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This project consists of two parts. The first part is to develop a general multitrait-
multimethod (MTMM) latent growth model. The second part is to apply the model proposed
to an empirical study in investor sentiment. The focus of the first part is how to identify the
error covariance structure. The task has been completed, with a paper submitted to Structural
Equation Modeling. Using SAS PROC CALIS/TCALIS to fit error covariance structures of
latent growth models (LGM) has been illustrated. A tutorial on the SAS syntax is provided for
both manifest variables and latent constructs in LGM. While the second-level error
covariance structure is usually specified as unstructured, an effective approach for identifying
the first-level error covariance structure based on the sequential chi-square difference test is
proposed and demonstrated. Moreover, how to test for stationarity of an error process by
using the SIMTEST statement in ROC TCALLIS is specifically addressed.

Keywords: multitrait-multimethod (MTMM), latent growth model, second-order growth

model, error covariance structure chi-square difference test, stationarity
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The latent growth model (LGM) plays an important role in repeated-measure analysis over a
limited occasions in large sample data (e.g., Meredith & Tisak, 1990; Muthén & Khoo, 1998;
Preacher, Wichman, MacCallum, & Briggs, 2008, p.12; Singer & Willett, 2003, p.9). The
model can not only characterize intraindividual (within-subject) change over time but also
examine interindividual (between-subject) difference by means of a random intercept and
random slopes, and is a typical application of the multilevel model (or hierarchical linear
model (HLM)). The between-subject errors (representing random effects for the intercept and
slopes) and the within-subject errors over time are conventionally referred to as level-2 and
level-1 errors, respectively.

LGM is also an application of structural equation modeling (SEM) (e.g., Bauer, 2003;
Boolen & Curran, 2006; Curran, 2003; Duncan, Duncan, & Hops, 1996; Mehta & Neal 2005;
Meredith & Tisak, 1990; Willet & Sayer, 1994). The structural modeling of multilevel data is
a relatively new area of methodological research. SEM and HLM stem from different
traditional statistical theory, and each has developed its own terminology and standard ways
of framing research questions. However, it has become clear that there exists much overlap
between the two methodologies under some circumstances. More specifically, when a
two-level data structure arises from the repeated observations of a set of individuals over time
(such that time is hierarchically nested within an individual), SEM is analytically equivalent
to HLM (e.g., Bauer, 2003; Curran, 2003; MacCallum, Kim, Malarkey, & Kiecolt-Glaser,
1997; Raudenbush, 2001; Rovine & Molenaar, 2000; Willett & Sayer, 1994). Thus, despite
the inherent differences between the estimation procedures by SEM and HLM, these two
approaches provide analytically identical solutions for LGM. Nevertheless, the measurement
model capabilities of SEM possess superiority in examining model fit to the HLM approach.
The SEM approach also brings the possibility of modeling of change over time for latent
constructs or multivariate data (e.g., Bollen & Curran, 2006, Chap. 7, 8; Chan, 1998; Duncan,
Duncan, & Strycker, 2006, Chap. 4; Hancock, Kuo, & Lawrence, 2001; MacCallum, et al.,
1997; Rovine & Molenaar, 2000). As a result, SEM has become a more commonly used
approach for longitudinal data. Specialized software such as Mplus (Muthén & Muthén, 2007),
Mx (Neale, Boker, Xie, & Maes, 2003), AMOS (Arbuckle, 2006), EQS (Bentler & Wu, 2005),
Lisrel (Joreslog & Sorbom, 2004), and SAS PROC CALIS (TCALIS in SAS 9.2) (SAS
Institute Inc., 2007) are readily available and allow individuals to be measured at unique times,

having unequal spacing between assessments.



Since errors within the same subject are often correlated across time (e.g., Preacher et al.,
2008, p.63; Sayer & Cumsille, 2001), not modeling autocorrelated errors present in
longitudinal data or misspecifying error covariance structure has a substantial impact on the
inferences for model parameters (e.g., Ferron, Dailey, & Yi, 2002; Kwok, West, & Green,
2007; Murphy & Pituch, 2009; Sivo, Fan, & Witta, 2005). A variety of processes underlying
level-1 errors can be used (e.g., Newsom, 2002; Singer & Willett, 2003, Chap. 7; Wolfinger,
1996). The HLM software (Raudenbush, Bryk, & Congdon, 2005) provides the first-order
autoregressive (AR(1)) option. The MIXED procedure in SAS/STAT (SAS Institute Inc.,
2007) contains many types of level-1 error processes such as unstructured (UN), compound
symmetry (CS), AR(1), first-order autoregressive moving average (ARMA(1,1)), Toeplitz
(TOEP), Toeplitz with g bands (TOEP(g)), etc. The processes are either stationary or
nonstationary. The most general covariance structure is the so-called unstructured model,
indicating that no structure is imposed and covariance estimates are to be determined by the
data. However, the use of UN is likely to inflate type I error rates for the tests of the fixed
effects (Kwok, West, & Green, 2007; Murphy & Pituch, 2009). Moreover, the number of
parameters to be estimated becomes excessive and can cause convergence problems,
especially when series length is long. Autocorrelations among level-1 errors are generally
regarded as a nuisance. Although the error covariance structure is not of theoretical interest,
failing to add its specification to the growth model would bias parameter estimates of primary
interest (Sivo & Fan, 2008). While its specification is difficult to determine based on theory,
how to conduct an effective specification search becomes needed (Kwok, West, & Green,
2007), and will be discussed in this study.

The growth curve ARMA(p, ¢g) model has been proposed to filter out the effects of error
autocorrelation on parameter estimates (e.g., Sivo et al., 2005; Sivo & Fan, 2008). The AR
part is specified to represent the current value of a time series as a function of previous values
of the same time series, and the MA part is specified to represent the current value of a time
series as a linear function of the current and previous disturbances, which are independent and
identically distributed. Note that the growth curve ARMA(1, 1) model differs from the model
specified by using the REPEATED statement with TYPE=ARMA(1,1) in SAS PROC
MIXED. The within-subject error covariance matrix (ECM) with an ARMA(1,1) structure
can be well captured by the latter only. In fact, PROC MIXED, based on the HLM approach,
contains more than 30 different types of level-1 preprogrammed structures. Although it is a
powerful tool, how to identify an appropriate structure is not documented. Besides, PROC

MIXED cannot handle higher-order latent growth models. To improve, use PROC CALIS/



TCALIS, which is based on the SEM approach. How modeling longitudinal change can be
effectively done under a broad class of error covariance structures based on the SEM
framework is rarely seen, and will be specifically addressed in this study. The purpose of this
article is to give a tutorial on the syntax using PROC CALIS/TCALIS for handling
longitudinal change in a manifest variable and that in a latent construct, known as a
second-order growth model (Hancock, Kuo, & Lawrence, 2001). For the purpose of
verification, we use the data generated from a given model so that the syntax can be checked
for correctness by comparing if parameter estimates obtained are close to the population
values. In addition, PROC MIXED will be used with respect to the manifest variable to
further confirm the results obtained. Two sample SAS programs will be provided. One is for
modeling longitudinal change in a manifest variable, and the other for modeling the change in
a latent construct. In this study, an effective approach for identifying the first-level error
covariance structure based on the sequential chi-square difference test will be proposed.
Moreover, how to test if an error process is stationary by using PROC TCALIS will be

demonstrated.

