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摘要 

 

 近年來，字樣比對技術已被應用於處理網路資訊安全議題，諸如入侵偵測、

病毒掃描及反垃圾郵件等。知名的 Aho-Corasick(AC)演算法能同時比對多個字

樣，並具有最差情況下的效能保證，因此被廣泛採用。然而，隨著傳輸技術的發

展，在高速網路環境中，採用 AC 演算法已跟不上資料傳輸的速度，再者，在字

樣總長度大的情況下，AC 演算法將需要極大的記憶體空間以存放比對所需的二

維狀態轉換表。在本成果報告中，我們首先提出一項新的設計，可有效壓縮 AC

演算法的資料結構。施以多種先前提出的壓縮技術，狀態轉換表所占空間皆仍與

字樣總長度成正比關係，相反地，我們提出的設計則能將狀態轉換表壓縮成僅與

字樣個數成正比（不被字樣總長度影響）。除此之外，我們進而提出一包含狀態

性預先過濾器及以 AC 演算法為基礎的驗證模組的架構。其中我們引入了狀態性

預先過濾的概念，所謂狀態性係參考過去的過濾結果(而非只參考當下的狀態)

來決定當下的過濾結果，並以簡單的位元串實現之。此實現方法等效於參考所有

過去的過濾結果，故為最佳的實現方法。相較於多項先前技術，我們提出的架構

在比對效能及記憶體使用量這兩方面都有顯著的進步。 

 

關鍵詞：Aho-Corasick演算法、布隆過濾器、深度封包檢測、字樣比對 

 

http://www.pctech.com.hk/index.php?option=com_content&view=article&id=85:deep-packet-inspection&catid=7:2008-10-30-07-27-03&Itemid=3�
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Abstract 
 

Pattern matching technique has recently been applied to network security 
applications such as intrusion detection, anti-virus, and anti-spam.  The 
Aho-Corasick (AC) algorithm can match multiple patterns simultaneously with 
worst-case performance guarantee and thus is widely adopted.  However, as the 
transmission technology advances, the AC algorithm cannot keep up with wire speed 
in a high-speed network.  Moreover, it may require a huge amount of space to store a 
two-dimensional state transition table when the total length of patterns is large.  In 
this paper, we first propose a novel scheme to compress the data structure of the AC 
algorithm.  The size of the resulting two-dimensional state transition table is 
proportional to the number of patterns, whereas that in several previous designs is 
proportional to the total length of patterns.  Then an architecture consisting of a 
stateful pre-filter and an AC-based verification engine is presented.  We introduce 
the stateful pre-filter concept, which makes use of previous query results, and propose 
a simple bitmap-based implementation to realize it.  The proposed implementation is 
optimal in the sense that it is equivalent to utilizing all previous query results.  
Compared with various previous designs, our proposed architecture achieves 
significant improvement in both throughput performance and memory usage. 
 
Keywords: Aho-Corasick algorithm, Bloom filter, deep packet inspection, Pattern 
matching. 
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1. INTRODUCTION 
Pattern matching has been an important technique in information retrieval and text editing for many years.  

Because of its accuracy, it has recently been adopted in network security appliances for signature matching 
to detect malicious attacks.  In the wide sense, pattern matching is a problem of searching for occurrences 
of plain strings and/or regular expressions in an input text string.  In this paper, we only consider matching 
of plain strings. 

There are some well-known pattern matching algorithms such as Knuth-Morris-Pratt (KMP) [1], 
Boyer-Moore (BM) [2], and Aho-Corasick (AC) [3].  The KMP and BM algorithms are efficient for 
single pattern matching but are not suitable for multiple patterns.  The AC algorithm pre-processes the 
patterns and builds a finite automaton which can match multiple patterns simultaneously.  Another 
advantage of the AC algorithm is that it guarantees linear-time deterministic performance under all 
circumstances.  As a consequence, the AC algorithm is widely adopted in various systems.  However, 
even with the linear-time worst-case performance guarantee, the throughput of the AC algorithm cannot 
keep up with wire speed in a high-speed network because of the rapid advances in transmission and 
switching technologies.  To achieve high throughput performance, some hardware accelerators of the AC 
algorithm were proposed previously [4]−[6]. These designs take advantage of hardware capability for 
massive parallel processing.  As an example, the bit-split design proposed in [5] adopts multiple 
processing engines, each handles a few bits of a symbol, to execute the AC algorithm.  A consequence of 
using multiple processing engines is that the number of transitions and hence memory requirement is 
reduced.  High throughput performance can be achieved if multiple processing engines work concurrently.  
These processing engines can of course be serialized for software implementation.  However, serialization 
impacts throughput performance significantly.  It is possible to take advantage of multi-thread, multi-core 
features of processors for parallel processing.  How to efficiently implement pattern matching algorithms 
on such a processor, which is not the focus of this paper, is left as a further research topic. 

Another problem of the AC algorithm is its potential huge memory space requirement.  A 
straightforward implementation of the AC algorithm is to construct a two-dimensional state transition table 
for the finite automaton.  Obviously, such an implementation requires prohibitively huge amount of 
memory space when the total length of patterns is large.  Several schemes had been proposed to reduce the 
memory requirement.  Some of them are adopted by Snort [7], [8], an open source for intrusion 
detection/prevention, and ClamAV [9], another open source for anti-virus/worm applications.  The bitmap 
architecture [10] and the History-based Encoding, eXecution and Addressing (HEXA) [12] compress the 
data structure significantly.  These compression schemes are related to our work and will be reviewed in 
Section 3. 

The purpose of this paper is to present an architecture for pattern matching with high throughput 
performance and low memory requirement.  We first present a novel compression scheme that 
significantly reduces the memory requirement of the AC algorithm.  Then we propose an architecture that 
can largely improve throughput performance and further reduce memory requirement.  In comparison 
with the bitmap architecture, HEXA, and the schemes adopted by ClamAV and Snort, our proposed 
architecture results in improvement in throughput performance and requires either less or slightly more 
memory space.  For example, for 5,000 randomly selected ClamAV signature patterns, our proposed 
architecture achieves, respectively, 88.4% and 94.0% reduction in memory requirement as compared with 
the bitmap architecture and a reduced HEXA implementation (see Section 6).  In average, the 
improvement of processing time for scanning various types of files is 53.5%, 45.7%, 34.4% and 66.5% as 
compared with the bitmap architecture, reduced HEXA, and the schemes used in Snort and ClamAV, 
respectively. 

Similar to the Wu-Manber (WM) algorithm [13] and the Hash-AV+ClamAV scheme [30], our proposed 
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architecture consists of a pre-filter and a verification engine.  The pre-filter in the WM algorithm was 
implemented as a shift table and the verification engine checks all candidate patterns sequentially when a 
potential starting position is identified.  In the Hash-AV+ClamAV scheme, the pre-filter is a Bloom filter 
[14], [15] and the verification engine is a simplified version of the ClamAV implementation without the 
failure function.  Our designs are quite different from theirs.  In our design, the pre-filter accumulates 
query results with bitwise AND operations and uses the accumulation result for filtering.  Therefore, the 
pre-filter is stateful in our design while it is stateless in the WM algorithm and the Hash-AV+ClamAV 
scheme.  It is proved in [33] that the proposed implementation for the stateful concept is optimal in the 
sense that it is equivalent to utilizing all previous query results.  Our verification engine, which is a 
modification of the AC automaton, checks all candidate patterns simultaneously rather than sequentially.  
Numerical results show that our design outperforms both the WM algorithm and the Hash-AV+ClamAV 
scheme.  There are several other pre-filter designs proposed previously [16]−[28].  Similar to hardware 
accelerators for the AC algorithm, these designs were aimed to utilize parallel processing to achieve high 
throughput performance and is out of the scope of this paper.  

