FFA can be determined either when the maxi-

mum iteration limit is reached or all the deterministic parity check functions are satisfied.

2.3.3 Joint Annealing

Combining LFA and FFA, joint annealing anneals both the local functions and the factor

functions. Temperature Ti is decreased according to (2.52) and (2.55) for local functions

and factor functions respectively. Intuitively, there are several ways to combine the LFA

and FFA. We suggest the following two approaches.

22

Single Loop Joint Annealing (SLJA)

Single loop joint annealing (SLJA) method updates the temperature parameters of LFA

and FFA at the same time. The algorithm is summarized as follows:

(1) Set parameters: initial temperature Tfactor,init, Tlocal,init, update period η, local

function annealing rate γ, and factor function annealing rate α, update index

j = 0, and iteration index i = 0, minimum temperature Tfactor,min, and Tlocal,min.

(2) Set Tfactor,i = Tfactor,jη and Tlocal,i = Tlocal,jη for iteration i = jη. If Tfactor,i <

Tfactor,min, set Tfactor,i = 0. If Tlocal,i < Tlocal,min, set Tlocal,i = 1.

(3) Run FFA on factor nodes and LFA on variable nodes.

(4) If i
= (j + 1)η, set i← i+ 1, and j ← j; else set i← i+ 1, and j ← j + 1.

(5) Lower temperature according to (2.52) and (2.55).

(6) If i < imax, goto step 2, ; else, stop and output the results.

In our experiment, we observe that the performance of SLJA highly depends on

the selection of annealing parameters, especially the annealing rates of factor and local

functions. The annealing process yields a sequence of solutions at a controlled level of

decreasing entropy. It is suggested in [29] that more complicated annealing schedules,

such as adaptive annealing, can be adopt to improve the performance further.

Double Loop Joint Annealing (DLJA)

(1) Set parameters: initial temperature Tfactor,init, Tlocal,init, update period ηfactor, ηlocal

where ηlocal = c · ηfactor for c ≥ 1, c ∈ Z, local function annealing rate γ, and factor

function annealing rate α, update index j = 0, k = 0, and iteration index i = 0,

minimum temperature Tfactor,min, and Tlocal,min.

(2) Set Tlocal,i = Tlocal,kη for iteration i = kηlocal. If Tlocal,i < Tlocal,min, set Tlocal,i = 1.

23

(3) Set Tfactor,i = Tfactor,jη for iteration i = jηfactor. If Tfactor,i < Tfactor,min, set

Tfactor,i = 0.

(4) Run FFA on factor nodes and LFA on variable nodes.

(5) Set i← i+ 1.

(6) If i
= (j + 1)ηfactor and i
= (k + 1)ηlocal, go to step (4). If i = (j + 1)ηfactor and

i
= (k + 1)ηlocal, set j ← j + 1, lower temperature of factor functions according to

(2.55). and goto step 3; else if i = (k + 1)ηlocal, goto step 7.

(7) Set k ← k + 1, and lower temperature of local functions according to (2.52).

(8) If i < imax, goto step 2; else, stop and output the results.

DLJA is consisted of two main loops. Inner loop, step 3 to step 6, performs FFA

and outer loop, i.e., step 2 to step 8, performs LFA. In step 2, the beginning of outer

loop, we can also re-heating Tfactor,i to further escape the local minimum and possibly

find better solutions. In DLJA algorithm, we can also run LFA as inner loop and FFA

as outer loop. In fact, there are lots of configurations of joint annealing methods, which

need to be investigate further.

From the simulation results in the latter section, we observe that performance of FFA,

LFA and JA is mainly affected by the settings of initial temperature and annealing rate.

That means we can get improvement of the conventional BP even by using the simplest

LFA scheme.

2.4 Experimental Results and Discussions

In this section, we report the results of the proposed annealing algorithms on binary

networks. We perform ABP to decode LDPCC of different rates and code lengths. Some

test codes are chosen for their inherent short cycles, while others are chosen arbitrarily.

24

Several settings of initial temperature and annealing rate are tested to demonstrate the

importance of annealing schedule.

We consider first the (23,12) Golay code, which has cycles of length 4 to prevent the

BP algorithm from converging to maximum likelihood decoding (MLD) performance

[28].

3 4 5 6

1E-4

1E-3

0.01

0.1

Fr
am

e
Er

ro
r R

at
e

(F
ER

)

SNR (dB)

 BP
 FFA, γ=0.94, T

init
=1, μ

factor
=1

 LFA, α=1.1, T
init

=2, μ
factor

=5

Figure 2.1: Golay Code N=23 K=12, Code Rate: 0.522, Max Iteration Number: 200,
Frame Error Count: 200.

In the following tests, we illustrate the results of LDPCC established in database

[30]. First, considering the 816.33.164 code of rate 0.5, FFA with initial temperature 1.0

and α = 0.94 performs the best, following by the LFA with initial temperature 2.0 and

γ = 1.1. Both of the annealing methods have better bit error rate (BER) performance

than the conventional BP algorithm. The convergence advantage of annealing methods

becomes more remarkable with the increase of SNR.

25

1.8
2.0

2.2
2.4

1E
-5

1E
-4

1E
-3

Bit Error Rate (BER)
S

N
R

 (dB
)

 B
P

 LFA
, γ=1.1, T

init =2
 F

F
A

, α=0.94, T
init =1

F
igu

re
2.2:

M
ackay

816.33.164,
C
o
d
e
R
ate:

0.5,
M
ax

Iteration
N
u
m
b
er:

200,
F
ram

e
E
rror

C
ou
n
t:
200.

26

Chapter 3

The Cross-Entropy Method

The cross-entropy (CE) method which was originally developed as an adaptive algorithm

for rare-event simulation based on variance minimization [31]. It was soon modified

to a randomized optimization technique [32], where the original variance minimization

program was replaced by an associated CE minimization problem. We summarize the

basic concept of this simple, efficient, and general method in this chapter and more

detailed investigations can be found in [33].

3.1 Introduction

In the field of rare-event simulation, the CE method is used in conjunction with im-

portance sampling (IS), a well-known variance reduction technique in which the system

is simulated under a different set of parameters, called the reference parameters (or

different probability distribution) so as to make the occurrence of the rare event more

likely. A major drawback of the conventional IS technique is that the optimal reference

parameters to be used in IS are usually very difficult to obtain. Traditional techniques

for estimating the optimal reference parameters [34] typically involve time consuming

variance minimization programs. The advantage of the CE method is that it provides a

simple and fast adaptive procedure for estimating the optimal reference parameters in

the IS.

In the field of optimization problems (combinatorial or continuous), the CE method

27

can be readily applied by first translating the underlying optimization problem into

an associated estimation problem, named associated stochastic problem (ASP), which

typically involves rare-event estimation. Estimating the rare-event probability and the

associated optimal reference parameter for the ASP via the CE method translates effec-

tively back into solving the original optimization problem.

In general, the CE algorithm is an iterative procedure that consists of the following

two phases in each iteration.

• Generate samples from the specified importance density given by the parameters

from the previous iteration.

• Update the parameters for next iteration according to the order of the score values

associated with the drawn samples and the minimizing CE criterion.

The significance of the CE concept is that it defines a precise mathematical framework

for deriving fast and good updating/learning rules.

3.2 The CE Method for Rare-Event Simulation

In this section, the basic idea behind the CE algorithm for rare event simulation is

illustrated. Let x be a random vector taking values in some space X . Let {f(·;v)} be a
family of probability density functions (pdfs) on X , with respect to some base measure
μ where v is a real-valued parameter (vector). Therefore,

E[H(x)] =

∫
X
H(x)f(x;v)μ(dx), (3.1)

for any function H . For simplicity, for the rest of this section we take μ(dx) = dx

because of μ is either a continuous measure or the Lebesgue measure in most cases.

Let S be some real function on X . Suppose we are interested in the probability that
S(x) is greater than or equal to some real number γ under f(x;u). This probability can

be expressed as

� = Pu(S(x) ≥ γ) = Eu[I{S(x)≥γ}]. (3.2)

28

If this probability is very small, say smaller than 10−5, we call {S(x) ≥ γ} a rare event.
A straightforward way to estimate � is to use crude Monte-Carlo simulation: Draw

a random sample x1, · · · ,xN from f(x;v); then

�̂ =
1

N

N∑
i=1

I{S(xi)≥γ} (3.3)

is an unbiased estimator of �. However this poses serious problems when {S(x) ≥ γ} is
a rare event since a large simulation effort is required to estimate � accurately, that is,

with a small relative error or a narrow confidence interval.

An alternative is based on importance sampling: take a random sample x1, · · · ,xN

from an importance sampling density g on X , and estimate � using the likelihood ratio
(LR) estimator

�̂ =
1

N

N∑
i=1

I{S(xi)≥γ}
f(xi;u)

g(xi)
. (3.4)

The best way to estimate � is to use the change of measure with density

g∗(x) =
I{S(x)≥γ}f(x;u)

�
. (3.5)

By using this change of measure we have in (3.4)

I{S(xi)≥γ}
f(xi;u)

g∗(xi)
= �, (3.6)

for all i. Since � is a constant, the estimator (3.4) has zero variance, and we need to

produce only N = 1 sample.