LATENT GROWTH MODEL

In this section, we briefly introduce the LGM with a variety of level-1 error covariance
structures through a typical example depicted in Figure 1. In the figure, y;—y4 denote

repeated-measures on four occasions and X a level-2 predictor. 7, is the random intercept
representing the initial status for individual i, 7, is the random slope showing the

individual’s linear rate of change per unit increase in time. The first-level model can be

written as

y=An+e, (1)

, xr 1 1 11 1 1 1 1 ,
Where yz[yly2y3y4] > Ay =|:ﬂ1 AZ 23 2/4}:[];_1 T2_1 ]’;_1 E_1:|9 ”z[na 77,6] ) and

e=[g ¢, & &,]'. A isthe measurement time points (7, =1, 2, 3, 4), and & denotes level-1
errors. The double-headed curved arrows presented in Figure 1 indicate that & are
correlated. The factor loading associated with initial status are all fixed at 1, whereas those

associated with the slope are set at the value A, to reflect the particular time point ¢ for

individual i . A common coding of A, for different time points is to set 4, = 0 for baseline



and A, =T —1for the follow-ups. For this model, subject i’s growth trajectory is a straight

line, n, +4n,,4=0,1,2,3.

Insert Figure 1 about here

The second-level model can be written as
n=r,+I'x+{, (2)

where T'y=[7y 7ol » T, =[ro 7ul » X:[X] . ¢, =g, (Wﬁ] . Both growth factors
(intercept and slope), 7, and 7, , are influenced by a subject-level predictor X. y,, and
7,, denote, respectively, the intercept and slope of the regression of 77, onX, y, and y,
are those of 7, onX,and ¢, and ¢ ,, are level-2 errors. It is assumed that ¢, and & are

uncorrelated. The models can be rewritten in combined form as

y=A T+ x)+A{, +&, 3)

based on which the mean vector x# and the covariance matrix X of the manifest variables

v1—ys and X can be expressed as functions of the model parameters as follows: (Bollen &

Curran, 2006, p.134-135):

A, +T
ﬂ=|:ﬂ}’:|:|: y( 0 xﬂx):|’ (4)
M, H,
A:(FXE“F; +¥, )A;’ +0, A;FXZ“
Y= ’ ) (%)
Exxr;A;, Exx

where @, and W, denote the variance-covariance matrices of ¢ and ¢y, respectively, and
7
u and X denote, respectively the mean vector and the variance-covariance matrix of

predictors (g, = g, and X =0} for this model since there is only one predictor).



The first-level errors, g, &

,, &,and g,, are assumed to be normally distributed with zero

means. The general form of the ECM is unstructured, and is given by

0-51

2
(o) (e}

@ _ &8 & (6)
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The corresponding option given in SAS PROC MIXED is TYPE=UN. Other types of ECM,
with less parameters (parsimonious) may be desirable. The chi-square test resulting from
PROC CALIS (not available by PROC MIXED) can be used to help determine an appropriate

type. The second-level errors ¢, and ¢ s, are assumed to be normally distributed with zero

means. Their covariance matrix is usually specified as unstructured (Murphy & Pituch, 2009):

2
o o
S Cnabnp

Y, = . (7)

(o3 (o3
Soalnp Sng

Types of Level-1 Error Covariance Structures and SAS Statements

Any type of ECM, @, or ¥, , can be expressed as a set of linear and/or nonlinear

¢,
constraints. The SAS statements by PROC CALIS for specifying six types of the first-level
error covariance structure are summarized in Table 1. They include the first-order
autoregressive (AR(1)), the first-order autoregressive moving-average (ARMA(1,1)), the
second-order autoregressive (AR(2)), heterogenecous ARH(1), heterogeneous Toeplitz
(TOEPH), and unstructured (UN), commonly considered in time series analysis and among
which there exist nested relationships (Kwok, West, & Green, 2007). Stationarity is assumed
for the first three processes, and should be examined to justify the use of the corresponding

ECM.

Insert Table 1 about here




Statements by SAS PROC MIXED. PROC MIXED provides a REPEATED statement,
in which many types of the first-level error covariance structure can be specified through the

TYPE= option (e.g., Singer, 1998).

Statements by SAS PROC CALIS. The STD, COV, and PARAMETERS statements in
PROC CALIS can be used together to specify any type of ECM (®, or TC” ). The

PARAMETERS statement defines additional parameters that are not specified in the models,

and uses both the original and additional parameters for modeling ECM. In other words, each

specific type of ECM is composed of functions of the original and additional parameters.

Example 1: ©, Resulting from ARMA(1,1)

The ECM resulting from the stationary ARMAC(1,1) process, defined as ¢, =g&,_, +v, —6v

t-1°
where ¢ denotes the autoregressive parameter, ¢, the moving average parameter, and v,

a white noise process (independent and identically distributed disturbances) (Box, Jenkins, &

Reinsel, 1994, p.77), is given by

1
® :O_2 101 1 , (8)
e o]

popopl

(4 -6)1-46)
(1-246,+6")

where p, = s P =Py k=2, 3, with the constraints of |¢ <1 and

| p,[<1. Program 1 in Appendix 1 illustrates how to use SAS PROC CALIS for modeling

LGM with an ARMA(1,1) level-1 ECM and an unstructured level-2 ECM for four equally
spaced time points. Under the assumption of stationarity for level-1 errors, their variances are
equal, the autocovariances at lag 1 are equal, and the autocovariances at lag 2 are equal as
well. Level-2 error variances/covariances are unstructured, as shown in Equation 7. Therefore,
the STD and COV statements for specifying error variances and pairwise covariances are

given as follows:



sk ok s sk sk sk sk sk ok s sk s sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk s sk sk sk sk sk sk sk skosk sk sk,
’

STD

E1=VARE, E2=VARE, E3=VARE, E4=VARE, D0=VARDO, DI=VARDI;
CoVv

E1 E2=COV _lagl, E2 E3=COV lagl, E3 E4=COV lagl,

E1 E3=COV _lag2, E2 E4=COV lag2,

E1 E4=COV _lag3,

D0 D1=COVDO0DI;

sk sk sfe sk sfe sk sk sk sk sfe sk sk sk sk sk sk sfe sk sk sk sk sk sk sk sk sk sk sk sk sk sfe sk sk sk sie sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk stk sk sk skeosk sk sk sk,
s

In the STD statement, VARE represents the estimate of the common variance o of the four
level-1 errors ¢,—¢&, (denoted by E1-E4), and VARDO and VARDI the estimates of the

variances, 0'2 and aé , of the two level-2 errors & : and ¢ . (denoted by DO and D1).
n Nl B

N B
In the COV statement, COV _lagl and COV _lag?2 represent, respectively, the common level-1
error autocovariance estimates at lag 1 and lag 2. COV _lag3 is the estimate of the error

autocovariance at lag 3. CDOD1 is the estimate of o, , .Parameters p, and ¢ defined in

Na ”ﬂ
Equation 8 and their relationships with the autocovariances can be specified by using the

following PARAMETERS statement. Starting values for estimating p, and ¢ are needed

and should appear in the parenthesis. Population parameters are used as starting values to
achieve convergence more efficiently for simulation studies (Paxton, Curran, Bollen, Kirby, &

Chen, 2001).

>k ok 3 sk sk sk sk s ok s sk sk sk sk sk s sk sk sk sk s sk s sk sk sk sk s sk s sk sk sk sk s sk s sk sk sk sk s sk s sk sk sk sk sk s sk sk sk sk sk s sk sk sk sk sk sk sk sk ko sk,
s

PARAMETERS
PHI1 RHOL1 (0.6 0.7);
COV_lagl=RHO1*VARE;
COV_lag2=PHI1* COV lagl; /*ie., COV_lag2=PHI1*RHO1* VARE; */
COV _lag3=PHI1* COV lag2; /*i.e.,COV_lag3=(PHI1**2)*RHO1*VARE; */

sk ok s sk sk sk sk sk ok s sk s sk sk sk sk s sk s sk sk sk sk s sk s sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk,
’

‘COV _lagl=RHO*VARE?’ corresponds to the requirement that the common autocovariance at

lag 1 be equal to o’ p,. The syntax corresponding to the requirements for the common

autocovariances at lag 2 (=o.¢,p,) and lag 3 (=0 @ p, =4 p,) is given in a similar way.