The rest of this paper is organized as follows.  In Sections 2 and 3, we review the AC algorithm and 
some related works, respectively.  Our proposed compression scheme and architecture are presented in 
Sections 4 and 5, respectively.  In Sections 6 and 7, we show analysis and numerical results.  Finally, we 
draw conclusion in Section 8. 
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2. THE AHO-CORASICK ALGORITHM 
In this section, we briefly review the AC algorithm of constructing a finite state pattern matching 

machine for a given set of patterns Y = { 1 2,   ,...,  yP P P }.  Basically, the AC pattern matching machine is 
dictated by three functions: a goto function g, a failure function f, and an output function output.  Fig. 1 
shows the AC pattern matching machine for Y = {he, she, his, hers} [3], an example we shall use in this 
section. 

One state, numbered 0, is designated as the start state.  The goto function g maps a pair (state, input 
symbol) into a state or the message fail.  For the considered example, we have g(0, h) = 1 and g(1,σ ) = 
fail if σ ≠ e or i.  State 0 is a special state which never results in the fail message, i.e., g(0,σ ) ≠  fail for 
all σ ∈Σ , the alphabet.  With this property, one input symbol is processed by the pattern matching 
machine in every operation cycle.  The failure function f maps a state into a state and is consulted when 
the outcome of the goto function is the fail message.  String u is said to represent state S if the shortest 
path on the goto graph from state 0 to state S spells out u.  Let u and v be the strings that represent states S 
and Q, respectively.  We have f(S) = Q if and only if (iff) v is the longest proper suffix of u that is also a 
prefix of some pattern.  It is not difficult to verify that f(5) = 2 for our example.  The output function 
maps a state into a set (could be empty) of patterns.  The set output(S) contains pattern P iff P is a suffix 
of the string representing state S.  As an example, we have output(5) = {he, she}. 

The operation of the AC pattern matching machine is as follows.  Let S be the current state and a the 
current input symbol.  Also, let T denote the input text string.  An operation cycle is defined as follows. 
1) If g(S, a) = Q, the machine makes a state transition such that state Q becomes the current state and the 

next symbol of T becomes the current input symbol.  If output(Q) ≠ ∅  (empty set), the machine 
emits the set output(Q).  The operation cycle is complete. 

2) If g(S, a) = fail, the machine makes a failure transition by consulting the failure function f.  Assume 
that f(S) = R.  The pattern matching machine repeats the cycle with R as the current state and a as the 
current input symbol. 

Initially, the start state is assigned as the current state and the first symbol of T is the current input symbol. 
It was proved that the pattern matching machine makes at most 2n−1 state transitions in processing an input 
text string of length n.  Note that failure transitions can be eliminated if the goto function is replaced with 
the next move function so that the pattern matching machine becomes a deterministic finite automaton.  
The next move function δ  is defined as δ (S, a) = g(S, a) if g(S, a) ≠  fail or δ (S, a) = δ (f(S), a) 
otherwise.  In this case, the number of state transitions is exactly n when an input text string of length n is 
scanned. 

 
(a) The goto function. 

S 1 2 3 4 5 6 7 8 9 
f(S) 0 0 0 1 2 0 3 0 3 

(b) The failure function. 
 

S output(S) 
2 {he} 
5 {she, he} 
7 {his} 
9 {hers} 

(c) The output function. 
 

Fig. 1. The AC pattern matching machine for Y = {he, she, his, hers} [3]. 
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3. RELATED WORKS 
In this section, we review previous compression designs for the AC pattern matching machine and the 

WM algorithm.  We assume that there are y  patterns. 

3.1. Bitmap Data Structure 
Fig. 2(a) shows the bitmap data structure of the compression scheme proposed in [10].  For simplicity, it 

is drawn assuming that each symbol consists of three bits.  Every state requires one such data structure.  
The failure pointer of state S points to the data structure associated with state R if f(S) = R and the rule 
pointer points to the first element of a linked list for the matched patterns in state S.  The thi  bit of the 
bitmap is a 1 iff g(S, i) ≠  fail.  Assume that there are exactly K symbols 1σ , …, Kσ  such that g(S, jσ ) 
= jR ≠  fail, 1≤ j≤K.  In this case, the addresses of the data structures associated with states 1R , …, KR  
are stored in an array.  The next pointer points to the first element of the array.  In order to find g(S, i), 
we need to count the total number of 1’s in the bitmap up to the thi  position if g(S, i) ≠  fail.  To reduce 
the processing time, one can maintain running sums of every 32 bits in the bitmap.  We assume in this 
paper that running sums are maintained for higher throughput performance.  For convenience, this 
compression scheme is referred to as the bitmapped AC. 

It was found that, on the AC automaton constructed for patterns of Snort database, it is highly likely that 
there is only one symbol σ  which satisfies g(S, σ )≠  fail  if state S is away from the root state.  
Therefore, path compression was introduced to squeeze as many such states as possible into a single state.  
On a 32-bit pointer machine, a maximum compression ratio of 4:1 can be obtained with the path 
compression technique since a path compressed state can contain data equivalent to 4 bitmap compressed 
states.  It was reported that in practice a 2.54:1 compression ratio is achieved. 

In [29], the Chinese Remainder Theorem (CRT) was applied to replace the process of counting the 

number of 1’s in a bitmap up to a certain position with a modulo operation.  Let 
1

K

j
j

M m
=

=∏ , where jm , 

1 j K≤ ≤ , are a group of integers that are relatively prime.  Further, let jx , 1 j K≤ ≤ , be an integer 

which satisfies 0 1j jx m≤ ≤ − .  According to CRT, there exists a magic integer {0,  1, ..., 1}X M∈ −  
such that  (mod )j jX x m≡ , 1 j K≤ ≤ . 

Consider state S and assume that g(S, jσ ) = jR ≠  fail for all j, 1≤ j≤K.  Let ( )j jT mσ = , where ( )T ⋅  
is a translation function from the symbol set to a numerical set.  The magic number X  which satisfies 

 (mod )jX j m≡ , 1 j K≤ ≤ , is stored associated with state S.   As a result, the counting process can be 
replaced with a modulo operation.  This scheme will be referred to as the bitmapped-CRT. 

A shortcoming of the bitmapped-CRT is that the magic number could be huge if a state has a large 
number of child states.  In this case, the storage requirement will be huge and the modulo operation may 
require many CPU cycles. 

3.2. Banded-row Format 
In the banded-row format [11], which is used in Snort, the row elements are stored from the first 

non-zero value (or non-fail value in the goto transition table) to the last non-zero value, known as band 
values.  For example, the banded-row format of the sparse vector (0 0 0 2 4 0 0 0 6 0 7 0 0 0 0 0) is (8 3 2 
4 0 0 0 6 0 7), where the first element indicates the number of vector elements stored, named bandwidth, 
and the second element represents the index (numbered from 0) of the first vector element stored followed 
by band values.  Since the next move table is normally not as sparse as the goto table, we choose to 
compress the goto table in this paper.  The corresponding pattern matching machine is referred to as the 
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banded-row format AC. 
It is likely that some band values are the fail message.  To reduce processing time, one can replace all 

band values with the results of the next move function so that no failure transition is necessary if the input 
symbol falls in the band.  We name such a modification enhanced banded-row format AC. 

