(¥ 3)

The design and I mplementation of Interface | nterfacing generator
for integrating and bridging front-end recognizer s and back-end
application softwar e systems (1/3)

NSC97-2221-E-009-062-MY3
97 08 01 100 07 31

[17 80 %

|l nterface I ntemf(adiny Syste

wi ndow

i nterface interfacing system
(soli tary)

(solidary

interface Iinterfacing system

Intarface Interfacing System

Ininracing Ingr Modkle Kamal InéarFacing
" i Mol
Sands Lexical
Recognize . Translation / |mut.nw|u‘ 0 APl
Stream o || REcognizar Sends Syntactic Invokes ||_Emutatkn | igvacations
lntaifacing Procassed Analysis Interfacing
Mathods

-

Tent =
QED)"’ > : ksl .

Speech ——
Recognizer Tcr:nmﬁr:‘a:!:n . e H
!] Queries ;lhwmr'::-::t
L Applicatian Sofware
ey Script
bt > madinoptkns than ﬁ:g
S "
|
1. The pr opnotseerdf ace I ntemfacing Syste
|l nterface I ntemfacing Syste
Journal of I nformation Science and Engin
(command | pagsage)
Script GUI
PC
(PDAmart phone
PC Java AP
Java Java
PC
PC Java Midlet AP
Smart phone 2
Remote I nterfacing System

variols
recognizers -

L3 18
-

remote control

interfacing system devices
2 Remote Control Il nterfacing System
LCDLED
Setehrough interface Parser Generator)

(Speech Recogni zers)

It has been shown that the major effort spent on the design and implementation
of the application system software is the user interfaces (Ul) [17] (or human machine
interface (HM1)). If Ul can be developed in a short time, it will be a great help to
reduce development time for application software systems. Therefore, many
researchers have been seeking better solutions to aid Ul designers to create Ul
systems.

In general, there are two kinds of interface system: human machine interface and
interface for bridging application software as one. The former concerns the GUI
design and implementation for the application software. The later concerns with the
integration of recognizer and application software together to form a new application

3

software that uses the recognizer as the front-end system. In this proposal research,
we layout a three-year integration project that focus on the later interface technology,
called generic Interface Interfacing system, Figure 1 depicts the detailed components.

Interface Interfacing System
Itrycing el Models Hamal InéaFacing
= Dimgan Madule
Sends Lexieal
Recognizes = Translation / Input- avical 05 AR
Straam Of :“;ﬂﬂ'"?ﬂf Sends 5 yntactic Invokes || Emtatkn (| {idvocstions
Text LTI -1 | | —— Analysis Intarfacing .
Siream Mathods Ty S -]
h — — e [riaoers "‘"“'“—I:”' HHOEROR
Component thon [
lnvoeations A
Speech = = =
Recognizer o imim an Intaraction
'I'ran:jla‘tlnn IContext m:::md rTr
Queries Envirenmant E -*."._‘
R
TR

¥

Application Soffware
cliekaquara madial =
Fopan Media 1= than sakactatage SCI'IM
- madoptiong than files
clickaquara apanmi
then sekactategs

acanarda than
adlactgrd scanagrd

Figurel The proposed Interface Interfacing System

Basically, application systems that utilize recognition technologies such as
speech, gesture, and color recognition provide human machine interfacing to those
users that are physically unable to interact with computers through traditional input
devices such as the mouse and keyboard. Current solutions, however, use an ad hoc
approach and lack of a generic and systematic way of interfacing application systems
with recognizers. The common approach used is to interface with recognizers through
low-level programmed wrappers that are application dependent and require the details
of system design and programming knowledge to perform the interfacing and to make
any modifications to it. Thus, a generic and systematic approach to bridge the
interface between recognizers and application systems must be quested.

In the first year of this integration research work, we propose a generic and
visua interfacing framework for bridging the interface between application systems
and recognizers through the application system’ s front end, applying a visual level
interfacing without requiring the detailed system design and programming knowledge,
allowing for modifications to an interfacing environment to be made on the fly and
more importantly alowing the interfacing with the 3" party applications without

requiring access to the application’ s source code. Specifically, an interfacing script

4

language for building the interfacing framework is designed and implemented. The
interfacing framework uses a see-through grid layout mechanism to position the
graphic user interface icons defined in the interfaced application system. The
proposed interfacing framework is then used to bridge the visual interface commands
defined in application systems to the voice commands trained in speech recognizers.
The proposed system achieved the vision of interface interfacing by providing a
see-through grid layout with a visual interfacing script language for users to perform
the interfacing process. Moreover such method can be applied to commercial
applications without the need of accessing their internal code, and also alowing the
composition of macros to release interaction overhead to users through the automation
of tasks. Figure 1 also indicates an example that a solitary game or an authoring
system in window system can be played using the speech recognizer in window
system after the integration using the proposed approach.