The obvious difficulty is that g∗ depends on the unknown parameter �. Moreover,

it is often convenient to choose a g in the family of densities {f(·;v)}. The idea now
is to choose the reference parameter v such that the distance between the density g∗

above and f(x;v) is minimal. A particularly convenient measure of distance between

two densities g and h is the Kullback-Leibler (KL) distance defined as

D(g, h) = Eg

[
ln

g(x)

h(x)

]
=

∫
g(x) ln g(x)dx−

∫
g(x) lnh(x)dx (3.7)

29

which is also termed the cross-entropy (CE) between g and h.

Minimizing the Kullback-Leibler distance between g∗ in (3.5) and f(x;v) is equiva-

lent to solve the maximization problem

max
v

∫
g∗(x) ln f(x;v)dx (3.8)

Substituting g∗ from (3.5) into (3.8) we obtain the maximization program

max
v

∫
I{S(x)≥γ}f(x;u)

�
ln f(x;v)dx (3.9)

which is equivalent to the program

max
v

D(v) = max
v

Eu

[
I{S(x)≥γ} ln f(x;v)

]
(3.10)

where D is implicitly defined above. Again using importance sampling, with a change

of measure f(x;w) we can rewrite (3.10) as

max
v

D(v) = max
v

Ew

[
I{S(x)≥γ}W (x;u,w) ln f(x;v)

]
, (3.11)

for any reference parameter w, where

W (x;u,w) =
f(x;u)

f(x;w)
(3.12)

is the likelihood ratio between f(x;u) and f(x;w). The optimal solution of (3.11) can

be written as

v∗ = argmax
v

Ew

[
I{S(x)≥γ}W (x;u,w) ln f(x;v)

]
. (3.13)

We may estimate v∗ by solving the following stochastic program

max
v

D̂(v) = max
v

1

N

N∑
i=1

[
I{S(xi)≥γ}W (xi;u,w) ln f(xi;v)

]
, (3.14)

where x1, · · · ,xN is a random sample from f(x;w). In typical applications the function

D̂ in (3.14) is convex and differentiable with respect to v, in which case the solution of

(3.14) may be readily obtained by solving the following system of equations:

1

N

N∑
i=1

[
I{S(xi)≥γ}W (xi;u,w)∇ ln f(xi;v)

]
= 0. (3.15)

30

The advantage of this approach is that the solution of (3.15) can often be calculated

analytically. In particular, this happens if the distributions of the random variables

belong to a natural exponential family (NEF).

We have to note that the CE program (3.14) or (3.15) are useful only if the probability

of the target event {S(x) ≥ γ} is not too small under w, say greater than 10−5. For

rare-event probabilities, due to the rareness of the events {S(xi) ≥ γ}, most of the
indicator random variables I{S(xi)≥γ}, i = 1, · · · , N , will be zero, for moderate N . It

makes the program (3.14) and (3.15) difficult to carry out. A multilevel algorithm can

be used to overcome this difficulty. The basic idea is to construct a sequence of reference

parameters {vt, t ≥ 0} and a sequence of levels {γt, t ≥ 1}, and iterate in both vt and

γt.

We initialize by choosing a not very small , say = 10−2 and by defining v0 = u.

Next, we let γ1 (γ1 < γ) be such that, under the original density f(x;u), the probability

�1 = EuI{S(xi)≥γ1} is at least . We then let v1 be the optimal CE reference parameter

for estimating �1, and repeat the last two steps iteratively with the goal of estimating the

pare {�,v∗}. In other words, each iteration of the algorithm consists of two main phases.

In the first phase γt is updated, in the second vt is updated. Specifically, starting with

v0 = u we obtain the subsequent γt and vt as follows:

1. Adaptive updating of γt For a fixed vt−1, let γt be a (1 −)-quantile of S(x)

under vt−1. That is, γt satisfies

Pvt−1(S(x) ≥ γt) ≥ , (3.16)

Pvt−1(S(x) ≤ γt) ≥ 1− , (3.17)

where x ∼ f(x;vt−1).

A simple estimator γ̂t of γt can be obtained by drawing a random sample x1, · · · ,xN

from f(x;vt−1), calculating the performances S(xi) for all i, ordering them from

smallest to biggest: S(1) ≤ · · · ≤ S(N) and finally, evaluating the sample (1 −)-

31

quantile as

γ̂t = S(�(1−�)N) (3.18)

Note that S(j) is called the j-th order-statistic of the sequence S(x1), · · · , S(xN).

Note also that γ̂t is chosen such that the event {S(x) ≥ γ̂t} is not too rare (it has
a probability of around), and therefore updating the reference parameter via a

procedure such as (3.18) is not void of meaning.

2. Adaptive updating of vt For fixed γt and vt−1, derive vt from the solution of

the following CE program

maxvD(v) = Evt−1

[
I{S(x)≥γt}W (x;u,vt−1) ln f(x;v)

]
. (3.19)

The stochastic counterpart of the above equation is as follows: for fixed γ̂t and

v̂t−1, derive v̂ from the solution of following program

max
v

D̂(v) = max
v

1

N

N∑
i=1

[
I{S(xi)≥γ̂t}W (xi;u, v̂t−1) ln f(xi;v)

]
. (3.20)

Thus, at the first iteration, starting with v̂0 = u, to get a good estimate for v̂1,

the target event is artificially made less rare by (temporarily) using a level γ̂1 which is

chosen smaller than γ. The value of v̂1 obtained in this way will (hopefully) make the

event {s(x) ≥ γ} less rare in the next iteration, so in the next iteration a value γ̂2 can

be used which is closer to γ itself. The algorithm terminates when at some iteration t a

level is reached which is at least γ and thus the original value of γ can be used without

getting too few samples.

The above rationale results in the following algorithm:

1. Define v̂0 = u. Set t = 1.

2. Generate a sample z1, · · · ,xN from the density f(x;vt−1) and compute the sample

(1−)-quantile γ̂t of the performances according to (3.18), provided γ̂t is less than

γ. Otherwise set γ̂t = γ.

32

3. Use the same sample x1, · · · ,xN to solve the stochastic program (3.20). Denote

the solution by v̂t.

4. If γ̂t < γ, set t = t+ 1 and reiterate from Step 2. Else proceed with Step 5.

5. Estimate the rare-event probability � using the LR estimate

�̂ =
1

N

N∑
i=1

I{S(xi)≥γ}W (xi;u, v̂T) (3.21)

where T denotes the final number of iterations.

3.3 The CE-Method for Optimization Problem

Consider the following general maximization problem: Let X be a finite set of states,

and let S be a real-valued performance function on X . We wish to find the maximum

of S over X and the corresponding state at which this maximum is attained. Let us

denote the maximum by γ∗. Thus,

S(x∗) = γ∗ = max
x∈X

S(x). (3.22)

The starting point in the methodology of the CE method is to associate with the

optimization problem (3.22) a meaningful estimation problem. To this end we define

a collection of indicator functions
{
I{S(x)≥γ}

}
on X for various levels γ ∈ R. Next, let

{f(·;v),v ∈ V} be a family of (discrete) probability densities on X , parameterized by

a real-valued parameter (vector) v. For a certain u ∈ V we associate with (3.22) the

problem of estimating the number

�(γ) = Pu(S(x) ≥ γ) =
∑
x

I{S(x)≥γ}f(x;u) = EuI{S(x)≥γ}, (3.23)

where Pu is the probability measure under which the random state x has probability

density function (pdf) f(x;u), and Eu denotes the corresponding expectation operator.

We will call the estimation problem (3.23) the associated stochastic problem (ASP). To

indicate how (3.23) is associated with (3.22), suppose for example that γ is equal to γ∗

33

and that f(x;u) is the uniform density on X . Note that, typically, �(γ∗) = f(x∗;u) =

1/|X | where |X | denotes the number of elements in X is a very small number. Thus,

for γ = γ∗ a natural way to estimate �(γ) would be to use the LR estimator (3.21) with

reference parameter v∗ given by

v∗ = argmax
v

Eu

[
I{S(x)≥γ} ln f(x;v)

]
. (3.24)

This parameter could be estimated by

v̂∗ = argmax
v

1

N

[
I{S(xi)≥γ} ln f(xi;v)

]
(3.25)

where the xi are generated from pdf f(x;u). It is plausible that, if γ is close to γ∗,

that f(x;v∗) assigns most of its probability mass close to x∗, and thus can be used to

generate an approximate solution to (3.22). However, it is important to note that the

estimator (3.25) is only of practical use when I{S(x)≥γ} = 1 for enough samples. This

means for example that when γ is close to γ∗, u needs to be such that Pu(S(x) ≥ γ)

is not too small. Thus, the choice of u and γ in (3.22) are closely related. On the one

hand we would like to choose γ as close as possible to γ∗, and find (an estimate of) v∗

via the procedure above, which assigns almost all mass to state(s) close to the optimal

state. On the other hand, we would like to keep γ relative large in order to obtain an

accurate estimator for v∗.

The situation is very similar to the rare-event simulation case. The idea is to adopt

a two-phase multilevel approach in which we simultaneously construct a sequence of

levels γ̂1, γ̂2, · · · , γ̂T and parameter (vectors) v̂0, v̂1, · · · , v̂T such that γ̂T is close to the

optimal γ∗ and v̂T is such that the corresponding density assigns high probability mass

to the collection of states that give a high performance.

This strategy is embodied in the following procedure:

1. Define v̂0 = u. Set t = 1.

2. Generate a sample x1, · · · ,xN from the density f(x;vt−1) and compute the sample

(1−)-quantile γ̂t of the performance according to (3.18).

