Y £

AAERL Y 5 AL nlg B R HkiR2EE (Low-Density Parity Check,
LDPC) % % % & #&#|«e'L (High-Density Parity Check, HDPC) #& ! 7 #cfé 7
b g =

4TI ARRIEL A o P AT - K FIRTH 012 4 5% (Annealing-Type)
% & By (Belief-Propagation) /& & /2 ke @i & @78 % enfeaghk
oo 2R BYLF B £ chjzac® (Points of Convergence) gt 4 & chEL? & b At
H ke bh s pd it (Local Minimal Free Energy) ; %] #-#t:9
(Simulated Annealing) & &2 § 243035 b af ko2 235 pd i o ﬁd [
B2 pd it 2 @Mafp I B APREREIVIFEE Y PER
(Temperature) % #c3! » T R BEFEZY 2 22 FHE Y - (52374
fioo ¥ A fRAEEARY S Pt TR | e il S B ket L B RF 2 et
Ao BptdR A P APREE N D FBIIVNFEE A FRESTED AEY

AR

1%

Bl BARE R T ORIV A B R BLF 2V R B BAFE

-

G LTS

u//]g TR BRI ok AP T BAEM 04 B BA AR
2 S AR S IRAR i oA S R TR S - B T BB S
PR 0§ HAEE S T B KT 0 o B T i o 2 g
Foafmd w2 O ATER- RS 24% (Cross-Entropy) = 2 ehj & +
Bk KB A - iR Ao kb AT - SR B AL L
S RREEER AL R R ER PRSI AN ER

ERwiapEmes-FEdeir agrpdobes PP 3

ES

SUEESE A o 5)AL A
3%

4
(%
|
3
v
3
-‘7?*1‘7
\>‘_
o)4
b=
>_L
b=
=
T
F_L

I FE e X 5 Vi iT o
IR A BiE
Bz B R Frenty S A
R B EA TR Rk # (Kullback-Leibler) SE#4% % A%421T o & A 3F

3 s B g T

)
frt.
=
Wy
3
J-,&
w w

Bend B Sofice g ok Earvhie L e o

~=h

29 AP 2 EEIIRAE o T A N BN (2 k) T @RS A

MAEt o F - fEfRmE Y AR AL SRR AR LT - s tRe £ 4
> 4

Rl

PR e R BT A Y ok BRRERR R o AR
feF ¢ gty Lip B 8 12 7 {1 % 7 24 (Erasures-Only) f248 %
BRABEEH AR EY AT EE R ERAS R A FRLTS
PR R o n B phkBEGT RARARE BRKS ERRERR £ E B
"R A 0 AP E BB FhE i 04 (hard-decision) ¥ At %
LB ERARRL A/ oS A A AT - e AR Y 2 kR
EWH AT EER D G20 EF - ROLDA T L T HT R RS A
(Maximum-Distance Separable) # 3 * @ % = fiw & 2 BIIX & B L] o g
WEZAAETERBEFEZENARNG AR BFE 2R & R EAERR

gl 0 £ A LEHEF BB B B A RRIEL G B o

=3

Migs cMBREKBRELE -pd & T VAERBEFTEZ -3 2AKREL
EEF S BAp R A B EEYE ~ 2 @R A TSR o

Abstract

This report documents our effort in carrying out the NSC-supported project en-
titled “Advanced Error-Control Coding Technologies and Their Applications” under
grant NSC 972221E009082MY3. Our main results are the developments of novel decod-
ing algorithms for both high-density parity-check (HDPC) and low-density parity-check
(LDPC) codes.

For the former class we propose a series of novel annealing-type belief propagation
(BP) algorithms to improve the convergent behavior of the conventional BP for decoding
LDPC codes. By incorporating a dynamic temperature into the free energy formulation,
message passing is performed on a dynamic surface of energy cost. The proposed cooling
process helps BP converge to a stable fixed point with lower energy value, which gives
more accurate estimation of the transmitted codeword. Both the computational com-
plexity and the convergence rate of our algorithms are nearly equal to the conventional
BP algorithm. Furthermore, we derive the message passing rules for general binary
networks consisting of parity check functions. Simulation results indicate that decoding
LDPC and turbo codes using the annealed BP algorithms gives improved performance.

For latter class of codes, we develop several novel stochastic decoding algorithms.
Our approach can be regarded as a randomized sphere decoding with moving center
that selects candidate codewords around a center vector according to a sphere-symmetric
probability distribution. The center (median) vector of the distribution is updated ac-
cording to Monte Carlo based approach called the Cross-Entropy (CE) method. The CE
method produces, in every iteration, a set of random samples which can be transformed
into valid codewords. Based on the Euclidean distances between the received word and
the random codewords, we select the best E candidates to form the elite set which is
then used to modify the probability distribution that govern the generations of the ran-
dom samples in the ensuing iteration. To ensure that the newly generated samples are

concentrated more and more on a small neighborhood of the correct codeword and either

il

the median vector will move to or the underlying distribution will eventually degenerate
to a singularity at the transmitted codeword, the parameters of the updated distribution
should be such that the new distribution is closest to the optimal distribution in the
sense of the Kullback-Leibler distance (i.e CE).

We propose three classes of stochastic decoding algorithms. The first two are specif-
ically designed for decoding (n, k) Reed-Solomon (RS) codes. For the first decoder, the
random samples represent a set of random error locator vectors, each indicates n — k
possible erasure positions within the received word. We associate each error locator
vector with a candidate codeword by erasures-only (EO) decoding the received word,
assuming that erasure locations are those indicated by the error locator vector. The
n-dimensional real random vectors in the second algorithm represent reliability vectors
whose least reliable n — k coordinates are assumed to be erasures. For each sample,
we make component-wise hard-decisions on the most reliable k coordinates and EO-
decoding the resulting binary vector. The third algorithm uses a sequential bit flipping
algorithm to convert each random sample into a legitimate codewords. The first two
algorithms are valid for MDS codes only while the third algorithm can be used for de-
coding any linear block code. Our algorithms offer both complexity and performance
advantage over BP and some existing algebraic decoding algorithms, especially for high
rate linear block codes with HDPC matrices and short or medium lengths.

Index Terms-Low-density parity-check codes, free energy, annealing belief-propagation
algorithm, high-density parity-check matrix, cross-entropy, Kullback-Leibler distance,

Reed-Solomon codes, stochastic decoding algorithm.

v

Contents

Chinese Abstract i
English Abstract iii
Contents v
List of Figures viii
List of Tables X
1 Introduction 1

2 Constraint Relaxation and Annealed Belief Propagation for Binary

Networks 10
2.1 Minimum Free Energy under Bethe Approximation 10
2.2 Annealing Belief Propagation for Binary Network 14
2.2.1 Local Function Modelling 15
2.2.2 Factor Function Modelling 16
2.2.3 Trellis State Modelling, 19

2.3 Annealing Belief Propagation Algorithm 19

2.3.1 Local Function Annealing 21
2.3.2 Factor Function Annealing 22
2.3.3 Joint Annealingo 22
2.4 Experimental Results and Discussions 24
The Cross-Entropy Method 27
3.1 Imtroduction 27
3.2 The CE Method for Rare-Event Simulation 28
3.3 The CE-Method for Optimization Problem 33
3.4 Updating Rules of Some Useful Densities 35
Stochastic Erasure-Only List Decoding of RS codes 37
4.1 Preliminaryo 37
4.2 Stochastic List Decoding Algorithm 39
4.2.1 Algebraic Erasures-Only (EO) Decoding 39
4.2.2 A Stochastic List Decoding Idea 41
4.2.3 Convergence and Complexity 42
4.3 List Decoding via Erasure Location Estimation 44
4.3.1 TImportance Density and Sample Format 44
4.3.2 Update Parameters 45

vi

4.4 List Decoding via Virtual Received Words
4.4.1 Importance Density and Sample Format . .
4.4.2 Update Parameters

4.5 Experimental Results and Discussions

5 Stochastic List Decoding of Linear Block Codes
5.1 Preliminary
5.2 Sequential Bit-Flipping Algorithm
5.3 Predicament of Decoding via SBF algorithm
5.4 SBF Algorithm with Cyclic Shifts
5.5 Stochastic Sequential Bit Flipping Algorithm
5.5.1 Importance Density and Sample Format . .
5.5.2 Update Parameters
5.5.3 Stochastic Sequential Bit Flipping Algorithm

5.6 Experimental Results and Discussions

6 Conclusions

A The Proof of Lemma 5.1

B The Proof of Theorem 5.1

Bibliography

vil

51

51

54

o8

99

99

60

60

61

62

67

69

70

72

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

1.8

2.1

2.2

4.1
4.2
4.3

A correctly decoding example of a bounded distance decoder.
An example of erroneous decoding for a bounded distance decoder.

Decoding failure by a bounded distance decoder.
Decoding beyond FEC bound by enlarging the decoding sphere.
Belief propagation - successful decoding.
Belief propagation - trapped in a pseudo codeword.
A set of random samples are generated and the random samples in the
small dash circle are better directions we want.
After updating the parameter of the random mechanism, the new set of

generated random samples points the correct way more often.

Golay Code N=23 K=12, Code Rate: 0.522, Max Iteration Number: 200,
Frame Error Count: 200.
Mackay 816.33.164, Code Rate: 0.5, Max Iteration Number: 200, Frame

Error Count: 200.

Idea of the algebraic erasures-only decoding.
Flow chart of a stochastic decoder for RS codes.
Virtual received words are generated around the received LLR vector I by
hard-limiting the sample vectors generated by an importance probability

density whose parameter values evolved according to the CE principle.

viil

40

47

4.4

4.5

5.1
5.2
5.3
5.4

2.5

5.6

5.7
5.8

Codeword error probability performance of the (15,11) Reed-Solomon
code; 10 iterations. 49
Codeword error probability performance of the (31,25) Reed-Solomon

code; 10 iterations. 50

An example of the SRSBFP. 57
Error rate performance of the (15,11) Hamming Code; Ny =10, E; =1 . 63
Error rate performance of the (7,5) RS Code; Ny =10, E; =1 64

Error rate performance of the (22,16) single error correction Code; Ny =

10, Ea=1 o o o oo 65
Error rate performance of the (31,26) BCH Code. 66
Error rate performance of the (15,11) RS Code. 66

ix

List of Tables

4.1 A Stochastic List Decoding Algorithm. 43

Chapter 1

Introduction

Belief propagation algorithms have been recognized as efficient and powerful inference
tools in computer vision, artificial intelligence, error-correcting code, and digital com-
munications. Lately, the BP type algorithms, e.g. BCJR for turbo decoding and sum-
product algorithm (SPA) for LDPCC, have received significant attention for their near
Shannon-limit error performance. Recent studies show that fixed points of BP algo-
rithms corresponding to the stationary points of the Bethe approximation of the free
energy for a factor graph [1]. However, loopy BP algorithms do not promise the conver-
gence when the graph containing cycles. Even if BP converges, it is only guaranteed to
converge in a local minimum of Bethe free energy. Some new algorithms attempt to solve
the problem by directly minimizing the free energy [2, 3| through using the conventional
optimization schemes. These algorithms, however, are often slower than the original BP
algorithm.

Inspired by the deterministic annealing methods used in optimization problems [4],
we propose a category of annealed BP algorithms to alleviate the ill-convergent effect. By
incorporating a dynamic temperature into the formulation of free energy, belief networks
start the inference task at higher temperature, which leads to a smoother energy cost
surface. According to the results of statistical physics, when the temperature is above
the critical point, there is only one local minimum of the free energy function. Thus, BP

algorithms can always converge to the unitary minimum at that temperature. However,

inference results at high temperature may be poor due to the unfaithful modelling of
actual free energy. On the other hand, there may be more than one local minimum at
low temperature. When searching on the energy cost surface at low temperature, we
can easily get stuck in one of these local extreme points. However, at low temperature,
inference results related with the global minimal free energy turn out to be much more
precise than that at the high temperature. Hence, the idea is to start the inference job at
a high temperature and smoothly decrease the temperature using some cooling strategies
to track the minimum point. Finally, when the temperature approaches to zero, stop
the algorithm and output the estimation results. Such a cooling strategy prevents BP
algorithms from sticking in some local minimum quickly, and helps the algorithms to
converge to the global minimum value with larger probability.

Linear block codes are popular forward error-correcting (FEC) codes due to their
simple structures and satisfactory FEC performance. For instance, Reed-Solomon (RS)
codes [5] are used in a wide variety of commercial applications, most prominently in CDs,
DVDs and Blue-ray discs, in data transmission technologies such as DSL and WiMAX, in
broadcast systems such as DVB and ATSC, and in computer applications such as RAID
6 systems. Low density parity-check (LDPC) codes [6] form another class of linear block
codes which offer FEC capability close to the theoretical maximum-the Shannon limit
[7]. In recent years, LDPC codes have been adopted by several digital broadcast and
communication standards such as the DVB-S2 [8], the IEEE 802.3an (10GBASE-T) [9],
the IEEE 802.16e (WiMAX) [10], and the IEEE 802.11n (WiFi) [11]. Although many
decoding algorithms for block codes are available, more efficient decoding algorithms
which can provide performance enhancement and complexity reduction are still of high
demand.

