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Averaging and Cancellation Effect of High-Order
Nonlinearity of a Power Amplifier
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Abstract—Nonlinear distortion of a power amplifier (PA) due to
the nonlinear input-output transfer function is studied. The high-
order nonlinearity or Fourier components of the output, due to
the mixing of input signals, are found to be related to an average
integral related to the transfer function, thus giving insight to the
cancellation effect of the nonlinearity. A simple formula has been
derived to relate the th-order Fourier component of a nonlinear
transfer function with a sinusoidal input to an average integral of
the th-order derivative of the transfer function. The large signal
nonlinear distortion of the th-order can therefore be regarded
as a weighted average of the th-order derivative of the transfer
function. For PAs, the averaging effect gives rise to local minima in
the intermodulation distortion terms during power sweep because
of the cancellation of the positive part and the negative part of the
derivative during averaging. We have applied the formula to InGaP
heterojunction bipolar transistors PAs and are able to explain most
of the observed nonlinear phenomena of the amplifiers.

Index Terms—Fourier transforms, heterojunction bipolar tran-
sistors (HBT), intermodulation distortion (IMD), nonlinear distor-
tion, power amplifiers (PAs).

I. INTRODUCTION

NONLINEAR distortion plays a crucial role in the perfor-
mance of a power amplifier (PA). For modern communica-

tion systems, nonlinear mixing of different carrier frequencies
gives rise to undesirable sidebands that are difficult to be filtered
out. High-order nonlinearity, however, depends on many factors
including the device characteristics, the circuit design, the op-
eration environment, etc., making it very difficult to understand
analytically [1], [2].

Traditional ways using Volterra series together with
Taylor expansion provides a simple means to understand
the small-signal intermodulation distortion (IMD) and the
weakly nonlinear behavior of a device. But it loses its validity
at large signal operations. To know the large signal behavior,
one is usually forced to use circuit simulations, where true phys-
ical meanings are often lost in the complicated calculations.
Some have developed computational techniques and approxi-
mation schemes to tackle this large signal nonlinear problem
[3]–[6]. Others have tried to understand it phenomenologically,
usually through small-signal expansion and circuit simulations
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[7]–[14]. Although many nonlinear behaviors of various de-
vices can be explained successfully, a good physically based
mathematical model is lacking.

One of the most interesting and puzzling things in the high-
order IMD behavior is the local minima or dips in the power
sweeps of the IMD curves. Previous work has tried to link this
phenomenon with small-signal sweet spot and/or some other
cancellation effects [11], [15]–[23]. However, a sound physical
understanding is still needed.

While the small-signal sweet spots are well defined by the
zero points of the third derivative of the output transfer function
with respect to the input, the dips, or the large signal sweet spots
have not been clearly defined mathematically. In this work, we
try to provide a mathematical foundation for this large signal
phenomenon. A simple formula was derived based on first prin-
ciple Fourier analysis. It relates the th-order nonlinearity to
an average integral of the th derivative of the output transfer
function. The theoretical analysis given in this paper deals di-
rectly with the nonlinear – transfer function of a device. The
more complicated reactant components which give rise to non-
linear dynamic effects are not considered. Although the analysis
represents an idealized situation, it provides insight and under-
standing to the behavior of large signal nonlinearity of the de-
vice. The result explains clearly the cancellation or averaging
effect in the IMD behavior.

II. FOURIER COMPONENTS AND AVERAGE INTEGRAL

To make the problem simple, we assume in the following
analysis that the nonlinearity comes from a memoryless non-
linear transfer function, i.e., an – relationship :

(1)

Under harmonic modulation

(2)

where and . For a single tone input, the
th-order harmonic of the output is simply the th-order Fourier

component

(3)
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Fig. 1. Weighting functions for the first four harmonic distortion terms. Notice
the curve gets narrower as the order of the distortion is higher.

Here HD stands for harmonic distortion. However, it is often
difficult to visualize this equation through the integration in the
time domain. Since all the information is in the transfer function
itself, it is easier to look at the property of the function with the
input voltage as the variable. We have derived a very interesting
formula, which relates each harmonic term with an average in-
tegral with respect to the input voltage. Letting the modulation
signal , we can show that (3) is equivalent to (see
Appendix A)

(4)
The integration is now performed in the domain of the input

voltage. We can see that the th-order harmonic is simply
an average of the th-order derivative of the transfer func-
tion over the input voltage swing with a weighting function,

. It is noticed that this weighting
function is symmetrical and centered at the bias point . This
property is important because the averaging would not be
meaningful if the weighting function is not well behaved. Fig. 1
shows the weighting function for the first four harmonics. We
can see that the maximum of the function is at the bias point,

, and because of the shape of this function, the center
portion of the voltage swing is more important than the edge
when the average integration is performed using (4). For higher
order harmonics, the weighting function becomes narrower, so
the effective average range also becomes smaller.