34

3. Use the same sample x1, · · · ,xN and solve the stochastic program (3.20) with

W = 1. Denote the solution by v̂t.

5. If for some t ≥ d, say d = 5,

γ̂t = γ̂t−1 = · · · = γ̂t−d, (3.26)

then stop (let T denote the final iteration); otherwise set t = t + 1 and reiterate

from Step 2.

Note that the initial vector v̂0, the sample size N , the stopping parameter d, and the

number have to be specified in advance.

The above procedure can, in principle, be applied to any discrete and continuous

optimization problem. For each individual problem two essential ingredients need to be

supplied:

1. We need to specify how the samples are generated. In other words, we need to

specify the family of densities {f(·;v)}.

2. We need to calculate the updating rules for the parameters, based on cross-entropy

minimization.

In general there are many ways to generate samples from X , and it is not always

immediately clear which way of generating the sample will yield better results or easier

updating formulas.

3.4 Updating Rules of Some Useful Densities

In this section we will derive the updating rules for two pdfs which are commonly used

for the CE method. The first one is the Bernoulli distribution and the second is the

Gaussian distribution.

35

Suppose the random vector xi = (xi1, · · · , xin) ∼ Ber(p) where Ber(p) is Bernoulli

distribution with parameter p = (p1, · · · , pn). Consequently, the pdf is

f(xi;p) =

n∏
j=1

p
xij

i (1− pi)
1−xij , (3.27)

and since each xij can only be 0 or 1,

∂

∂pj
ln f(xi;p) =

xij

pj
− 1− xij

1− pj

=
1

(1− pj)pj
(xij − pj). (3.28)

Now we can find the maximum in (3.20) (with W = 1) by setting the first derivatives

with respect to pj equal to zero, for j = 1, · · · , n:

∂

∂pj

N∑
i=1

I{S(xi)≥γ} ln f(xi;p) =
1

(1− pj)pj

N∑
i=1

I{S(xi)≥γ}(xij − pj) = 0. (3.29)

Thus, we get the updating rule

pj =

∑N
i=1 I{S(xi)≥γ}xij∑N
i=1 I{S(xi)≥γ}

. (3.30)

Next, consider the Gaussian density

f(x;μ, σ2) =
1√
2πσ2

e−
1
2

(x−μ)2

σ2 , x ∈ R. (3.31)

The optimal solution of (3.20) (with W = 1) follows from minimization of

1

σ2

N∑
i=1

Ii(xi − μ)2 + ln(σ2)

N∑
i=1

Ii, (3.32)

where Ii = I{S(xi)≥γ}. It is easily seen that this minimum is obtained at (μ̂, σ̂2) given by

μ̂ =

∑N
i=1 Iixi∑N
i=1 Ii

(3.33)

and

σ̂2 =

∑N
i=1 Ii(xi − μ̂)2∑N

i=1 Ii
(3.34)

36

Chapter 4

Stochastic Erasure-Only List
Decoding of RS codes

In this chapter, we apply the Cross-Entropy (CE) method [33] to develop a Monte Carlo

based iterative SDD algorithm which renders an improved algebraic SDD decoding per-

formance. The CE method is an elegant practical principle for simulating rare events

which approximates the probability of the rare event by means of a family of parameter-

ized probabilistic models. Our stochastic erasure-only list decoding (SEOLD) algorithm

uses the extended CE method for optimization problem by considering an optimal event

as a rare event.

4.1 Preliminary

Let C be an (n, k) RS code over GF(2m) with minimum Hamming distance dmin =

n − k + 1. Let c = (c0, · · · , cn−1) be a codeword in C. For binary transmission, every

code symbol must be expanded into binary with symbols from GF(2) = {0, 1}. Let α be

primitive in GF(2m), then the ith symbol ci can be uniquely represented by the binary

m-tuple c
(b)
i = (ci,0, · · · , ci,m−1) where ci = ci,0α

0 + · · · + ci,m−1α
m−1, ∀ci,j ∈ GF(2).

Therefore, the codeword c can be uniquely mapped into the binary expansion vector

c̄ = (c
(b)
0 , c

(b)
1 , · · · , c(b)n) = (c̄0, c̄1, · · · , c̄nm−1).

Using binary phase-shift-keying (BPSK), the transmitter maps the binary imaged

37

codeword c̄ into the bipolar vector

Ψ(c̄) = x̄ = (x̄0, · · · , x̄nm−1), x̄j = Ψ(c̄j) = (−1)c̄j (4.1)

and sends it over an additive white Gaussian noise (AWGN) channel with zero mean

and power spectral density N0/2. The received sequence at the output of the matched

filter is ȳ = (ȳ0, · · · , ȳnm−1) where ȳj = x̄j + w̄j and w̄j’s are statistically independent

Gaussian random variables with zero mean and variance N0/2.

Let z̄ = (z̄0, · · · , z̄nm−1) be the hard decision binary vector of the received bit sequence

ȳ, i.e.,

z̄j =

{
0, ȳj > 0
1, otherwise

(4.2)

and z = (z0, · · · , zn−1) be the corresponding symbol vector. Denoted by Γ̄ = (γ̄1, · · · , γ̄nm−1)

the reliability vector of ȳ in which γ̄j is the magnitude of the log-likelihood ratio (LLR)

associated with the corresponding hard-limited bit z̄j

L (c̄j) = log
P (c̄j = 0| ȳ)
P (c̄j = 1| ȳ) , (4.3)

and define the symbol reliability vector Γ = (γ0, · · · , γn−1) of z by

γi = min
j

γ̄j, j ∈ {im, · · · , (i+ 1)m− 1} (4.4)

Assume that the ith symbol ci of c is uniformly distributed over GF(2
m) and the n

received symbols are independent and uniformly drawn from GF(2m). Then P (ci = β|ȳ),
the probability that ci = β was transmitted given the observation ȳ can be easily

evaluated [21]:

P (ci = β|ȳ) = P (ci = β|ȳi)

=
P (ȳi|ci = β)P (ci = β)∑

ω∈GF(2m) P (ȳi|ci = ω)P (ci = ω)

=
P (ȳi|ci = β)∑

ω∈GF(2m) P (ȳi|ci = ω)
(4.5)

38

where

ȳi = (ȳim, ȳim+1, · · · , ȳim+m−1),

P (ȳi|ci = β) =
m−1∏
j=0

P (ȳim+j |c̄im+j = βj) , β = β0α
0 + · · ·+ βm−1α

m−1.

The q × n matrix R = [Rβi = P (ci = β|ȳ)], q = 2m, will be referred to as the reliability

matrix of the received vector ȳ.

4.2 Stochastic List Decoding Algorithm

4.2.1 Algebraic Erasures-Only (EO) Decoding

It is well-known that RS codes are maximum-distance separable (MDS) which implies

that any k coordinates (symbols) in an RS codeword can be used to determine the

remaining n − k symbols. Hence it is sufficient to decide k correct (message) or n − k

incorrect (error) coordinates of a codeword. Let EL be the collection of all combinations

of n− k error coordinates,

EL =

{
s = (s0, · · · , sn−1)

∣∣∣∣∣si ∈ {0, 1},
∑
i

si = n− k

}
(4.6)

where si = 1 if the ith coordinate is in error. Then a straightforward decoding schedule

is given as below:

(a). For all s ∈ EL, erase the corresponding n−k error coordinates of the received word

z and decode by the erasures-only (EO) decoder. The resulting codeword set is

denoted by Cz.

(b). Choose the codeword from Cz with the best score, e.g., the one whose Euclidean

distance from the received word is the smallest, as the decoder output.

The basic idea of the above procedure is shown in Fig. 4.1. It can be easily confirmed

that for any c ∈ Cz, dH(c, z) ≤ n− k, where dH(c, z) is the Hamming distance between

c and z. Therefore, the transmitted codeword belongs to Cz if the number of error

39

n-kz

: vectors with Hamming dis tance n-k away from z

: codewords belong to Cz
: transmitted codeword
: re-encode process

Figure 4.1: Idea of the algebraic erasures-only decoding.

40

symbols is less than dmin. Furthermore, (b) is equivalent to the following minimization

problem

argmin
c

d (Ψ(c̄), ȳ) subject to c ∈ Cz (4.7)

where Ψ(·) is defined by (1) and d(ā, b̄) is the Euclidean distance (ED) between the

nm-ary real vectors ā and b̄.

4.2.2 A Stochastic List Decoding Idea

Each error locator vector (ELV) s ∈ EL represents a particular set of n − k possible

error coordinates and has a corresponding codeword cs that belongs to Cz. We denote

the latter relationship by s �→ cs. Although more than one ELV may be associated with

the same codeword, the complexity of searching for the optimal solution c∗ in the error

location domain EL is still extremely high because the cardinality of EL is
(
n
k

)
and only

a few (or one) elements in EL, depending on the number and locations of the received

errors, can be used to reconstruct c∗.