The main contributions of such interface interfacing system include 1)
Productivity is reasonable good: system developers no need to trace the low level
code (without requiring the detailed system design and programming knowledge)
while integration the recognizer with the application software, 2) Maintenances effort
is low: alowing for modifications to an interfacing environment to be made on the fly,
and 3) Flexihility is good: alowing the interfacing with the 3¢ party applications
without requiring access to the application’ s source code.

In the 2" year project, we continue the concept used in the first year to
investigate the handheld device environment such as PDA or Smart phone. In this
case, we use the remote control capability in the smart phone as the front-end
recognizer and java program as the back-end application software. The choice of the
java as the implementation language is rested on its heterogeneous platform
adaptation features. Specifically, we will propose an interface generator, similar to the
concept of the parser generator, to automatically generate remote control programs for
a specific multimedia application in the smart phone. With this generator, designer
does not need to write the textual remote control programs in the smart phone. This
will simplify the development process and make the control system development and
modification more flexible. Figure 2 depicts the detailed components. In Figure 2, it
indicates that a interface generator (the interface interfacing system) can proceed to
perform a code generation (Java Midlet AP) after the back-end application software in

the PC environment has been integrated with the remote control module using the

proposed approach. Of course, the remote control module can be replaced by Wii- like

recognizer if it is needed.

e il Femotz
=5 ! Cantrol

i e | \ S/ D VR i 2)
ol = - / i -
. \ } 4 [
 Ta i / / =Y i
various L{ cocle

recoghizers -]‘QE neratio

Midist AP |

remote control :
interfacing system devices

Inteitace
Generator

Figure2 Remote Control Interfacing System Overview

With the quick advance of technology, screen display of digital TV and mobile
system becomes more and more elegant and is able to present fine and vivid
multimedia contents. Most of the multimedia contents, such as advertisement, motion
pictures, messages, etc., can be displayed on different kinds of platforms. If user can
use some simple instruments (such as smart phone, PDA, etc.) to remotely
communicate with the multimedia application module in the display device (such as
PC monitor, digital TV, etc.), then the control becomes live and interesting. But there
are various control instruments and display devices, and different kinds of control
methods. If one wants to write the control program or partially modify the control
features for the multimedia application module in the display device, then he needs to
know the software source code in the multimedia application module that will be
remotely controlled, so that he can custom-design a set of remote control programs for
each multimedia application. However, there is a lot of multimedia application; a
custom design for each of these applications becomes time consuming and less
efficient.

Once we have built the interface interfacing system for both in the PC

environment (the first-year project) and smart phone environment (the 2" year
project), we are ready to author various kinds of multimedia presentation such as

6

mobile name card template system or ecard presentation and use smart phone to
remotely synchronize the presentation on top the big LCD and LED displayers This
is the major effort spent in the 39 yesr.

Keywords See-through interface Software Engineering Parser Generator
Interface generator Recognizers Speech Recognizers

In a Windows environment, the commonly used traditiona method, which
allows developed window application programs with Human Computer Interaction
(HCI) control ability, isdirectly to write the control procedures into the application
programs while using low-order designing formula to package procedures into single
application system To apply such devising method, the designer must possess certain
knowledge about application system designing and programming in order to devise an
application system with HCI control functions. Particularly when the design is
completed, it is relatively difficult to revise or add any system functions to it without
the primitive code, as shown in figure 1.

user HCT application program
control signa === ~
SResEl analyzing program | ;med.l:
oy e | (Fod 2],
(PDA) v el | ¥ oLl
, - commanas | commands |
: comparin rocess [modanl|
gesture paring P (moc.nji)

Figure 1 General developing method of HCI control

Three maor problems may exist under such development of HCI control
procedures. First, system designers must be equipped with abundant knowledge about
the design of HCI and programming languages in order to design an applicationwith
HCI function Second, if we want to design an application which lacked interaction
ability before, we need to obtain the primitive code of the particular application due to
the difficulty in modifying new programs without the code. Third, even if we have
obtained the code, we need to re-analyze the entire structure of application in order to
write a suitable control program. These tasks will leave the designer with much

7

trouble and seemingly resulting in less flexibility and efficiency.