Most hard-decision decoding algorithms are bounded-distance decoders (BDD). They
select the codeword c, if exits, whose Hamming distance (HD) to the hard-limiting

received word z, say d(z, c), is less than or equal to | (dmin — 1)/2] = tmin, where d, is

- N - ~
s \ s AN
/ \ / \
/ \ / \
! V \
\)\ J
\ / \ /
\ VR /
~ P - ~ o ~ -
~ T~ ~
- AN
4 \
/ \

Figure 1.1: A correctly decoding example of a bounded distance decoder.

the minimum distance of the code C. As shown in Fig. 1.1, if z is within the decoding
sphere centered at the transmitted codeword ¢ and then the BDD can correctly output
cr. Syndrome decoding for Hamming codes [16], the Berlekamp-Massey (BM) algorithm
[17] and the Euclidean algorithm [18] for RS codes all belong to the class of BDDs. When
z falls into another decoding sphere, e.g., a sphere centered at other legitimate codeword
c; as shown in Fig. 1.2, a BDD will make an incorrect decision such that a decoding
error occurs. A decoding failure is declared if z does not belong to any decoding sphere
of radius t,,in.

In general, a BDD can only correct up to [(dyim — 1)/2] errors while a maximum
likelihood soft-decision based decoding algorithm can easily correct beyond t,,;, at the
expense of much higher complexity. There are two general approaches to improve the
performance without incurring too much complexity increase. The first one is trying to
enlarge the decoding sphere (see Fig. 1.4) in order to correct errors beyond ¢,,;,. For

RS codes, the errors-and-erasures decoding [16], Forney’s generalized minimum distance

- ~ - ~
- ~ s N
4 N 7 N
/ N \
/ v/ \
/ V \
! / I
\ ;) /
\ s /
\ P N
N N
- T T T >
- ~
7 \
/ \

Figure 1.3: Decoding failure by a bounded distance decoder.

e 7
7 -~ h NP h AN
/ .‘_‘ ’
. \ \
/ oV \
: \
/ \
| Y
| dl’I:lil‘l !
\ /
\ /’
' \ / /
N — N e P /
~ - _ ~ \\ - _
- o _ - - B ~ - _ _ - -
iR N
/ \
/ \
/ \
! \
| |
| |
\ I
\ /
\ /
\ /
N R . %
N .
~ ;e

Figure 1.4: Decoding beyond FEC bound by enlarging the decoding sphere.

(GMD) decoding [19], the algebraic list decoding algorithm invented by Guruswami and
Sudan (GS) [20] and the algebraic soft decision decoding (SDD) algorithm proposed by
Koetter and Vardy (KV) [21] belong to this category. Note that the latter three algo-
rithms are also members of the so-called list decoding algorithms because the enlarged
decoding sphere may include more than one codewords.

Another idea for performance enhancement is to sequentially modify and move z
from its original position so that the new location becomes closer and closer to cr.
Decoding methods based on this idea include the Chase II algorithm [22], and the
combined Chase I[I-GMD algorithm [23]. The belief propagation (BP) based algorithms
such as the sum product algorithms (SPA) or its less-complex approximation, the min-
sum algorithms (MSA) [24] and their variations are also members of this category. A
successful decoding based on BP algorithm will gradually update the estimated soft

output and move the modified received vector toward the true transmitted codeword

Figure 1.5: Belief propagation - successful decoding.

cr; see Fig. 1.5. Unfortunately, the BP process may be trapped in some local minimum
and the modified received vector coincides with a pseudo codeword c, as is shown in
Fig. 1.6. This phenomenon can be prevented by using some modification of the BP
algorithms such as the annealed BP algorithm [25]. Another possible solution combines
the BP algorithm with the BDD such as the algorithms proposed in [12] and [26]. If
the pseudo codeword c, belongs to the decoding sphere of cp, successful decoding is
achieved although the BP algorithm makes z coincides with c,,.

We investigate a novel idea of iterative decoding which is a randomized sphere de-
coding with moving center. If statistical information about possible locations of the
transmitted codeword c; around the received word z is given, the order of search should
follow the most possible direction. However, we don’t have such information usually
and hence we search follow a probability distribution which is learned by random sam-
pling. Each sample is transformed into a valid codeword and we choose samples whose

corresponding code words having smaller Euclidean distance (ED) to z to modify the

Figure 1.6: Belief propagation - trapped in a pseudo codeword.

distribution and update (move) z. As the iteration goes by, newly generated samples
are concentrated more and more on a small neighborhood of the correct codeword. The
modified distribution becomes closer in the Cross-Entropy (CE) sense to the optimal
(Dirac) distribution centered at the true transmitted codeword. The center thus move
closer to cr accordingly. This concept is implemented by the CE method [33] which has

the following two phases:

1. Explore possible directions pointing the shortest way to the transmitted codeword

cr via a set of random samples generated from a specific random mechanism.

2. Choose better directions to update the parameters of the random mechanism in

order to find better direction in next iteration.

Fig. 1.7 and Fig. 1.8 illustrate the basic principle of the above idea.
The rest of this thesis is organized as follows. Chapter 2 introduces the CE method

which is an elegant practical principle for efficiently simulating rare events and can be

Figure 1.7: A set of random samples are generated and the random samples in the small
dash circle are better directions we want.

Figure 1.8: After updating the parameter of the random mechanism, the new set of
generated random samples points the correct way more often.

converted into an optimization solver. A stochastic erasure-only list decoding (SEOLD)
algorithm uses the extended CE method for optimization problem by considering an
optimal event as a rare event is illustrated in Chapter 3. In Chapter 4, we investigate
another stochastic list decoding algorithm based on a novel sequential bit flipping pro-
cedure. Finally, we summarize our major contributions and suggest some future works

in Chapter 5.

Chapter 2

Constraint Relaxation and Annealed
Belief Propagation for Binary
Networks

In section I, we first formulate the free energy of a belief network by taking into consid-
eration the temperature effect. Next, we conduct the BP algorithms using the param-
eterized free energy in section II. Section III develops several cooling strategies when
dealing with binary belief networks, which are commonly used when decoding error
correcting codes especially for turbo-like codes. Section IV discusses several cooling
schedules and their performances. In section V, we gives the simulation results of the
proposed annealing algorithms applied to error correcting codes. Finally, we conclude

the works.

2.1 Minimum Free Energy under Bethe Approxima-
tion

It is well known that the conventional SPA can be derived from the minimization of Bethe
free energy when the temperature equals to one [1]. When developing the annealing
type BP algorithms, we begin with the Bethe free energy formulation, which retains the

temperature parameter. Considering a factor graph illustrated in Fig. 1, the Bethe free

10

energy can be written as

Foee = U — TH. (2.1)
U in (2.1) is the variational average energy

U= (B, + (B (2.2)

w Tk’
where (E,) and (E), are the average energy functions associated with factor node

i and variable node k respectively,

By, = =30 bu(x) In fu(x,) (2.3)
(Bi)p, =20 bl Ingu(an). (2.4)

k T

fu(x,) denotes the factor function with its domain x, : {zj | z; € neighbors of f,}.
gr(x) is the local function associated with variable nodes .
The second term H in (2.1) denotes the variational entropy under the Bethe approx-

imation,
H=- Z Z bu(%) In by (%) — Z Ck Z by (21) In by, (). (2.5)
H Xp k X

In (2.5), ¢ is defined as 1—(numbers of neighbors of xy).
Parameter 7" in (2.1) tends to mimic the temperature effect in the field of statistic

physics. Under the marginalization and normalization constraints which state that

Do bulx) = bilw) (2.6)

Xu\$k
S = 1 (2.1
Zbk(xk) = 1 (2.8)

the Bethe free energy minimization problem can be translated to the Lagrangian Lpeipe

Lpethe = FBethe+Z Z Z)\uk(wk) by (zy) — Z b.(x,)

k peN(k) zr X \Tk
+ 27“ 1-— Z bu(x,) | + Z’yk [1 — Z bk(xk)] , (2.9)
7 Xp k T

11

where A, 7,, and 7 are the Lagrange multipliers associated with constraints (2.6),(2.7),
and (2.8) respectively. N (k) denotes the set of neighbors of x.
To find the minimum value of Lgetne, we first take derivatives with respect to beliefs

b(x,) and b(zy), and set the results to zero. We have

O0LBethe

Bethe 1y f(x,) + T [1+ Inb(— > Awlz) =0 (2.10)
by (x,.) kEN (1)
aL ethe

Bethe —Ingelax) + Tep [1+ Inby(z)] — v + Z Aa(mg) =0 (2.11)
Ok (k) HEN (k)

Solving (2.10) and (2.11), we have the optimum values of beliefs

b (x,) = fl(xu)expq B |7+ Z Auk(Tr) | — 1 (2.12)
keN (u)

() &

by (xr) = g.*(xx)exp & Yk — Z Mue(z) | =1 ¢, (2.13)
peN (k)

where [“ry /T is a parameter used to model the temperature effect.
To conduct the BP algorithms, we have to derive the Lagrange duality function of

the Bethe free energy (2.9). The dual function Gpegpe is defined as
def .
GBethe = inf LBethe (214)

bu(xp),bk (wk)

Substituting (2.12) and (2.13) back to Lpethe, we have

G(Bethe - LBethe(b,(L*) (X,u>a bgj) (xk>7)\,uk(xk)v 7/“ ’Yk)

= —ZZb(*) (x,)In f.(x,) — ZZb()xk) In gi (k)
+TZZZ>(*)) In b (x,,) +TchZb()) In by ()

+Z Z Z)\Mg fL‘k b() xk Z b(*) X#

k peN (k) zk X\,
A W | T= D00 |+ D [1 S o (xk)] (2.15)
H Xp k Tk

12

Combining (2.15) with (2.12) and (2.13), the dual energy function can be rewritten

as

GBethe = —TZ Z bl(;k)(xu) — TZ Z ckbl(c*)(a:k) + Z’yk + Z'yk (216)
I Xp k Tl N k
= D> A n =TI DY flxexp [B v+ D Auwlan) | —1
Iz k [T

KEN (1)

8
—TchZg,:’“(xk)exp C_i Yk — Z Ae(z) | — 1. (2.17)
k Ty

HeEN (k)
Taking derivative of (2.17) with respect to Ak, 7, and v gives the following optimum

equations,

ac;’Bethe
e = Z ff(xu)exp Bt Z M) | =1

X,u\zk | JGN(N)
& g
—g¢" () exp | = D Aenlm) | — 1] =0 (2.18)
g EEN (k)
oG ethe
/YH Xy kEN(iU‘)
B
O, Ck
o WEN (K)

(2.19) and (2.20) are normalization equations that give the two partition functions

Sy exp B Aulan) = exp (1 — By,), (2.21)
X keN (u)
o s s
Z 9" (x) exp | —— Z Ak () = exp (1 - —%) : (2.22)
o Ck LN (k) | Ck

From (2.18), we define m,,, as message passing from factor node 4 to variable node

13

k, and ny, as message passing from variable node £ to factor node p,

B
m(ex) g @) exp | ~B(e) — 2 3 Alam) (2:23)
¥ een (k)
(2.18) B
= Z flx)exp | B[7.+ Z Aj(z5) | — Il (2.24)
2\ JEN(W\k b
nea(ze) E exp [BAu ()] (2.25)

Combining (2.24) and (2.25), we have

muk(xk)ocz f/f(xu) H nui(z;) ¢ - (2.26)

Xp\Tp FEN ()\k

Also, from (2.23) and (2.25), message ny, can be updated by

gile) - [T malz) = exp(Bralen) (2.27)
§AEEN (k)
= nku(xk) (228)
Equations (2.26) and (2.28) recover the original BP algorithm when /3 equals to 1.

According to (2.13) and (2.23), belief of the variable node can be estimated as

b () o (k) - exp(BAu(an)) (2.29)
= gp (@) - My, - H me (1) (2.30)
EF1.EEN (K)
= o) [muw (2.31)
HEN (k)

From (2.26) and (2.28), we conclude that the BP algorithm can be generalized by
incorporating a temperature parameter 7, and replace the factor function f,(x,) by

fP(x,), and local function gy (xx) by gl ().

2.2 Annealing Belief Propagation for Binary Net-
work

From the discussions in section II, we know that the first step to implement the annealing

type BP algorithm is to parameterize the original local and factor functions with an

14

artificial parameter (3, i.e., (1/7"). In the following, we develop the parameterization
methodologies for decoding error correcting codes. It can also be extended to many

other fields, for example, signal processing, speech processing and pattern recognition.

2.2.1 Local Function Modelling

Considering a low density parity check code (LDPCC) in Gaussian environment using
BPSK modulation, the local likelihood function gy (x)) associated with each code node

x, is modelled as,

o) = o) = v (57120, (282

The likelihood ratio of zj, is

(yr+1)?
gk(xk = —]_) exp (_ 9202) ka
I, = o= 1) = TR Ak (2.33)

According to (2.28), the generalized likelihood function for Gaussian channel can be

rewritten as,

(U —)2
62(zx) o exp (ﬁ ~ %) | (2.34)
Hence, the generalized likelihood ratio becomes
_ plutD)?
5_95(%2—1)_6}@(P) _ 2y
ly=""3 = N = exp (=0 (2.35)
9@ =1) exp (—57(‘%2;2)) 7

When f changes, (2.35) converges to three interesting limiting points,

1 ,when f — 0 (i.e., T'— +00)
1= Ik when =1 (e, T — 1) (2.36)
o(yr <0) 00 ,when f — 400 (i.e., T'— 0), yx # 0.