The constraints of |¢ |<1 and | p, |<1 are specified by the following BOUNDS statement:

>k ok 3 sk sk sk sk s ok s sk sk sk sk s sk s sk sk sk sk s sk s sk sk sk sk s sk s sk sk sk sk s sk s sk sk sk sk sk s sk sk sk sk sk s sk sk sk sk sk s sk sk sk sk sk sk sk skeosk sk sk .
s

BOUNDS
-1.<PHII <1.,, -1.<RHOIl <1

sk sk sfe sk sfe sk sk sk sk sk sk sk sk sk sk sk sfe sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sie sk sk sfe sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk stk sk sk skeosk sk sk sk,
s

Example 2: ®, Resulting from TOEPH

The ECM resulting from heterogeneous Toeplitz is given by

2
o

&
2
@ O-gz O-sl P 1 o-gz
g 2 s (9)
0-53 O-(;l P 2 0-83 O-sz P 1 0-53

2
_0-34051103 054052p2 G£4Gg3pl 0-84_

where o, denotes the standard deviation forg,, t =1, 2, 3, 4, and p; the autocorrelation at
lag j,j =1, 2, 3, with the constraints of |p, |<1,/ =1, 2, 3. The level-1 error variances are

allowed to be unequal but the autocorrelations at the same lag are equal. The STD and COV
statements used for specifying estimates of error variances and pairwise covariances are given

as follows:

sk sk sk sk sk sk sk sk sk sk sk sk sk sie sk sk sk sk sk sk sie sk sk sk sk sk sk sie sk s sl sk sk skeosie sk sk sk sk sk sk sk sk sk skeosk sk skeosie sk sk sk sk skeosie stk sk sk skeoske stk skeoskosk skeoskeoskok skok k.
s

STD
E1=VARE1, E2=VARE2, E3=VARE3, E4=VAREA4,
D0=VARDO, DI=VARDI;

CcoVv
El E2=COVEIE2, E1 E3=COVE1E3, E1 E4=COVEIEA4,
E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4,
D0 D1=COVDODI;

sk ok s sk sk sk sk sk ok s sk s sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk skeosk sk sk sk ok sk sk,
’

VARE1-VARE4 represent the estimates of the four level-1 error variances, and VARDO and
VARDI1 those of the two level-2 error variances. COVEIE2-COVE3E4 represent the

corresponding level-1 error autocovariance estimates, and COVDODI1 the level-2 error

autocovariance estimate. Since o,, =0, 0, p,, and the autocorrelations at the same lag are
t v e

Eréy



constrained to be equal, the following PARAMETERS statement needs to be added:
sk sk sk sk sie sk sk st sk st ske sk sk sk sk sie sk sfe st sk sk sk ske sk st sk st sk ske sk st sk sie sk sk st sk sk sk sk sk st sk s sk ske sk sk sie sl sk ske st ske sk skeoske sk st sk st skeoske skeoskeosieosieoske sk skeoskoskesk sk k.
2

PARAMETERS
RHO1 RHO2 RHO3 (0.7 0.6 0.7);
COVE1E2=SQRT(VARE1)*SQRT(VARE2)*RHOI;
COVE1E3=SQRT(VARE1)*SQRT(VARE3)*RHO2;
COVE1E4=SQRT(VARE1)*SQRT(VARE4)*RHO3;
COVE2E3=SQRT(VARE2)*SQRT(VARE3)*RHO1;
COVE2E4=SQRT(VARE2)*SQRT(VARE4)*RHO2;
COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHOI ;

T —

The constraints of |p, |<1(j =1, 2, 3) can be handled by using the BOUNDS statement

given below.

sk ok s sk sk sk sk sk sk s sk s sk sk sk sk s sk sk sk sk sk s sk sk sk sk stk s sk sk sk sk sk sk s sk sk sk sk sk s sk sk sk sk sk s sk sk sk sk sk s sk sk skeosk sk sk sk sk sk sk,
’

BOUNDS
-1.<RHO1 <1.,-1.<RHO2<1.,-1.<RHO3 <1

sk sk sfe sk sk sk sie sk sk sk sk sk sk sie sk sk sfeosk sk sk sie sk sk sfeoske sk sk sie sk sk sl sk sk sk sie sk sk sl sk sk sk sk sk sk sk sk sk sie sk sk sk sk sk sk sk sk sk sk skeoske stk sk sk skeoske ko sk sk,
s

The LINEQS statement used for this example is the same as that given in Example 1.
Although there are many defaulted error covariance structures in PROC MIXED,

modification is not allowed for any of them. In contrast, PROC CALIS can be used to specify
any error covariance structure to meet researchers’ need. For example, the AR(2) process,

given by ¢, =d¢,_ +d¢&,_,+v,, where ¢ and ¢, are autoregressive parameters and v, a

white noise process (Box, Jenkins, & Reinsel, 1994, p.54), leads to the following level-1
ECM:

1
1
A : (10)
P P 1

P P op

where p, =1, p=¢/(1-¢,), and p, =dp, , +&p, ,, k=2, 3, with the constraints of
g, |<1, ¢, +¢ <1, and ¢ —¢ <1. It is not possible to model AR(2) for level-1 errors by

using PROC MIXED, but the task can be done by using PROC CALIS, with the statements
shown in Table 1. Note that the last two constraints are specified by using the LINCON

10



statement. PROC CALIS is certainly more flexible than PROC MIXED.
SAS statements by PROC CALIS for modeling other types of stationary and nonstationary
level-1 error processes such as those presented in Appendix 3 can be obtained in a similar

way.

AN EFFECTIVE APPROACH FOR IDENTIFYING THE FIRST-LEVEL ERROR
COVARIANCE STRUCTURE

By following the sequential chi-square difference test (SCDT) given by Anderson and
Gerbing (1988), an effective approach is proposed to identify the first-level error covariance
structure as follows:
Stage 1: Testing for stationarity of the first-level error process.

The conditions of stationarity include the equality of error variances and the equality of
error autocovariances at any lag (Box, Jenkins, & Reinsel, 1994, p. 24-26). For example, for

the model shown in Figure 1, the null hypothesis of stationarity is given by Ho;:

2 _ 2 _ 2 _ 2 _ _ —
o, =0, =0, =0,, 0, =0, =0 0,., =0,,- To test Ho, we use the

&3 £483° &6

SIMTEST statement in PROC TCALIS, in addition to the STD and COV statements given in

Example 2, as follows:

>k ok s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk st s sk sk sk sk sk s sk sk sk sk sk s sk sk sk sk sk s sk sk sk sk sk s sk sk skosk sk sk sk sk sk skokosk .
’

SIMTEST ERR STATIONARY TEST=[VAREQ 1 VAREQ 2 VAREQ 3
COVLaglEQ 1 COVLaglEQ 2 COVLag2EQ];

VAREQ 1=VAREI1-VARE?2;

VAREQ 2=VARE1-VARE3;

VAREQ 3=VARE1-VARE4;

COVLaglEQ 1=COVEIE2-COVE2E3;

COVLaglEQ 2=COVEI1E2-COVE3E4;

COVLag2EQ=COVEI1E3-COVE2E4;
***************************************************************************;
The null hypothesis given above can be reexpressed as Hoi: o) —o, =0, o, -0, =0,

c’-0>=0, 0. —-0.. =0, 0. —0. =0, 0. —o._ =0, in which six functions of

& &y &8 £36, &8 £463 &6 €46

the model parameters, named VAREQ 1, VAREQ 2, VAREQ 3, COVLaglEQ 1,
COVLaglEQ 2, and COVLag2EQ, respectively, are all equal to zero. To conduct a

simultaneous test for the six functions by using the SIMTEST statement, we first assign a

11



name, ERR_STATIONARY TEST, for the test, and then put the function names inside a pair
of brackets ‘[” and ‘]’. The six functions are defined in the SAS programming statements, and

follow after the SIMTEST statement. VAREQ 1, VAREQ 2, and VAREQ 3 represent the

differences between af,l and each of the other error variances. COVLaglEQ 1 and

COVLaglEQ 2 represent, respectively, o, —o and o, -0

e~ Oene, oe, » the two pairwise
comparisons among the three error covariances at lag 1. COVLag2EQ is the contrast between
the two error covariances at lag 2. The SIMTEST statement would lead to a chi-square test
(with 6 degrees of freedom) for examining stationarity.