Suppose we model the selection of the ELV s from EL as a stochastic (vector-valued)

experiment governed by a family of parameterized distributions {f(s;u)} with u ∈
ν being a real-valued parameter vector. Usually f(s;u) is assumed to be uniformly

distributed due to the lack of priori information whence the search in (4.7) is exhaustive

unless some algebraic properties of the code are used. One way to solve (4.7) efficiently

is to find a parameter v∗ such that f(s;v∗) = δ(s− s∗) where s∗ �→ c∗. Then drawing

one sample from f(s;v∗) is sufficient to obtain the optimal solution c∗. To get around

the difficulty that c∗ is not known, one notices that the optimization problem (4.7) is

related to the estimation of the probability P (d(Ψ(c̄s), ȳ) ≤ η|s �→ cs), which is a rare

event when η = η∗ = d(Ψ(c̄∗), ȳ). The connection comes from the fact that efficient

estimation of a rare event can be achieved by the method of importance sampling and

in this case the optimal importance density is f(s;v∗). Without the knowledge of the

threshold η∗, we start with a proper importance density f(s; v̂) to generate samples of s

41

and compute an initial estimate η̂ for η. Ideally, we can use those drawn samples which

satisfy d(Ψ(c̄s), ȳ) ≤ η̂ to obtain new parameter value v̂′ such that f(s; v̂′) is closest to

f(s;v∗) in the Kullback-Leibler (KL) sense, i.e., the CE between f(s; v̂′) and f(s;v∗)

is minimized. Since v∗ is unknown, we choose v̂′ such that f(s; v̂′) is closest to the

empirical distribution of s in those samples that are generated by f(s; v̂) and satisfy

d(Ψ(c̄s), ȳ) ≤ η̂ for this empirical distribution is likely to be a good approximation of

f(s;v∗). New samples of s are then produced by the updated importance density f(s; v̂′)

to compute new estimate η̂′. This iterative procedure continues until |η̂− η̂′| is less than
a predetermined threshold.

The above method is known as the CE method [33] which is an iterative procedure

that consists of the following two phases in each iteration.

• Generate samples from the specified importance density given by the parameters

from the previous iteration.

• Update the parameters for next iteration according to the order of the score values

associated with the drawn samples and the minimizing CE criterion.

Based on the above discussion, we propose a generic Monte Carlo based SDD algo-

rithm as shown in Fig. 4.2 and in Table 4.1 with some detailed description given in

Section 4.3 and 4.4.

4.2.3 Convergence and Complexity

Different convergence conditions and results have been discussed for the deterministic CE

method and its extensions in [35] where it is also proved that convergence in distribution

or η can be guaranteed but needs a proper tuning of the parameters of the algorithm such

as the number of samples N , number of elites E, and smoothing factor ρ. Convergence to

the global minimum is ensured only if a large sample size N is used. On the other hand,

the computing complexity is related to N and is given by O(N(n − k)2). It is obvious

42

Sample
Generator

Erasure-Only
Decoder

Sample
Evaluator

Parameter
Updator

S(t)
v(0)

v(t+1)

SE
(t)

D(t)

Store &
Choose the

Best

d*(t)

*ĉ

S(t)

{f(;v)}

Figure 4.2: Flow chart of a stochastic decoder for RS codes.

1. Define a family of probability densities {f(·;v),v ∈ ν} on the search space Rnm.
Initialize v(0). Set t = 1.

2. Generate a sample set S(t) whose N random vector samples are drawn from f(·;v(t)).
Regard the magnitudes as bit LLRs and convert them into symbol reliabilities.
Erase the n− k least reliable symbols and decode the received word by EO decoding.

3. Evaluate Euclidean distances between the decoded codewords and the received word.

Select the E vector samples with best metrics as the new elite set SE
(t) ⊂ S(t)

and store the best decoded codeword d∗(t) in D(t).
4. Evaluate the new parameter v(t+1) by solving

v(t+1) = argmax
v

1
|SE

(t)|
∑

s
(t)
� ∈SE

(t) ln f(s
(t)
	 ;v).

Update v(t+1) via v(t+1) = ρv(t+1) + (1− ρ)v(t) where 0 < ρ < 1.
5. Terminate decoding if the stopping criterion is met. Choose the best codeword from

the list
{
d∗(t); ∀ t

}
, say ĉ∗, as the decoder output. Otherwise increase t by 1 and

return to step 2.

Table 4.1: A Stochastic List Decoding Algorithm.

43

that the decoding performance can be improved by using a larger N . As we retain the

best sample at the end of each iteration, the decoding performance is also improved

by increasing the iteration number T . As an early-stopping at any iteration produces a

decoded codeword, we say the algorithm converges if the sequence of decoded codewords

converges. With a modest N , we found that the decoded codewords converge to the same

codeword within 10 iterations in most cases. Our algorithm yields good performance

although uniform convergence in distribution or η within a limited iterations is not

guaranteed.

4.3 List Decoding via Erasure Location Estimation

In this section, we propose an novel algorithm to solve the discrete optimization problem

described in (4.7) by utilizing the stochastic list decoding idea. This algorithm is named

as the first kind stochastic erasure-only list decoding (SEOLD-I) algorithm which is used

to efficiently estimate the most possible dmin−1 locations of erasures about the received
word z.

4.3.1 Importance Density and Sample Format

Suppose the reliability matrix R is known at the receiver. Define the distrust function,

fd : GF(2
m) �→ (0,∞), of the ith coordinate zi of z as

fd(zi) =

∑
β Rβ,i

Rzi,i
, β ∈ GF(2m) \ {zi} (4.8)

The larger the value of fd(zi) is, the higher the probability that zi should be erased at

the decoder.

Let s = (s0, · · · , sn−1) be a random vector where s0, · · · , sn−1 are independent

Bernoulli random variables with success probabilities p0, · · · , pn−1, i.e., P (si = 1) =

1− P (si = 0) = pi. We write s ∼ Ber(p), where p = (p0, · · · , pn−1). In our case, si = 1

represents the ith symbol zi of z should be erased. On the other hand, zi will be reserved

because of higher reliability when si = 0.

44

The initial parameters p(0) =
(
p
(0)
0 , · · · , p(0)n−1

)
are defined as

p
(0)
i =

{
1− ε, fd(zi) > 1− ε
fd(zi), otherwise

(4.9)

where ε is an arbitrary real value between (0,1).

At the tth iteration, let s
(t)
1 , s

(t)
2 , · · · , s(t)N be N trials drawn from Ber

(
p(t)
)
which

satisfy

n−1∑
j=0

s
(t)
	,j = dmin − 1, ∀� ∈ {1, · · · , N} (4.10)

where s
(t)
	 = (s

(t)
	,0, · · · , s(t)	,n−1). We then collect samples from these N trials to form a

sample set S(t) = {s(t)1 , · · · , s(t)N }.

4.3.2 Update Parameters

Let d
(t)
1 , · · · ,d(t)

N be the output codewords of the EO decoder. We compute the ED

between each candidate codeword and the received word y and sort the corresponding

random vectors according to the descending order of their associated EDs. Define the

elite set SE
(t) at the tth iteration to be the E vectors with the smallest EDs to y, i.e.,

the corresponding codewords are more likely to have been transmitted. We always store

the best one in SE
(t) up to the current iteration for the final decision when the maximum

number of iteration is reached.

Suppose the parameters used to generate samples at the tth iteration are p(t) =(
p
(t)
0 , · · · , p(t)n−1

)
. The parameters for the next iteration are updated by considering the

information provided by both p(t) and SE
(t). More precisely, the ith parameter p

(t+1)
i is

obtained by [33]

p
(t+1)
i = (1− ρ)p

(t)
i + ρ ·

∑
	∈SE

(t) s
(t)
	,i

E
(4.11)

where ρ is a smoothing factor with real value between (0, 1).

45

4.4 List Decoding via Virtual Received Words

In Step 2 of Table 4.1 we try to find the most likely message/error coordinates such

that the associated EO-decoded codeword is closest to the received vector. Note that

the random samples are used to determine the erasure locations only, and the searching

sphere of the algebraic list decoding described in Section 4.2.1 is always centered at the

hard-limited received word z with radius equals to n−k. To increase our search range and
improve decoding performance, we include some extra codewords which lie statistically

in a small neighborhood of the received word in our expanded search, such that some

of them may in fact be closer in ED to the true transmitted codeword c; see Fig. 4.3.

More specifically, the expansion is accomplished by eliminating the requirement that the

search be centered at z. Instead, we randomized the search center by EO-decoding the

hard-decision versions of the drawn sample vectors which we refer to as virtual received

words. If the importance density does converge to the desired density δ(s− s∗), such an

expanded search will eventually contract and converge to the true transmitted codeword.

4.4.1 Importance Density and Sample Format

Let s̄ = (s̄0, · · · , s̄nm−1) be a random vector where s̄0, · · · , s̄nm−1 are independent Gaus-

sian random variables with means μ0, · · · , μnm−1 and variances σ
2
0, · · · , σ2

nm−1. We write

s̄ ∼ N (�μ, �σ), where �μ = (μ0, · · · , μnm−1) and �σ = (σ0, · · · , σnm−1) are initialized by

μ
(0)
j = γ̄j (4.12)

σj
(0) =

√
|γ̄j| (4.13)

At the tth iteration, N random samples s̄
(t)
1 , s̄

(t)
2 , · · · , s̄(t)N are drawn from N (�μ(t), �σ(t)

)
to form the sample set S̄(t). Each sample vector represents the bit reliabilities of an

associated virtual received word. By using (4.4) to convert the bit reliabilities into

symbol reliability, the n−k coordinates with smallest symbol reliabilities are erased; the

46

c

z

z1

z2
z3

zN -1
zN

n-k

Figure 4.3: Virtual received words are generated around the received LLR vector Γ̄ by
hard-limiting the sample vectors generated by an importance probability density whose
parameter values evolved according to the CE principle.

remaining bit positions are hard-limited, mapped into symbol decisions and the resulting

virtual received word is then decoded by an EO decoder.