¢(-) denotes the indicator function, where

0 , if event A is false. (2.37)

1 ., if event A is true,
o) = {

15

Equation (2.36) generalizes the statistical modelling of variable function. Obviously,
the conventional likelihood ratio [, is only a special case when T — 1. As T'— 0, which
means the code node is in a low temperature state. The generalized likelihood ratio
l,f approaches an impulse function and gives a deterministic decision of 3. Otherwise,
when 7" — +o0, the likelihood ratio tends to be a constant. That means every code
node is equally probable when the artificial temperature T" approaches to infinity. In
other words, by changing the temperature parameter T, we actually model the local

likelihood ratio l,f in different quantization precisions.

2.2.2 Factor Function Modelling

When decoding an error correcting code, factor function f,(x,) can be described by an

indicator function of parity check equation associated with vector x,, i.e.,

0 ,ifz; =1
) = 8({sexmer . where = { § R (239)
) 1L 5

@ is the exclusive-or operation, and d(-) is the delta function

5(;,):{3 Ay =0 (2.39)

, otherwise

Since a delta function will not changed by any power other than zero, i.e., §(-) = 6°(-)
for § > 0, it is meaningless to replace the conventional factor function f,(x,) by ff (x,,)-

An alternative way to parameterize the factor function is to approximate a delta
function by the limit of a Gaussian density of a real variable. Alternatively, the Dirac

delta function can be rewritten as

iy) = ﬁh_{lolo \/Zexp <—§y2> . (2.40)

In (2.40), since the delta function is just a limit case when 5 — oo, we can generalize it

by defining a new function dz(-) as

8s(y) < \/geXp (—ng) - (2.41)

Under such an approximation, we naturally incorporate the temperature effect 3 into
the modelling of the factor function fﬁ (x,,). Significantly, when 0 < 8 < 400, d3(y) has
non zero value for any y of finite value. Hence, in the view of probability, we translate
a “deterministic” parity check function f,(x,) = d(y) into a “stochastic” parity check
function f7(x,) = ds(y).

From (2.26) and (2.41), the message my(2;) passing from factor node f(x,) to

variable node z;, can be written as

B 2
My, 5(Tk) o E exp [—5 ((@jEN(u),j;éij) S Ck) H nu(xr) ¢, (2.42)
{ej) JEN (1),5#k
JEN (1),j#k

and the likelihood ratio of m(zy) is expressed as

def Mykp(Tr = —1)
Myurp(Tr = 1)

2
2 {ej {exp [_g ((@jEN(u)J#ij) ® 1)] Hje./\/'(u),j;ék nju(fk)}

(2.43)

Muk,B

_ JEN (1),i#k (2.44)
; :
> N {eXP [—§ (®jenu.jzrci) ®0)] I jenu jen nju(ﬂ%)}
JEN(1),J

Similarly, there are numbers of limit points when f changes from 0 to +o0.

B 1 ,when — 0
bes = { lm, when 8 — 400, (2.45)

where
Z {ej} {5 [((@jeN(u),j#ij) ® 1)} HjeN(p),j;ak nju(l’k)}
I def JEN (1),3#k

muk
u Z {ej {5 [((@jeN(u),j#ij) ® 0)] Hje/\/'(p),jyék nju(l’k)}
JEN (1),5#k

(2.46)

denotes the likelihood ratio when the factor node is a delta function, i.e., f,(x,) = 0(x,).
Also, when the temperature is high, the probabilities of x; = 1 and x;, = —1 are equally
likely. In the following, we give an example to further study the proposed idea of

“stochastic” parity check node.

17

Example
Consider a factor node ff(xu) associated with a parity check equation
c1 D ey D C3 = 0. (247)

According to (2.42), we have

_B. _B.
mu (e =1) o< ngu(ze = 1)ng,(xs =1)e 2 0 + 1o, (z2 = —1)ng, (23 = 1)e™ 2 1

8. 8,
+ ngu(r2 = Dngu(rs = —1)e” 2 4 ng, (19 = —1)ng, (23 = —1)62.48)
_B8. _B.
mup(zr = —1) o< ngu(ze =)ng,(r3 =1)e 2" + ng,(zy = —1)ng, (23 = 1)e 2°

_B. 8
+ ngu(me = V)ng,(r3 = —1)e™ 20 4 nyg, (3 = —1)ng, (23 = —1)¢€2.49)

In (2.48) and (2.49), we find that when 8 # +oo, i.e., T # 0T, there is a non-

zero probability e~ 3

accompanied with the terms that disappear in the calculation of
my1 in the deterministic case. Such a probability explains the idea of a “stochastic”
parity check, since we allow the existence of non-zero parity check value with a specified
probability.

Interestingly, when we decrease the temperature 7' from +oo to 07, stochastic parity
check will reach two limit states. First, when T" = +oo (i.e., § = 07), both e=30 and
e 5l equal to 1 such that my,(z; = 1) = m,(xy = —1). Hence, the message provided
by check node p at T' = 400 is equally probable. That means we cannot gain any
information about code node x; from ff

On the other hand, as T'= 0" (i.e., = +00), e~ 50 = 1 and e~21 = 0. Message

mya,5(xx) will become
m/ﬂ”@:o(l‘l = 1) X TLQN(xQ = 1)n3u($3 == 1) -+ ’I”LQM(.I'Q = —1)’”3”(1’3 = —1) (250)
mﬂl’ﬁzo(fﬂl = —1) X n2#($2 = —1)?’L3M($3 = 1) + TLQM(‘TQ = 1)713#((['3 = —1),(251)

which gives exactly the deterministic parity check function. Hence, as T" — 0, the
stochastic parity check will approach the deterministic case. This can also be explained

as the natural result of (2.40).

18

2.2.3 Trellis State Modelling

2.3 Annealing Belief Propagation Algorithm

The basic principle of annealing type algorithms is to start the inference task at high tem-
perature and iteratively decrease the temperature according to some chosen annealing
schedules. In the literatures, there are two main categories when applying the anneal-
ing type algorithms. First, the simulated annealing (SA), based on the Markov Chain
Monte Carlo (MCMC) method, is quite useful in non-convex optimization problems. In
theory, the simulated annealing method generates a sequence of random walks to reach a
new state with an acceptance probability that depends on the current state. Intuitively,
SA directly simulates the system dynamics. Although SA can theoretically converge
to the global optimum value, convergence is only guaranteed under a proper annealing
schedule, which starts at a high enough initial temperature. In theory, exponential-time
execution is needed for SA to converge to the global optimum. However, such a long
annealing time is often not realistic for many applications in practice.

On the other hand, deterministic annealing (DA), the second category of annealing
methods, has deterministic processing time. Instead of simulating the stochastic dynam-
ics of the system, DA directly minimizes the expected free energy while avoiding many
poor local minima of the cost. According to [4], the DA method performs annealing
as it maintains the free energy at the thermal equilibrium while gradually lowering the
temperature. Since the processing time of DA is deterministic and controllable, we can
take DA as one of the candidate solutions if the implementation of annealing algorithms
must be constrained below a fixed processing delay. Lately, DA has already been suc-
cessfully employed to solve numbers of optimization problems in source coding, pattern
recognition, pattern classification, and many other fields.

In this paper, when decoding error correcting codes, we adopt DA to anneal the

belief network for numbers of reasons. First, communication systems normally have

19

constraints on the decoding delay in order to maintain the total system latency. Second,
DA combined with the proposed annealing belief propagation (ABP) algorithms needs
only minor modification of the conventional BP. In fact, ABP generalizes BP while
keeping most of the implementations details, including schedules of message passing,
the way that message exchanges, or even total iteration numbers. We describe below

the basic ABP framework.
1. Initialize :

Set initial temperature Tj,;;, minimum temperature 7,,;,.

Set maximum iteration number i,,,,, iteration index ¢ = 1, temperature index
_ _ 1

T; = Tinit, and f; = 7.

2. Update :

Calculate the local function g, (z) of variable node x, for all k.
Calculate the factor function ff’ (x,,) of the p-th factor node for all x,,.

Calculate messages m g, (v;) and ng, g, (x)) for all p, k.
3. Check Temperature : If T; < Ty, set T; = 0.

4. Cooling Step : Calculate T;,; and ;11 by decreasing T; according to the specific

annealing schedule.

5. Check Status : Set i =i+ 1. Stop the algorithm when i > i,,,, or some convergent

check is passed.
6. Go to 2).

Following the basic framework of ABP, we propose three types of ABP algorithms:
local function annealing (LFA), factor function annealing (FFA), and joint annealing
(JA). For different types of ABP algorithms, the function nodes are generalized according

to different models described in section III.

20

2.3.1 Local Function Annealing

Local function annealing can also be called code node annealing when applying ABP to
decode error correcting codes. At first, we model the local function by its generalized
model. For LDPCC, local functions of code nodes are set to the generalized Gaussian
model described in Section III-A. The factor nodes, however, retain the deterministic
definition, which means that we still use deterministic parity checks for LDPCC when
applying local function annealing. In this case, the exchanged message m,; 5, equals to
Myuko and ng, g, equals to ng,o. Local function annealing follows the basic framework
of ABP: start at a high temperature, perform message exchange, and finally check the
convergence and decrease the temperature further. Since the ways message exchanges at
factor nodes are the same for LFA and BP, the only difference between them is that the
former changes the local functions in iterations, while the latter keeps them unchanged.
Because LFA only modifies the exponent of local function, the computational complexity
is almost the same for LFA and BP.

Based on three previous observations in (2.36), we propose two schedule rules for
LFA. First, the initial temperature can be set as high as needed. Second, the lower limit
of temperature is bounded by one. An empirical annealing schedule which satisfies both

rules is suggested as

J+1
ﬂocal,(j—i—l)n = 7ﬂl?)cal,irn‘t = EZC@Z,jn’ (252)
and ,-Tlocal,i = Eocal,jn for]77 S 1< (] + 1>77 (253>

7 is the update index and 0 < v < 1 is a constant used to control the annealing rate. The
initial temperature is defined as T = Tiocal,init- 1 denotes the update period of annealing
process, and 7 is the iteration index of ABP algorithms. The artificial parameter 7 fixes
the temperature T; = Tjoeq;n during jn < i < (j + 1)1 to ensure the ABP algorithm
converging to a lower energy state at that temperature. As «y equals to 1, Tjoeq; €quals to

Tiocal,init for any iteration <. When « is small, Tj,.q;; approaches 1, the low temperature

21

limit, in few iterations.

2.3.2 Factor Function Annealing

Similarly, factor function annealing is also called check node annealing when applying
ABP to decode error correcting codes. The reason for the name “factor function an-
nealing” is that we only perform annealing on the factor nodes. For LDPCC, we replace
the deterministic parity check function by the stochastic one described in Section I1I-B.

Local function gi(xy) is kept constant during the iteration, i.e.,

gr(a) =0 (p(a:k!yk) = \/;exp (W)) : (2.54)

According to (2.45), the generalized parity check function reaches two limits when

T = +o00, and T = 0. Hence, we suggest the following geometric schedule for FFA

Tfactor,(j+1)n - Oéj+1 : Tfactow,im't = Tfactor,jm (255)

and Tfactoni = Tfactor,jn for .]77 S 1< (] + 1)77 (256)

Similar to LFA, j is the update index and 7 is the corresponding update period of
the annealing process. i denotes the iteration index of ABP algorithms and the initial
condition is set as Tj def T'tactor,imit- 0 < o < 1 is a scaling constant that controls the
annealing rate. As o = 1, temperature T'yqciori €quals to Tyectorinie for all iteration. On
the other way, T'tqcrori approaches 0 in few iterations when o is small. Empirically, the
geometric scaling factor « is set between 0.8 and 0.99 [29].

A stopping criterion of the LFA and FFA can be determined either when the maxi-

mum iteration limit is reached or all the deterministic parity check functions are satisfied.

2.3.3 Joint Annealing

Combining LFA and FFA, joint annealing anneals both the local functions and the factor
functions. Temperature T; is decreased according to (2.52) and (2.55) for local functions
and factor functions respectively. Intuitively, there are several ways to combine the LFA

and FFA. We suggest the following two approaches.

22

Single Loop Joint Annealing (SLJA)

Single loop joint annealing (SLJA) method updates the temperature parameters of LFA

and FFA at the same time. The algorithm is summarized as follows:

(1) Set parameters: initial temperature T'factor inits Llocatinit, Update period n, local
function annealing rate 7, and factor function annealing rate «, update index

Jj = 0, and iteration index ¢ = 0, minimum temperature 7 'tqcior,min, a0d Tiocal min-

(2) Set Tfactor,i = Tfactor,jn and Eocal,i = ﬂocal,jn for iteration i =]77 If Tfactm,i <

Tactor,mins 5€t Tractori = 0. I Tiocari < Tiocat,mins 5€t Tiocari = 1.
(3) Run FFA on factor nodes and LFA on variable nodes.
(4) Ifi# (j+ 1), set i< i+ 1, and j < j;else set i <— i+ 1, and j < j + 1.
(5) Lower temperature according to (2.52) and (2.55).
(6) If i < imax, goto step 2, ; else, stop and output the results.