If stationarity is supported, then go to Stage 2A; otherwise go to Stage 2B.
Stage 2A: Identifying the type of stationary process using SCDT.

We fit the model with stationary level-1 error processes sequentially, starting from
TOEP(1), the most constrained one (the most parsimonious stationary one as well), followed
by the order of AR(1), (ARMA(1,1) or AR(2)), and TOEP, according to the degree of
constraint. TOEP, the least constrained (the least parsimonious) structure, is actually the
saturated stationary one. At each step, we first test if the model fit using the current structure,
denoted by M7, is significantly different from the model fit using TOEP, denoted by Ms, with
the chi-square difference test. The difference of the chi-square statistic for My and that for Mg
is distributed as a chi-square distribution with degrees of freedom equaling the difference of
the number of parameters within the two ECM. The significant result indicates that the
current My possesses significantly worse model fit, and we enter the next step by updating Mr
with a less constrained structure. The test is continued until the fit does not show significant
difference (denoted as My — Mg = 0), and M7 is the error covariance structure we need.

Stage 2B: Identifying the type of nonstationary process using SCDT.

The SCDT is conducted for nonstationary processes in a similar way as Stage 2A,
following the order of UN(1), ARH(1), TOEPH, and UN. UN(1) is the most parsimonious of
all. UN is the saturated structure.

The reasons to recommend TOEP(1), AR(1), (ARMA(1,1) or AR(2)), and TOEP in Stage
2A, and UN(1), ARH(1), TOEPH, and UN in Stage 2B are simply because they are nested
and easy to interpret. More detailed structures may also be used if they can meet the same
conditions. A flow chart for identifying the first-level error covariance structure is given in

Figure 3.

12



lllustrations

Two illustrations are given. The first one is based on the data generated from the linear
growth model shown in Figure 1 with the TOEPH level-1 error structure and the UN level-2
error structure. Population parameters and the sample covariance matrix of y;—y4 and X are

given in Table 2. The sample size of 300 was used (Muthén & Muthén, 2002).

Insert Table 2 about here

Following the approach for identifying the first-level error covariance structure, we first

test for stationarity. Since stationarity was rejected (z7,_, = 123.93, p <.0001), we proceeded

with a specification search for a nonstationary process. Error covariance structures were fit
sequentially. We started by fitting UN(1). Since the model fit between UN(1) and UN was
significant (chi-square difference = 15.903 with df = 6, p = .014), UN(1) should not be
adopted. Then we fit ARH(1), a less constrained one. Since the model fit between ARH(1)
and UN became insignificant (chi-square difference = .441 with df = 5, p = .994), the
sequential search was terminated by choosing ARH(1) as the first-level error covariance
structure. The improvement of ARH(1) over UN(1) can be verified by the significant results
between UN(1) and ARH(1) (chi-square difference = 15.462 with df = 1, p <.0001). Although
the final structure identified, ARH(1), is not the one specified in the population model
(TOEPH), their performance in model fit was insignificant (chi-square difference = .441 with
df = 2, p = .802). ARH(1) is preferred since it is more parsimonious (with two less
parameters). The results of SCDT are summarized in Table 3. The parameter estimates of the
final model (with ARH(1)) are also reported in the same table by using both PROC CALIS
(the SEM approach) and PROC MIXED (the HLM approach) for the purpose of verification.

It appears that parameter estimates resulting from the two approaches are pretty close. The

model fit was satisfactory ( ;(;.:6 =1.483, p = .961, AGFI = .996, RMSEA = .000). However,

the test for stationarity and the sequential chi-square difference tests that can be implemented

by PROC CALIS cannot work under PROC MIXED. Moreover, while the estimates of @,

and ‘I’C” could be obtained by both PROC MIXED and PROC CALIS, the significance test

for error covariances can be achieved by PROC CALIS only. Two approaches yield about the
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same results when PROC MIXED works. PROC CALIS supplies richer information in model

fit and parameter inference.

Insert Table 3 about here

The second illustration is based on the data given in Singer and Willett (2003, Chap. 7). 35
people completed an inventory measuring their performance on a timed task called
“opposite’s naming” on each of four days, spaced exactly one week apart. At wave 1, they
also completed a standardized instrument assessing general cognitive skill, used as a

subject-level predictor. The growth model used is exactly the one shown in Figure 1. Since

stationarity was not rejected ( ;(jfzé =3.302, p = .77), the covariance structure to be identified

should come from the pool of stationary processes. Error covariance structures were fit
sequentially, by using TOEP(1) in the first step. The results are summarized in Table 4. Since
the model fit between TOEP(1) and TOEP was insignificant (chi-square difference = 2.801
with df = 4, p = .592), no further examination was needed, and we selected TOEP(1) to be the

first-level error covariance structure. The level-1 errors were uncorrelated and identically

distributed in this case. The model fit was good ( ;(j/=10= 6.68, p = .755, AGFI = .987,

RMSEA = .000). The parameter estimates by fitting TOEP(1) are also given in the same table
by using both PROC CALIS and PROC MIXED. Again, the results are close to each other.

Insert Table 4 about here

SECOND-ORDER LATENT GROWTH MODELS

When the growth trajectory is to be analyzed for a latent construct, measured with multiple
indicators, only the SEM approach can work, based on the second-order LGM (e.g. Bollen &
Curran, 2006, Chap. 8; Hancock, Kuo, & Lawrence, 2001; Preacher et al., 2008, Chap. 3;
Sayer & Cumsille, 2001). In Figure 2, latent construct F' is measured with three indicators,
v1—v3, which are observed at four occasions. The constructs at the four occasions, denoted by

F—F,, are termed the first-order factors, and the growth factors (i.e., intercept and slope),
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denoted by 7, and 7, are termed the second-order factors. There exist a predictor

construct, &, for the growth factors, and it is measured with three indicators, x;—x3. The errors

associated with the indicators y;—ys, EysJ = 1,2, 3;¢t=1, 2, 3, 4, and those associated with
the first-order factors, ¢, —¢, , are level-1 errors. The errors associated with the
second-order factors, ¢ . and ¢ . and those associated with the indicators x;—x3 J,—d3, are

level-2 errors. The level-1 errors associated with the same indicator at different points in time

(&, =&, J=1,2,3) are serially correlated. They are linked in the figure by three solid lines
with four arrowheads, one line for each indicator. ¢, —¢, are serially correlated as well

(Sivo, 2001). They are linked by a dash line with four arrowheads. Their covariance structures
need to be well identified, and can be done by using the approach proposed in the previous

section. Other errors are assumed to be uncorrelated.

Insert Figure 2 about here

The second-order LGM pictorially presented in Figure 2 can be represented in matrix form

as follows:
y=AF+eg,
x=A¢+0,
. (11)
F=An+¢,,

;7:1“0+F§5+§”,

where y=[y, ¥y Y31 Vi Yar Yao Viz Vas Vi3 Yia Yas Vs 15X =[x x, 5,1, F=[F F, F; |1, n=[n, n,],
E=[e)) &y & &1y Ex &y E13 Exy Eyy E1 Ex4 €] > 0=[6,6, 8], Lp=[{s &p & G ], and
¢, =IC, C”ﬂ I'. A, and A, denote the loading matrices in the measurement model, A;
denotes the loading matrix in the growth model, and I'j and I' p denote, respectively, the
vector of intercepts and slopes of the regressions of the growth factors # on the predictor
construct ¢. They are specifically shown in Table 5. It is assumed that E(¢)=E(d)=
EQC)=EE,)=0 , Cov(¢,0)=Cov(c,§,)=Cov((,5,)=Cov(¢,e)=0 , and Cov(e,d)=

Cov(e,E,) = Cov(e,E,) = Cov(d,8,) = Cov(d,8,) = Cov(E,E,) =0. In addition, Cov(g;,, &1) =
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0,j#j" . Let @, ¥ ;, R ¢ and ®. denote, respectively, the variance-covariance matrices
of ¢, C,, {r,and ¢. The implied mean vector and the variance-covariance matrix of y and x
are given in Appendix 2. Because ®, and ¥, involve time occasions, their covariance
structures need to be identified. Since the four level-1 error processes, & =[¢g,, &, &; €]
&, =&y &y & 6], & =18 &, &y &,], and §p =[C, C, C, €, T, associated with the

indicators y;—ys; and the construct F, respectively, are assumed to be uncorrelated, the
approach proposed previously for identifying the first-level error covariance structure can be

used individually for each of them. However, the assumption of the uncorrelatedness of ¢,
&,, and &, may be violated due to systematic effects. The chi-square difference test can be

used to test for the assumption.