To overcome these issues, we emphasize on the research of Software Engineer
Methodology to develop a visua generic interface bridge (GIB) system and
introducing this system into two parts: First, the “Integration of GIB and Speech
HCI,” and secondly, “GIB-based Application Interface (GAIl) generation” in which a
PDA device is taken as an example. The GIB provides visua operating interface,
under which designers draw recognizing sguare object at any corresponding position
on the windows and name each square object. Subsequently, we can easily use speech
command to control mouse and keyboard actions corresponding to the position of
sguare object. By increasing the operation of application with more flexibility and
expardability, we use macro command to define and combine the control commands.
One macro command may be combined with several control commands; this will
avoid noise effect between long commands and make the application control more
flexible with grammar analysis technology. Through this process we can make any
application, which did not have HCI control ability previously, with speech or
wireless remote HCI control functions in an easier and more efficient manner and do

not need to write any program code, as shown in figure 2.

analyzer
]
GIB |
grammar
database I[bruseds
command request *T command :
store abstract commatds | string | ‘
abstract/real command setting <« SYH'I'CIC‘I‘EC
_. ... Y Irﬂ'erfoce % cmﬂfysis
1
control abstract real
user |- Lep [Oes| [commenctlapplication
programs

Figure 2 Architecture of GIB control system

()

In the following, we present the 1% year research results of this three years project.

3.1. Introduction (outline of the scope of thisthree-year project)
Interfacing applications with various recognition technologies (such as speech,

gesture, and color recognition) will impact current methods of interaction in the area
of human machine interfacing technology. Interfacing application systems with these
different recognition technologies have opened wide possibilities to these types of
users, however current ways of interfacing applications with recognizers are lacking
of a generic and systematic way, time consuming, and highly application systems
coupled and dependent. Particularly, current solutions that aim at bridging the
interface between speech recognizers and application systems usually lead to tightly
coupled systems where one applicationis wrapped by a specific recognizer through a
low-level programming implementation that makes the future modifications very
difficult. Also, without supporting mechanisms to abstract group of actions into single
reusable macro-level commands to simplify user interaction tasks creates intense and
time-consuming overheads for end users. Applications systems, especially multimedia
oriented ones deal with highly dynamic content, interfacing of this kind of content is
not yet addressed. A generic applicationindependent speech-driven interface
framework that allows the generation of a modifiable visual interfacing environment
without the need of dealing with low-level details must be quested.

In this research, we attempt to provide a generic and visua interfacing framework
for bridging the interface between application systems and recognizers through a
generic and systematic approach. Specifically, an interfacing script language is
designed and implemented that allows users to define the interfacing commands
between a speech recognizer and application software.

3.2. Related Work and the Proposed Solution

Current approaches to interface the interface of speech recognizers and the
interface of application software uses a wrapping integration approach that focuses on
the integration of the recognizer’ s APl and the application’ s components through a
direct and tightly coupled way (Fig. 1). The application is in charge of setting up the
recognizer’ s environment, grammar domain, recelving recognition results and
interpreting these results to perform the respective interna invocations to execute
interactions on its GUI [1]. As it can be foreseen, in Fig. 1, the integration results is
one application interfaced with one speech recognizer through a interfacing layer that
is in charge of directly mapping speech commands into actions on the application’ s

components.

Speoch Recognizer .wh Recogn mr EH 7

é; ! .L] oo inferfor Ly
b n —

|I .-\-Q'-\-T..x N)

LRI SR |

Applksation Baftwars X
4N
End Linm

Figurel Wrapping integration

Most of speech-driven robots adopt such interfacing approach for its design and
implementation, for instance, the AT&T s Speech-Actuated Manipulator (SAM) [2].
Under such atightly coupled-system, it is not surprising that any modifications on the
low level application software’ s commands will result in the recoding of the speech
interface, leading to the recompilation of the whole system. Other related application
systems such as Vspeech 1.0 [3] and Voxx 4.0 [4] provide interfacing by integrating a
speech recognizer with the Window OS environment that is in charge of handling the
windows of applications, however they still suffer from the limitations such as
low-level interface and requiring detailed system design and programming
knowledge.

The common interface approach used in these speech-recognition systems is to
interface with recognizers through low-level programmed wrappes that are
application dependent and require the detalls of system design and programming
knowledge to perform the interfacing and to make any modifications to it. Thus, we
proposed an applicationindependent visua interfacing generator to bridge the
interface of a speech recognizer [5] and the interface of application systems. In the
proposed approach, when incorporating a speech-recognizer to an application system,
a user through a visua interfacing framework composes a visua interfacing
environment by drawing reference zones on top of the GUI' s interactive areas
(buttons, menu items, links, and containers) of application system, without the need of
programming low-level code for the integration. User-generated visual interfacing
environments (Fig. 2) for applications are interacted with by the system as it processes
user’ s requests to perform interaction on the environment’ s zones that are graphically

positioned over interaction objects of applications.

10

(&) Application without reference zone. (b) Application with reference zone.

Figure2 The interfacing visual environment

The proposed system interacts with target applications by performing
invocations to the Operating System’ s APl and then controls and manipulates the
original input-device (such as mouse) defined in the target application under the
window environments to perform interactions directly on the visual interfacing

environment that lays above target applications GUI.