In our experiment, we observe that the performance of SLJA highly depends on
the selection of annealing parameters, especially the annealing rates of factor and local
functions. The annealing process yields a sequence of solutions at a controlled level of
decreasing entropy. It is suggested in [29] that more complicated annealing schedules,

such as adaptive annealing, can be adopt to improve the performance further.
Double Loop Joint Annealing (DLJA)

(1) Set parameters: initial temperature Ttactor,inits Liocal,init: Update period 1 tactor, Mocat
where Mjpcar = € Nfactor for ¢ > 1, ¢ € Z, local function annealing rate v, and factor
function annealing rate «, update index j = 0, £k = 0, and iteration index ¢ = 0,

minimum temperature 7'tqociormin, a0d Tiocal min-

(2) Set T‘local,i = nocal,kn for iteration i = k"?local' If ﬂocal,i < T}ocal,miny set ﬂocal,i =L

23

(3) Set Tfactoni = Tfactor,jn for iteration i = jnfactor- If Tfactoni < Tfactor,mina set

Tfactor,i = 0.

(4) Run FFA on factor nodes and LFA on variable nodes.
(5) Set i< i+ 1.

(6) If ¢ # (j +)N factor and @ # (k + 1)Nipear, g0 to step (4). If i = (j + 1)Nsactor and
i # (k+ D)Miocar, set j < j + 1, lower temperature of factor functions according to

(2.55). and goto step 3; else if i = (k + 1)Mpcar, gOtO step 7.
(7) Set k < k+ 1, and lower temperature of local functions according to (2.52).

(8) If i < imax, goto step 2; else, stop and output the results.

DLJA is consisted of two main loops. Inner loop, step 3 to step 6, performs FFA
and outer loop, i.e., step 2 to step 8, performs LFA. In step 2, the beginning of outer
loop, we can also re-heating T’actor,i to further escape the local minimum and possibly
find better solutions. In DLJA algorithm, we can also run LFA as inner loop and FFA
as outer loop. In fact, there are lots of configurations of joint annealing methods, which
need to be investigate further.

From the simulation results in the latter section, we observe that performance of FFA,
LFA and JA is mainly affected by the settings of initial temperature and annealing rate.
That means we can get improvement of the conventional BP even by using the simplest

LFA scheme.

2.4 Experimental Results and Discussions

In this section, we report the results of the proposed annealing algorithms on binary
networks. We perform ABP to decode LDPCC of different rates and code lengths. Some

test codes are chosen for their inherent short cycles, while others are chosen arbitrarily.

24

Several settings of initial temperature and annealing rate are tested to demonstrate the
importance of annealing schedule.

We consider first the (23,12) Golay code, which has cycles of length 4 to prevent the
BP algorithm from converging to maximum likelihood decoding (MLD) performance

128].

0.1+

\l
—A—BP
—%—FFA,v=0.94, T, =1, u__ =1
—v—LFA 0=11,T, =2, =5

Frame Error Rate (FER)

3 4 5 6
SNR (dB)

Figure 2.1: Golay Code N=23 K=12, Code Rate: 0.522, Max Iteration Number: 200,
Frame Error Count: 200.

In the following tests, we illustrate the results of LDPCC established in database
[30]. First, considering the 816.33.164 code of rate 0.5, FFA with initial temperature 1.0
and o = 0.94 performs the best, following by the LFA with initial temperature 2.0 and
v = 1.1. Both of the annealing methods have better bit error rate (BER) performance
than the conventional BP algorithm. The convergence advantage of annealing methods

becomes more remarkable with the increase of SNR.

25

——BP

N ——LFA, =11, T, =2
—o— FFA, 0=0.94, T, =1

1E3

Bit Error Rate (BER)

1E-4

SNR (dB)

Figure 2.2: Mackay 816.33.164, Code Rate: 0.5, Max Iteration Number: 200, Frame
Error Count: 200.

26

Chapter 3

The Cross-Entropy Method

The cross-entropy (CE) method which was originally developed as an adaptive algorithm
for rare-event simulation based on variance minimization [31]. It was soon modified
to a randomized optimization technique [32], where the original variance minimization
program was replaced by an associated CE minimization problem. We summarize the
basic concept of this simple, efficient, and general method in this chapter and more

detailed investigations can be found in [33].

3.1 Introduction

In the field of rare-event simulation, the CE method is used in conjunction with im-
portance sampling (IS), a well-known variance reduction technique in which the system
is simulated under a different set of parameters, called the reference parameters (or
different probability distribution) so as to make the occurrence of the rare event more
likely. A major drawback of the conventional IS technique is that the optimal reference
parameters to be used in IS are usually very difficult to obtain. Traditional techniques
for estimating the optimal reference parameters [34] typically involve time consuming
variance minimization programs. The advantage of the CE method is that it provides a
simple and fast adaptive procedure for estimating the optimal reference parameters in
the IS.

In the field of optimization problems (combinatorial or continuous), the CE method

27

can be readily applied by first translating the underlying optimization problem into
an associated estimation problem, named associated stochastic problem (ASP), which
typically involves rare-event estimation. Estimating the rare-event probability and the
associated optimal reference parameter for the ASP via the CE method translates effec-
tively back into solving the original optimization problem.

In general, the CE algorithm is an iterative procedure that consists of the following

two phases in each iteration.

e Generate samples from the specified importance density given by the parameters

from the previous iteration.

e Update the parameters for next iteration according to the order of the score values

associated with the drawn samples and the minimizing CE criterion.

The significance of the CE concept is that it defines a precise mathematical framework

for deriving fast and good updating/learning rules.

3.2 The CE Method for Rare-Event Simulation

In this section, the basic idea behind the CE algorithm for rare event simulation is
illustrated. Let x be a random vector taking values in some space X. Let {f(-;v)} be a
family of probability density functions (pdfs) on X', with respect to some base measure

p where v is a real-valued parameter (vector). Therefore,

/ H(x Jp(dx), (3.1)

for any function H. For simplicity, for the rest of this section we take p(dx) = dx
because of p is either a continuous measure or the Lebesgue measure in most cases.

Let S be some real function on X'. Suppose we are interested in the probability that

S(x) is greater than or equal to some real number v under f(x;u). This probability can

be expressed as

t= Py(S(x) 2 7) = Eull{s0>}]- (3.2)

28

If this probability is very small, say smaller than 1075, we call {S(x) > v} a rare event.

A straightforward way to estimate ¢ is to use crude Monte-Carlo simulation: Draw

a random sample x1, -+, xy from f(x;v); then
|
(= ~ Z L5 (xi)>) (3.3)

i=1
is an unbiased estimator of ¢. However this poses serious problems when {S(x) > v} is
a rare event since a large simulation effort is required to estimate ¢ accurately, that is,
with a small relative error or a narrow confidence interval.
An alternative is based on importance sampling: take a random sample xq, -+, Xy
from an importance sampling density g on X', and estimate ¢ using the likelihood ratio

(LR) estimator

N
1 f(xs;u)
t= N ;]{S(Xz’)Z’Y} g(Xi) : (3'4)

The best way to estimate ¢ is to use the change of measure with density

() = f{s<x>>véf (xu) (3.5)

By using this change of measure we have in (3.4)

f(Xz'; 11)
g*(xi)

115y 27 =/, (3.6)

for all 4. Since ¢ is a constant, the estimator (3.4) has zero variance, and we need to
produce only N = 1 sample.

The obvious difficulty is that ¢* depends on the unknown parameter ¢. Moreover,
it is often convenient to choose a g in the family of densities {f(-;v)}. The idea now
is to choose the reference parameter v such that the distance between the density g*
above and f(x;v) is minimal. A particularly convenient measure of distance between
two densities g and h is the Kullback-Leibler (KL) distance defined as

D(g,h) =E, {ln %} = /g(x) In g(x)dx — /g(x) In h(x)dx (3.7)
29

which is also termed the cross-entropy (CE) between g and h.
Minimizing the Kullback-Leibler distance between ¢* in (3.5) and f(x;Vv) is equiva-

lent to solve the maximization problem

max/g*(x) In f(x; v)dx (3.8)
Substituting ¢* from (3.5) into (3.8) we obtain the maximization program
Iisx ;
max/ {5)>Véf(x w) In f(x; v)dx (3.9)

which is equivalent to the program

max D(v) = maxEy [I{spx)>, In f(x; V)] (3.10)

v
where D is implicitly defined above. Again using importance sampling, with a change

of measure f(x;w) we can rewrite (3.10) as

max D(v) = max Ey [[{sx)> W (x;u, w) In f(x;v)] (3.11)

v

for any reference parameter w, where

(3.12)

is the likelihood ratio between f(x;u) and f(x;w). The optimal solution of (3.11) can

be written as
v* = argmax Ey, [I{sx)>)W (x;u, w) In f(x;v)] . (3.13)

We may estimate v* by solving the following stochastic program

N

- 1
max D(v) = max N Z [Iseensn W (xi;u, w) In f (x5 v)] (3.14)
i=1
where x1, - -+, xy is a random sample from f(x;w). In typical applications the function

D in (3.14) is convex and differentiable with respect to v, in which case the solution of

(3.14) may be readily obtained by solving the following system of equations:

N
1
~ § [Isxn=n W (xi;u, w)VIn f(x;;v)] = 0. (3.15)
=1

30

The advantage of this approach is that the solution of (3.15) can often be calculated
analytically. In particular, this happens if the distributions of the random variables
belong to a natural exponential family (NEF).

We have to note that the CE program (3.14) or (3.15) are useful only if the probability
of the target event {S(x) > ~} is not too small under w, say greater than 10~°. For
rare-event probabilities, due to the rareness of the events {S(x;) > 7}, most of the
indicator random variables I{gx,)>y}, ¢ = 1,---, N, will be zero, for moderate N. It
makes the program (3.14) and (3.15) difficult to carry out. A multilevel algorithm can
be used to overcome this difficulty. The basic idea is to construct a sequence of reference
parameters {v,, t > 0} and a sequence of levels {v;, t > 1}, and iterate in both v; and
Y-

We initialize by choosing a not very small g, say o = 1072 and by defining vy = u.
Next, we let 71 (71 <) be such that, under the original density f(x;u), the probability
01 = Eulis(x,)>7y s at least 0. We then let v; be the optimal CE reference parameter
for estimating /1, and repeat the last two steps iteratively with the goal of estimating the
pare {¢,v*}. In other words, each iteration of the algorithm consists of two main phases.
In the first phase ~; is updated, in the second v, is updated. Specifically, starting with

vy = u we obtain the subsequent 7, and v; as follows:

1. Adaptive updating of 7; For a fixed v, 1, let 74 be a (1 — p)-quantile of S(x)

under v;_;. That is, v; satisfies

Py (S(x) =2 %) > o, (3.16)
Py (S(x) <m) > 1—o, (3.17)
where x ~ f(x;Vvi_1).
A simple estimator 4; of 7, can be obtained by drawing a random sample x1, - - - , X

from f(x;v,_1), calculating the performances S(x;) for all 7, ordering them from

smallest to biggest: Sy < --- < Sy and finally, evaluating the sample (1 — o)-

31

quantile as

Yo = S(1(1-0)NT) (3.18)

Note that S(;y is called the j-th order-statistic of the sequence S(x1),---,S(xn).
Note also that 9; is chosen such that the event {S(x) > 4;} is not too rare (it has
a probability of around p), and therefore updating the reference parameter via a

procedure such as (3.18) is not void of meaning.

. Adaptive updating of v; For fixed 7, and v;_1, derive v; from the solution of

the following CE program
mazyD(v) = By, , [Lisp)s7W(xu,v,_y) In f(x;v)] . (3.19)

The stochastic counterpart of the above equation is as follows: for fixed 4, and

Vi1, derive v from the solution of following program

v

N
1 N
max D(v) = max > Tistenza0 W (i 0, ¥em1) In f (x5 v)] (3.20)
i=1

Thus, at the first iteration, starting with vo = u, to get a good estimate for vy,

the target event is artificially made less rare by (temporarily) using a level 4; which is

chosen smaller than . The value of v; obtained in this way will (hopefully) make the

event {s(x) > ~} less rare in the next iteration, so in the next iteration a value 45 can

be used which is closer to v itself. The algorithm terminates when at some iteration ¢ a

level is reached which is at least v and thus the original value of v can be used without

getting too few samples.

The above rationale results in the following algorithm:

1. Define vg = u. Set t = 1.

2. Generate a sample zy, - - - ,xy from the density f(x; v, 1) and compute the sample

(1 — p)-quantile 4; of the performances according to (3.18), provided 4 is less than

v. Otherwise set 4; = 7.

32

3. Use the same sample x;,- -+, Xy to solve the stochastic program (3.20). Denote

the solution by v;.
4. If 4y < 7, set t =t + 1 and reiterate from Step 2. Else proceed with Step 5.

5. Estimate the rare-event probability ¢ using the LR estimate

N
A 1 .
=5 Zl Lisez W (%30, V) (3.21)

where T" denotes the final number of iterations.