4.4.2 Update Parameters

Let d
(t)
1 , · · · ,d(t)

N be the output codewords of the EO decoder. We compute the ED

between each candidate codeword and the received word y and sort the corresponding

random vectors according to the descending order of their associated EDs. Define an

elite set S̄
(t)
E which includes E vectors with the smallest EDs to y, i.e., the corresponding

codewords are more likely to have been transmitted. We always store the best one in S̄
(t)
E

up to the current iteration for the final decision when the maximum number of iteration

is reached.

Then the two sets of parameters �μ(t+1) and �σ(t+1) are updated by [33]

μ
(t+1)
j = (1− λ)μ

(t)
j + λ ·

∑
s̄
(t)
� ∈S̄(t)

E
s̄
(t)
	,j

E
(4.14)

47

and

σ
(t+1)
j = (1− η)σ

(t)
j + η ·

∑
s̄
(t)
� ∈S̄(t)

E

(
s̄
(t)
	,j − μ

(t+1)
j

)2
E

(4.15)

where λ and η are real values between (0, 1) used to smooth the variation of these

parameters. The algorithm described in this section is called the second kind stochastic

erasures-only listing decoding (SEOLD-II) algorithm.

4.5 Experimental Results and Discussions

In this section, some simulated performance of two SEOLD algorithms (SEOLD-I and

SEOLD-II) are presented and compared with that of other well known RS decoding

algorithms. A standard binary input AWGN channel is assumed over which the BPSK

modulated codewords are transmitted. We model the receive matched filter output as the

sum of a ±1−valued sequence and Gaussian sequence with zero-mean i.i.d. components.
The average performance bounds on the ML error probability of RS codes over an AWGN

channel developed in [36] are used as the performance lower limits.

Due to the complexity and the decoding delay considerations, the SEOLD algorithms

will not terminate until convergence is assured. Instead, we limit our decoding procedure

to T iterations in all simulations.

Fig. 4.4 shows the codeword error rate (CER) performance of the (15,11) RS code

over an AWGN channel. HDD-BM refers to the performance of a hard decision bounded

minimum distance decoder such as the BM algorithm. GMD and KV refer to the per-

formance of the GMD algorithm proposed by Forney and the algebraic soft decision

decoding algorithm proposed by Koetter and Vardy, respectively. Note that the KV

algorithm concerned here is infinite interpolation costs, i.e., the complexity is also infi-

nite. For both SEOLD-I and SEOLD-II, the size of the sample set N and the size of the

elite set E at every iteration are set to be 20 and 6, respectively. After 10 iterations,

SEOLD-I has about 0.5 dB and 0.3 dB coding gain over GMD and KV at a CER of 10−5,

48

1 2 3 4 5 6 7 8
10-6

1x10 -5

1x10 -4

10-3

10-2

10-1

100

C
od

ew
or

d
E

rr
or

 R
at

e

E
b
/N

0
 (dB)

 HDD-BM
 GMD
 KV
 SEOLD-I (N =20)
 SEOLD-II (N =20)
 ML

Figure 4.4: Codeword error probability performance of the (15,11) Reed-Solomon code;
10 iterations.

respectively. On the other hand, SEOLD-II outperforms all the previous algorithms with

a performance gain of about 1.2 dB and 1.0 dB over GMD and KV at a CER of 10−5.

In Fig. 4.5, SEOLD-I has a near KV performance when theN = 100 and E = 10 after

10 iterations. At the same condition, SEOLD-II still outperforms the other algorithms

with reasonable complexity. The SEOLD-II has about 0.6 dB and 1.0 dB coding gain

over KV where N is equal to 100 and 500, respectively. In conclusion, the proposed

decoding algorithms are capable of offering good performance with modest complexity

for short high rate RS codes. Its performance can be further improved by increasing

the sample size N and/or the maximum iteration number T at the cost of increased

decoding complexity.

49

1 2 3 4 5 6 7 8
10-6

1x10 -5

1x10 -4

10-3

10-2

10-1

100

C
od

ew
or

d
E

rr
or

 R
at

e

E
b
/N

0
 (dB)

 HDD-BM
 GMD
 KV
 SEOLD-I (N =100)
 SEOLD-II (N =100)
 SEOLD-II (N =500)
 ML

Figure 4.5: Codeword error probability performance of the (31,25) Reed-Solomon code;
10 iterations.

50

Chapter 5

Stochastic List Decoding of Linear
Block Codes

In the previous chapter, we focus on decoding RS codes of short to medium length. The

MDS character of RS codes is exploited to reduce the complexity of locating near-by

codewords. Such an approach cannot be applied to general linear codes. We thus present

a new decoding method which is valid for arbitrary linear codes but is more effective for

codes with small girth.

5.1 Preliminary

Let C be a binary (N,K) linear block code with minimum distance dmin and M × N

parity-check matrix H. As the rows of H may be dependent, we have M > N −K. Let

I = {1, · · · , N} and J = {1, · · · ,M} be the sets of column indices and row indices of

H, respectively. We denote the set of bits n that participate in check m by N (m) =

{n : Hmn = 1}. Similarly, we define the set of checks in which bit n participates as

M(n) = {j : Hmn = 1}. We denote a set N (m) with bit n excluded by N (m)\n, and
a set M(n) with parity check m excluded by M(n)\m. The cardinality of N (m) and

M(n) are denoted by |N (m)| and |M(n)|, respectively. Let en be a 1 ×N elementary

vector with 1 at position n and 0 at other entries.

An 1 × N vector c is a codeword of C if and only if cHT = 0 where HT is the

51

transpose of H and 0 is a 1×M zero vector. For each row hm of H, m ∈ J , let

Cm = {c ∈ {0, 1}N : chT
m = 0 mod 2}, (5.1)

then

C =

M⋂
m=1

Cm. (5.2)

Using the binary phase-shift-keying (BPSK) signal, the transmitter maps a codeword

c into the bipolar vector

Ψ(c) = x = (x0, · · · , xN−1), xn = Ψ(cn) = (−1)cn (5.3)

and sends it over an additive white Gaussian noise (AWGN) channel with zero mean and

power spectral density N0/2 W/Hz. The received sequence at the output of the matched

filter is given by y = (y0, · · · , yN−1), where yn = xn + wn and wn’s are statistically

independent Gaussian random variables with zero mean and variance N0/2.

Let z = (z0, · · · , zN−1) be the hard decision version of the received sequence y, i.e.,

zn =

{
0, yn > 0
1, otherwise

(5.4)

For m ∈ J , we define σm as the result of check sum-m based on the hard-decision vector

z:

σm =

⎡
⎣ ∑
n∈N (m)

znHmn

⎤
⎦ (mod 2) (5.5)

and define Σ = (σ1, · · · , σM) as the syndrome vector.

Denoted by Γ = (γn, · · · , γN−1) the reliability vector of y in which γn is the magnitude

of the log-likelihood ratio (LLR) associated with the corresponding hard-limited bit zn

Ln = log
P (cn = 0|y)
P (cn = 1|y) . (5.6)

We also denote L = (L1, · · · , LN) as the LLR vector of the received word.

52

Let λm be the reliability of check sum m which is defined as

λm = min
n∈N (m)

γn (5.7)

Then we first sort {λm : m ∈ J} and let m1, m2, · · · , mM denote the position of the

check sums in terms of descending order of {λm : m ∈ J}, i.e., the check sum m1 is the

most reliable and mM is the least reliable.

Define qn = P (zn
= cn|y) as the a posteriori probability that bit n is in error based

on y. Then we have the following lemmas.

Lemma 5.1 For the AWGN channel model considered, the probability qn can be ex-

pressed as

qn =
1

1 + eγn
(5.8)

Proof :

See Appendix A.

Lemma 5.2 The probability that for check sum m ∈ M(n), the sum of all bits n′ ∈
N (m)\n mismatches the transmitted bit n′, say rmn, is

rmn =
1

2

⎛
⎝1− ∏

n′∈N (m)\n
(1− 2qn′)

⎞
⎠ . (5.9)

Proof :

See [37].

Note that rmn represents the probability of having an odd number of errors N (m)\n.
Define q̃n as the a posteriori probability that bit n is in error based on the results of the

check sums intersecting in position-n. Then we obtain the following useful theorem.

53

Theorem 5.1 Given the received word y and the syndrome set Σn ≡ {σm : m ∈M(n)},
the logarithm of the bit correctness probability ratio for bit n, say ξn, is

ξn = log

[
1− q̃n
q̃n

]
= log

[
P (zn = cn|y,Σn)

P (zn
= cn|y,Σn)

]

∼= γn +
∑

m∈M(n)

[
(1− 2σm)

(
min

n′∈N (m)\n
γn′

)]
(5.10)

Proof :

See Appendix B.

5.2 Sequential Bit-Flipping Algorithm

In this section, we introduce a single-run sequential bit-flipping (SBF) algorithm for

transforming z into a valid codeword. This procedure has a special constraint about

the parity-check matrix H that H has to be a systematic form. First of all, consider

the rows of the parity-check matrix H are linearly independent, i.e., M = N − K.