3.3. AC-bnfa 
AC-bnfa is another alternative adopted by Snort for pattern matching.  As shown in Fig. 2(b),  

AC-bnfa stores for each state a transition list, which contains at least two words.  The first word (in 
current implementation, only the least significant 24 bits) stores the state number.  The second word, 
called control word, stores a control byte and the failure state which takes 24 bits.  The control byte 
contains one bit to indicate whether or not some patterns are matched in the state and another bit to show if 
the number of its child states, denoted by C, is greater than or equal to 64.  If C<64, then the succeeding C 
words are used to store the input symbols (1 byte) and the corresponding next states (3 bytes).  In case 
C≥64, a full array of 256 words is used to store all the possible input symbols and the corresponding next 
states.  The (input symbol, corresponding next state) pairs are searched sequentially if C≤5 or with binary 
search if 5<C<64.  A simple table lookup is sufficient if C≥64. 

3.4. HEXA 
HEXA is a compact data structure for representation of a directed graph with edges labeled by symbols in 

a finite alphabet [12].  In HEXA, a state is uniquely identified by the string of labeling symbols on the 
path leading to it, from the root state.  Consider a d-state directed graph.  A minimal perfect hash 
function η  is required to generate a unique number in [0, 1d − ] for each identifier.  Let id  be the 
identifier of state i .  The data structure for state i , stored in memory location ( )idη , consists of two bits 
to indicate whether or not there are left and right child states and perhaps some auxiliary information, 
depending on applications.  Finding a minimal perfect hash function is complicated for large values of d .  
The remedy suggested in [12] is to use perfect hash function which generates a unique number in [0, 1d − ] 
for each identifier for some d d≥ .  Additional bits, called discriminators, can be added as part of the 
identifiers to facilitate finding a perfect hash function. 

The directed graphs for pattern matching applications normally are cyclic, which implies the HEXA 
identifiers may become unbounded.  Fortunately, the AC automaton possesses the property that, for every 
state S , all paths of length j  leading to S  are labeled by the same string of symbols if j  is smaller 
than or equal to the length of the string representing state S .  This property enables the AC automaton to 
be represented with a variant of HEXA, called bounded HEXA (bHEXA).  Let u be the string that 
represents state S .  Any suffix of u can be used as the identifier of S .  As an example, consider the AC 
automaton in Fig. 1.  The possible identifiers for state 9 are  - (empty string), s, rs, ers, and hers. 

Different from HEXA, not all history input symbols are used to identify a bHEXA state.  The number of 
history input symbols needed is state-dependent.  Therefore, bHEXA has to indicate the state identifier 
lengths.  This increases memory space requirement.  However, the fact that a state has multiple choices 
for its identifier increases the probability of finding a perfect hash function using short discriminators or 
even without discriminators. 

Similar to the straightforward implementation of the AC algorithm, bHEXA stores the AC automaton, 
with the failure transitions eliminated, in a full two-dimensional table.  The major differences are 1) the 
size of the table is d by |Σ |, rather than d  by |Σ |, and 2) each element stored in the table is a state 
identifier length (and the additional discriminator, if used), rather than a state pointer of 2log d    bits. 
According to the experimental results provided in [12], the memory space requirement of bHEXA is about 
20-30% of that required by the straightforward implementation for several real world and randomly 
generated pattern sets. 
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3.5. ClamAV Implementation 
ClamAV [9] implements a variation of the AC algorithm.  It does not store the complete trie.  Instead, 

it limits the depth of the trie and partitions the patterns into groups so that two patterns are in the same 
group iff they have the same prefix of length equal to the depth of the trie.  All patterns in the same group 
are saved as a linked list.  In its current implementation, the depth is equal to two.  Fig. 2(c) shows an 
example for Y = {he, she, his, hers}.  Note that the next move function is used for non-leaf states 0, 1, and 
3 while the failure function (shown as dashed lines) is required for leaf states 2, 4, and 5.  When a leaf 
state is visited, all patterns on its linked list are checked sequentially. 

In [30], the Bloom filter was adopted to improve throughput performance of ClamAV implementation for 
situations where the majority of data do not contain any pattern.  This scheme, called Hash-AV+ClamAV, 
uses α  hash functions to build the Bloom filter.  The input of the hash functions is a string of β  bytes.  
The authors analyzed the length distribution of ClamAV signatures and suggested choosing 9β =  and 

4α = .  The four hash functions selected are “mask” [30], “xor+shift” [30], fast hash from hashlib.c [31], 
and sdbm [32]. 

In Hash-AV+ClamAV, a sliding window of β  bytes is used to move down the input text string during 
scanning.  The α  hash functions are applied sequentially to the β  bytes contained in the window.  
The first hash function is always applied while other hash functions are applied only if all the previous 
queries report hits.  The ClamAV implementation of pattern matching is invoked for verification iff all 
four query results are hits. 

Obviously, inserting all β -byte sub-strings starting at the first γ  offsets of all signatures into the 
Bloom filter allows the sliding window to be moved γ  bytes at a time.  However, the false positive 
probability will be increased.  Hash-AV+ClamAV uses this strategy and chooses γ  = 4. 

3.6. Wu-Manber Algorithm 
The WM algorithm [13] builds its own pre-filter and verification engine.  In the pre-filter, only the first 

m symbols of each pattern are considered, where m is the length of the shortest pattern.  Let 1
ip 2

ip … m
ip , 

1≤ i≤ y, represent the first m symbols of the thi  pattern and T = 1 2... nt t t  be the input text string.  A 
SHIFT table, a HASH table, a PAT_POINT list, and a PREFIX table are required in the WM algorithm.  
The SHIFT table is used to determine how many symbols in the text can be shifted from the current 
position.  The HASH and PREFIX tables and the PAT_POINT list are used when verification is needed.  
The SHIFT table is constructed with a hash function, denoted by hash, as shown below.  In the 
construction procedure, N  represents the number of entries in the SHIFT table and variable k , called 
block size, is a design parameter. 

 
Construction of the SHIFT table 
for h←1 until N do SHIFT[h] ←m－k+1; 
for j←1 until m－k+1 do 

begin 
for i←1 until y do 

begin 
h←hash( 1 1...j j j k

i i ip p p+ + − ); 
SHIFT[h]←m－k+1－j; 

end 
end 
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The PAT_POINT list is a list of pointers that point to patterns.  Let aP  and bP  be, respectively, the 

patterns pointed by PAT_POINT[i] and PAT_POINT[i+1].  Further, let 1 2... m
a a ap p p  and 1 2... m

b b bp p p  be the 
first m symbols of aP  and bP , respectively.  It holds that 1( ... )m k m

a ahash p p− +  ≤  1( ... )m k m
b bhash p p− + .  If 

SHIFT[h] = 0, then the thh  entry of the HASH table, HASH[h], contains a pointer which points to the first 
element of PAT_POINT list, say, PAT_POINT[j], such that the pattern P , with m-symbol prefix 

1 2... mp p p , that is pointed by PAT_POINT[j] satisfies 1( ... )m k mhash p p h− + = .  In case SHIFT[h]≠0, then 
HASH[h] = HASH[h+1].  Finally, the thj  entry of the PREFIX table, PREFIX[j], contains the hash value 
of the B-symbol prefix of the pattern pointed by PAT_POINT[j]. 

A search window of length m is used during scanning.  Initially, the search window is aligned with the 
input text string, i.e., the sub-string within the search window is 1 2... mt t t .  The last k symbols of the text 
string within the search window are hashed.  Let h be the hash value.  If SHIFT[h]≠0, then the search 
window is advanced by SHIFT[h] positions.  In case SHIFT[h]=0, the patterns pointed by PAT_POINT[j], 
HASH[h]≤  j < HASH[h+1], are candidate patterns and are verified sequentially.  The verification starts 
with hashing the first B symbols of the text string within the search window.  Let prefix  denote the hash 
value.  The pattern pointed by PAT_POINT[j], HASH[h] ≤  j < HASH[h+1], is checked against the text 
string directly if PREFIX[j] = prefix .  After verification, the search window is advanced by one position. 