3.3 The CE-Method for Optimization Problem

Consider the following general maximization problem: Let X be a finite set of states,
and let S be a real-valued performance function on X'. We wish to find the maximum
of S over X and the corresponding state at which this maximum is attained. Let us

denote the maximum by ~*. Thus,

S(x*) =~" = max S(x). (3.22)

xeX

The starting point in the methodology of the CE method is to associate with the
optimization problem (3.22) a meaningful estimation problem. To this end we define
a collection of indicator functions {]{S(x)zv}} on X for various levels 7 € R. Next, let
{f(;v),v € V} be a family of (discrete) probability densities on X, parameterized by
a real-valued parameter (vector) v. For a certain u € V we associate with (3.22) the

problem of estimating the number

U(y) = Pu(S(x) = 7) = Z Iiszmy f(x30) = Eulisx>q1, (3.23)

where P, is the probability measure under which the random state x has probability
density function (pdf) f(x;u), and E, denotes the corresponding expectation operator.
We will call the estimation problem (3.23) the associated stochastic problem (ASP). To

indicate how (3.23) is associated with (3.22), suppose for example that 7 is equal to v*

33

and that f(x;u) is the uniform density on X. Note that, typically, £(7v*) = f(x*;u) =
1/|X| where |X| denotes the number of elements in X" is a very small number. Thus,
for v = ~* a natural way to estimate () would be to use the LR estimator (3.21) with

reference parameter v* given by

v* = arg m\e,xxEu [Iseozqy In f(x5v)] (3.24)
This parameter could be estimated by

v' = arg mgmx% [I{s(x)53 In f (x5 V)] (3.25)

where the x; are generated from pdf f(x;u). It is plausible that, if v is close to 7*,
that f(x;v*) assigns most of its probability mass close to x*, and thus can be used to
generate an approximate solution to (3.22). However, it is important to note that the
estimator (3.25) is only of practical use when I(g(x)>,} = 1 for enough samples. This
means for example that when 7 is close to v*, u needs to be such that P,(S(x) >)
is not too small. Thus, the choice of u and v in (3.22) are closely related. On the one
hand we would like to choose 7y as close as possible to v*, and find (an estimate of) v*
via the procedure above, which assigns almost all mass to state(s) close to the optimal
state. On the other hand, we would like to keep 7 relative large in order to obtain an
accurate estimator for v*.

The situation is very similar to the rare-event simulation case. The idea is to adopt
a two-phase multilevel approach in which we simultaneously construct a sequence of
levels 41,79, « -+ , Y7 and parameter (vectors) v, Vy,- -+, Ve such that 47 is close to the
optimal v* and vt is such that the corresponding density assigns high probability mass
to the collection of states that give a high performance.

This strategy is embodied in the following procedure:

1. Define vg = u. Set t = 1.

2. Generate a sample X1, - - - , X from the density f(x;v;_1) and compute the sample

(1 — p)-quantile 4; of the performance according to (3.18).

34

3. Use the same sample x;,---,xy and solve the stochastic program (3.20) with

W = 1. Denote the solution by v;.

5. If for some t > d, say d = 5,

’?t = @tfl == ﬁ’t—da (3-26)

then stop (let 7' denote the final iteration); otherwise set ¢ = ¢ + 1 and reiterate

from Step 2.

Note that the initial vector vy, the sample size N, the stopping parameter d, and the
number o have to be specified in advance.

The above procedure can, in principle, be applied to any discrete and continuous
optimization problem. For each individual problem two essential ingredients need to be

supplied:

1. We need to specify how the samples are generated. In other words, we need to

specify the family of densities {f(:;v)}.

2. We need to calculate the updating rules for the parameters, based on cross-entropy

minimization.

In general there are many ways to generate samples from X, and it is not always
immediately clear which way of generating the sample will yield better results or easier

updating formulas.

3.4 Updating Rules of Some Useful Densities

In this section we will derive the updating rules for two pdfs which are commonly used
for the CE method. The first one is the Bernoulli distribution and the second is the

Gaussian distribution.

35

Suppose the random vector x; = (1, - , Ti,) ~ Ber(p) where Ber(p) is Bernoulli

distribution with parameter p = (p1,---,p,). Consequently, the pdf is

n

f(xip) = prij(l —pi) T, (3.27)

Jj=1

and since each z;; can only be 0 or 1,

o y
— In f(x;; = — - —
o) f(xi;p) b 1-p,

= %p(mij —pj)- (3.28)

Now we can find the maximum in (3.20) (with W = 1) by setting the first derivatives

with respect to p; equal to zero, for j =1,--- ,n:
0 — Q.
— Iisxpyspp In f(x45p) = Iisx)y>1 (i — pj) = 0. 3.29
apj;u)29} I £ (x3; p) (1_pj>pj;{< 12} (%ij = ;) (3.29)
Thus, we get the updating rule
N
o izt (st 2} i
p; = ¥ : (3.30)
> ic1 sz
Next, consider the Gaussian density
9 1 _1e-p?
flx;p,0%) = e 2 2 xelk (3.31)

V2mo?

The optimal solution of (3.20) (with W = 1) follows from minimization of

1 N N

o2 Z (s — p)?* + In(0?) Z I, (3.32)

where I; = I{g(z,)>~}. It is casily seen that this minimum is obtained at (fi,?) given by

N
1 Lii
lez# (3.33)

="K
Zi:l 1;

and

N 72
6_2 — Z’L:l l]s'r lu) (334)

Zi:l I

36

Chapter 4

Stochastic Erasure-Only List
Decoding of RS codes

In this chapter, we apply the Cross-Entropy (CE) method [33] to develop a Monte Carlo
based iterative SDD algorithm which renders an improved algebraic SDD decoding per-
formance. The CE method is an elegant practical principle for simulating rare events
which approximates the probability of the rare event by means of a family of parameter-
ized probabilistic models. Our stochastic erasure-only list decoding (SEOLD) algorithm
uses the extended CE method for optimization problem by considering an optimal event

as a rare event.

4.1 Preliminary

Let C be an (n,k) RS code over GF(2™) with minimum Hamming distance d,,;, =

n—*k+1. Let ¢ = (¢, - ,cn1) be a codeword in C. For binary transmission, every

code symbol must be expanded into binary with symbols from GF(2) = {0, 1}. Let a be

primitive in GF(2™), then the ith symbol ¢; can be uniquely represented by the binary

m-tuple ¢\? = (Cios*+ Cim—1) Where ¢; = c;oa + -+ + ¢im10™ !, Ve ; € GF(2).

Therefore, the codeword ¢ can be uniquely mapped into the binary expansion vector
(b) _(b)

Cc= (CO ;€1 7C£Lb)) = (607617“' 7Enm—1>-

Using binary phase-shift-keying (BPSK), the transmitter maps the binary imaged

37

codeword ¢ into the bipolar vector
U(©) =% = (To, , Tnm-1), T = V(¢) = (=1)% (4.1)

and sends it over an additive white Gaussian noise (AWGN) channel with zero mean
and power spectral density Ny/2. The received sequence at the output of the matched
filter is ¥ = (Yo, - » Ynm—1) Where y; = Z; + w; and w;’s are statistically independent

Gaussian random variables with zero mean and variance Ny/2.

Let Z = (2o, - - , Znm_1) be the hard decision binary vector of the received bit sequence
y, i.e.,
_ 0, yj > 0
5T { 1, otherwise (42)

and z = (20, - , 2,_1) be the corresponding symbol vector. Denoted by I' = (91, -+ , Jnm_1)

the reliability vector of § in which 7, is the magnitude of the log-likelihood ratio (LLR)

associated with the corresponding hard-limited bit z;

P (e =0]y)

Lc:) =].Og - o — 4.3
)= b =1)))
and define the symbol reliability vector I' = (vg, -+ ,v,—1) of z by
v =miny;, j€{im,---,(i+1)m—1} (4.4)
j

Assume that the ith symbol ¢; of ¢ is uniformly distributed over GF(2™) and the n
received symbols are independent and uniformly drawn from GF(2™). Then P(¢; = 5|y),
the probability that ¢; = f was transmitted given the observation ¥ can be easily

evaluated [21]:

Ple; =Bly) = Plc=Blyi)

P(§ilci = 8)P(c; = B)
ZWEGF(m) P(Filei = w)P(c; = w)
P(yilci = B)
ZwGGF(Qm) P(yilci = w)

38

where

yi = (gima Yim+1, 7§im+m—1)7
m—1

P(yilc;=pB) = P (Gim+j |Cimss = B;), B=5oa’ + -+ Bp_1a™ ",
=0

The ¢ x n matrix R = [Rg;, = P(¢; = f|y)], ¢ = 2™, will be referred to as the reliability

matrix of the received vector y.

4.2 Stochastic List Decoding Algorithm

4.2.1 Algebraic Erasures-Only (EO) Decoding

It is well-known that RS codes are maximum-distance separable (MDS) which implies
that any k coordinates (symbols) in an RS codeword can be used to determine the
remaining n — k symbols. Hence it is sufficient to decide k correct (message) or n — k
incorrect (error) coordinates of a codeword. Let Ej, be the collection of all combinations

of n — k error coordinates,

E; = {S = (80,"‘ 78n—1>

siG{O,l},Zsi:n—k} (4.6)

where s; = 1 if the ith coordinate is in error. Then a straightforward decoding schedule

is given as below:

(a). For all s € Ej, erase the corresponding n—k error coordinates of the received word
z and decode by the erasures-only (EO) decoder. The resulting codeword set is

denoted by C,.

(b). Choose the codeword from C, with the best score, e.g., the one whose Euclidean

distance from the received word is the smallest, as the decoder output.

The basic idea of the above procedure is shown in Fig. 4.1. It can be easily confirmed
that for any ¢ € C,, dy(c,z) < n —k, where dy(c,z) is the Hamming distance between

c and z. Therefore, the transmitted codeword belongs to C, if the number of error

39

[: vectors with Hamming distance n-k away from z
@ @: codewords belong to C,

@ : transmitted codeword
— : re-encode process

Figure 4.1: Idea of the algebraic erasures-only decoding.

40

symbols is less than d,,;,. Furthermore, (b) is equivalent to the following minimization

problem

argmin d (V(¢), ¥) subject to ¢ € C, (4.7)

(¢}

where U(-) is defined by (1) and d(a,b) is the Euclidean distance (ED) between the

nm-ary real vectors a and b.

4.2.2 A Stochastic List Decoding Idea

Each error locator vector (ELV) s € Ep represents a particular set of n — k possible
error coordinates and has a corresponding codeword cg that belongs to C,. We denote
the latter relationship by s — c¢5. Although more than one ELV may be associated with
the same codeword, the complexity of searching for the optimal solution c* in the error
location domain Ej, is still extremely high because the cardinality of E is (Z) and only
a few (or one) elements in E;, depending on the number and locations of the received
errors, can be used to reconstruct c*.

Suppose we model the selection of the ELV s from Ej, as a stochastic (vector-valued)
experiment governed by a family of parameterized distributions {f(s;u)} with u €
v being a real-valued parameter vector. Usually f(s;u) is assumed to be uniformly
distributed due to the lack of priori information whence the search in (4.7) is exhaustive
unless some algebraic properties of the code are used. One way to solve (4.7) efficiently
is to find a parameter v* such that f(s;v*) = d(s —s*) where s* — c¢*. Then drawing
one sample from f(s;v*) is sufficient to obtain the optimal solution c*. To get around
the difficulty that c¢* is not known, one notices that the optimization problem (4.7) is
related to the estimation of the probability P(d(V(Ss),y) < n|s — cs), which is a rare
event when n = n* = d(¥(c*),y). The connection comes from the fact that efficient
estimation of a rare event can be achieved by the method of importance sampling and
in this case the optimal importance density is f(s;v*). Without the knowledge of the

threshold n*, we start with a proper importance density f(s; V) to generate samples of s

41

and compute an initial estimate 7 for 7. Ideally, we can use those drawn samples which
satisfy d(¥(Cs),¥) < 7 to obtain new parameter value v’ such that f(s; V') is closest to
f(s;v*) in the Kullback-Leibler (KL) sense, i.e., the CE between f(s;¥v’) and f(s;v*)
is minimized. Since v* is unknown, we choose v’ such that f(s;Vv’) is closest to the
empirical distribution of s in those samples that are generated by f(s;Vv) and satisfy
d(¥(Cs),y) < 7 for this empirical distribution is likely to be a good approximation of
f(s;v*). New samples of s are then produced by the updated importance density f(s;v’)
to compute new estimate 77'. This iterative procedure continues until |77 — 7| is less than
a predetermined threshold.

The above method is known as the CE method [33] which is an iterative procedure

that consists of the following two phases in each iteration.

e Generate samples from the specified importance density given by the parameters

from the previous iteration.

e Update the parameters for next iteration according to the order of the score values

associated with the drawn samples and the minimizing CE criterion.

Based on the above discussion, we propose a generic Monte Carlo based SDD algo-
rithm as shown in Fig. 4.2 and in Table 4.1 with some detailed description given in

Section 4.3 and 4.4.

4.2.3 Convergence and Complexity

Different convergence conditions and results have been discussed for the deterministic CE
method and its extensions in [35] where it is also proved that convergence in distribution
or 7 can be guaranteed but needs a proper tuning of the parameters of the algorithm such
as the number of samples NV, number of elites £, and smoothing factor p. Convergence to
the global minimum is ensured only if a large sample size N is used. On the other hand,

the computing complexity is related to N and is given by O(N(n — k)?). It is obvious

42

{f{(v)}

0 (t)
v Sample S Erasure-Only
Generator Decoder
vt st | p®
()
Parameter SE Sample
Updator Evaluator
¢ d*(t)
Store & ¢
Choose the —»
Best

Figure 4.2: Flow chart of a stochastic decoder for RS codes.

Define a family of probability densities {f(-;v),v € v} on the search space R™™.
Initialize v(¥. Set t = 1.

Generate a sample set S® whose N random vector samples are drawn from f(-; v(®).
Regard the magnitudes as bit LLRs and convert them into symbol reliabilities.