When the input has two tones, i.e.,
, the nonlinear response of the transfer function gives

rise to various orders of intermixing of the input signals. The
output is represented by

(5)

where and . If is not a rational
number, , the strength of the intermixed signal at

, is the Fourier coefficient expressed by [24]

(6)

Similar to (4), by letting and , we
can also prove that this integral is the same as shown in (7) at
the bottom of the page. The intermodulation component of the

’s order is still an average of the transfer function’s
th-order derivative, but it is done in two dimensions.

So for large signal modulations, no matter whether it is single
tone or multi-tones, we can visualize the nonlinear distortion
by looking at the weighted average of certain derivative of the
transfer function in the range of the voltage swing.

III. THIRD HARMONIC DISTORTION AND IMD DISTORTION

Now let’s focus on the third-order IMD with two-tone exci-
tation. Equation (7) becomes

(8)

The average is taken for the third derivative of the transfer func-
tion, which is the same as the third-order harmonic for a single
tone input. In the small-signal limit, the derivative term can be
taken out from the integral and (8) reduces to

(9)

This result is the same as that obtained by Volterra expansion
using Taylor series. For single tone input, the third-order har-
monic distortion, according to (4), is

(10)

(7)
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Fig. 2. Transfer function and its third derivative as functions of V . (the
transfer function is the I–V of an HBT curve along a load line).

At the small-signal limit, it reduces to

(11)

Comparing (9) with (11), we find there is a factor of three
difference between the two. At the same input power, however,
these two values are about the same because the voltage swing,

, for two tone input shown in (9) is times that of the
swing for a single tone input in (11). At large signals, because
the weighting functions are different, the single tone will
be different from the two-tone IMD3. However, because both
nonlinear distortions ((8) and (10)) are based on some kind of
averaging effect of the third-order derivative of the transfer func-
tion, the physics of the two is basically the same.

For simplicity, we use shown in (10) to illustrate the
averaging effect of the third-order nonlinear distortion in the
following. InGaP/GaAs HBT PAs are used here as examples.
These amplifiers are designed for high power and high linearity
applications [25]. By examining the third derivative of the –
relationship, we know that the nonlinearity of a bipolar tran-
sistor mainly comes from two parts of the – curve. One is
from where the device is turned on, the other is from where the
device reaches saturation [7]. Fig. 2 shows the transfer function
and its third derivative of an InGaP HBT when the device op-
erates along a certain load line. The emitter size of the device
is 24 m and the emitter resistance, which includes a ballast
resistor, is 80 . From the exponential – relationship of a
bipolar transistor (before saturation)

(12)

the third derivative is

(13)

where . This function goes to zero when the cur-
rent is both very low and very high, and is significant when
is close to . It goes from positive to negative when

Fig. 3. Integrand of (10) for an input voltage swing of 0.1 V at several bias
voltages. V o = 1:2 V is below, 1.3 V above and 1.243 V at the small-signal
sweet spot.

crosses . This zero crossing point corresponds to the
small-signal IMD sweet spot according to (9) and (11). This
point also corresponds approximately to the point where the de-
vice is turned on.

Because the third derivative of the transfer function can be
either positive or negative, the average integrals shown in (8) and
(10) give a cancellation effect as the voltage swings across the
positive and the negative regions. To illustrate such effect, we
show in Fig. 3 the integrand of (10) for a voltage swing of

V at several different bias voltages. The collector current and
its third derivative are shown in the inset. When the bias point (at
1.2 V) is below the small-signal sweet spot, the positive portion
of the integrand is larger than the negative portion, so the net
integral yields some HD or IMD with a positive sign. When the
bias point (at 1.3 V) is above the sweet spot, the negative portion
is larger than the positive portion. The integral in (10) gives a net
negative value, also contributing to HD or IMD. When the bias
point is at the sweet spot, V, the positive part of the
integrand is close to the negative part. So the resulting integral
becomes very small and it results in a very small HD or IMD
value. It should be noticed, because the third derivative of the
current is not symmetrical with respect to the sweet spot, the
cancellation effect would not be very good if the voltage swing
is large. In other words, the small-signal sweet spot does not
corresponds to a null IMD or HD for large signal operations.