 

 
(a) Bitmapped AC data structure. 

 

 
(b) AC-bnfa data structure. 

 
(c) The ClamAV trie structure. 

 
Fig. 2. Data structure of previous compression designs. 

 



8 
 

4. THE PROPOSED COMPRESSION SCHEME 
In our proposed compression scheme, we classify states according to the number of child states and 

whether or not patterns are matched.  Note that there might be a self-loop at the start state.  However, the 
goto graph becomes a tree after removing the self-loop, if exists.  In the following definitions, we ignore 
the self-loop and consider the goto graph as a tree. 

State R is said to be a child state of state S, and state S the parent state of state R, if there exists a symbol 
σ  such that g(S,σ ) = R.  State S is said to be a branch state, a single-child state, or a leaf state, if it has at 
least two child states, exactly one child state, or no child state, respectively.  Moreover, state S is said to 
be a final state if output(S) is not empty. 

The data structures for branch, single-child, and leaf states are different.  For a branch state S, we store 
f(S) and g(S,σ ) for all σ .  As a result, we still have a two-dimensional state transition table.  However, 
the number of rows is only equal to the number of branch states which is at most y−1 for y patterns.  The 
enhanced banded-row format AC is adopted to compress the two-dimensional table.  The resulting state 
transition table is named the Branch State Transition (BST) table. 

Assume that state S is a single-child state and g(S,σ ) = R ≠  fail.  According to the AC algorithm, it 
holds that the state number of R is that of S plus one.  Therefore, we need only store symbol σ , denoted 
by S.symbol, and f(S) for state S. 

For a leaf state S, we simply store f(S).  Of course, in addition to a type identifier, every state needs a 
flag to indicate whether or not it is a final state and, if it is, another data structure is required to emit the 
matched patterns.  The data structure used in this paper is linked list. 
As an example, assume that alphabet Σ = {a, b, c, d, e, f, g, h, i, j} and pattern set Y = {cabf, cabfdeghij, 
cabfgcbe, fgc, fgccabf, dabc}.  The corresponding goto graph of the original AC algorithm is shown in Fig. 
3.  There are only two branch states, namely, states 0 and 4. Assume that the symbols in Σ are sequentially 
encoded from 0 to 9.  The vector representing goto transitions for state 0 is (0 0 1 22 0 15 0 0 0 0) and is 
stored as (10 0 0 0 1 22 0 15 0 0 0 0) in our scheme.  Similarly, the goto transition vector for state 4 is (fail 
fail fail 5 fail fail 11 fail fail fail) and is stored as (4 3 5 0 15 11).  Note that both g(4, e) and g(4, f) result 
in the fail message and are replaced with δ (4, e) = 0 and δ (4, f) = 15, respectively. 

Consider state 15 which is a single-child state.  For this state, we need only store S.symbol = g and f(15) 
= 0.  Fig. 4 shows the data structures of our proposed compression scheme for this example. 

 

 
 

Fig. 3. The goto function for Σ = {a, b, c, d, e, f, g, h, i, j} and Y = {cabf, cabfdeghij, cabfgcbe, fgc, fgccabf, 
dabc}. 

 
Branch state Bandwidth Start index Band values 

0 10 0 0 0 1 22 0 15 0 0 0 0 
4 4 3 5 0 15 11       

 (a) The Branch State Transition (BST) table. 
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S 1 2 3 5 6 7 8 9 11 12 13 15 

S.symbol a b f e g h i j c b e g 
 

S 16 17 18 19 20 22 23 24 
S.symbol c c a b f a b c 

(b) Data structure for single-child states. 
 

S 1 2 3 4 5 6 7 8 9 10 11 12 13 
f(S) 0 0 0 0 22 0 0 0 0 0 16 17 0 

 
S 14 15 16 17 18 19 20 21 22 23 24 25 

f(S) 0 0 0 1 1 2 3 4 0 0 0 1 
(c) The failure function. 

 
S output(S) 
4 {0} 
10 {1} 
12 {3} 
14 {2} 
17 {3} 
21 {0, 4} 
25 {5} 

others ∅  
 (d) The output function. 

 
Fig. 4. Data structures of the proposed compression scheme for Σ = {a, b, c, d, e, f, g, h, i, j} and Y = {cabf, 

cabfdeghij, cabfgcbe, fgc, fgccabf, dabc}. 
 

The pattern matching machine for our proposed compression scheme is described below. 
 
Algorithm 1. Pattern matching machine for the proposed compression scheme. 
begin 

S←0;  i←1;   
while i≤n do 

begin 
if S is a branch state then 

begin 
if BST[S][1]≤ it ≤ BST[S][1]+BST[S][0]−1 then 

begin 
S←BST[S][2+ it −BST[S][1]]; 
if output(S)≠ ∅  then emit output(S); 
i← i+1; 

end 
else S← f(S); 

end 
else if S is a single-child state then 

begin 
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if it =S.symbol then  
begin  

S←S+1;  
if output(S)≠ ∅  then emit output(S); 
i← i+1; 

end 
else S← f(S); 
end 

else // S is a leaf state 
 S← f(S); 

end 
end 
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5. THE PROPOSED ARCHITECTURE 
In this section, we present an architecture to largely improve the throughput performance for situations 

where the majority of data do not contain any pattern.  This design philosophy should be acceptable 
because, in normal conditions, signature is a small fraction of malicious program, which in turn is a small 
fraction of total traffic.  An alternative design philosophy is to achieve high throughput performance in the 
worst case.  Such a design philosophy, however, could be costly. 

Our proposed pattern matching architecture consists of a pre-filter and a verification engine.  The 
pre-filter is designed based on Bloom filters and the verification engine is modified from the AC algorithm. 

5.1. Pre-filter Design 
As in the WM algorithm, only the first m symbols of each pattern are considered in the pre-filter.  Given 

block size k, there are m–k+1 membership query modules in our pre-filter design.  Every membership 
query module uses its own memory space.  Recall that 1 2... m

i i ip p p  are the first m symbols of pattern iP .  

The sub-string 1 1...j j j k
i i ip p p+ + − , 1 1j m k≤ ≤ − + , is a member stored in the thj membership query module.  

For convenience, these membership query modules are denoted by 
1MQ , 

2MQ , …, and 
1m kMQ − +
.  Different 

from the WM algorithm, our pre-filter design uses an array of bitmaps, rather than the SHIFT table.  
Similar to the WM algorithm, we use a hash function to construct our membership query modules.  The 

thh  bit of 
jMQ  is set to 1 iff there exists pattern iP  such that h = 1 1( ... )j j j k

i i ihash p p p+ + − . 
Again, a search window W of length m is used during scanning.  Initially, W is aligned with T so that the 

first symbol of T, i.e., 1t , is at the first position of W.  The last k symbols in W, i.e., 1 2...m k m k mt t t− + − +  at this 
moment, are used to query 1MQ , 2MQ , …, and 1m kMQ − + .  Let iqb  be the report of iMQ  and QB = 

1 2qb qb ... 1m kqb − +  denote the bitmap of current query result.  We observe that not only current query result 
but also previous ones are useful for filtering.  Therefore, we introduce the stateful concept in pre-filter 
design.  In our implementation, we use a master bitmap of size m−k+1 bits to accumulate results obtained 
from previous queries.  Let MB = 1 2mb mb … 1m kmb − +  represent the master bitmap.  Initially, we have 

imb  = 1 for all i, 1≤ i≤m−k+1.  After a query result is fetched, we perform MB = MB⊕QB, where ⊕  is 
the bitwise AND operation.  A suspicious sub-string is found and the verification engine is consulted if 

1m kmb − +  = 1.  The advancement of W is m−k+1 positions if imb = 0 for all i, 1≤ i≤m−k, or m−k+1−r 
positions if rmb  = 1 and imb  = 0 for all i, r<i≤m−k.  If W is decided to be advanced by g positions, MB 
is right-shifted by g bits and filled with 1’s for the holes left by the shift.  Fig. 5 shows the pre-filter 
architecture for m = 6 and k = 3.  A virtual membership query module 0MQ , which always reports a 1, is 
added to make the rightmost 1 detector function correctly. 