3.3. Involved technologies

Creating a successful generic and visual interfacing system for integrating
applications with recognizers required the understanding on several technologies,
including the “See-Through Interface” paradigm [6], the proposed interfacing script
language, and the localized speechrecognizer interfacing mechanisms. These
technologies individually be- long to different fields of study, however when
implemented in a cooperative environment, these technologies merge to contribute
towards the vision of interface interfacing.

3.3.1 See-Through Interface Paradigm

In our visua interfacing framework, the concept of “See-Through Interface”
paradigm [6] is employed to construct a transparent grid layout that allows application
front- end integration with recognizers through the drawing of reference zones.

In [7], the authors create an immersive environment that submerges users into a
virtual space, effectively transcending the boundary between the real and the virtual
world. Transparent interfacing allows this virtual 3D world to be manipulated by the
user without the need of relaying on traditional inpu devices such as the mouse or
keyboard for interaction.

In our visua interfacing framework, we use a transparent grid layout mechanism
to position the GUI icons defined in the interfaced application system. In this way,
any GUI based application systems can be interfaced using the proposed visual

1

framework with different recognizers.

3.3.2An Interfacing Script Languages

The language specification of the designed script language for this study is
simple enough to allow programmers to quickly achieve fluency in the language. Our
language design is based on Just-In-Time compilation by compiling the code as
necessary, running it in an interpreted framework [9]. In the following subsections, we

describe the proposed interfacing script language.

3.3.2.1 Data types

Types limit the values that a variable can hold or that an expression can produce,
limit the operations supported on those values and determine the meaning of
operations. Strong typing helps detect errors at compile time [9, 10].

3.3.2.2 General static semantics

Commands in the Interfacing Script Language are separated into selection
commands that take care of switching the different interfacing visual environment
content. Assignment commands that take care of assigning values to system internal
identifiers and lastly action commands that focus on interacting with application
system’ s interfacing content, performing actions that directly affect the target
application.

3.3.3 Localized Recognizer Interfacing

In our visua interfacing framework, a localized recognizer interfacing by
integrating a speech recognizer [5] through its API is designed and implemented. The
interface is done by a specialized component that allows the future integration of
other recognizers without performing modifications to the est of the system. The
assigned tasks to this component are kept to a minimal in order to maintain the
complexity of interfacing a new recognizer at the lowest. These tasks include the
listening of recognition content, initialization, setup and handling of the target
recognizer only. A more detailed treatment on the proposed interfacing script language

can be found in [12].

3.4 the Details of the visual interfacing framework
The proposed visual interfacing framework system interacts with target
applicatiors by performing invocations to the Operating System’ s APl to manipulate

its nput-device and windows environments to perform interactions directly on the
“Transparent Interface” that sits on top of the GUI of the target applications. In the
proposed gproach, the interfacing of recognition devices and applications is done
through two different interfacing layers that interact directly with the system’ s kernel

(Fig. 3).

Interface Interfacing System

Inferfacing Input Module Kernel InterFacing

—— || = |oupurtidu
Sends Lexical
Recognized| R - Translation / Imut—DeyiceI
Stream O Ini::fgai::liz:r Sends Syntactic Invokes Emulation || || nvocati
Lt 9 Pr Analysis nterfacing
Stream Methods
E] -
— — P [
component i
Invocations -

Speech
Recognizer Command Interaction
Translation [Context| writh
3 Queries E,',"',:':,':;:t
n

1

L4

. 304
&
-0 pen Media 1+ clicks: uarzmedia1 Script] | Application Software
- ptions files
i

scenario then
selectyrid scenegrid

Figure3 The proposed interface interfacing system.

3.4.1 Interface Input Module Processes

When the speech recognition engine recognizes spoken phrases, it outputs those
phrases as text streams in the spoken language, according to how they are defined in
the recognizer’ s XML Grammar Definition. The stream of text is then passed down to
a component in charge of trandlating recognized text into the standard language of the
system.

The Macro Interpreter then receives the stream of text and checks if it contains
keywords that reference macros, it does so by querying the Macro Data Repository for
matches. If a match is found, the keyword inside the stream of text gets replaced with
the corresponding macro. Once a macro is loaded, it is passed down to the Wild Card
Translator that checks for the presence of wildcards. Wildcards are part of the
system’ s design strategy to allow the reutilization of a macro with different dynamic
entities (Actors) by alowing the user to assign values to wildcards during runtime, in
this way avoiding the redefinition of macros for every dynamic entity. When a
wildcard is found, it is ieplaced with the current actor that has focus applying the

macro to it. Fig. 4 depicts the above mentioned processes.

3.4.2 Kernel Module Processes
Trandated commands that result from the Interfacing Input Module process are
sent to the Kernel so that they can be interpreted into a target program (Fig. 5) that

13

provides the interaction behavior to be applied to the interfacing environment. As the
stream of text enters the kernel, the Lexical Trandator splits the stream of text into
token sets. Each token set represents a single command that is fed down to the
Syntactic Analyzer for interpretation. When the Syntactic Analyzer receives a token
set, it analyses it token by token and traverses the parsing structure until a match of a
valid command with a compatible format is found. Once the parsing is successful, the
corresponding target program is executed at the Event Delegating Component that
delegates the invocations to the respective system components involved in the
interaction.