Using appropriate row operations, H can be transformed into a systematic form, say

H̃ = [IMP], where IM is an M ×M identity matrix and P is an M × (N −M) binary

matrix. Note that both H and H̃ are the null space of C, hence we can decode the

received word by using H̃ instead of H.

However, it is impossible to have this transformation when the rows of H are linearly

dependent, i.e., M > N −K. Fortunately, we can remove M −N +K rows of H which

can be represented by the linear combination of the remain rows to get a (N −K)×N

sub-matrix H′ where H′ has its systematic form H̃′.

Example 5.1 Consider the following parity check matrix:

H =

⎡
⎢⎢⎢⎢⎣
1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎦ =
⎡
⎢⎣

h1
...
h5

⎤
⎥⎦ (5.11)

54

Since h5 = h1 + · · ·+ h4, we can remove h1 from H and get the following sub-matrix

H′ =

⎡
⎢⎢⎣
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

⎤
⎥⎥⎦ (5.12)

where H′ is itself a systematic form.

Note that it is easy to confirm that H̃′ is still the null space of C. Therefore, without

lost of generality, we assume that H is always a systematic form in this chapter for

simplicity.

Remind that C =
⋂

m∈J Cm, i.e., a codeword c also belongs to subcodes Cm for all

m ∈ J . The idea of the SBF algorithm is to modify z sequentially such that the final

result is a valid codeword. Specifically, the SBF algorithm separates the original problem

intoM sub-problems and solves these sub-problems sequentially in terms of an arbitrary

order of {1, · · · ,M}, denoted as o = (o(1), · · · , o(M)). The procedure must ensure that

the solution of the m-th sub-problem also satisfy the constraints of previous (m − 1)

sub-problems. Along the process of the procedure, a sequence of vectors d1,d2, · · · ,dM

are produced where

dt ∈ ∩t
m=1Co(m), 1 ≤ t ≤M. (5.13)

and dM is obviously a valid codeword. In general, the SBF algorithm needs to input

a predetermined order o and the LLR vector L at the beginning. At the end of the

procedure, a valid codeword d = (d1, · · · , dN) and an associated new LLR vector L̂ =

(L̂1, · · · , L̂N) are the outputs. The difference between L̂ and L is given by

{
L̂n = Ln if dn = zn
L̂n = −Ln if dn
= zn

(5.14)

where L̂ is useful for the stochastic decoding algorithm described in Section 5.5.

Next, we formulate the detailed procedure of the SBF algorithm as below:

1. Let d0 be the hard limiting vector of L, L̂ = L, and I0 = {φ}. Set t = 0.

55

2. Let It = It−1∪N (o(t)). If dt−1 ∈ Co(t), let dt = dt−1. Otherwise, find the solution,

say n∗, of

arg min
n∈{It\It−1}

ξn (5.15)

where ξn is evaluated by (5.10). Let

dt ← dt−1 + en∗ (mod 2), (5.16)

L̂n∗ ← −L̂n∗ , (5.17)

σm ← σm + 1 (mod 2) ∀m ∈M(n∗), (5.18)

t ← t+ 1.

3. If t = M , stop the procedure and output both d = dM and L̂. Otherwise, go to
Step 2.

We denote the relationship between the inputs and outputs of the above procedure as

(d, L̂) = Ω(o,L) for simplicity.

Remark 5.1 We have to mention that once the number of error bits in {It\It−1} is

greater than or equal to 2, the output codeword dM won’t be the transmitted codeword.

Example 5.2 Consider a (8,4) linear block code with parity check matrix:

H =

⎡
⎢⎢⎣
1 0 0 0 1 1 1 0
0 0 1 0 1 0 1 1
0 1 0 0 1 1 0 1
0 0 0 1 0 1 1 1

⎤
⎥⎥⎦ (5.19)

Suppose all zero codeword is transmitted and the received word y is given by

y = (1.83, 2.07, 2.36,−0.21, 1.05, 1.91,−0.09, 1.63).

Then the hard limiting vector z is

z = (0, 0, 0, 1, 0, 0, 1, 0),

and an example of the SRSBFP is shown in Fig. 5.1 where the order of check sums are

3→ 2→ 1→ 4.

56

1 2 3 4 5 6 7 8

+ + + +

4.60

0

5.22

0

5.95

0

-0.52

1

2.63

0

4.81

0

-0.23

1

4.11

0

LLR

z

0.23

1

0.23

1

2.63

0

0.23

0

Check Reliability

Check sum

Check #3
sum = 0

0 0 0 0

Check #2
sum = 1

0 0 01

1. 7=-2.11 < 3=5.72, so flip bit c7
2. 1 0, 2 0, 4 1 0

Check #1
sum = 0

0 0 0 0

Check #4
sum = 1

1 0 0 0

1. flip bit c4
2. 4 0

0

d0 = (00010010)

d1 = (00010010)

d2 = (00010000)

d3 = (00010000)

d4 = (00000000)

Figure 5.1: An example of the SRSBFP.

57

5.3 Predicament of Decoding via SBF algorithm

We have introduced a sequential bit flipping procedure, say SRF algorithm, in previous

section. It is a simple unified framework for transforming the hard limiting vector z

into a codeword in C. Note that different order may induce different codeword to be

produced. For instance, the output codewords in Example 5.2 and 5.3 are different

because of different orders although they face the same received word y.

Example 5.3 Consider the same case described in Example 5.2. If we change the or-

der from 3 → 2 → 1 → 4 to 4 → 3 → 2 → 1, the output codeword d will become

(1, 0, 1, 1, 0, 0, 1, 0).

We observe that output codeword d in Example 5.2 is equal to the transmitted

codeword but in Example 5.3 is not. It is because the order used in Example 5.3 meets

the situation described in Remark 5.1. Obviously, it is a big problem if we want to

decode by SBF algorithm. Therefore, we try to solve this problem by the following two

ideas:

1. Find appropriate order to avoid the situation described in Remark 5.1.

2. Correct some error bits in advance such that the number of orders which can

decode the correct codeword increases.

Note that the first idea is impractical because the complexity of finding appropriate

order grows quickly as M increases. Besides, the hardware implementation is inefficient

if the order changes frequently. Consequently, we propose two modified methods for

decoding based on the SBF algorithm with a fixed order. The first one is designed

for cyclic codes that we apply the SBF algorithm to transform all of the cyclic shifted

received word into valid codewords. Note that cyclic shifting the received word is similar

to decode in different order even though we don’t change the order actually. The another

method is to implement the second idea based on the concept of the randomized sphere

decoding with moving center which can correct errors iteratively.

58

5.4 SBF Algorithm with Cyclic Shifts

Assume a codeword cT belongs to a cyclic codeC is transmitted and let L = (L1, · · · , LN)

be the LLR vector of the received word. Define Lν = (Lν−1, Lν−2, · · · , Lν) as the cyclic

shifted version of L by ν positions. Then we can obtain a set of candidates by the

following algorithms:

1. Determine an order o for the SBF algorithm.

2. For all ν ∈ J , apply the SBF algorithm for Lν and o to obtain a set of candidates

D = {d1, · · · ,dN} where
(dν , L̂ν) = Ω(o,Lν).

The transmitted codeword is then estimated by

ĉT = argmin
c∈D

d(Ψ(c),y), (5.20)

where d(a,b) is the Euclidean distance between a and b.

5.5 Stochastic Sequential Bit Flipping Algorithm

Ideally, we can transform z into the transmitted codeword through the SBF algorithm

if the appropriate order is found. In fact, such order is hard to find, especially when

the LLRs are unreliable. Therefore, we don’t want to decode based on the original LLR

vector L at all times but hope to gradually change L such that its hard limiting vector

is more and more close to the transmitted codeword. In order to implement this idea,

we use the similar method illustrated in Section 4.4 which is an iterative procedure with

the following two phases:

1. Generate Ns virtual LLR vectors around the original one according to a specific

randommechanism. Then decode them by the SBF algorithm to getNs candidates.

59

2. Update the parameters of the random mechanism based on Es better candidates

in order to generate better virtual LLR vectors in next iteration.

Note that this is the basic idea of our randomized sphere decoding with moving center.

Next, we will illustrate the random mechanism further in next two subsections.

5.5.1 Importance Density and Sample Format

Let s = (s1, · · · , sN) be a random vector where s1, · · · , sN are independent Gaussian ran-

dom variables with means μ1, · · · , μN and variances ρ21, · · · , ρ2N . We write s ∼ N (�μ, �ρ),

where �μ = (μ1, · · · , μN) and �ρ = (ρ1, · · · , ρN) are initialized by

μ(0)
n = Ln (5.21)

ρ(0)n =
4

N0
(5.22)

At the tth iteration, Ns random samples s
(t)
1 , s

(t)
2 , · · · , s(t)Ns

are drawn from N
(
�μ(t), �ρ(t)

)
to form the sample set S(t). Each sample vector represents the LLRs of an associated

virtual received word. We decode them by the SBF algorithm based on an pre-designed

order and obtain sets of candidates d
(t)
	 and associated LLR vectors ŝ

(t)
	 = (ŝ	,1, · · · , ŝ	,N)

for 1 ≤ � ≤ Ns.