Insert Table 5 about here

Statements by SAS PROC CALIS/TCALIS

SAS Program 2 in Appendix 2 are used for fitting AR(1) for ¢; (j = 1, 2, 3) (the first-level
errors associated with the same indicator across four time points) and ¢ (the first-level errors

associated with the construct across four time points), and fitting UN for ¢, (the second-level

errors) by using SAS PROC CALIS. There are two parameters in AR(1) for each error
process. The parameters to be estimated simultaneously include ofj, (151.9/. ,j=1,2,3, and

0'; » @, - The assumption of stationarity requires that | ¢15, <1 and |4, |<I.

In the STD statement, the first-level error variance estimates associated with the same
indicator/the construct are set equal across time by using the same names. In the COV
statement, we specify the same name for the lag-1 autocovariances to each indicator and the
construct, and similarly for the lag-2 autocovariances. In the PARAMETERS statement, the
additional covariance structure parameters for AR(1) need to be defined first, one for each

indicator and the construct (i.e., ¢, and ¢, ), with initial values given in the parentheses,

and then SAS programming statements are used to specify the relationships among the

parameters delineating the particular error covariance structure for all indicators and the
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construct. The principles are exactly the same as before. The requirements of ‘|¢, |<1 and

|4, <1’ are specified by the BOUNDS statement.

The approach proposed for identifying the error covariance structure is also applicable for

the second-order LGM. The first stage is to test, for stationarity,

2 2 2 2

H, ;0. =0, =0, =0, ,0,. =0, =0 o.. =0
011 & &1 13 &4 T End £1381 Su613° T Ei3én E14612
H, ,:0’ =¢’> =¢> =06’ , 0 =0 =0 o} =0
01_2 gy 2] &3 &4 T Enéy £2380 £24623 7 T €381 €242
2 2 2 2
H N = = = = = =
013 0-531 0532 0-533 0534 ? 6532531 0533532 0534533 ? 6533531 6534532 ?
and
H, ,:0’ =0’ =0’ =0’ ,0. =0._ =0 oc._ =0
01_4° ¢p Sh SH [ SHSH SKSH SrSE SBSH SESE

individually for each of the first-level error processes, ¢, &,, &, and {,,by using the

SIMTEST statement in PROC TCALIS mentioned in the previous section, followed by the
steps in stage 2A for identifying the specific stationary error process or in stage 2B for

identifying the specific nonstationary error process using SCDT.

lllustration

We demonstrate identifying the covariance structures of ®@, and ¥, with another dataset of

size 300 generated from the second-order LGM in Figure 2. The population parameters with

the AR(1) covariance structure for level-1 error processes &,, &,, &;,and {r and the sample

covariance matrix of y and x resulting from the simulated dataset are presented in Table 5.
The RANDNORMAL function in PROC IML (S4S 9.2) was used to generate multivariate

normal data. Since the uncorrelatedness of g, &,, and & was supported (chi-square
difference = 30.866 with df =48, p = .97408), stationarity could be assessed and specification
search could be conducted individually. Since stationarity was further supported for all g,
&, &,and {r (}(jfz(, =7.604, 7.049, 4.043, and 2.691 with p = .269, .316, .671, and .845),

we proceeded to search for stationary structures. When identifying the first-level ECM for a
specific error process, TOEP was specified for the other three processes. The results of SCDT
are reported in Table 6. AR(1) was identified for g, &,, &, and TOEP(1) for {. The

parameter estimates by fitting AR(1) for ¢,, &,, ¢, and TOEP(1) for {r were close to the
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population parameters specified in Table 5. The model fit was satisfactory ( ;(jf:m =107.53,p

=.602, AGFI = .996, RMSEA = .000).

Insert Table 6 about here

CONCLUSION

This article illustrates the use of the SAS PROC CALIS/TCALIS to fit error covariance
structure of latent growth models. A tutorial on the syntax has been provided for both
manifest variables and latent constructs. An effective approach for identifying the first-level
error covariance structure based on the sequential chi-square difference test has been
proposed and demonstrated. In particular, how to test for stationarity of an error process, not
discussed in the SEM or HLM literature, was specifically addressed. The illustrations based
on simulated data have well reflected the effectiveness of the approach for identifying the
error covariance structures. It is our hope that the approach proposed will help applied
researchers obtain a better understanding about the specification of error covariance structure
in latent growth models.

The joint use of the STD, COV, PARAMETERS, LINCON, and BOUNDS statements in
PROC CALIS can be extended for other types of ECM in a similar way to meet analysts’
need. However, there exist some limitations. First, the design underlying LGM should be
balanced. Second, time points should be equally spaced when testing for stationarity. Third,
large samples are required to justify the use of SEM. In addition, if the errors associated with
different indicators at the same occasion in the second-order LGM are correlated, a joint test
for stationarity should be conducted, and the SCDT for identifying error covariance structures
should also be carried out simultaneously. How to deal with these situations needs to be

further studied.
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TABLE 1

SAS Statements in PROC CALIS for Specifying Different Types of the First-Level Error
Covariance Structure with Four Occasions

Structure (0, )

Statements in PROC CALIS

AR(1) (first-order autoregressive):

& =Q&,  +V,,
1
41
O-g 2 ’
4 4 1
§ & 4 1
(g <.

STD
E1=VARE, E2=VARE, E3=VARE, E4=VARE,
D0 =VARDO, D1 =VARDI;

Ccov
E1 E2=COV _lagl, E2 E3=COV _lagl, E3 E4=COV _lagl,
E1 E3=COV _lag2, E2 E4=COV _lag2, E1 E4=COV _lag3,
D0 D1=CDO0D1;

PARAMETERS PHII (0.6);
COV_lagl=PHII*VARE; COV_lag2=(PHI1**2)*VARE;
COV _lag3= (PHI1**3) *VARE;

BOUNDS
—1.<PHI1 <1.;

ARMA(1,1) (first-order

autoregressive moving average):

& = ¢lgt—1 v, - elvt—l >
1

.
o} .
P P 1
Py pop ]
_(#-6)1-406)

2

mi= (1_2¢1‘91 +912)

o =P, k=2, 3, |¢ 1, |p Il

STD
E1=VARE, E2=VARE, E3=VARE, E4=VARE,
D0=VARDO, D1=VARDI;

Cov
E1 E2=COV _lagl, E2 E3=COV _lagl, E3 E4=COV _lagl,
E1 E3=COV _lag2, E2 E4=COV _lag2, E1 E4=COV _lag3,
D0 D1=CDO0D1;

PARAMETERS PHII RHO1 (0.6 0.7) ;
COV_lagl=RHO1*VARE;
COV _lag2=PHI1* COV lagl;
COV_lag3=PHI1* COV _lag2;

BOUNDS
—1.<PHIl1 <1.,-1.<RHO1 < 1.;

AR(2) (second-order AR):
E =Q&_ +de ,+V,,

1

2| A 1
(O )
P P 1
PPy oo 1
=Lp=4/0-4¢),

k :¢1pk—l+¢2pk—29 k:29 39
|4, I<1, ¢,+¢ <1, ¢ —¢ <1.