Erase the n — k least reliable symbols and decode the received word by EO decoding.
Evaluate Euclidean distances between the decoded codewords and the received word.
Select the E vector samples with best metrics as the new elite set Sg® c S®

and store the best decoded codeword d*® in D®.

Evaluate the new parameter v(**1) by solving

t
vt — arg‘{naxm ngt)esE(t) In f(sé); V).
Update v+ via vHD = pvtD 4 (1 — p)v® where 0 < p < 1.
Terminate decoding if the stopping criterion is met. Choose the best codeword from

the list {d*(t); v t}, say ¢*, as the decoder output. Otherwise increase ¢t by 1 and
return to step 2.

Table 4.1: A Stochastic List Decoding Algorithm.

43

that the decoding performance can be improved by using a larger N. As we retain the
best sample at the end of each iteration, the decoding performance is also improved
by increasing the iteration number 7. As an early-stopping at any iteration produces a
decoded codeword, we say the algorithm converges if the sequence of decoded codewords
converges. With a modest N, we found that the decoded codewords converge to the same
codeword within 10 iterations in most cases. Our algorithm yields good performance
although uniform convergence in distribution or 7 within a limited iterations is not

guaranteed.

4.3 List Decoding via Erasure Location Estimation

In this section, we propose an novel algorithm to solve the discrete optimization problem
described in (4.7) by utilizing the stochastic list decoding idea. This algorithm is named
as the first kind stochastic erasure-only list decoding (SEOLD-I) algorithm which is used
to efficiently estimate the most possible d,,;,, — 1 locations of erasures about the received

word z.

4.3.1 Importance Density and Sample Format

Suppose the reliability matrix R is known at the receiver. Define the distrust function,
fa: GF(2™) +— (0, 00), of the ith coordinate z; of z as

Zg RBJ‘

fd(zi) = R. .

, BeGF2™)\ {2} (4.8)

The larger the value of fy(z;) is, the higher the probability that z; should be erased at
the decoder.

Let s = (sg,"**,8,-1) be a random vector where sg,---,s, 1 are independent
Bernoulli random variables with success probabilities pg, -, pn_1, i.e., P(s; = 1) =
1 — P(s; =0) = p;. We write s ~ Ber(p), where p = (pg, -+ ,pn—1). In our case, s; =1
represents the ¢th symbol z; of z should be erased. On the other hand, z; will be reserved

because of higher reliability when s; = 0.

44

The initial parameters p® = (péo)) pfl)l) are defined as

(o){ L—e¢, falz)>1—¢ (4.9)

‘ fa(zi), otherwise

where € is an arbitrary real value between (0,1).

At the tth iteration, let Sgt),sét), e ,sﬁ? be N trials drawn from Ber (p(")) which

satisfy
where Sgt) = (5%7 e s% 1)- We then collect samples from these N trials to form a
sample set S®) = {sgt)7 o (t)}

4.3.2 Update Parameters

Let dgt), e ,dgf]) be the output codewords of the EO decoder. We compute the ED
between each candidate codeword and the received word y and sort the corresponding
random vectors according to the descending order of their associated EDs. Define the
elite set Sk at the #th iteration to be the E vectors with the smallest EDs to y, i.e.,
the corresponding codewords are more likely to have been transmitted. We always store
the best one in Sg* up to the current iteration for the final decision when the maximum
number of iteration is reached.

Suppose the parameters used to generate samples at the tth iteration are p) =

(pét), cee pfl) 1> The parameters for the next iteration are updated by considering the

information provided by both p® and Sg'. More precisely, the 7th parameter p(T
obtained by [33]

(®)
ZeesEm Sei

(t+1) (t)
A = (1 = p)p")
»; (1—=p)p," +0p N

(4.11)

where p is a smoothing factor with real value between (0, 1).

45

4.4 List Decoding via Virtual Received Words

In Step 2 of Table 4.1 we try to find the most likely message/error coordinates such
that the associated EO-decoded codeword is closest to the received vector. Note that
the random samples are used to determine the erasure locations only, and the searching
sphere of the algebraic list decoding described in Section 4.2.1 is always centered at the
hard-limited received word z with radius equals to n—k. To increase our search range and
improve decoding performance, we include some extra codewords which lie statistically
in a small neighborhood of the received word in our expanded search, such that some
of them may in fact be closer in ED to the true transmitted codeword c; see Fig. 4.3.
More specifically, the expansion is accomplished by eliminating the requirement that the
search be centered at z. Instead, we randomized the search center by EO-decoding the
hard-decision versions of the drawn sample vectors which we refer to as virtual received
words. If the importance density does converge to the desired density 0(s — s*), such an

expanded search will eventually contract and converge to the true transmitted codeword.

4.4.1 Importance Density and Sample Format

Let S = (S0, , Spm—1) be a random vector where 5¢, - - - , Su,—1 are independent Gaus-
sian random variables with means pg, - - - , ftnm_1 and variances o3, -+, 02, ;. We write

S ~ N (ji,d), where i = (pto," - , ftnm—1) and & = (09, -+ , Opm_1) are initialized by

u? =3 (4.12)
a9 = /1l (4.13)
At the tth iteration, N random samples §§t), §§”, . ,5%) are drawn from N (ﬁ(t), E(t))

to form the sample set S®. Each sample vector represents the bit reliabilities of an
associated virtual received word. By using (4.4) to convert the bit reliabilities into

symbol reliability, the n — k coordinates with smallest symbol reliabilities are erased; the

46

Figure 4.3: Virtual received words are generated around the received LLR vector I' by
hard-limiting the sample vectors generated by an importance probability density whose
parameter values evolved according to the CE principle.

remaining bit positions are hard-limited, mapped into symbol decisions and the resulting

virtual received word is then decoded by an EO decoder.

4.4.2 Update Parameters

Let dgt), e ,dgf,) be the output codewords of the EO decoder. We compute the ED
between each candidate codeword and the received word y and sort the corresponding
random vectors according to the descending order of their associated EDs. Define an
elite set S%) which includes E vectors with the smallest EDs to y, i.e., the corresponding
codewords are more likely to have been transmitted. We always store the best one in ég)
up to the current iteration for the final decision when the maximum number of iteration
is reached.
Then the two sets of parameters 7+ and &1 are updated by [33]

S oge)
sVeslt) ot

R

J

(4.14)

47

and

2
_(t t+1
Saesp (30 - 1)

(t+1) (t)
, = (1= , .
o (1=mn)o;” +n z

J J

(4.15)

where A and 7 are real values between (0,1) used to smooth the variation of these
parameters. The algorithm described in this section is called the second kind stochastic

erasures-only listing decoding (SEOLD-II) algorithm.

4.5 Experimental Results and Discussions

In this section, some simulated performance of two SEOLD algorithms (SEOLD-I and
SEOLD-II) are presented and compared with that of other well known RS decoding
algorithms. A standard binary input AWGN channel is assumed over which the BPSK
modulated codewords are transmitted. We model the receive matched filter output as the
sum of a +1—valued sequence and Gaussian sequence with zero-mean i.i.d. components.
The average performance bounds on the ML error probability of RS codes over an AWGN
channel developed in [36] are used as the performance lower limits.

Due to the complexity and the decoding delay considerations, the SEOLD algorithms
will not terminate until convergence is assured. Instead, we limit our decoding procedure
to 1" iterations in all simulations.

Fig. 4.4 shows the codeword error rate (CER) performance of the (15,11) RS code
over an AWGN channel. HDD-BM refers to the performance of a hard decision bounded
minimum distance decoder such as the BM algorithm. GMD and KV refer to the per-
formance of the GMD algorithm proposed by Forney and the algebraic soft decision
decoding algorithm proposed by Koetter and Vardy, respectively. Note that the KV
algorithm concerned here is infinite interpolation costs, i.e., the complexity is also infi-
nite. For both SEOLD-I and SEOLD-II, the size of the sample set N and the size of the
elite set F at every iteration are set to be 20 and 6, respectively. After 10 iterations,

SEOLD-I has about 0.5 dB and 0.3 dB coding gain over GMD and KV at a CER of 107°,

48

—— HDD-BM -
——— GMD

Codeword Error Rate

1x10™ A KV '\.\.
—<— SEOLD-I (V =20)
1x10° | —o— SEOLD-II (N =20) X

~m ML \

L 1 L 1 L 1 L 1 L 1 L 1 L
1 2 3 4 5 6 7 8

E/N, (dB)

Figure 4.4: Codeword error probability performance of the (15,11) Reed-Solomon code;
10 iterations.

respectively. On the other hand, SEOLD-II outperforms all the previous algorithms with
a performance gain of about 1.2 dB and 1.0 dB over GMD and KV at a CER of 107°.
In Fig. 4.5, SEOLD-I has a near KV performance when the N = 100 and F = 10 after
10 iterations. At the same condition, SEOLD-II still outperforms the other algorithms
with reasonable complexity. The SEOLD-II has about 0.6 dB and 1.0 dB coding gain
over KV where N is equal to 100 and 500, respectively. In conclusion, the proposed
decoding algorithms are capable of offering good performance with modest complexity
for short high rate RS codes. Its performance can be further improved by increasing
the sample size N and/or the maximum iteration number 7" at the cost of increased

decoding complexity.

49

—— HDD-BM
——— GMD i
—A— KV N\
—v— SEOLD-I (N =100)
—o— SEOLD-II (v =100) '
--0-— SEOLD-II (N =500)

1x10™

Codeword Error Rate

1x10°

1 . 2 . 3 4 5 6 . 7 . 8
E/N, (dB)

10°

Figure 4.5: Codeword error probability performance of the (31,25) Reed-Solomon code;
10 iterations.

50

Chapter 5

Stochastic List Decoding of Linear
Block Codes

In the previous chapter, we focus on decoding RS codes of short to medium length. The
MDS character of RS codes is exploited to reduce the complexity of locating near-by
codewords. Such an approach cannot be applied to general linear codes. We thus present
a new decoding method which is valid for arbitrary linear codes but is more effective for

codes with small girth.

5.1 Preliminary

Let C be a binary (V, K) linear block code with minimum distance d,,;, and M x N
parity-check matrix H. As the rows of H may be dependent, we have M > N — K. Let
I'={1,--- N} and J = {1,---, M} be the sets of column indices and row indices of
H, respectively. We denote the set of bits n that participate in check m by N(m) =
{n : H,,, = 1}. Similarly, we define the set of checks in which bit n participates as
M(n) ={j : H,, = 1}. We denote a set N'(m) with bit n excluded by N(m)\n, and
a set M(n) with parity check m excluded by M (n)\m. The cardinality of N'(m) and
M(n) are denoted by |[N(m)| and |M(n)]|, respectively. Let e, be a 1 x N elementary
vector with 1 at position n and 0 at other entries.

An 1 x N vector ¢ is a codeword of C if and only if cH” = 0 where H” is the

o1

transpose of H and 0 is a 1 x M zero vector. For each row h,, of H, m € J, let
C,. = {ce{0,1}" :ch? =0 mod 2}, (5.1)
then

c={)Cn. (5.2)

D

Using the binary phase-shift-keying (BPSK) signal, the transmitter maps a codeword

c into the bipolar vector
\I/(C) =X= <.’I}0, e 7$N—1>7 Tn = \Ij<cn> = <_1)Cn (53)

and sends it over an additive white Gaussian noise (AWGN) channel with zero mean and
power spectral density No/2 W/Hz. The received sequence at the output of the matched
filter is given by y = (yo,- - ,yn_1), where y, = z, + w, and w,’s are statistically

independent Gaussian random variables with zero mean and variance Ny/2.

Let z = (29, -+, 2zn_1) be the hard decision version of the received sequence y, i.e.,
0, y,>0
= { 1, otherwise (54)

For m € J, we define o, as the result of check sum-m based on the hard-decision vector

z:
Om = Z 2nHpn | (mod 2) (5.5)
neN(m)
and define ¥ = (01, -+, o)) as the syndrome vector.

Denoted by I' = (v,,, - -+, 7n_1) the reliability vector of y in which =, is the magnitude

of the log-likelihood ratio (LLR) associated with the corresponding hard-limited bit z,

P(c,=0]y)

L, =log -~ —"12/
% Plen=1ly)

(5.6)
We also denote £ = (Ly,---, Ly) as the LLR vector of the received word.

52

Let A, be the reliability of check sum m which is defined as

A = min 7, 5.7
L in (5.7)
Then we first sort {\,, : m € J} and let my, ma,--- ,my denote the position of the

check sums in terms of descending order of {\,, : m € J}, i.e., the check sum m, is the
most reliable and m,; is the least reliable.
Define ¢, = P(z, # ca|y) as the a posteriori probability that bit n is in error based

on y. Then we have the following lemmas.

Lemma 5.1 For the AWGN channel model considered, the probability q, can be ex-

pressed as

1
C1ltem

dn (5.8)
Proof :

See Appendix A.

Lemma 5.2 The probability that for check sum m € M(n), the sum of all bits n’ €

N (m)\n mismatches the transmitted bit n', say Ty, 18
) y)

Tom == | 1— H (1 - QQn’) : (59)

n’eN(m)\n

Proof :
See [37].

Note that 7, represents the probability of having an odd number of errors N (m)\n.
Define ¢, as the a posteriori probability that bit n is in error based on the results of the

check sums intersecting in position-n. Then we obtain the following useful theorem.