Note that the pre-filter can work correctly without the master bitmap (stateless).    In this case, only 
current query result is used to determine window advancement.  It is not hard to see that, with the master 
bitmap, W can be advanced by more positions.  It is worth to be pointed out that using the master bitmap 
is optimal in the sense that it is equivalent to utilizing all previous query results.  Proof of this important 
property, which can be found in [33], is omitted owing to space limitation. 
In general, performing multiple queries in each round can help to increase window advancement and 
reduce false positive probability.  However, it requires more processing time than performing only one 
query.  Assume that in each round L queries are performed with L different hash functions and L 
independent sets of membership query modules.  Similar to the single-query case, the last k symbols 
within W are used for multiple queries during scanning.  Let iQB , 1 i L≤ ≤ , represent the bitmap 

reported from the thi  query and 1 2 ... LQB QB QB QB= ⊕ ⊕ ⊕ .  The master bitmap is updated as 
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MB MB QB= ⊕ .  The window advancement and whether or not a suspicious sub-string is found are 
decided according to the value of MB in the same way as the single-query case.  The optimal value of L  
that maximizes throughput performance will be analyzed in Section 7. 
 

 
Fig. 5. The stateful pre-filter architecture for m = 6 and k = 3. 

 

5.2. Verification Engine Design 
To verify all candidate patterns simultaneously, we design the verification engine based on the AC 

algorithm.  Because of the adoption of pre-filter, the AC algorithm has to be modified.  The first 
modification, which concerns the goto function, is to delete the self-loop, if exists, at the start state.  The 
reason is that the task of consuming a symbol at the start state is taken over by the pre-filter.  The second 
modification is to omit the failure function because once the goto function returns the fail message, we 
know that the suspicious sub-string found by the pre-filter is a false positive.  The third modification is 
regarding the output function.  Assume that patterns iP  and jP  satisfy iP  = juP v , where u is a 
non-empty string.  Let S be the state represented by string juP .  In the original AC algorithm, output(S) 

includes pattern jP .  In our proposed architecture, pattern jP  is removed from output(S).  The reason is 
that if pattern jP  occurs in T, the pre-filter will notify the verification engine when the starting position of 
pattern jP  is aligned with the search window.  If output(S) includes pattern jP , then jP  will be 
detected for multiple times if juP  is a sub-string of T. 

Since the failure function is not necessary, all we need to store are the goto function and the output 
function.  The output function is simplified because at most one pattern is matched in each state.  
Another consequence of using pre-filter is that the space requirement of the goto function can be further 
reduced. 

We call single-child state R a first single-child state if its parent state is a branch state.  State S is said to 
be an explicit state if it is the start state, a branch state, a first single-child state, or a final state.  We store 
all patterns and some data structures for the explicit states.  The patterns are stored contiguously in the 
Compacted_Patterns file.  For example, if Y = {he, she, his, hers}, then the Compacted_Patterns file is 
heshehishers. 

For branch states, we store a transition table similar to the BST table presented in Section 4.  The only 
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difference is that the banded-row format, instead of the enhanced version, is used here.  This is because 
the fail messages should be kept so that the verification procedure ends at the right moment when a fail 
message is encountered. 

Assume that state S is a single-child state and is represented by string u.  State R is said to be a 
descendent state of state S if it is represented by uv (concatenation of u and v), where v is a non-empty 
string.  Furthermore, state R is said to be a descendent explicit state of state S if, in addition to being a 
descendent state of state S,  R is an explicit state.  State R is said to be the nearest descendent explicit 
state (NDES) of state S if state R is a descendent explicit state of state S and there is no other explicit state 
on the path from state S to state R. 

Suppose that state S is a first single-child state and state R is its NDES.  Let  lP  = uvr be the first 
pattern in pattern set which contains uv  as a prefix.  The data structure for state S includes S.position and 
S.distance, where S.position and S.distance represent, respectively, the position of the (| | 1)thu +  byte of lP  
in the Compacted_Patterns file and |v|, where |x| denotes the length of string x . If the start state or a final 
state is a single-child state, its data structure is the same as that for state S. 

Finally, for each leaf state, we store nothing but an identifier to indicate that all input symbols result in the 
fail message.  Of course, every explicit state needs a flag to indicate whether or not it is a final state and, if 
it is, the identification of the matched pattern is stored.  Note that the resulting goto graph after 
compression contains only explicit states.  As a result, the memory requirement is further reduced in 
comparison with the compression scheme presented in Section 4. 

Consider the same example studied in Section 4.  Fig. 6 shows our compressed goto graph. Compared 
with the figure shown in Fig. 3, one can see that the number of states is reduced from 26 to 12.  Note that 
the states on the compressed goto graph are renumbered such that S.NDES for explicit single-child state S 
is numbered S+1.  As an example, let S be state 7, a first single-child state.  Since state 8, represented by 
fgc, is the NDES of S with distance 2 and fgc is the first pattern which contains fgc as a prefix , we store 
S.position = 24 and S.distance = 2.  As another example, if S is state 8, we store S.position = 29 and 
S.distance = 4. 

States 0 and 2 are branch states while states 4, 6, 9, and 11 are leaf states.  The remaining states are 
either first single-child states or single-child final states.  Fig. 7 shows the data structures of our 
verification engine for this example. 

5.3. Pattern Matching Machine 
Let xc  be the thx  symbol in the Compacted_Patterns file.  The pattern matching machine for our 

proposed stateful architecture is described below.  In the description, ab  represents a binary string with 
bit b repeating a times, and 1g | (MB>>g) means the master bitmap is right-shifted by g bits and filled with 
1’s for the holes left by the shift.  Moreover, 1 2

z zqb qb ... 1
z
m kqb − +  are the bitmap of the query result reported 

from the thz  set of membership query modules when 1 1...i i i kt t t+ + −  is used as the input for query. 

 
Fig. 6. The compressed goto graph for Σ = {a, b, c, d, e, f, g, h, i, j} and Y = {cabf, cabfdeghij, cabfgcbe, 

fgc, fgccabf, dabc}. 



14 
 

 
Branch state Bandwidth Start index Band values 

0 4 2 1 10 fail 7 
2 4 3 3 fail fail 5 

(a) The BST table. 
 

S 1 3 5 7 8 10 
S.position 2 10 20 24 29 34 
S.distance 3 5 3 2 4 3 

(b) Data structure for first single-child states and single-child final states. 
 

S output(S) 
2 {0} 
4 {1} 
6 {2} 
8 {3} 
9 {4} 
11 {5} 

0, 1, 3, 5, 7, 10 ∅  
(c) The output function. 

 
cabfcabfdeghijcabfgcbefgcfgccabfdabc 

 (d) Compacted_Patterns. 
 

Fig. 7. Data structures of the verification engine for Σ = {a, b, c, d, e, f, g, h, i, j} and Y = {cabf, cabfdeghij, 
cabfgcbe, fgc, fgccabf, dabc}. 