Let’s now pick a bias point above the small-signal sweet spot
but not too much away, say V, corresponding to a
typical class AB operation. The integrands of (10) at different
voltage swings are shown in Fig. 4. When the voltage swing is
small ( V, 0.1 V), the negative part of the integrand
is larger than the positive part. When the voltage swing is large
( V), the positive part becomes dominant. When the
swing is at 0.2 V, the area of the positive portion is close to that
of the negative portion. So the average integral of (10) gives rise
to a dip in the third-order distortion in a power sweep.

The output of the fundamental frequency can be also calcu-
lated using (4) by taking the first-order term, i.e., . In
this way most of the characteristics of the amplifier can be cal-
culated. Fig. 5 shows the calculated and the component
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Fig. 4. Integrand of (10) at V o = 1:26 V but with different input voltage
swings.

Fig. 5. Calculated fundamental output and the third-order harmonic distortion
versus input power at V o = 1:26 V. Several input voltage swings are marked
on the curve.

for the fundamental frequency (FD) versus the input power at a
bias V. A clear dip in this distortion curve is clearly
seen. The four points corresponding to the four different input
voltage swings shown in Fig. 4 are marked on the curve. The dip
position corresponds to approximately an input swing of 0.2 V,
which is the input swing that gives a very small average integral
mentioned above.

It is also noticed that besides the dip caused by the device
turn-on, there is another dip, which is much sharper and nar-
rower, at high power levels. This is due to the large swing in
the third derivative when the device is close to saturation (see
Fig. 2). We can show from (10) that at the limit of very large
voltage swing, the ratio of (FD being the fundamental
frequency amplitude) tends to an asymptotic value of (see
Appendix B). This is the same as what Pedro has derived [7].
There is a 180 phase difference between the term and the
FD term. So for any input power level that gives a positive av-
erage integral, there will be a dip in the distortion curve before
the device goes to saturation, because it has to go negative at full
saturation.

The behavior of the third-order distortion versus power de-
pends on the bias point very much. If the bias point is at or below
the small-signal sweet spot, corresponding to class B or class C

Fig. 6. Calculated third-order harmonic distortion versus the output power of
the fundamental frequency. V o =1.24, 1.26, and 1.29 V.

Fig. 7. Calculated third-order harmonic distortion versus the output power of
the fundamental frequency. V o =1.25, 1.26, and 1.27 V.

operation, the average integral will always be positive before
saturation (see Fig. 3). In these situations, the dip at low powers
will no longer be visible. On the other hand, if the bias point
moves way above the small-signal sweet spot, high class AB or
class A operations, the average integral will always be negative
as power increases. In this case, not only the first dip disappears,
the second dip at high powers also becomes not clear. When
is biased with a value slightly higher than the small-signal sweet
spot, a dip associated with the device turn-on at mid power levels
appears. In this situation, one can take advantage of the distor-
tion dip to design a high linearity amplifier. The effect of the
bias point on the overall third-order linearity is shown in Fig. 6,
where the third-order distortion is shown as a function of output
power. Three bias points corresponding to the three situations
described above were chosen to show the effect.

For class AB amplifiers, where most PAs operate, the dip
position can be changed by the bias point. It moves to higher
power levels as the bias increases. This effect is shown in
Fig. 7. We have compared the experimentally measured results
with the calculated results based on the simple formula pre-
sented in this paper. Fig. 8(a) shows the measured IMD3 as a
function of output power (at 2.14 GHz) of a PA based on the
28 V InGaP/GaAs HBT technology [25]. The power sweep
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Fig. 8. (a) Measured IMD3 of a 28 V InGaP/GaAs HBT PA at different quies-
cent currents. (b) Calculated curves based on the formula presented in this work.

was made for four different quiescent currents. The quiescent
current is directly related to the Vbe bias point, which is used
in the calculation. The corresponding calculated curves are
shown in Fig. 8(b). It should be mentioned that the calculation
was based on an ideal bipolar transfer function and the simple
formula presented in this paper. Very reasonable agreement was
obtained. The reason that the measured curves show sharper
and deeper dips than those in the measured curves is due to
the device’s reactant components, which tend to damp out the
sharp dips and are not considered in our formula.