33

Theorem 5.1 Given the received wordy and the syndrome set X, = {0, : m € M(n)},

the logarithm of the bit correctness probability ratio for bit n, say &,, is

6o = tog |10 g [T

= N, + 1—20,, min n 5.10
et X fa=2 (i)] (5.10)

meM(n)

Proof :

See Appendix B.

5.2 Sequential Bit-Flipping Algorithm

In this section, we introduce a single-run sequential bit-flipping (SBF) algorithm for
transforming z into a valid codeword. This procedure has a special constraint about
the parity-check matrix H that H has to be a systematic form. First of all, consider
the rows of the parity-check matrix H are linearly independent, i.e., M = N — K.
Using appropriate row operations, H can be transformed into a systematic form, say
H = [I,,P], where I;; is an M x M identity matrix and P is an M x (N — M) binary
matrix. Note that both H and H are the null space of C, hence we can decode the
received word by using H instead of H.

However, it is impossible to have this transformation when the rows of H are linearly
dependent, i.e., M > N — K. Fortunately, we can remove M — N + K rows of H which

can be represented by the linear combination of the remain rows to get a (N — K) x N

sub-matrix H' where H’ has its systematic form H’.

Example 5.1 Consider the following parity check matriz:

1111000000
1000111000 h,
H=[0100100110]|=]: (5.11)
0010010101 hs
00010010711

o4

Since hy = hy + - - - + hy, we can remove hy from H and get the following sub-matriz

1000111000

, 10100100110

H = 0010010101 (5.12)
00010O01O0T11

where H' is itself a systematic form.

Note that it is easy to confirm that H’ is still the null space of C. Therefore, without
lost of generality, we assume that H is always a systematic form in this chapter for
simplicity.

Remind that C = (),,.; Cp, i.e., a codeword c also belongs to subcodes C,, for all
m € J. The idea of the SBF algorithm is to modify z sequentially such that the final
result is a valid codeword. Specifically, the SBF algorithm separates the original problem
into M sub-problems and solves these sub-problems sequentially in terms of an arbitrary
order of {1,---, M}, denoted as o = (o(1),- -+ ,0(M)). The procedure must ensure that
the solution of the m-th sub-problem also satisfy the constraints of previous (m — 1)
sub-problems. Along the process of the procedure, a sequence of vectors dy,ds, - -+ ,dys

are produced where
d; €N Copmy, 1<t < M. (5.13)

and dj; is obviously a valid codeword. In general, the SBF algorithm needs to input
a predetermined order o and the LLR vector £ at the beginning. At the end of the
procedure, a valid codeword d = (dy,--- ,dy) and an associated new LLR vector L=

(ﬁl, e ,I: ~) are the outputs. The difference between L and £ is given by

{ L,=1L, if d,, = z, (5.14)

L,=—L, ifd,+# 2,

where £ is useful for the stochastic decoding algorithm described in Section 5.5.

Next, we formulate the detailed procedure of the SBF algorithm as below:

1. Let dgy be the hard limiting vector of £, £ = £, and I, = {¢}. Set t = 0.

95

2. Let I, = I,_1UN(o(t)). If d;—1 € Cyp), let d; = dy—1. Otherwise, find the solution,

say n*, of

ar min n 5.15
gne{lt\lt_l}f ()

where &, is evaluated by (5.10). Let

d;, « d;1+e, (mod2), (5.16)
Ly + —Ly-, (5.17)
Om 4 Om+1 (mod 2) Vm e M(n"), (5.18)

i« t+1.

3. If t = M, stop the procedure and output both d = d,; and L. Otherwise, go to
Step 2.

We denote the relationship between the inputs and outputs of the above procedure as

(d, £) = Q(o, £) for simplicity.

Remark 5.1 We have to mention that once the number of error bits in {I,\I;_1} is
greater than or equal to 2, the output codeword dy; won’t be the transmitted codeword.
Example 5.2 Consider a (8,4) linear block code with parity check matriz:

1
0
0

H = (5.19)

o= O O
_ o O O

1
0
1
1

=

1 1
1 1
1 0
0 1

o O = O

0

S

Suppose all zero codeword is transmitted and the received word 'y is given by
y = (1.83,2.07,2.36, —0.21,1.05,1.91, —0.09, 1.63).
Then the hard limiting vector z is

z=(0,0,0,1,0,0,1,0),

and an example of the SRSBFP is shown in Fig. 5.1 where the order of check sums are

3—42—>1—4.

96

Check Reliability 0.23 0.23 2.63 0.23

Check sum 1 1

LLR
z 0 0 0 1 0 0 1 0
dy = (00010010) a a L
IrcﬁeEkﬁzﬂ
 sum =0
(_11;(6061601_0)_ I T Y A I S
- 0 0
:_Check #2
,sum=1 | 1. £,=-2.11 < £3=5.72, so flip bit ¢4
2. 6,0, 5,0, o4¢+1
d,= (000100000 I R R R
Check #1; [l B B B
 sum =0
53;(606160&)) __________ | S e
- 0 0 0
:_Check #4
 sum =1 | 1. flip bit ¢
2. 04(—0

d, = (00000000)

Figure 5.1: An example of the SRSBFP.

o7

5.3 Predicament of Decoding via SBF algorithm

We have introduced a sequential bit flipping procedure, say SRF algorithm, in previous
section. It is a simple unified framework for transforming the hard limiting vector z
into a codeword in C. Note that different order may induce different codeword to be
produced. For instance, the output codewords in Example 5.2 and 5.3 are different

because of different orders although they face the same received word y.

Example 5.3 Consider the same case described in Fxample 5.2. If we change the or-
der from 3 — 2 — 1 — 4 tod — 3 — 2 — 1, the output codeword d will become

(1,0,1,1,0,0,1,0).

We observe that output codeword d in Example 5.2 is equal to the transmitted
codeword but in Example 5.3 is not. It is because the order used in Example 5.3 meets
the situation described in Remark 5.1. Obviously, it is a big problem if we want to
decode by SBF algorithm. Therefore, we try to solve this problem by the following two

ideas:

1. Find appropriate order to avoid the situation described in Remark 5.1.

2. Correct some error bits in advance such that the number of orders which can

decode the correct codeword increases.

Note that the first idea is impractical because the complexity of finding appropriate
order grows quickly as M increases. Besides, the hardware implementation is inefficient
if the order changes frequently. Consequently, we propose two modified methods for
decoding based on the SBF algorithm with a fixed order. The first one is designed
for cyclic codes that we apply the SBF algorithm to transform all of the cyclic shifted
received word into valid codewords. Note that cyclic shifting the received word is similar
to decode in different order even though we don’t change the order actually. The another
method is to implement the second idea based on the concept of the randomized sphere

decoding with moving center which can correct errors iteratively.

o8

5.4 SBF Algorithm with Cyclic Shifts

Assume a codeword ¢ belongs to a cyclic code C is transmitted and let £ = (L, -+, Ly)
be the LLR vector of the received word. Define £” = (L, 1, L,_o,- -+, L,) as the cyclic
shifted version of £ by v positions. Then we can obtain a set of candidates by the

following algorithms:
1. Determine an order o for the SBF algorithm.

2. For all v € J, apply the SBF algorithm for £” and o to obtain a set of candidates
D ={d', -, d"} where
(d”, L") = Q(o0, LY).

The transmitted codeword is then estimated by

Cr = arg HlilI)l d(¥(c),y), (5.20)
ce

where d(a, b) is the Euclidean distance between a and b.

5.5 Stochastic Sequential Bit Flipping Algorithm

Ideally, we can transform z into the transmitted codeword through the SBF algorithm
if the appropriate order is found. In fact, such order is hard to find, especially when
the LLRs are unreliable. Therefore, we don’t want to decode based on the original LLR
vector L at all times but hope to gradually change £ such that its hard limiting vector
is more and more close to the transmitted codeword. In order to implement this idea,
we use the similar method illustrated in Section 4.4 which is an iterative procedure with

the following two phases:

1. Generate N, virtual LLR vectors around the original one according to a specific

random mechanism. Then decode them by the SBF algorithm to get Ny candidates.

99

2. Update the parameters of the random mechanism based on FE, better candidates

in order to generate better virtual LLR vectors in next iteration.

Note that this is the basic idea of our randomized sphere decoding with moving center.

Next, we will illustrate the random mechanism further in next two subsections.

5.5.1 Importance Density and Sample Format

Let s = (s1,- -+, sy) be arandom vector where sy, - - -, sy are independent Gaussian ran-
dom variables with means ji,-- -, ux and variances p?,-- -, p%. We write s ~ N (fi, p),

where i = (p1,--+,pn) and o= (p1,- -+, pn) are initialized by

Y = L, (5.21)
4
o - = 5.22
Pn No (5.22)
At the tth iteration, N, random samples sﬁ”, sg), e ng,) are drawn from N (ﬁ(t), ﬁ(t))

to form the sample set S®. Each sample vector represents the LLRs of an associated
virtual received word. We decode them by the SBF algorithm based on an pre-designed
order and obtain sets of candidates dét) and associated LLR vectors ég) = (801, ,8nN)

for 1 < /¢ < N,.

5.5.2 Update Parameters

Let d(lt), e ,dsf,)s be the output codewords of the SBF algorithm. We compute the ED
between each candidate codeword and the received word y and sort the corresponding
random vectors according to the descending order of their associated EDs. Define an
elite set E® which includes E; vectors with the smallest EDs to y, i.e., the corresponding
codewords are more likely to have been transmitted. We always store the best one in
E® up to the current iteration for the final decision when the maximum number of

iteration is reached.

60

Then the two sets of parameters) and sV are updated by [33]

Sycun 5
sMeB® “tn

D) — (1 —)P + 6 =

n

(5.23)

and

(0 D)2
ZggﬂeE(t) (5£,n — Hn)
E,

) — (1 —¢)p¥ + ¢

n

(5.24)

where 0 and e are real values between (0,1) used to smooth the variation of these

parameters.

5.5.3 Stochastic Sequential Bit Flipping Algorithm

The detailed stochastic sequential bit flipping algorithm (SSBFA) is summarized as

follows.
1. Initialize ¥ and 5 by (5.21) and decide an order o. Set t = 0.
2. Generate a set of random samples S®) = {dgt), e ,dg\t,)s} from N (, a, ﬁ(t)).
3. For each sample, we have (dfzt), (El,(f)) = Q(o, dgt)).

4. Evaluate Euclidean distances between the dgt) and the received word y. Select the
E, samples with best metrics as the new elite set E®) ¢ S® and store the best

decoded codeword d*® in D),
5. Evaluate the new parameters 7" and ;) by (5.23) and (5.24), respectively.

6. If t =T of for some t > ¢, say ¢ = 3,
d*® = @1 = ... = g*(t=e), (5.25)

then stop; otherwise set ¢t =t + 1 and reiterate from Step 2.

61

5.6 Experimental Results and Discussions

In the first part of this section, some simulated performance of the proposed algorithm,
say SSBFA, are presented and compared with that of traditional bounded-distance de-
coding (BDD) and the sum-product algorithm (SPA). A standard binary input AWGN
channel is assumed over which the BPSK modulated codewords are transmitted. We
model the receive matched filter output as the sum of a £1—valued sequence and Gaus-
sian sequence with zero-mean i.i.d. components.

The maximum iteration number of both SPA and SSBFA are set to be 50. But we
will stop the proposed algorithm earlier if the best of the output candidates are the
same for consecutive 5 iterations. In our simulations, SSBFA terminates quickly and
the average iteration number of is slightly more than five. Besides, the sample size N is
set to be 10 and the elite size E is 1. Therefore, the computational complexity of both
algorithms in our simulation is approximately at the same level.

Fig. 5.2 - 5.6 are simulation results of five high rate block codes with HDPC matrix
which is in order (15,11) Hamming code, (7,5) RS code, (22,16) single error correction
(SEC) code, (39,32) SEC code, and (72,64) SEC code. The SSBFA has about 0.5 dB
- 0.8 dB coding gain over SPA at a bit error rate (BER) of 10~% under approximately
same complexity:.

Next, we consider two examples of cyclic codes, (31,26) BCH codes and (15,11) RS
codes. For the (31,26) BCH code, we compare our SBF algorithm, SBF with cyclic
shifts (CSSBF) and SSBFA with BDD and SPA. As shown in Fig. 5.7, the performance
of the SBF algorithm with a fixed order is worse than BDD and SPA because of the
phenomenon described in Remark 5.1 may happen frequently. However, two kinds of
modified algorithms, SSBFA and CSSBF, have almost the same improved decoding
performance and outperform the other decoding methods. In other words, these modified
algorithms can greatly reduce the phenomenon described in Remark 5.1. For the (15,11)

RS code, similar decoding performance can be observed in Fig. 5.8. Our proposed

62

Hamming (15,11)

BER s A

I I Uncoded SN \ NGEDN
@ 10 F | --A-SPA ST BT
s --v-- SSBFA BREA \]
w CER \ 1
——BDD AN |
10° £| —A—SPA SN
£ | —v— SSBFA . \\

Figure 5.2: Error rate performance of the (15,11) Hamming Code; Ny = 10, F, =1

algorithms still outperform the other decoding methods including the BDD, SPA, Chase-
IT algorithm with 16 test patterns, and the KV algorithm with infinite multiplicity. Note
that the number of test patterns of the Chase-II algorithm is set to 16 due to our CSSBF

for (15,11) RS code has 15 cyclic shifted LLR vectors.