STD
E1=VARE, E2=VARE, E3=VARE, E4=VARE, D0O=VARDO,
DI1=VARDI;
cov
E1 E2=COV lagl, E2 E3=COV lagl, E3 E4=COV _lagl,
E1 E3=COV lag2, E2 E4=COV lag2, E1 E4=COV _lag3,
DO D1=CDODI;
PARAMETERS PHI1 PHI2 (0.5 0.4);
RHO1= PHI1/(1-PHI2);
COV_lagl=RHO1*VARE;
COV_lag2=PHI1*COV _lagl+ PHI2 *VARE;
COV lag3=PHI1*COV lag2+PHI2*COV lagl;
LINCON
PHI2 + PHII < 1., PHI2 -PHI1 < 1.;
BOUNDS
~1.<PHIR2<1;
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TABLE 1 (Continued)

Structure Statements in PROC CALIS
UN (unstructured): STD
[ o2 EI=VARE1, E2=VARE2, E3=VARE3, E4=VARE4,
] D0=VARDO, D1=VARDI;
O e, cov
Crs Orsy O El E2=COVEIE2, E1 E3=COVEIE3, E1 E4=COVEIE4,

2
O o O
|~ &sa £48) £483 &

E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3EA4,
D0 D1=CDOD1;

TOEPH (heterogeneous Toeplitz):

2
O

&

2
052 Ugl p 1 O

&

2
653 Gsl p 2 0-63 ng p 1 o

&

2
_0-54 O-gl p3 0-54 O-gz p2 0-.94 0-.93 pl 0.94 a

A <L [p <L [psI<]

STD
E1=VARE!, E2=VARE2, E3=VARE3, E4=VARE4,
D0=VARDO, DI=VARDI;

cov
E1 E2=COVEIE2, El E3=COVEI1E3, E1 E4=COVEIE4,
E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4,
DO D1=CDODI;

PARAMETERS RHO1 RHO2 RHO3 (0.7 0.6 0.7);
COVE1E2=SQRT(VARE1)*SQRT(VARE2)*RHOI;
COVEIE3=SQRT(VARE1)*SQRT(VARE3)*RHO2;
COVE1E4=SQRT(VARE1)*SQRT(VARE4)*RHO3;
COVE2E3=SQRT(VARE2)*SQRT(VARE3)*RHO1;
COVE2E4=SQRT(VARE2)*SQRT(VARE4)*RHO2;
COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHO1;

BOUNDS
~1.<RHOI <1.,-1.<RHO2 <1.,-1.<RHO3 < 1.;

_ARH( 1) (heterogeneous AR(1)) :

2
O

&

2
0,0.p O

&

2 2 ’
0,0,p 0.0.p O

& & &

3 2 2
_0-54 O-gl p 0-54 O-gz p 0-54 0-53 p 0-54 _

lpl<l

STD
E1=VAREI1, E2=VARE2, E3=VARE3, E4=VARE4,
D0=VARDO, D1=VARDI;

CoVv
El E2=COVEIE2, E1 E3=COVEIE3, E1 E4=COVEI1E4,
E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4,
D0 D1=CDO0D1;

PARAMETERS RHO (0.7);
COVEI1E2=SQRT(VARE1)*SQRT(VARE2)*RHO;
COVEI1E3=SQRT(VARE1)*SQRT(VARE3)*RHO**2;
COVEIE4=SQRT(VARE1)*SQRT(VARE4)*RHO**3;
COVE2E3=SQRT(VARE2)*SQRT(VARE3)*RHO;
COVE2E4=SQRT(VARE2)*SQRT(VARE4)*RHO**2;
COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHO;

BOUNDS
—-1.<RHO <1,

Note. The second-level ECM, ‘I’gq

2
o
e
2

, is estimated with type = UN.
o o
Calns Ol
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TABLE 2
Population Parameters of the Model in Figure 1 Based on the First-Level Error Covariance
Structure of TOEPH and the Sample Covariance Matrix of y—y4 and X Resulting from a
Dataset of Size 300 Generated from the Model

10 o2
¢ 15
11 Yo 4 2 Yy, = e = |: }
= ’r = = , Zxx:O- :1, x= :0’ {,’ P s
b2 ’ |:7/ 11:| |:6:| * a ﬂX Gg’lag’lﬁ ngﬂ 710
13 -,
L o’
¥z 10 o.o.p O
) 00:| ) |: :| ’ (E)g - 2 " 2 2
_7/10 4 0-53 Ggl pZ 053 0-52 pl 0-53
0-54 O-gl p 3 0-84 ng p 2 Gs;, 0-53 p 1 0—524
o"fl =36, 0522 = 25,0'523 =49, o"f4 =40
p =1 p,=.6, p;=.7
Sample Covariance Matrix
By )2 3 Va X
Vi 72.272 99.943 140.297 175.400 5.497
V2 99.943 200.547 292.249 374.457 12.923
V3 140.297 292.249 462.949 587.170 20.360
V4 175.400 374.457 587.170 786.616 27.348
X 5.497 12.923 20.360 27.348 1.205
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TABLE 3
Summary of SCDT for Identifying the First-Level ECM and Parameter Estimates by Fitting
ARH(1) Based on the Sample Covariance Matrix Shown in Table 2

Hy,:M,=M, (SCDT)

Assessment of model fit

Step  Structure
7 df Ay*  Adf P> Ayyy, P>y AGFI  RMSEA
0 UN 1.042 1 307 984 012
1 UN(1) 16.945 7 15.903 6 014 018 966 .069
2 ARH(1) 1.483 6 441 5 .994 961 996 .000
TOEPH 1.042 4 .000 3 1.000 903 996 .000
Parameter estimates by fitting ARH(1)
Estimates by using Estimates by using
Parameters PROC CALIS PROC MIXED
glr{H(;l), o 36.48" 36.34”
“Nonoup o2 21.32° 27.57" 21.24" 2746
: 2 18.54° 2397 4607 1846" 23.87 4589
0.93 O-g] P 0-53 O-gz P 0-.93 . ok a a a ok
3 i i 1206 1560 2998 43.18 12.01° 1553" 29.85" 42.96
0-54 O-slp 0-54 O-gzp 0-540-53:0 054 . AN— 67***
p=67" p=00
PO 10.46 10.45
o - ) 9.107 6.26™ 9.077" 6.24™
%ty 94,
10.58™ 4.03™ 10.58™ 4.03™
Yo Vi 4.60  6.05 4.60  6.05

Note. M, ={UN(1),ARH(1),TOEPH(1)}, Ms=UN, A 7> = the chi-square difference between My and Ms,
Adf = the difference of df associated with Mrand Ms, P.>A lidf denotes the p-value of the chi-square difference

test.
“ Test for significance cannot be achieved.
'p<.05,"p<.01,""p<.001.
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TABLE 4

Summary of SCDT for Identifying the First-Level ECM with the Dataset in Singer and
Willetts (2003, Chap. 7) and Parameter Estimates by Fitting TOEP(1)

Hy,:M,=M, (SCDT)

Assessment of model fit

Step Structure
7 df Ay  AMf  P>Ay,, P>p° AGFI  RMSEA
0 TOEP 3.879 6 693 988 .000
1 TOEP(1) 6.680 10 2.801 4 .592 755 987 .000
Parameter estimates by fitting TOEP(1)
Estimates by using Estimates by using
Parameters PROC CALIS PROC MIXED
TOEP(1) T 2 164.1 159.5™
for ©,: | 0 164.1 0 159.5™
o, 0 0 164.17 0 0 159.57
0 0 o , 0 0 0 164.1™ 0 0 0 159.5™
0 0 0 o
R 1194.00" [1159.38"
b 2 -170.19" 102.23" -165.317 99.29"
Oty %t -
164.40™ 26.96 164377 26.96
Yoo Yo . .
Yo Vi -.11 43 -.12 43