5.5.2 Update Parameters

Let d
(t)
1 , · · · ,d(t)

Ns
be the output codewords of the SBF algorithm. We compute the ED

between each candidate codeword and the received word y and sort the corresponding

random vectors according to the descending order of their associated EDs. Define an

elite set E(t) which includes Es vectors with the smallest EDs to y, i.e., the corresponding

codewords are more likely to have been transmitted. We always store the best one in

E(t) up to the current iteration for the final decision when the maximum number of

iteration is reached.

60

Then the two sets of parameters �μ(t+1) and �ρ(t+1) are updated by [33]

μ(t+1)
n = (1− δ)μ(t)

n + δ ·
∑

ŝ
(t)
� ∈E(t) ŝ

(t)
	,n

Es

(5.23)

and

ρ(t+1)
n = (1− ε)ρ(t)n + ε ·

∑
ŝ
(t)
� ∈E(t)

(
ŝ
(t)
	,n − μ

(t+1)
n

)2
Es

(5.24)

where δ and ε are real values between (0, 1) used to smooth the variation of these

parameters.

5.5.3 Stochastic Sequential Bit Flipping Algorithm

The detailed stochastic sequential bit flipping algorithm (SSBFA) is summarized as

follows.

1. Initialize �μ(0) and �ρ(0) by (5.21) and decide an order o. Set t = 0.

2. Generate a set of random samples S(t) = {d(t)
1 , · · · ,d(t)

Ns
} from N

(
, �μ(t), �ρ(t)

)
.

3. For each sample, we have (d
(t)
	 , d̂

(t)
) = Ω(o,d

(t)
).

4. Evaluate Euclidean distances between the d
(t)
	 and the received word y. Select the

Es samples with best metrics as the new elite set E(t) ⊂ S(t) and store the best

decoded codeword d∗(t) in D(t).

5. Evaluate the new parameters �μ(t+1) and �ρ(t+1) by (5.23) and (5.24), respectively.

6. If t = T of for some t ≥ c, say c = 3,

d∗(t) = d∗(t−1) = · · · = d∗(t−c), (5.25)

then stop; otherwise set t = t+ 1 and reiterate from Step 2.

61

5.6 Experimental Results and Discussions

In the first part of this section, some simulated performance of the proposed algorithm,

say SSBFA, are presented and compared with that of traditional bounded-distance de-

coding (BDD) and the sum-product algorithm (SPA). A standard binary input AWGN

channel is assumed over which the BPSK modulated codewords are transmitted. We

model the receive matched filter output as the sum of a ±1−valued sequence and Gaus-
sian sequence with zero-mean i.i.d. components.

The maximum iteration number of both SPA and SSBFA are set to be 50. But we

will stop the proposed algorithm earlier if the best of the output candidates are the

same for consecutive 5 iterations. In our simulations, SSBFA terminates quickly and

the average iteration number of is slightly more than five. Besides, the sample size Ns is

set to be 10 and the elite size Es is 1. Therefore, the computational complexity of both

algorithms in our simulation is approximately at the same level.

Fig. 5.2 - 5.6 are simulation results of five high rate block codes with HDPC matrix

which is in order (15,11) Hamming code, (7,5) RS code, (22,16) single error correction

(SEC) code, (39,32) SEC code, and (72,64) SEC code. The SSBFA has about 0.5 dB

- 0.8 dB coding gain over SPA at a bit error rate (BER) of 10−4 under approximately

same complexity.

Next, we consider two examples of cyclic codes, (31,26) BCH codes and (15,11) RS

codes. For the (31,26) BCH code, we compare our SBF algorithm, SBF with cyclic

shifts (CSSBF) and SSBFA with BDD and SPA. As shown in Fig. 5.7, the performance

of the SBF algorithm with a fixed order is worse than BDD and SPA because of the

phenomenon described in Remark 5.1 may happen frequently. However, two kinds of

modified algorithms, SSBFA and CSSBF, have almost the same improved decoding

performance and outperform the other decoding methods. In other words, these modified

algorithms can greatly reduce the phenomenon described in Remark 5.1. For the (15,11)

RS code, similar decoding performance can be observed in Fig. 5.8. Our proposed

62

0 1 2 3 4 5 6
10-4

10-3

10-2

10-1

100

Hamming (15,11)

E
rr

or
 R

at
e

SNR (dB)

BER
 Uncoded
 SPA
 SSBFA

CER
 BDD
 SPA
 SSBFA

Figure 5.2: Error rate performance of the (15,11) Hamming Code; Ns = 10, Es = 1

algorithms still outperform the other decoding methods including the BDD, SPA, Chase-

II algorithm with 16 test patterns, and the KV algorithm with infinite multiplicity. Note

that the number of test patterns of the Chase-II algorithm is set to 16 due to our CSSBF

for (15,11) RS code has 15 cyclic shifted LLR vectors.

63

0 1 2 3 4 5 6
10-4

10-3

10-2

10-1

100

RS (7,5)

E
rr

or
 R

at
e

SNR (dB)

BER
 Uncoded
 SPA
 SSBFA

CER
 BDD
 SPA
 SSBFA

Figure 5.3: Error rate performance of the (7,5) RS Code; Ns = 10, Es = 1

0 1 2 3 4 5 6
10-5

10-4

10-3

10-2

10-1

100

 SEC (22,16)

E
rr

or
 R

at
e

SNR (dB)

BER
 Uncoded
 SPA
 SSBFA

CER
 BDD
 SPA
 SSBFA

Figure 5.4: Error rate performance of the (22,16) single error correction Code; Ns = 10,
Es = 1

64

0 1 2 3 4 5 6
10-5

10-4

10-3

10-2

10-1

100

 SEC (39,32)

E
rr

or
 R

at
e

SNR (dB)

BER
 Uncoded
 SPA
 SSBFA

CER
 BDD
 SPA
 SSBFA

Figure 5.5: Error rate performance of the (39,32) single error correction Code; Ns = 10,
Es = 1

0 1 2 3 4 5 6
10-5

10-4

10-3

10-2

10-1

100

 SEC (72,64)

E
rr

or
 R

at
e

SNR (dB)

BER
 Uncoded
 SPA
 SSBFA

CER
 BDD
 SPA
 SSBFA

Figure 5.6: Error rate performance of the (72,64) single error correction Code; Ns = 10,
Es = 1

65

0 1 2 3 4 5 6

1E-4

1E-3

0.01

0.1

1
 BCH (31,26)

E
rr

or
 R

at
e

SNR (dB)

Frame Error Rate
 BDD
 SBF
 SPA
 CSSBF
 SSBFA

Bit Error Rate
 Uncoded
 SBF
 SPA
 CSSBF
 SSBFA

Figure 5.7: Error rate performance of the (31,26) BCH Code.

0 1 2 3 4 5 6

10-3

10-2

10-1

100

 RS (15,11)

C
od

ew
or

d
E

rr
or

 R
at

e

SNR(dB)

 BDD
 SBF
 SPA
 Chase-II
 CSSBF
 SSBFA
 KV

Figure 5.8: Error rate performance of the (15,11) RS Code.

66

Chapter 6

Conclusions

We have derived generalized message passing rules and developed appropriate schemes to

relax the deterministic constraints. Higher order energy approximations and the method

proposed in [1] can be extended by the proposed ABP scheme as well. Furthermore,

the same relaxation idea can also be used to generalize the trellis structures for turbo

decoding algorithms.

We have also presented several novel stochastic list decoding algorithms for linear

block codes with high density parity-check (HDPC) matrices. We apply an iterative

Monte Carlo based approach called the Cross-Entropy method to produce a list of can-

didates at each iteration. Hopefully, the set of candidates will converges to the singular

ML codeword. Basically, the CE method helps to estimate the probability distribu-

tion of the candidate transmitted codeword by examining the current available sample

set and find the distribution which is closest to the optimal one in the CE sense. In

a sense, we perform sphere decoding with randomized decoding radius. Based on the

maximum-distance separable property of the Reed-Solomon (RS) codes, two stochastic

erasures-only list decoding algorithms (SEOLD-I and SEOLD-II) are proposed. SEOLD-

I estimates the possible erasures locations and then recover the associated codeword

by erasures-only decoder (EOD). In order to enhance the performance of SEOLD-I,

SEOLD-II utilizes the virtual received words to increase the search radius such that

extra candidate codewords and thus candidate elite members can be obtained. There-

67

fore, SEOLD-II outperforms SEOLD-I at the cost of increased complexity. Simulation

results verify that the performance of both algorithms is better than that of the GMD

algorithm and the KV algorithm.

In Chapter 5, we try to extend the concept of randomized sphere decoding to decode

general linear block codes which are not MDS codes. We first investigate a novel sequen-

tial bit-flipping (SBF) algorithm which can transform the hard-limited reliability vector

into a valid codeword with low complexity. When cyclic codes are in consideration, we

can cyclic shift the reliability vector and decode by SBF algorithm to form a set of can-

didates where the one with smallest ED to the received word is chosen as the decoder

output. On the other hand, we induce the concept of the randomized sphere decoding

with moving center when the codes are not cyclic. A set of random virtual reliability

vectors are generated and then decode by SBF algorithm. Again, the elite set of can-

didates is used to modify the random mechanism such that the center of the associated

sphere will gradually move more and more close to the transmitted codeword iteratively.

The proposed stochastic sequential bit flipping algorithm (SSBFA) outperforms the SPA

for linear block codes with HDPC matrix. Although the proposed algorithms give sat-

isfactory performance, especially for high rate linear block codes with HDPC matrix.