Output From Input

draw pam f/“ -
Interfacing Module

,'/:/
clickactor actor] clicksquart path

i 1
4— Terminal Symbol Lexical Translator
Composition / \ / \

-

RULE NAME= Gravpeth” Reads
TOPLEVEL="ACTIVE"s<Psdrawrith

fP>«RULE>
Speech-Recogni
Grammar Defini t
Speech

Token Set 1 | Token Set 2

Qutputs Token Sets
Recognizer D | | (D e
Outputs Recognized
\ Stream
= Reads
<word NAME="drawpath">
drewpath<fword> /<!> h -
Outputs commands in clickactor
o e g ion 5
! . language 2rsing fInterpretation // N Syntactic Analyzer
(]

actor clicksquars

Macro Found

WildCard Translator
—]

Macro Nat Found

Fecused Centent

Replaces Wildcards with

Reads
e /
Parses and Interprets
MacRr: ;:':nlry ation Outputs macro com square Token Sets into
if found
l invacations on event
delegating componant

+ Enable left-click
3 « et cursor location actor
« Perform click

Targel Program Evem De\eqmmg Campanenl
+ Enable left-click
+ Bet cursor location square
+_ Performclick

actort Delegates and moderates
[invacation traffic to
then compenents tha interact
clicksquare : "
path O with lhe transparent
interface

Figure4 Command trandation process. Fgure5 Command interpretation process.

The Lexical Anayzer distributes its chores to four sub-programs (Fig. 6), one in
charge of getting the next stream input through an event handling function, other one
in charge of building lexemes as described above, other tokenizing sub-program to
take care of removing nonrelevant characters and finally a subprogram that handles
the recognition of reserved words, constants and identifier names. The later with the
purpose of validating the content of the data types of the command in question by
looking them up in their corresponding tables to make sure they exist in the system
and that no reserved word are being used.

In our syntactic analysis we trace a leftmost derivation (Fig. 7), tracing the parse
tree in preorder, beginning with the root and following branches in left-to-right order.

Expanding nonrterminal symbols to get the next sentential form in the leftmost

14

derivation, basing the expansion route on the type of the nonterminal symbol [9].
Due to the ssimplicity and recursive nature of the language’ s grammatical rules, our
approach implements a recursive descent parser rather than utilizing parsing tables to
accomplish the syntactic analysis, in this way assuring that the next token represents
the left most token of input that has not been used in the parsing, this token is
compared against the first portion of all existing right hand sides of the non-terminal
symbol, selecting the right hand sides where a match is found.

removeSeparators Terminators removeSpaces,

getinput; m
Lexime Building Tokenizing coordinate
square

Valid Token Sets dragSquare square
direction (by) distance
{by) {
pattern (by) distance

Figure6 Tokenizing transitions Figure7 Parsing tree of * dragSquare

Validating

Validate Tokens;

i
Bin

l

|
Applications

= N

i A
Application A %
| - N
Grids Stages Actors

SN N VN

. o i = | b - - =
objecﬁgr[d volumegird Grid N movieeditor mainscreen Stage N Profile 1 Profile 2 Profile N

Figure8 Interfacing objects hierarchical organization

The Kernel module is also in charge of storing, retrieving, and performing the
object activation on the different interfacing objects that are used for building a visual
interfacing environment of an application. It also handles the dynamic interfacing
content and provides the tracking mechanism to relocate dynamic interfacing object
whenever a user interacts with such content. The interfacing script language supports
scripting commands for the Kernel module to perform loading, storing, and removing

15

of objects of type application. These interfacing script commands include sguare,
actor, actor profile, stage, and grid. The Kernel module also supports the querying
mechanism used by other system internal components to retrieve specific information
of objects as needed during the interaction process of interaction. Reference
interfacing objects of the system are stored- retrieved and modified dynamically into
and from afour level hierarchical directory structure, asin Fig. 8.

3.4.3 Interface Output Module Processes

The main function of the Interfacing Output Module is to provide the
mechanisms to interact directly with the front-end of application system through the
interfacing visua environment by performing input-device emulation and window’s
environment manipulation, taking care of manipulating input devices to perform
mouse or keyboard related actions on the Interfacing Visual Environment through the
Input Device Controller component. This component takes care of emulating the
following mouse actions. -Left Mouse Click, -Left Mouse Double Click,
-Right_Mouse Click, -Right Mouse Double Click, -Drag_and Drop, -Move.