 
Algorithm 2. Pattern matching machine for the proposed stateful architecture. 
begin 

i←m−k+1;  MB← 11m k− + ;   
while i≤n–k+1 do 

begin   
/* Pre-filter */ 
QB← 1 1

1 2qb qb ... 1
1m kqb − + ; 

for z←2 until L do QB←QB⊕ 1 2
z zqb qb ... 1

z
m kqb − + ; 

MB←MB⊕QB; // MB = 1 2mb mb … 1m kmb − +   
if 1m kmb − + =1 then 

         begin 
S←0; j← i−m+k; call Verification_Engine(S, j); 

end 
if 1 2mb mb … m kmb − = 0m k−  then g←m−k+1; 

else if 1 2mb mb … m kmb − = 1mb … 1rmb − 1 0m k r− −   
then g←m−k+1−r; 
i← i+g; MB← 1g | (MB>>g); 

end 
end 
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procedure Verification_Engine(S, j)  
begin 

while j≤n do 
begin 
    if output(S)≠ ∅  then emit output(S); 

if S is a branch state then 
begin 

if BST[S][1] ≤ jt ≤ BST[S][1]+ BST[S][0]−1 then 
begin 

if BST[S][2+ jt −BST[S][1]]≠ fail then 
begin 

S←BST[S][2+ jt −BST[S][1]]; 
j← j+1;  

end 
else // BST[S][2+ jt −BST[S][1]] = fail 

break; 
end 

else // jt < BST[S][1] or jt > BST[S][1]+ BST[S][0]−1 
break;  

end 
else if S is an explicit single-child state then 

begin 
x←S.position;  w←S.distance; 
if 1 1...j j j wt t t+ + − =

1 1...x x x wc c c+ + −

begin 
 then 

S←S+1; // S+1 is S.NDES 
 j← j+w; 
end 

else // 1 1...j j j wt t t+ + − ≠
1 1...x x x wc c c+ + −

break; 
 

end 
else // S is a leaf state  

break; 
end 

end 
 

The number of memory accesses required by each type of state is analyzed below.  Assume that four 
bytes are fetched in a memory access.  For a branch state, to process one byte, we need one memory 
access to obtain bandwidth (two bytes), the index of the first vector element stored (one byte), state type 
(two bits), and the final state indication (one bit).   Another memory access is required if the input symbol 
is within the band.  Of course, we need one more memory access for the identification of the matched 
pattern (two bytes) if the state is a final state.  Therefore, a branch state requires one to three memory 
accesses.  For an explicit single-child state S, S.distance bytes are processed with at most 

.distance/4 3S +    memory accesses, where     is the ceiling function.  More specifically, we need one 
to obtain state type, S.distance (two bytes), and the final state indication (one bit), another one to get 
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S.position (four bytes), up to .distance/4S   to reach S.NEDS, and one for the matched pattern if state S is 
a final state.  For a leaf state, we need one memory access to obtain state type and the identification of the 
matched pattern.  Since the operations are quite simple, the proposed architecture is also suitable for 
hardware implementation. 
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6. COMPARISON WITH RELATED WORKS 
In this section, we compare the performances of the investigated pattern matching algorithms. All 

algorithms are implemented in C++ and the experiments are conducted on a PC with an Intel Pentium 4 
CPU operated at 2.80GHz with 512MB of RAM.  Patterns are selected from ClamAV database.  The AC 
algorithm without compression cannot handle the full set of ClamAV signatures because of the explosion 
of its memory space requirement.  Therefore, we conduct the first simulation with 5,000 randomly 
selected signatures.  The minimum, maximum, and average lengths of the selected signatures are 10, 163, 
and 34.26 bytes, respectively.  The total number of states d  generated by the AC algorithm is 158,743.  
Since the shortest pattern is 10 bytes, we set search window length m = 10.  Selection of block size  k 
impacts false positive rate and average window advancement.  The false positive rate tends to be large for 
a small value of k  and the average window advancement is small for a large value of k .  Our 
experimental results show that 4k =  is a good choice.  The size (in bits) of a membership query module 
N, or equivalently, the number of entries in the SHIFT table, is 162  which results in a false positive 
probability of approximately 0.0734.  For a fair comparison, we set the pre-filter size of the 
Hash-AV+ClamAV scheme to be 192  bits since it uses only one membership query module.  For β =9, 
the Hash-AV+ClamAV scheme requires a “two-scan” approach.  That is, Hash-AV+ClamAV is first 
performed for signatures longer than or equal to β +3 bytes and then ClamAV is run for the rest of the 
signatures.  To avoid the “two-scan” mode, we remove signatures shorter than β +3 bytes for the 
Hash-AV+ClamAV scheme.  We compare the basic version of our proposed architecture, i.e., one query 
per round, with various related pattern matching algorithms.  A simple hash function is adopted for our 
proposed pre-filter.  Let 1 2 3i i i it t t t+ + +  be the data block to be hashed.  The hash function generates 3i it t +  
as the hash result.  The effect of multiple queries per round will be studied in the next section. 

We implemented a reduced version of bHEXA to avoid using a complicated perfect hash function to 
speed up the matching procedure. The order to generate the identifiers of states is described below.  The 
identifier of state S is generated before that of state R if the representing string of S is shorter than that of 
state R.  If the lengths of the representing strings of states S and R are identical, then the identifier of state 
S is generated before that of state R if S is created earlier than R, according to the AC algorithm.  Let u be 
the representing string of state S.  We choose v as the state identifier of S iff v is the shortest suffix of u 
that is different from the identifiers already generated.  Note that the identifier of the start state is the 
empty string.  As for memory requirement, we let d d= = 158,743.  The number of bits required to 
represent state identifier lengths increases as the maximum length of state identifiers increases.  In our 
implementation, patterns which generate states with identifier lengths greater than 7 are deleted so that 3 
bits are sufficient to represent the identifier lengths.  The number of patterns deleted is 1,431.  No 
discriminators are used.  To speed up the matching procedure, we use simple bitwise operations as the 
hash function η , rather than a perfect hash function, which often requires complicated computations.  To 
avoid memory collision, we only store the data structures of the states generated by 20 representative 
patterns out of the remaining 3,569 patterns.  Note that the memory requirement is kept at d d=  entires.  
Obviously, the memory requirement and the processing time of such a reduced implementation should be 
less than those of the original bHEXA scheme. 

The performance of the AC algorithm using goto and failure functions is close to that of the one using the 
next move function.  Therefore, we only show the performance of the AC algorithm using the next move 
function.  Similarly, we omit the performance of the banded-row format AC and the bitmapped-CRT 
because the enhanced banded-row format AC performs slightly better than the former and the latter does 
not provide significant improvement over the bitmapped AC.    Using path compression technique tends 
to increase processing time of bitmapped AC and thus its performance is also omitted.  We name our 
proposed compression scheme presented in Section 4 the compressed AC and the stateful architecture in 
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Section 5 the Pre-filter+AC scheme.  Table I summarizes the processing time for each algorithm when 
scanning various types of files that contain no patterns.  The processing time for scanning a file with 
pattern occurrence at position n is roughly the same as that for scanning a clean n-byte file if an algorithm 
halts when a match is found. 

As shown in Table I, AC-bnfa and bimapped AC require relatively high processing time.  This is 
because the former needs linear or binary search to perform state transition and the latter needs to compute 
the population count in a 32-bit bitmap. 