There are several issues that require more research efforts. We mention just three to

conclude this dissertation.

1. For long and/or low rate codes, the required complexity is still too high. Reducing

the sampling dimension without compromising performance is a very challenging

problem.

2. A stochastic decoding algorithm for decoding low density parity-check (LDPC)

codes with complexity much lower than BP-based algorithms is most welcome.

3. Establish a firm theoretical foundation of the randomized sphere decoder and apply

the same concept to solve other problems, e.g., MIMO detection.

68

Appendix A

The Proof of Lemma 5.1

Assume cn is a priori equally likely to be 0 or 1, then the a posteriori probabilities on

cn is

P (cn = 0|yn) =
1

1 + e−L(cn)
, (A.1)

P (cn = 1|yn) =
1

1 + eL(cn)
. (A.2)

By the following fact:

{
L(cn) < 0, if yn < 0
L(cn) > 0, if yn > 0

(A.3)

and the definition in (??),

qn =

{
P (cn = 0|yn), if yn < 0
P (cn = 1|yn), if yn > 0

(A.4)

=
1

1 + e|L(cn)|
(A.5)

=
1

1 + eγn
. (A.6)

69

Appendix B

The Proof of Theorem 5.1

From Bayes rule:

P (zn = cn|y,Σn)

P (zn
= cn|y,Σn)
=

P (zn = cn|y)
P (zn
= cn|y)

P (Σn|zn = cn,y)

P (Σn|zn
= cn,y)
. (B.1)

From Lemma 5.1, the first part of the right hand side of (B.1) is given by

P (zn
= cn|y) = qn = 1− P (zn = cn|y). (B.2)

Assume the check sums in Σn are statistically independent. The probability P (Σn|zn =
cn,y) is given by

P (Σn|zn = cn,y) =
∏

m∈M(n)

P (σm|zn = cn,y), (B.3)

where

P (σm|zn = cn,y) =

{
1− rmn if σm = 0
rmn if σm = 1

. (B.4)

Similarly,

P (Σn|zn
= cn,y) =
∏

m∈M(n)

P (σm|zn
= cn,y), (B.5)

where

P (σm|zn
= cn,y) =

{
rmn if σm = 0
1− rmn if σm = 1

. (B.6)

70

From (B.3) - (B.6), we have

P (Σn|zn = cn,y)

P (Σn|zn
= cn,y)
=
∏

m∈N (m)

[
(1− 2σm)

(
1− rmn

rmn

)]
. (B.7)

Using the approximation

∏
n∈N (m)

(1− 2qn) ∼= 1− 2 max
n∈N (m)

qn, (B.8)

we obtain

rmn =
1

2

⎛
⎝1− ∏

n′∈N (m)\n
(1− 2qn′)

⎞
⎠ (B.9)

∼= max
n′∈N (m)\n

[
1

1 + eγn′

]
(B.10)

=
1

1 + eminn′∈N (m)\n γn′ . (B.11)

Then

log

(
1− q̃n
q̃n

)
= log

(
1− qn
qn

)
+
∑

m∈N (m)

[
(1− 2σm) log

(
rmn

1− rmn

)]
(B.12)

∼= γn +
∑

m∈N (m)

[
(1− 2σm)

(
min

n′∈N (m)\n
γn′

)]
. (B.13)

71

Bibliography

[1] J. S. Yedidia, “Constructing Free-Energy Approximations and Generalized Belief

Propagation Algorithms,” IEEE Trans. Inf. Theory, vol. 51, no. 7, pp.2282-2312,

July 2005.

[2] M. Welling and Y. W. Teh, “Belief optimization for binary networks: A stable

alternative to belief propagation,” Proc. Conf. Uncertainty in Artificial Intelligence,

Seattle, WA, Aug. 2001, pp. 554-561.

[3] A. Yuille, “CCCP algorithms to minimize the Bethe and Kikuchi free energies:

Convergent alternatives to belief propagtion,” Neural Computation, vol. 13, pp.

1691-1722.

[4] K. Rose, “Deterministic Annealing for Clustering, Compression, Classification, Re-

gression, and Related Optimization Problems,” Proceedings, IEEE, vol. 86, no. 11,

pp. 2210-2239, November 1998.

[5] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” J. Soc.

Ind. Appl. Math, vol. 8, pp. 300-304, R.

[6] G. Gallager, Low Density Parity Check Codes, Monograph, M.I.T. Press, 1963.

[7] C. E. Shannon, “Communication in the presence of noise”, Proc. Institute of Radio

Engineers, vol. 37 (1): 10V21, Jan. 1949.

[8] The Digital Video Broadcasting Standard [Online]. Available: www.dvb.org

72

[9] The IEEE P802.3an 10GBASE-T Task Force [Online]. Available:

http://www.ieee802.org/3/an

[10] The 802.16 Working Group [Online]. Available: http://www.ieee802.org/16/

[11] The IEEE 802.11nWorking Group [Online]. Available: http://www.ieee802.org/11/

[12] J. Jiang and K. R. Narayanan, “Iterative soft-input soft-output decoding of Reed-

Solomon codes by adapting the parity-check matrix”, IEEE Trans. Inform. Theory,

vol. 52, No. 8, 00. 3746-3756, Aug. 2006.

[13] T. Hehn, J. B. Huber, S. Laendner and O. Milenkovic, “Multiple-Bases Belief-

Propagation for Decoding of Short Block Codes”, ISIT2007, Nice, France, June,

2007.

[14] T. R. Halford and K. M. Chugg, “Random Redundant Iterative Soft-in Spft-out

Decoding”, IEEE Trans. Commun., vol. 56, No. 4, pp. 513-517, Apr. 2008.

[15] I. Dimnil and Y. Be’ery, “Improved Random Redundant Iterative HDPC Decoding”,

IEEE Trans Commun., vol. 57, no. 7, pp. 1-6, July 2009.

[16] Stephen B. Wicker, ERROR CONTROL SYSTEMS for Digital Communication

and Storage, New Jersey: Prentice Hall, 1995.

[17] E. B. Berlekamp, Algebraic Coding Theory, New York: McGraw-Hill, 1968.

[18] Y. Sugiyama, M. kasahara, S.Hirasawa, and T. Namekawa, “A method for solving

key equation for decoding goppa codes,” Inform. contr., vol. 27, pp. 87-99, 1975.

[19] G. D. Forney Jr., “Generalized minimum distance decoding,” IEEE Trans. Inform.

Theory, vol. IT-12, pp.125-131, Apr. 1966.

[20] V. Guruswami and M. Sudan, “Decoding of Reed-Solomon codes beyond the error-

correction bound,” J. complexity, vol. 13, pp. 180-193, 1997.

73

[21] R. Köetter and A. Vardy, “Algebraic soft-decision decoding of Reed-Solomon

codes,” IEEE Trans. Inform. Theory, vol. 49, no. 11, pp. 2809-2825, Nov. 2003.

[22] D. Chase, “A class of algorithms for decoding block codes with channel measurement

information,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 170-182, Jan. 1972.

[23] H. Tang, Y. Liu, M. Fosorier, and S. Lin, “On combining chase-2 and GMD decoding

algorithms for nonbinary block codes,” IEEE Commun. Lett., vol. 5, no. 5, pp. 209-

211, May 2001.

[24] N. Wiberg, “Codes and Decoding on General Graphs”, Ph. D. dissertation, Elec-

trical Engineering Dept., Linkopin Univ., Linkoping, Sweden, 1996.

[25] Y. C. Chen and Y. T. Su, “Constraint relaxation and annealed belief propagation

for binary networks”, ISIT 2007, pp. 24-29, June, 2007.

[26] M. E. Khamy and R. J. McEliece, “Iterative algebraic soft decision list decoding of

Reed-Solomon Codes”, IEEE J. Sel. Areas in Commun., vol. 24, pp. 481-490, Mar.,

2006.

[27] P. H. Tan and L. K. Rasmussen, “The Serial and Parallel Belief Propagation Algo-

rithms,”

[28] S. Lin and D. J. Costello, “Error Control Coding : Fundamentals and Applica-

tioins,” Prentice Hall, 2004.

[29] E. H. L. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines. New

York: Wiley, 1989.

[30] Mackay’s Encyclopedia of Sparse Graph Codes,

http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.

[31] R. Y. Rubinstein, “Optimization of computer simulation models with rare events”,

European of Operational Research,99:89-112, 1997.

74

[32] R. Y. Rubinstein, “The cross-entropy method for combinatorial and continuous

optimization”, Methodology and Computing in Applied Probability, 2:127-190, 1999.

[33] R. Y. Rubinstein, D. P, Kroese, The Cross-Entropy Method: A Unified Approach

to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning,

Springer, 2004.

[34] R. Y. Rubinstein and B. Melamed, Modern Simulation and Modeling, Wiley Series

in Probability and Statistics, New York, 1998.

[35] F. Dambreville, “Cross-Entropy method: convergence issues for extended imple-

mentation,”

http://www.FredericDambreville.com

[36] M. EI-Khamy and R. J. McEliece, “Bounds on the average binary minimum distance

and the maximum likelihood performance of Reed-Solomon codes,” in 42nd Allerton

Conf. on Communication, Control, and Computing, 2004.

[37] J. L. Massey, Threshold Decoding. Canbridge, MA: M.I.T. Press, 1963.

75

	中文摘要_NSC_coding
	NSC_FinalReport_97to99