Event Delegation Companant Invocations Resulting
Gnable ledt cllck emulalh:rg(se! cursor Im:ation) (emulate c\lckj rom Syntactic Analysis
4 “y La'W)
T [-

/

Interface Interaction

Qutput From Components
Kernel 13

e —]
Input Device Cantrollar

2 —
> % Objoct Readar

Retrieves Location of Object

‘ Windows Environment Handler
Data Flles

Interactions Gn
Transparent Interface

Transparant Interface
Interactors

Figure9 Visual interfacing environment interaction process.

Target programs that result from the syntactic analysis are executed through the
Event Delegating Component. Depending on the command, the requests for each of
the involved events is sent to corresponding component that interact directly with the
interfacing environment through the mechanisms described above, accomplishing the
completeness of a command’ s execution process (Fig. 9). A labeling system is aso
developed to visualy label each of the registered reference zones at their graphic

16

location with their corresponding registered identification name

3.5 Interfacing procedures and Examples
The procedure involved in interfacing a target application with a speech
recognizer through our proposed framework requires the fulfillment of multiple steps

that are done to ensure a successful interfacing.

3.5.1 Interface Interfacing Procedures

The interfacing procedure is separated into multiple steps as depicted in Fig. 10:
Step 1. Interface the Target Application

The first step involved in interfacing an application to a speech recognizer is to
register a desired application into the proposed system. Once the target application is
registered, we create the visua interfacing environment by drawing reference zones
on the transparent interface that lays on top of the application’ s GUI, in this way
referencing application’ s content such as buttons, containers and menus through the
graphic registration of grids and squares, separating this content into stages that each
represent the different GUIs of the application. Fig. 11 lists the detailed procedures of
the target application software registration.

Interface

Step 1 Target
Application
Interface
Step2 | Cogmizer

|

Add Interfacing
Ohject’s Vocabulary Done each time an application is

to Recognizer’s nlerfaced wilh the syslem
Grammar Definition

i
10} "
S /
1 R { 1
Wl @ =l sEg
s e
Macros : -

Step 3

Figure 10 Interface interfacing procedure Hgure 11 Regidtration target application

Interface
Recognizer
Through its
APl Ch Doszmentl Marroantt Word
l Iy ol il g - g'-.,ew-u :v'-!-:; l.l';";'lsl' _l‘
UL VAL L
Define Composed with interaction 7 i ” | Ul »
Speech cemmands and vocabulary used A ! -r [-
Grammar to interface the application kS = txl 7 m _l
H T P e e |
: / Ltk r5] Msliogs v
Define XML E -2 Cystmre, |
Translation - oot | |
Resource : | L |

17

Figure 12 Recognizer interfacing steps Hgure 12a Installation of speech-recognizer.

KEE GWE 0T MLAED —RD ERE >
T e T
= fad U
I > X :
.J T ’ l-'. il
=ik TR g L e 1 S o -
i Ol ke vl v Sl S [¥ -
2 i 1and eEs 3TNTU CEme T At 50 akort, Tal sTEon, oF stadiam, bt
“ L] = T | Lo ek, . i viers Ungle T unoeretand vwhat was sakd.
e N SEMT RENee w.n.;ina A

n:?!:o ::-. ”‘:};k mﬁu ii-n:ll uC-: w [skpwon | Bripn

% b @ D @ @ ooy SR

e ﬂg’ﬁl& o) Emf&'?am "WII'

@ b

N (T EH)
(b) (c)

Figure12b 12c TheMicrosoft’ s speechrecognizer training.

Sep 2: Interface the Target Recognizer.

The second step is to interface the chosen recognizer, that wanted to be
integrated into the proposed interfacing framework system, by programming the
recognizer’ s APl cdls that are used to start, setup and handle the recognizer and as
well as the calls involved in retrieving recognition content in the system’ s specialized
recognizer interfacing component. In the following, we provide an example by
illustrating the interface of the Microsoft' s Speech-Recognizer V.6.1 [5] with the
proposed interfacing framework system. Fig. 12 shows the magor steps in this
Speech-Recognizer integration. Procedures to install and training the Microsoft’s
Speech-Recognizer V.6.1 are listed as shown inFigs. 12 (a-c).

<RULE NAME="sqrs">

<I> <P>save</P> <P>player</P> <P>new</P> <P>normal</P>
<P>duplicate</P>

Continues ...

Figure 12d Recognition vocabulary preparation.

<RULE NAME="dragsquare" TOPLEVEL="ACTIVE">
<P>dragsquare</P> <o>

<RULEREF NAME ="sgrs' / > <0> <p>to</p>

<I> <P>save</P> <P>player</P> <P>new</P> <P>normal</P>
<P>duplicate</P>

Continues ...

18

Figure 12e Composed rule definition that uses references to other lower-level rules.

<grammar>
<word NAME="Actor">Actor</word>
<word NAME="Profile">Profile</word>

Continues ...