The cancellation of IMD described above depends on the
third derivative of the transfer function. Although an InGaP
HBT is used here as an example, the turn on characteristic is
similar to those of many other devices. Fager et al. have studied
the bias dependent nonlinearity of an LDMOS [26]. Their ex-
perimental results on the appearance of the dips and how they
change with bias point agree well with what described in Figs. 6
and 7. The qualitative explanation given by [26] also agrees with
the theory presented here.

The ideal bias point depends on the emitter resistance because
the small-signal sweet spot position is a function of ((13)).
A higher requires a lower quiescent bias current or a lower

. If we fix the bias point, a higher will in general move the
dip to a higher power level. Fig. 9 shows the calculated results
for devices with different ’s. We may notice that besides the
move of the dip position, the low power nonlinearity is also
different for different ’s. Contrary to what one would expect,
a high value gives a worse distortion. This is due to the fact
that for class AB operation, the small-signal sweet spot moves
further away from the bias point (1.26 V in this case) as
is increased. So the magnitude of the third derivative seen at
the bias point and therefore the nonlinearity are increased when

is higher. Notice the gain changes with , so the value
cannot be arbitrarily changed.

For two-tone inputs, besides IMD3 corresponding to -
other higher odd-order terms can also contribute to distortions
close to the fundamental frequency. From (4) and (7), we can
see that the averaging effect is different for IMDs with different
orders because of the different weighting functions. As men-
tioned earlier, the weighting function is narrower for higher

Fig. 9. Effect of Re on the third-order harmonic distortion. V o is 1.26 V and
Re’s are 50, 80, 110, and 140 
.

Fig. 10. IMDs corresponding to third f2;�1g, fifth f3;�2g, and seventh
f4;�3g orders as functions of the input power. The dip position shifts to
higher power as the order is higher.

order terms. So the averaging effect will not be as effective as
that in the lower order terms. This phenomenon can be seen
clearly in Fig. 10, where the output power of the fundamental
mode, the third-order mode ( - ), the fifth-order mode
( – and the seventh-order mode ( – ) of a PA are
shown as functions of the input power. The simulation was
done by harmonic balance and the bias point was chosen for
class AB operation. It can be seen that the dip position for
the IMD terms shifts to higher power levels as the order of
IMD increases. From the average integrals described above,
we can see that a larger voltage swing or a higher input power
is needed to cancel the positive and the negative parts of the
derivative when the IMD order is high. While for lower order
terms, because of the wider weighting function, a smaller input
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power is enough to cancel out the positive and the negative
parts to yield a small IMD value.

The approach described above deals with a memoryless
transfer function. So it is limited in its applications for real
circuit simulation when dynamic effect and memory effect
need to be considered. However, it does provide a mathematical
foundation for understanding the cancellation effect of the
high-order nonlinearity. While the dynamic effect and the
memory effect depend on many factors, such as device struc-
ture, circuit topology, self-heating, etc., and generally require
sophisticated simulation tools to predicate the behavior, the
theory and method presented here give a clear physical picture
and a simple mathematical approach that can be applied to any
nonlinear device, to understand some of the most important
phenomena in the large signal nonlinearity.

IV. CONCLUSION

In conclusion, we have derived a very useful formula, which
relates the th-order Fourier component of a transfer function
with sinusoidal input to an average integral of the th-order
derivative of the transfer function. The average integral is done
in the span of the input swing with a symmetrical weighting
function that depends on the order of the effect considered.
This formula is useful for understanding the cancellation effect
of the high-order nonlinear distortion of a nonlinear system
under large signal operations. It is particularly useful for under-
standing the dip of the IMDs of PAs. Using an InGaP HBT PA
as an example, we have successfully explained how the IMD
dips change with the bias point and the emitter resistance.

APPENDIX A

Derivation of (4)

Letting and integrating by parts times, we
obtain the first equation at the bottom of the page. letting ,
we obtain the second equation at the bottom of the page.

Now let

It can also be expressed as

APPENDIX B

At the limit of very large voltage swing, HD3 becomes

Since both and go to zero at , when is
very large, using integration by parts, we obtain

where is the total swing in current.
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The output at the fundamental frequency is

So at the limit of the very large input power
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