Note. M; = TOEP(1), Ms=TOEP, Ay”=the chi-square difference between My and M, Adf = the difference

of df asassociated with M7 and M, P. > A lidf denotes the p-value of the chi-square difference test.
p<.05,"p<.01, " p<.001.
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TABLE 5
Population Parameters of the Model in Figure 2 Based on the First-Level Error Covariance
Structure of AR(1) and the Sample Covariance Matrix Resulting from a Dataset of Size 300
Generated from the Model

,, 00 0 ) . |70 | |12 | Yo | _|-60
1 Hn = = I= =
A, 0 0 0 1.00 0 0 O "yal 2] 7| |50
10 0 o0 75 0 0 0 )
V31 85 0 0 0 (1)526524’ ‘u§213’
0 /1V 0 0 0 1.00 0 O y CoV[¢ Iy e co 1
. : ¢ =LOV6E SR SH SH
04, 0 0 0 75 0 0 - ' i
A = 04, 0 01 10 8 0 0 o,
Y710 04, 0|0 0100 0| 402 o2
0 0 /IYT, 0 0 0 .75 0 - zF 2F 2 2 >
0 0 4 0 8 8 '351(())0 4,0 9 0L 9L,
. 3 2 2 2 2 2

0 0 0 ﬂ'ym 0 0 0 .75 _¢1§FO-§F ¢ICFO_§F ¢1§FJ§F Jip_
0.0 04 110 0 0 85 b, =40, o7 =25
0 0 0 4, - - 4 4

- Y, =Co¢, ¢, 1
1 -1 [1 0 i he T

A* 1 TZ -1 1 1 A /le 715 _[ Gé’mz :I 3 [80 j| ,
= = s N | Ay [T B 2 17125 .60
Yl n-1) 12 1 70 sy Ty

1 7,-1| |1 3 "

0, = Diaglo; o5 o} ]=Diag[.81 36 1.00],

— ’
0O, =CoVle) & & &, &y E3 &3 Ex3 €33 Eiy Exy Ea]

- .
£ 0-822
0 0 o
leafl 0 0 O'CZ]
¢lgzo-£2, 0 0 0-52‘2
0 0 4,0 O 0 o} ’
B ¢1il O'gzl 0 0 1, O 521 0 0 o-gz1
b0, O 0 4o 0O 0 o
0 0 4ol 0 0 g0 O 0 ol
boo. 0 0 go. 0 0 ¢,0. 0 0 o
0" o 0 0 g 0 0 g0l 0 0o
|0 #.0. 0 0 ¢ro. O 0 ¢,0. 0 0 o
he =5 b, =7, b, =6, 0, =25, 0, =36, 0, =.16
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TABLE 5 (Continued)

Sample Covariance Matrix

yu Y21 Y31 Y12 Y22 V32 Y13 Y23 Y33 Y14 Y4 Y34 X1 X2 X3
yii 2913 1971 2.264 4399 3.157 3.604 5.876 4.324 5.006 7.515 5.578 6.348 2.356 2.120 1.767
yar 1.971 1.817 1.648 3.018 2.474 2.529 4.131 3.254 3.542 5286 4.053 4.464 1.679 1.459 1.279
31 2.264 1.648 2.038 3.542 2.616 3.059 4.855 3.613 4.224 6.215 4.625 5.325 1.941 1.732 1.440
v 4399 3.018 3.542 8.107 5.715 6.551 11.064 8.111 9.336 14.236 10.600 12.042 4.339 3.795 3.212
v 3.157 2.474 2.616 5.715 4.504 4.782 7.973 6.159 6.82510.380 7.915 8.810 3.227 2.770 2.373
v 3.604 2.529 3.059 6.551 4.782 5.616 9.111 6.765 7.869 11.794 8.831 10.096 3.643 3.167 2.674
yi3  5.876 4.131 4.85511.064 7.973 9.111 16.11511.807 13.508 20.694 15.446 17.487 6.146 5.398 4.509
vy 4324 3254 3.613 8.111 6.159 6.76511.807 9.164 10.076 15.353 11.756 13.052 4.655 4.031 3.359
33 5.006 3.542 4.224 9336 6.825 7.869 13.50810.076 11.68517.51713.16015.015 5.285 4.590 3.851
yvis  7.515 5286 6.21514.23610.38011.794 20.69415.353 17.51727.45520.43723.108 8.119 7.070 5.884
yas  5.578 4.053 4.62510.600 7.915 8.831 15.44611.756 13.16020.437 15.666 17.349 6.140 5.315 4.400
34 6.348 4.464 5.32512.042 8.81010.096 17.48713.052 15.01523.108 17.349 19.815 6.902 5.994 4.986
X1 2.356 1.679 1.941 4.339 3.227 3.643 6.146 4.655 5.285 8.119 6.140 6.902 4.330 3.038 2.648
x; 2120 1.459 1.732 3.795 2.770 3.167 5.398 4.031 4.590 7.070 5.315 5.994 3.038 2.893 2.111
X3 1.767 1.279 1.440 3.212 2.373 2.674 4.509 3.359 3.851 5.884 4.400 4.986 2.648 2.111 2.755
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TABLE 6
Summary of SCDT for Identifying the First-Level ECM for¢,, ¢, , &, , and {r and Parameter

Estimates by Fitting the Final Model Based on the Sample Covariance Matrix Shown in Table 5
Hy,:M,=Mg (SCDT) Assessment of model fit

Process Step Structure 5 p 2 Ad 2 2 AGFI RMSEA
P if Ay f B>Ary B>

& 0 TOEP 95.01 103 .700 966 .000
1 TOEP(1) 157.70 106 62.69 3 <.0001 .001 994 .040
2 AR(1) 96.59 105 158 2 454 709 996 .000
g, 0 TOEP 95.01 103 .700 966 .000
1 TOEP(1) 408.04 106 313.04 3 <.0001 <.0001 978 .098
2 AR(1) 95.97 105 96 2 .619 124 996 .000
g, 0 TOEP 95.01 103 .700 .966 .000
1 TOEP(1) 154.27 106 59.26 3 <.0001 .002 993 .039
2 AR(1) 99.11 105 4.10 2 129 .644 996 .000
$r 0 TOEP 95.01 103 .700 966 .000
1 TOEP(1) 10099 106 598 3 112 .619 996 .000

Parameter estimates by fitting the final model (AR(1) forg,,¢,,¢,, TOEP(1) for £, and UN forg, )

/iyzl /’i’:yh B .75*** ,85*** (];00 };Olj ) 1 1,56*** 64*** ,[lf ) 1295*** &;}a ) |:945*** j|
~ A - ok sk 2| A A - sork kx| N - sk A A2 = ok ook
A a ) a6t \pe fu) e s 62 ) | 3.2 )7 | Ge,., Oc, | L3137 5997 )

21

A2 ~2

% 251" % 3537

4,6. S |21 s 4.,6. 61 | 2417 353

) ~ A2 ~2 - sk ek sk 22 A2 ~ ~2 ~2 - sk sk sk

R g6 &2 0820 s\ IR 6L b6l 6l 1657241 353

73 A2 72 A2 7oA2 A2 73 A2 72 A2 4 A2 A2

_¢1810_€1 #. 62 $.0: S;, | 028 .058 .121 .251 #.,60, $e. 62, he, G, O 130 165 241 353
~ sk A0 ook ” Wk A Aotk
b =482, 62 =251 b, =684, 62 =353

i 52 1 kot

S, 160

7 A2 A2 Hokk Hk

hey0y O _| 097 160 Diag| 6 6, 63, | =Diag| .646™ 413™.902™ |,

4. 62 h.0:. 6 059,097 160 '

¢‘13 &2 ¢?2 52 ¢?1 &2 &2 036" 0597 097" 160" ’Diag[é'é &2 OA'é OA'E :l=Diagl:.142***.142***.142***.142***]
&5 & Pleg & &6 Ye | F o SF SF 6F

b, =608, 62 =.160""

}(jlelz =107.53, p=.602, AGFI = .996, RMSEA = .000.