Figure 12f Trandation repository.

Whenever an application is interfaced with the system, a copy of this generic
grammar definition is customized by adding the corresponding vocabulary that was
used to create the interfacing environment of the application in question (Fig. 12 (d)).
The script program will be generated automatically.

The grammar definition consists of a set of rules that are defined through
extensible markup language (Fig. 12 (€)). These set of rules are used by the
speechrrecognizer to validate recognized words, restricting the possible words or
sentences chosen during the speech recognition process.

Not in al cases the grammar defined for the recognizer’ s will match the exact
syntax of the system’ s language (perhaps a recognizer that does not support speech is
integrated to the system, such as a motion recognizer), to tackle this problem the
definition of atrarslation XML resource file is made (Fig. 12 (f)).

Step 3: Macro Composition.

Once an application is properly interfaced with a speech recognizer, we compose
a set of macro commands to simplify user interaction with the interfaced environment
by wrapping complex and repetitive tasks into short, reusable context free commands.

The registration of macro commands (Fig. 13) takes place through a macro
composer where the user composes the macros by writing their execution content in
the system’s defined language and writing a “keyword” that is used to reference the
macro during the invocation process.

Figure 13 Registering a macro Figure 14 Registering squares

19

3.5.2 Interface Interfacing Objects

When referencing a target application, an interfacing environment is created
where different objects are used to reference interaction areas of the application.
Sguares are referencing objects used to interface buttons or zones of applications,
each square has a name given by the user and they are registered by drawing them on
top of the interaction zone to interface. To register a square one must first select the
desired stage to associate the square with. Objects known as stages are created for
organizing and separating the different squares that are registered, separating them
based on the different GUIs that the application presents. Each stage has a name given
by the user. Fig. 14 lists the detailed procedures of registering a square named
‘mountain’ .

More complex referencing objects such as grid, are built and composed of auto-
generated sguare objects and are used to reference panes and containers of the target
application, alowing for a localized referencing through coordinates. Each grid has a
name given by the user, and they are registered through drawing on the desired
interaction zone. Figs. 15 (ac) lists the detailed procedures of registering grids
command named ‘ grids .

7 @

(a) Choose (b) Give grids afile name (c) Procedure of drawing grids
Figure 15 Registering grids.

Fig. 16 lists the detailed procedure of registering an actor profile named
‘ TVactor' . P1) Press|Add Actor Profild (Iabeled as 1-0) in Fig. 16 and the system will
generate a profile name automatically. P2) Select an actor (labeled as 2). P3) Choose
an actor control function (labeled as 3). P4) Draw a moving path of actor (labeled as

4). The * TVactor' will move around as specified by the created moving path when a
voice command is given during the run time environment.

Figure 16 Registering dynamic content actors and actor profiles

3.5.3 Exampleswith Interfacing Applications
The proposed interfacing framework has been used for interfacing several

commercialized applications with the Microsoft Speech-Recognizer. Figs. 17 (af)
depicts some snapshots for the interface with Bestwise' s Visua Authoring Tool (2004

version). A completed example can be found in [13].

— - L | (1 Application Tnferfucer

(b) Install interfacing environment (c) Registering macro command

|EI'[,!-'-'M.I:HI!EH

(e) Speech amacro to control system (f) Speech a macro to control system

(d) Choose stage and grids
Figure 17 Snapshots for the interface with Bestwise' s Visua Authoring Tool

3.6 Conclusion
This research overcomes some common problems suffered by developers when

bridging an application system to the interface of a recognizer. The proposed approach
presents a more flexible and efficient interfacing. To design and implement the

21

proposed interface interfacing framework, we addressed a number of challenges and

limitations imposed by current approaches, by employing several techniques such as

the “ See-Through Interface”, object oriented design patterns, and incorporate a script
language definition together with a parsing technique. As a result, the proposed
interface interfacing framework enhances the interfacing of applications to
recognizers by making it an easy, generic and flexible process.

The major contributions of this study include:

1) Offers a simplistic and personalized way to interface applications with recognizers
through the front-end, without the need of dealing with low-level issues such as
system design and programming.

2) Allows modifications to a recognition interfacing environment of an application
without requiring the access to source code of applications and re-compilation of it.

3) Offers a generic and custom interface interfacing environment that allows the
coexistence of multiple applications that hold different interfacing requirements.

4) Tackles the challenges and limitations imposed by current solutions that focus on

wrapping a single application with a single recognizer in a highly coupled manner.

In the 1% year project, we have completed a generic and visua interfacing
framework for bridging the interface between application systems and recognizers
through the application system’s front end, applying a visual level interfacing without
requiring the detailed system design and programming knowledge, alowing for
modifications to an interfacing environment to be made on the fly and more
importantly allowing the interfacing with the 3d party applications without requiring
access to the application’ s source code. Specifically, an interfacing script language
for building the interfacing framework is designed and implemented. The interfacing
framework uses a see-through grid layout mechanism to position the graphic user
interface icons defined in the interfaced application system.