 
TABLE I 

PROCESSING TIME FOR SCANNING VARIOUS TYPES OF FILES AND MEMORY 
REQUIREMENT 

Processing time (ms) 

 Schemes 

AC-bnfa ClamAV Bitmapped 
AC 

reduced 
bHEXA 

Enhanced 
banded-row 
format AC 

Compressed 
AC 

Hash-AV + 
ClamAV AC WM Pre-filter 

+ AC 

scanned 
files 

AC.cpp 
(4KB) 1.40 1.08 1.09 0.77 0.77 0.77 0.64 0.63 0.62 0.31 

list.txt 
(10KB) 2.66 2.18 1.72 1.57 1.39 1.26 1.44 1.26 1.24 1.16 

index.htm 
(78KB) 16.26 18.27 9.84 9.19 6.41 5.64 5.76 5.32 5.75 5.15 

bootcfg.exe 
(186KB) 32.98 36.54 22.68 20.75 15.94 13.76 15.98 12.02 14.22 11.10 

wmvcore.dl
l (2.2MB) 431.10 419.38 321.25 238.27 209.85 182.06 167.84 153.91 133.28 113.59 

Memory requirement 
(M bytes) 2.46 0.32 7.83 15.24 3.47 1.82 0.39 162.92 0.39 0.91 

 
The ClamAV scheme has to check all patterns on the associated linked list using sequential string 

comparisons, whenever a leaf state is visited.  The checking procedure is quite time-consuming when the 
linked list contains a large number of patterns.  Therefore, the ClamAV scheme also requires relatively 
high processing time.  The Hash-AV+ClamAV scheme improves the performance of the ClamAV 
scheme. 

The processing time of bHEXA is larger than that of the AC algorithm.  This is because bHEXA has to 
extract history input symbols and perform a hash function to generate the memory location which contains 
information of the next state. For the enhanced banded-row format AC, every success transition requires 
memory access and computation to obtain the updated current state.  By contrast, for the compressed AC, 
the current state for a success transition can be easily updated by increasing the current state number by one 
when a single-child state is visited.  That is the reason why the compressed AC requires less processing 
time than the enhanced banded-row format AC.   

The AC, the WM, and the Pre-filter+AC schemes yield the best performance on processing time among 
all investigated schemes.  The main reason for the AC algorithm is that it uses the non-compressed state 
transition table and, therefore, the updated current state can be obtained without any decompression 
operations. 

To evaluate the performance of our proposed Pre-filter+AC scheme under various fractions of malicious 
traffic, we replaced some content (at random locations) of a Windows’ executable of size 2.2MB with 10, 
100, or 1000 signatures.  If the average size of a malicious program is 1K bytes, then the fraction of 
malicious traffic is about 0.45%, 4.5%, or 45% for 10, 100, or 1000 signatures, respectively.  The 
experimental results are shown in Fig. 8.  The processing times of the AC algorithm are also shown for 
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comparison.  The figure shows that the processing time of the Pre-filter+AC scheme increases as the 
number of signatures in the scanned file increases.  However, it is still faster than the AC algorithm. 

 

 
Fig. 8. Processing time for scanning files with different numbers of signatures. 

 
Memory requirements of the investigated schemes are provided in the last row of Table I.  All schemes 

with compressed data structures require acceptable memory space. Our proposed Pre-filter+AC scheme 
requires less than 1M bytes, including 64K bytes for pre-filter, 172K bytes for patterns, and 674K bytes for 
data structures of the modified AC automaton.  Since the proposed Pre-filter+AC scheme and the WM 
algorithm yield the best throughput performance with acceptable memory requirement, in the next 
experiment, we compare these two schemes with full rule set. 

As of June 2010, there are 29,179 string signatures contained in ClamAV database.  The minimum, 
maximum, and average lengths of the signatures are 10, 210, and 66.43 bytes, respectively.  Since the 
shortest pattern is still 10 bytes, we use m = 10 again. For the full rule set, the time required to construct the 
data structure of the proposed Pre-filter+AC scheme is 1812 ms.  The construction is needed only in the 
beginning or when the rule set is changed. 

Table II shows the memory requirement comparison of the Pre-filter+AC scheme and the WM algorithm 
for different values of N.   As one can see, when N is small, the WM algorithm requires less memory 
space than the Pre-filter+AC scheme.  However, the memory requirement of the WM algorithm grows 
rapidly as N increases.  By contrast, the growth for the Pre-filter+AC scheme is relatively slow.  When N 
= 222 , the memory requirement for the Pre-filter+AC scheme is 59.5% of that for the WM algorithm.  
The percentage decreases as N increases.  This is because the memory requirement for the verification 
engine in the Pre-filter+AC scheme is not influenced by the value of N, while that in the WM algorithm is. 

 
TABLE II 

MEMORY REQUIREMENT COMPARISON FOR DIFFERENT VALUES OF N 
Memory requirement N 

(M bytes) 162  182  202  222  

Schemes Pre-filter + AC 4.58 4.78 5.56 8.71 
WM 2.25 2.84 5.20 14.64 

 
Both schemes need to store the pattern set.  The Pre-filter+AC scheme uses Compacted_Patterns file, 

which requires 1.94M bytes.  The WM algorithm needs slightly larger memory space because an ending 
symbol is required for each pattern.  The pre-filters of both schemes take 0.06M, 0.26M, 1.04M, and 
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4.19M bytes of memory for N = 162 , 182 , 202 , and 222 , respectively.  The verification engine of the 
Pre-filter+AC scheme requires 2.58M bytes, independent of N.  For the WM algorithm, the verification 
engines takes 0.22M, 0.61M, 2.19M, and 8.48M bytes of memory for N = 162 , 182 , 202 , and 222 , 
respectively. 

Fig. 9 shows the processing time comparison of the Pre-filter+AC scheme and the WM algorithm for 
different values of N.  The scanned file is a Windows’ executable of size 2.2MB.  As one can see, the 
Pre-filter+AC scheme needs less processing time than the WM algorithm.   The reasons are: 1) the 
stateful concept allows the search window to be advanced more in comparison with the stateless design, 
and 2) the verification engine in the Pre-filter+AC scheme checks all candidate patterns simultaneously, 
while that in the WM algorithm needs to check them one by one. 
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7. ANALYTICAL COMPARISON WITH WU-MANBER ALGORITHM 
In this section, we analyze and compare the performances of the WM algorithm, the proposed stateful 

architecture, and the stateless version.  The average window advancement per unit time, which determines 
achievable throughput, is selected as performance metric.  For simplicity of analysis, we assume that 
symbols in patterns and input text string are independent, uniformly distributed over alphabet.  Recall that 
the query result QB = 1 2 ... LQB QB QB⊕ ⊕ ⊕ = 1 2qb qb ... 1m kqb − + .  Let ρ  represent the probability of 

1iqb =  for any i , 1 1i m k≤ ≤ − + .  We have [1 (1 1/ ) ]y LNρ = − − .  Let LG  denote the random 
variable of window advancement for a round of L queries.  The average window advancement, denoted by 

LG , can be evaluated by 
 

1

1
( )

m k

L L
g

G gP G g
− +

=

= =∑  (1) 

where ( )LP G g=  is different for different algorithms. 
 

 
Fig. 9. Processing time comparison for different values of N. 

 

7.1. Pre-filter Performance 

We use hT  to represent the average time consumed in one query.  As a consequence, the average time 
spent in a round of L queries is hLT  and /( )hLG LT  determines pre-filter throughput.  It is reasonable to 

assume that hT  is the same for algorithms that use the same set of L hash functions.  Assuming that all 
investigated algorithms use the same set of hash functions, we can conclude that pre-filter throughput is 
proportional to /LG L .  The optimal value of L which maximizes throughput satisfies 

L= arg max{ / }H
H

G H . (2) 

We derive LG  for the WM algorithm, the proposed stateful architecture, and the stateless version below. 
 