63

RS (7,5)

2
¢
5 -~ SSBFA
w CER
——BDD
10° | | —A—SPA
| —v SSBFA
10*]
0 1 2 3 4 5 6

SNR (dB)

Figure 5.3: Error rate performance of the (7,5) RS Code; N, = 10, F, = 1

SEC (22,16)

------ Uncoded
--4--SPA

| --+--SSBFA
CER
——BDD
—A— SPA

| —v— SSBFA

Error Rate

SNR (dB)

Figure 5.4: Error rate performance of the (22,16) single error correction Code; Ny = 10,
E,=1

64

SEC (39,32)

10753
107 £
2 Eo e Uncoded
© f|--A-SPA
S s |--v- SSBFA
W " E | CER
- | ——BDD i
| —&—SPA
10" £ —v— SSBFA S
10° TR %
0 1 2 3 4 5 6

Figure 5.5: Error rate performance of the (39,32) single error correction Code; N, = 10,
E,=1

SEC (72,64)
10“F - - - - E
L
10 “""::::X:;;;::;_ E

S3zsy 3
107 BER E

R Uncoded i

o --£--SPA

S oL | ~v- SSBFA |

i CER \!

———BDD]
—A— SPA \;ﬁ

10" £ v SSBFA <
10° L ! L L L L L %
0 1 2 3 4 5 6

Figure 5.6: Error rate performance of the (72,64) single error correction Code; N, = 10,
E,=1

65

BCH (31,26)

01®ac o -

Frame Error Rate ST -
—&— BDD <
—e— SBF - s
—A— SPA N N

—w— CSSBF b \
—&— SSBFA .

Bit Error Rate N
--<4--Uncoded AN
1E-4 | - » - SBF *
--®--SPA
--%--CSSBF 3 4 5 6
--®--SSBFA SNR (dB)

0.01

Error Rate

1E-3

o

Figure 5.7: Error rate performance of the (31,26) BCH Code.

RS (15,11)
10° 4 = Y
*
‘ 2
107
Q
©
o
,5 N y
utJ —=&— BDD N 4
° —e— SBF N
9 107 —A— SPA
3 —W¥— Chase-ll
8 -~ 4 CSSBF
—<4— SSBFA
—»— KV
10°
0 1 2 3 4 5 6
SNR(dB)

Figure 5.8: Error rate performance of the (15,11) RS Code.

66

Chapter 6

Conclusions

We have derived generalized message passing rules and developed appropriate schemes to
relax the deterministic constraints. Higher order energy approximations and the method
proposed in [1] can be extended by the proposed ABP scheme as well. Furthermore,
the same relaxation idea can also be used to generalize the trellis structures for turbo
decoding algorithms.

We have also presented several novel stochastic list decoding algorithms for linear
block codes with high density parity-check (HDPC) matrices. We apply an iterative
Monte Carlo based approach called the Cross-Entropy method to produce a list of can-
didates at each iteration. Hopefully, the set of candidates will converges to the singular
ML codeword. Basically, the CE method helps to estimate the probability distribu-
tion of the candidate transmitted codeword by examining the current available sample
set and find the distribution which is closest to the optimal one in the CE sense. In
a sense, we perform sphere decoding with randomized decoding radius. Based on the
maximum-distance separable property of the Reed-Solomon (RS) codes, two stochastic
erasures-only list decoding algorithms (SEOLD-I and SEOLD-II) are proposed. SEOLD-
I estimates the possible erasures locations and then recover the associated codeword
by erasures-only decoder (EOD). In order to enhance the performance of SEOLD-I,
SEOLD-II utilizes the virtual received words to increase the search radius such that

extra candidate codewords and thus candidate elite members can be obtained. There-

67

fore, SEOLD-II outperforms SEOLD-I at the cost of increased complexity. Simulation
results verify that the performance of both algorithms is better than that of the GMD
algorithm and the KV algorithm.

In Chapter 5, we try to extend the concept of randomized sphere decoding to decode
general linear block codes which are not MDS codes. We first investigate a novel sequen-
tial bit-flipping (SBF) algorithm which can transform the hard-limited reliability vector
into a valid codeword with low complexity. When cyclic codes are in consideration, we
can cyclic shift the reliability vector and decode by SBF algorithm to form a set of can-
didates where the one with smallest ED to the received word is chosen as the decoder
output. On the other hand, we induce the concept of the randomized sphere decoding
with moving center when the codes are not cyclic. A set of random virtual reliability
vectors are generated and then decode by SBF algorithm. Again, the elite set of can-
didates is used to modify the random mechanism such that the center of the associated
sphere will gradually move more and more close to the transmitted codeword iteratively.
The proposed stochastic sequential bit flipping algorithm (SSBFA) outperforms the SPA
for linear block codes with HDPC matrix. Although the proposed algorithms give sat-
isfactory performance, especially for high rate linear block codes with HDPC matrix.
There are several issues that require more research efforts. We mention just three to

conclude this dissertation.

1. For long and/or low rate codes, the required complexity is still too high. Reducing
the sampling dimension without compromising performance is a very challenging

problem.

2. A stochastic decoding algorithm for decoding low density parity-check (LDPC)

codes with complexity much lower than BP-based algorithms is most welcome.

3. Establish a firm theoretical foundation of the randomized sphere decoder and apply

the same concept to solve other problems, e.g., MIMO detection.

68

Appendix A

The Proof of Lemma 5.1

Assume ¢, is a priori equally likely to be 0 or 1, then the a posterior: probabilities on

Cp, 18
P =0 = !
(cn =0lyn) = 1+ e Lien)’
1
Plc, =1lyn) = 1 eblen)”

By the following fact:

L(c,) <0, ify, <0
L(cy) >0, ifyn >0

and the definition in (?7),

1

1+ eIl
1

L+em

69

B P(c, =0ly,), ify, <0
= P(Cn:1|yn)a ifyn>0

(A.1)

(A.2)

Appendix B
The Proof of Theorem 5.1

From Bayes rule:

= . B.1
P(z, # cnly, 20) P(zn # caly) P(20]2n # Cnyy) (B-1)

From Lemma 5.1, the first part of the right hand side of (B.1) is given by
P(Zn 7é Cnly) =g, =1- P(Zn = Cn|Y) (BZ)

Assume the check sums in ¥, are statistically independent. The probability P(%, |z, =

Cn,y) is given by

P(Zn|zn — Cnay) = H P(om|zn = Cnvy)a (BS)
meM(n)
where
1—7ry, ifo, =0
Plom|on — enry) — { Pt om0 (B.4)
Similarly,
P(En|zn 7£ CnaY) - H P(0m|zn ?é CmY); (B5)
meM(n)
where
Trmn if o, =0
Ploalan ey ={ 72 (B.6)

70

From (B.3) - (B.6), we have

rezey =~ 11 [a-2 (522)] ®

meN (m)

Using the approximation

[(0—2¢.) =12 max g,, (B.8)
nEN(m) neN (m)
we obtain
Ly T -24) (B.9)
"mn = 3 - - n' .
5 q
n’eN(m)\n
~ ! (B.10)
= max .
n‘eN(m)\n | 1 4+ e¥n’
1
= - . (B.11)
]_ _|_ emlnn/EN(m)\n TYn!
Then

1og(1;nq”) = 1og<1;nq”)+ > [(1—20m)1og(1i’”:m)} (B.12)

meN (m)

Tt Y {(1 — 207, (n/erﬁ(ig)\n %)] . (B.13)

meN (m)

I

71

Bibliography

1]

8]

J. S. Yedidia, “Constructing Free-Energy Approximations and Generalized Belief
Propagation Algorithms,” IEEE Trans. Inf. Theory, vol. 51, no. 7, pp.2282-2312,

July 2005.

M. Welling and Y. W. Teh, “Belief optimization for binary networks: A stable
alternative to belief propagation,” Proc. Conf. Uncertainty in Artificial Intelligence,

Seattle, WA, Aug. 2001, pp. 554-561.

A. Yuille, “CCCP algorithms to minimize the Bethe and Kikuchi free energies:
Convergent alternatives to belief propagtion,” Neural Computation, vol. 13, pp.

1691-1722.

K. Rose, “Deterministic Annealing for Clustering, Compression, Classification, Re-
gression, and Related Optimization Problems,” Proceedings, IEEFE, vol. 86, no. 11,
pp- 2210-2239, November 1998.

I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” J. Soc.

Ind. Appl. Math, vol. 8, pp. 300-304, R.
G. Gallager, Low Density Parity Check Codes, Monograph, M.I.'T. Press, 1963.

C. E. Shannon, “Communication in the presence of noise”, Proc. Institute of Radio

Engineers, vol. 37 (1): 10V21, Jan. 1949.

The Digital Video Broadcasting Standard [Online|. Available: www.dvb.org

72

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

The IEEE P802.3an 10GBASE-T Task Force [Online]. Available:

http://www.ieee802.0org/3/an
The 802.16 Working Group [Online|. Available: http://www.ieee802.org/16/
The IEEE 802.11n Working Group [Online]. Available: http://www.ieee802.org/11/

J. Jiang and K. R. Narayanan, “Iterative soft-input soft-output decoding of Reed-
Solomon codes by adapting the parity-check matrix”, IEEE Trans. Inform. Theory,
vol. 52, No. 8, 00. 3746-3756, Aug. 2006.

T. Hehn, J. B. Huber, S. Laendner and O. Milenkovic, “Multiple-Bases Belief-
Propagation for Decoding of Short Block Codes”, ISIT2007, Nice, France, June,
2007.

T. R. Halford and K. M. Chugg, “Random Redundant Iterative Soft-in Spft-out
Decoding”, IEEFE Trans. Commun., vol. 56, No. 4, pp. 513-517, Apr. 2008.

[. Dimnil and Y. Be’ery, “Improved Random Redundant Iterative HDPC Decoding”,
IEEE Trans Commun., vol. 57, no. 7, pp. 1-6, July 2009.

Stephen B. Wicker, FRROR CONTROL SYSTEMS for Digital Communication

and Storage, New Jersey: Prentice Hall, 1995.
E. B. Berlekamp, Algebraic Coding Theory, New York: McGraw-Hill, 1968.

Y. Sugiyama, M. kasahara, S.Hirasawa, and T. Namekawa, “A method for solving

key equation for decoding goppa codes,” Inform. contr., vol. 27, pp. 87-99, 1975.

G. D. Forney Jr., “Generalized minimum distance decoding,” IEEE Trans. Inform.

Theory, vol. IT-12, pp.125-131, Apr. 1966.

V. Guruswami and M. Sudan, “Decoding of Reed-Solomon codes beyond the error-

correction bound,” J. complexity, vol. 13, pp. 180-193, 1997.

73

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-Solomon
codes,” IEEFE Trans. Inform. Theory, vol. 49, no. 11, pp. 2809-2825, Nov. 2003.

D. Chase, “A class of algorithms for decoding block codes with channel measurement

information,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 170-182, Jan. 1972.

H. Tang, Y. Liu, M. Fosorier, and S. Lin, “On combining chase-2 and GMD decoding
algorithms for nonbinary block codes,” IEEE Commun. Lett., vol. 5, no. 5, pp. 209-
211, May 2001.

N. Wiberg, “Codes and Decoding on General Graphs”, Ph. D. dissertation, Elec-

trical Engineering Dept., Linkopin Univ., Linkoping, Sweden, 1996.

Y. C. Chen and Y. T. Su, “Constraint relaxation and annealed belief propagation

for binary networks”, ISIT 2007, pp. 24-29, June, 2007.

M. E. Khamy and R. J. McEliece, “Iterative algebraic soft decision list decoding of
Reed-Solomon Codes”, IEEE J. Sel. Areas in Commun., vol. 24, pp. 481-490, Mar.,
2006.

P. H. Tan and L. K. Rasmussen, “The Serial and Parallel Belief Propagation Algo-

rithms,”

S. Lin and D. J. Costello, “Error Control Coding : Fundamentals and Applica-

tioins,” Prentice Hall, 2004.

E. H. L. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines. New

York: Wiley, 1989.

Mackay’s Encyclopedia of Sparse Graph Codes,

http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.

R. Y. Rubinstein, “Optimization of computer simulation models with rare events”,

FEuropean of Operational Research,99:89-112, 1997.

74

[32]

[33]

[34]

[35]

[36]

[37]

R. Y. Rubinstein, “The cross-entropy method for combinatorial and continuous

optimization”, Methodology and Computing in Applied Probability, 2:127-190, 1999.

R. Y. Rubinstein, D. P, Kroese, The Cross-Entropy Method: A Unified Approach
to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning,

Springer, 2004.

R. Y. Rubinstein and B. Melamed, Modern Simulation and Modeling, Wiley Series

in Probability and Statistics, New York, 1998.

F. Dambreville, “Cross-Entropy method: convergence issues for extended imple-
mentation,”

http://www.FredericDambreville.com

M. EI-Khamy and R. J. McEliece, “Bounds on the average binary minimum distance
and the maximum likelihood performance of Reed-Solomon codes,” in 42nd Allerton

Conf. on Communication, Control, and Computing, 2004.

J. L. Massey, Threshold Decoding. Canbridge, MA: M.I.T. Press, 1963.

1)

	中文摘要_NSC_coding
	NSC_FinalReport_97to99