The research results from this project have been submitted to conferences and

journas for publication. Also, part of the technology developed from this research

project has been filed patents application in the territory of Taiwan and the U.S.A.
through the IP office of National Chiao Tung University. These related technology

developed in this project has beentechnology transferred to industrial sectors.

Paper s Publication:

1) Shih-Jung Peng, Jan Karel Ruzicka and Deng-Jyi Chen, “A Generic and Visual
Interfacing Framework for Bridging the Interface between Application Systems
and Recognizers,” Journal of Information Science and Engineering, Vol. 22, No.5,
September 2006, pp.1077-1091 .(SCI)

2) Shih-Jung Peng and Deng-Jyi Chen “A Generic Interface Methodology for
Bridging Application Systems and Speech Recognizers,” 2007 Internationa
Conference on Information, Communications and Signal Processing (IEEE

ICICS2007), 10-13 December, 2007, in Singapore

3) Deng-Jyi Chen, Shih-Jung Peng and Chin-Eng Ong, “Generate Remote Control
Interface Automatically into Cellular Phone for Controlling A pplications running
on PC”, Journal of Information Science and Engineering, (2008.09.16. accepted.)
(SCI)

4) Chung-Yueh Lien, HsuChih Teng, Deng-Ji_Chen, Woe-Chyn Chu, and
Chia-Hung Hsiao, “ A Web-Based Solution for Viewing Large-Sized Microscopic
Images” Journal of Digital Imaging, Published online: 27 June 2008,
0897-1889 (Print) 1618-727X (Online). doi: 10.1007/s10278-008-9136-x
http://www.springerlink.com/content/109379/.,

Patent
1) | NTERFACE SYSTEMRAMEUSIOD ANI
() : :
(1299457) . . Fr o2008/08/01 t 02025/11/10 .
2)
: «) -
; © (1 292667) . . Fr 02008/01/11 t o
2025/12/13.

23

3)AGeneri¥i amal I nterfacing Frtahme worctke rf foa

Br

bet wApplicatioan®ys¢tRemogni(zleSA) i nventors

(pending)

Technol ogy transfer

1)

ok wnN

10.

11.
12.

(), July

31, 800

B. Balentine, D. Morgan, and W. Meisel, How to Build a Speech Recognition
Application, Enterprise Integration Group, 1999.

Speech-Actuated Manipulator, http://www.research.att.com/history/89robot

V Speech 1.0, Team BK 02 product, http://vspeech.sourceforge.net.

Voxx 4.0, Voxx Team product, http://voxxopensource.sourceforge.net.

Microsoft’ s Speech Recognizer V.6.1, Microsoft product,
http://www.microsoft.com.

E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose, “Toolglass and
magic lenses: the see-through interface,” Xerox PARC, 3333 Coyote Hill Road,
Palo Alto, CA 94304.

Y. Boussemart, F. Rioux, F. Rudzicz, M. Wozniewski, and J. R. Cooperstock, “A
framework for 3D visualization and manipulation in an immersive space using an
untethered bimanua gestural interface,” Centre For Intelligent Machines 3480
University Street Montreal, Quebec, Canada.

S. K. Huang, “Objected-oriented program behavior analysis based on control
patterns,” a Ph.D. Dissertation, Department of Computer Science and Information
Engineering, National Chiao Tung University, Taiwan, 2002.

R. W. Sebesta, Concepts of Programming Languages, 5th ed., AddisonWedey
Publishing Company, 2002.

J. Godling, B. Joy, G Steele, and G Bracha, The Java Language Specification
2nd ed., Sun Microsystems, Inc., 2000.

BestWise International Computing Company, http://www.caidiy.com.tw.

J. K. Ruzicka, “The design and implementation of an interfacing framework for
bridging speech recognizer to application system,” a Master Dissertation,

24

Department of Computer Science and Information Engineering, National Chiao
Tung University, Taiwan 2005.

13. S. J. Peng, “Bridging the interface between application systems and recognizers,”
Technical Report No. NCTU-CSIE-SE-TR-001, Department of Computer
Science and Information Engineering, National Chiao Tung University, Taiwan,
2005.

14. winBatch Macro Scripting Language, http://www.winbatch.cony.

15. B. P. Douglas, Real- Time Design Patterns: Robust Scalable Architecture for Real-
Time Systems, AddisonWesley Publishing Company, 2003.

16. Microsoft Speech SDK, Version 5.1 Documentation, Microsoft Corporation,
2001.

17.E. Lee “Usar-interface development tools” IEEE Software, Vol. 7, 1990,
pp.31-36.

25