7.1.1. The Wu-Manber Algorithm 

Conceptually, the window advancement decided by the SHIFT table in the WM algorithm is equivalent 
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to that decided by the stateless version of our proposed architecture, except that the window is advanced by 
only one position if 1 1m kqb − + = .  Therefore, we have 
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and LG  can be obtained from (1) and (3). 
 

7.1.2. 
For the stateless version of our proposed architecture, the bit 

The Stateless Architecture 
1m kqb − +  is not involved in determining 

window advancement.  Consequently, we have  
1
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Similarly, LG  can be obtained from (1) and (4).  Note that the average window advancement of this 
architecture is greater than that of the WM algorithm.  The reason is that when 1 1m kqb − + = , the window 
advancement of the WM algorithm is always one and it can be greater than one for our algorithm. 

  
7.1.3. 

For the proposed stateful architecture, we use Markov chain to analyze the average window advancement.  
Again, the bit 

The Stateful Architecture 

1m kmb − +  is not involved in determining window advancement.  The states of the Markov 
chain correspond to the values of 1 2... m kmb mb mb − , the left m−k bits of MB  after bitwise ANDing with 
QB  (but before the right shift).  As a result, there are 2m k−  states on the Markov chain.  Since the 
symbols in patterns and input text string are independent, uniformly distributed over alphabet, the Markov 
chain is homogeneous. 

Let lX  be the state after the thl  round of queries.  Further, let , 1( | )i j l lp P X j X i+= = = , 

0 ,  2 1m ki j −≤ ≤ − , denote state transition probabilities and 0 1 2 1
( ,  ,  ..., )m kπ π π − −

Π =  represent the stationary 

probability distribution. Given ,i jp , one can compute Π  and then LG  can be obtained by 
2 1

0
=

m k

L i i
i

G gπ
− −

=
∑ , (5) 

where ig  is the window advancement under the condition that current state is state i. 
Instead of using complicated expressions for general cases, we explain the derivation of ,i jp  with an 

example which assumes m = 10 and k = 4.  For this example, there are 64 states on the Markov chain.  
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Let states 0, 1, …, and 63 correspond to 1 2 6...mb mb mb  = 000000, 000001, …, and 111111, respectively.  
We demonstrate the calculation of ,i jp  for i = 1 and 0 ≤ j ≤ 63 here.  State 1 corresponds to 

1 2 6...mb mb mb  = 000001.  As a result, the window will be advanced by 1 position and the content of MB  
becomes 1000001.  After bitwise ANDing with QB = 1 2 7...qb qb qb , MB  becomes 1 700000qb qb  and the 
updated 1 2 6...mb mb mb  is 100000qb .  The next state j is state 0 if 1qb = 0 or state 32 otherwise.  
Therefore, we have 

1,

1 ,    if  = 0
,        if  = 32

0,         if  = 1, 2, ..., 31, 33, ..., or 63
j

j
p j

j

ρ
ρ
−

= 



. (6) 

7.2. Overall System Performance 
Let LC  be the average time spend on L queries and verification, if needed.  /L LG C  determines 

achievable system throughput and the optimal value of L which maximizes throughput is given by 
L= arg max{ / }H H

H
G C . (7) 

Let vT  represent the average time consumed in verification.  In the WM algorithm, verification is 
required when the window advancement decided by the SHIFT table is 0.  In the proposed stateless 
architecture, verification is required when 1 1m kqb − + = .  Note that the two conditions are equivalent.  For 
the proposed stateful architecture, verification is required if 1m kmb − + =1 after bitwise ANDing with QB.  
Since 1m kmb − +  is always 1 before bitwise ANDing with QB, the probability of 1m kmb − + =1 after bitwise 
ANDing with QB is equal to P( 1m kqb − + =1).  Therefore, we have 

1( 1)h v h vL m kC LT P qb T LT Tρ− += + = = +  (8) 

for the WM algorithm and the proposed stateless and stateful architectures.  Note that the value of vT  
depends on number of patterns and the verification algorithm.  We shall study numerically the optimal 
value of L in the next sub-section. 

7.3. Numerical Results 
The throughput performance depends on the values of m, k, N, y, and L.  To find the optimal value of L 

that maximizes throughput, we fix the other parameters.  For m = 10, k = 4, N = 213

/LG L

, and y = 10,000, L = 1 
satisfies (2) that maximizes pre-filter throughput for the WM algorithm and the stateless/stateful 
architectures.  Therefore, we choose L = 1 to compare pre-filter throughput, which, as mentioned before, 
is proportional to .  Fig. 10 shows the results for various pattern numbers. 

As one can see in Fig. 10, the proposed pre-filter with master bitmap (stateful) outperforms both the 
proposed pre-filter without master bitmap and the pre-filter of the WM algorithm (stateless).  This is 
because previous query results, in addition to the current one, are used to determine window advancement 
in the stateful design.  Besides, the proposed pre-filter without MB outperforms the pre-filter of the WM 
algorithm.  The reason has been mentioned in Section 7.1.2. 

The experiment shows that hT  = 4.90 × 10-5
vT ms and  =  2.55 × 10-4 ms for our proposed 

algorithms with the same values of m, k, N, and y above.  From (7), the optimal L that maximizes system 
performance of the stateful architecture is 4.  To demonstrate the effect of multiple queries in each round, 
we conduct experiments to compare the processing times for the stateful architecture with L = 1 and L = 4.  
Fig. 11 shows the results for various file sizes.  One can note that the implementation with L = 1 requires 
about 1.7 times the processing time of that with L = 4.  The processing time of the WM algorithm is also 
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provided in the figure for comparison.  The WM algorithm requires about 1.3 and 2.2 times the processing 
time of our proposed stateful architecture with L = 1 and L = 4, respectively. 

 

 
Fig. 10. Pre-filter performance comparison for various pattern numbers. 

 

 
Fig. 11. Processing time comparison for scanning random texts with various sizes. 
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8. CONCLUSION 
In this paper, we first present a novel implementation of the Aho-Corasick pattern matching algorithm 

that significantly compresses the required data structure.  In the implementation, we reduce the 
two-dimensional state transition table so that its memory requirement is proportional to the number of 
patterns instead of the total length of patterns.  Then, we propose an architecture that further reduces the 
memory requirement and achieves high throughput performance.  In the architecture, we introduce the 
stateful pre-filter concept and present an AC-based verification engine which can check all candidate 
patterns simultaneously.  Master bitmap with simple shift and bitwise AND operations is used to 
efficiently implement the stateful pre-filter concept.  Such a simple implementation is optimal because it 
is equivalent to utilizing all previous query results. 

The performances of different pre-filter designs are evaluated both mathematically and numerically.  
The effect of multiple queries in each round is also studied.  Results show that the proposed pre-filter with 
master bitmap (stateful) outperforms both the proposed pre-filter without master bitmap and the pre-filter 
of the widely used Wu-Manber algorithm (stateless).  In addition to the Wu-Manber algorithm, various 
related worksare compared with our proposed schemes.  The stateful architecture performs the best in 
terms of both memory requirement and processing time among the schemes that yield satisfactory 
performance for both metrics.  Therefore, for applications that require high throughput performance with 
memory space constraint, e.g., an embedded security appliance in a high-speed network environment, our 
proposed stateful architecture is the preferable choice. 

Clearly, a larger value of search window length gives a better throughput performance.  However, the 
length of search window is upper bounded by the length of the shortest pattern.  Consequently, a virus 
expert, if possible, should avoid short patterns in deriving signatures to improve performance and reduce 
false alarms.  An interesting further research topic is to implement and compare the performances of 
various pattern matching algorithms on multi-thread, multi-core processors. 
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