Note. M, ={AR(1),TOEP(1)}, Ms=TOEP, A * = the chi-square difference between My and Ms, Adf = the
difference of df associated with My and Mg, P.>A ;(ﬁ 4 denotes the p-value of the chi-square difference test.
'p<.05,"p<.01, " p<.001.
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Intercept

Time 1 Time 2 Time 3 Time 4

FIGURE 1. Linear latent curve model with four repeated measures and a covariate X.
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‘yn‘ ‘yzl‘ ‘)@1‘ ‘)ﬁz‘ ‘)ﬁz‘ ‘)@2‘ ‘yw‘ ‘y23‘ ‘)@3‘
g 4 A A L) gf 4 A

11 13

63 1 51 2 822 832

TH t 1 rﬁ Hf

833
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FIGURE 2. A second-order growth model, representing linear change in four repeated
measures of a latent construct with three indicators (adapted from Chan (1998) and Preachers
et al. (2008)).
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H,,:Stationary? No
iYes
4
Fitting M . =TOEP(1) Fitting M . =UN(1)

Fitting a less constrained
structure and updating M,

M ¢ :Saturated structure
(TOEP for stationary,
UN for nonstationary)

Yes
\

Accepting M, as the final level-1
error covariance structure

Y
(| Stop )

FIGURE 3. A flow chart for identifying the first-level error covariance structure.

32



APPENDIX 1
Sample SAS programs for LGM

Program 1

A SAS Program for LGM by Specifying the First-Level ECM to be ARMA(1,1) with the
SEM Approach (PROC CALIS) and the HLM Approach (PROC MIXED)

/* The dataset used for PROC CALIS should be a multi variable dataset.
The dataset used for PROC MIXED should be a multi record dataset.
SAS codes for manipulating datasets were given in Singer (1998) */

PROC CALIS METHOD=ML UCOV AUG;

LINEQS
Y1 =1F Alpha+O0F Beta+El,
Y2=1F Alpha+1F Beta+ E2,
Y3=1F Alpha+2F Beta+E3,
Y4=1F Alpha+ 3 F Beta+ E4,
F Alpha = GAO00 INTERCEPT + GAO1 X + DO,
F Beta=GA10 INTERCEPT + GA11 X + D1;

STD
E1=VARE, E2=VARE, E3=VARE, E4=VARE, X=VARX,
D0=VARDO, D1=VARDI;

CoVv
E1 E2=COV lagl, E2 E3=COV _lagl, E3 E4=COV lagl,
E1 E3=COV _lag2, E2 E4=COV lag2, E1 E4=COV _lag3,
D0 D1=COVDODI;

PARAMETERS PHI1 RHO1 (0.6 0.7);
COV_lagl=RHO1*VARE;
COV _lag2=PHI1* COV lagl;
COV _lag3=PHI1* COV _lag2;

BOUNDS
—1.<PHII <1.,-1.<RHOI <1.;

VARYI1Y2Y3Y4X;

TITLE 'LGM_SEM with ECM=ARMAC(1,1)’;

RUN;

PROC MIXED METHOD=ML COVTEST;
CLASS ID;
MODEL Y=TIME X TIME*X / SOLUTION DDFM=BW;
REPEATED / SUBJECT=ID TYPE=ARMA(1,1) R RCORR;
RANDOM INTERCEPT TIME / SUBJECT=ID TYPE=UN G GCORR;
TITLE 'LGM_HLM with ECM=ARMA(1,1)’;

RUN;
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Program 2

A SAS Program for a Second-Order Growth Model by Specifying the First-Level ECM to be
AR(1) with the SEM Approach (PROC CALIS)

PROC CALIS METHOD=ML UCOV AUG;

LINEQS
Y11=1F1+EY1ll, Y21=LY2IF1F1+EY2l, Y31=LY31F1F1+EY3l1,
Y12=1F2+EY12, Y22=LY22F2F2+EY22, Y32=LY32F2F2+EY32,
Y13=1F3+EY13, Y23=LY23F3F3+EY23, Y33=LY33F3F3+EY33,
Y14=1F4+EY14, Y24=LY24F4F4+EY24, Y34=L1LY34F4F4+EY34,
X1=1F7+EXl, X2 =LX2F7 F7+ EX2, X3 =LX3F7 F7 + EX3,
F1=1F Alpha+0F Beta+ EZFI,
F2=1F Alpha+1F Beta+ EZF2,
F3=1F Alpha+2F Beta+ EZF3,
F4=1F Alpha+ 3 F Beta+ EZF4,
F Alpha= GAO00 INTERCEPT + GA10 F7 + EZF5,
F Beta=GAO1 INTERCEPT + GA11 F7 + EZF6,
F7 =F7_int INTERCEPT + EZF7,;

STD
EY11-EY14=4*VAREI1, EY21-EY24=4*VARE2, EY31-EY34=4*VARE3,
EX1=VAREXI1, EX2=VAREX2, EX3=VAREX3,
EZF1-EZF4=4*VARZF, EZF5=VAR _Intercept, EZF6=VAR_ Slope, EZF7=VARZF7;

(6(0)%
/* for the first-level errors associated with indicator 1 */
EY11 EY12=COV1 lagl, EY12 EY13=COV1 lagl, EY13 EY14=COV1 lagl,
EY11 EY13=COV1 lag2, EY12 EY14=COV1 lag2, EY11 EY14=COV1 lag3,
/* for the first-level errors associated with indicator 2 */
EY21 EY22=COV2 lagl, EY22 EY23=COV2 lagl, EY23 EY24=COV2 lagl,
EY21 EY23=COV2 lag2, EY22 EY24=COV2 lag2, EY21 EY24=COV2_lag3,
/* for the first-level errors associated with indicator 3 */
EY31 EY32=COV3 lagl, EY32 EY33=COV3 lagl, EY33 EY34=COV3 lagl,
EY31 EY33=COV3 lag2, EY32 EY34=COV3 lag2, EY31 EY34=COV3 lag3,
/* for the first-level errors associated with the construct */
EZF1 EZF2=COVZ lagl, EZF2 EZF3=COVZ lagl, EZF3 EZF4=COVZ lagl,
EZF1 EZF3=COVZ lag2, EZF2 EZF4=COVZ lag2, EZF1 EZF4=COVZ lag3,
/* for the second-level errors associated with growth factors */
EZF5 EZF6=CZF5ZF6;

PARAMETERS PHI1 PHI2 PHI3 PHIZ (0.50.70.60.4),
/* for the first-level errors associated with indicator 1 */
COV1 lagl=PHII*VAREI1; COV1 lag2= (PHI1**2)*VARE];
COV1 _lag3=(PHI1**3)*VARE];
/* for the first-level errors associated with indicator 2 */
COV2 lagl=PHI2*VARE2; COV2 lag2=(PHI2**2)*VARE2;
COV2 lag3=(PHI2**3)*VARE2;
/* for the first-level errors associated with indicator 3 */
COV3 lagl=PHI3*VARE3; COV3 lag2=(PHI3**2)*VARE3;
COV3 lag3=(PHI3**3)*VARES3;
/* for the first-level errors associated with the construct */
COVZ lagl=PHIZ*VARZF; COVZ lag2= (PHIZ**2)*VARZF;
COVZ lag3=(PHIZ**3)*VARZF;
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BOUNDS
-1.<PHII<1., -1<PHI2<1.,, -1<PHI3<l., -1.<PHIZ<1.;

LINCON /* invariance across time is assumed */

LY21F1=LY22F2, LY21F1=LY23F3, LY21F3=LY24F4,

LY31F1=LY32F2, LY31F1=LY33F3, LY31F3=LY34F4;
VARYI11Y21Y31Y12Y22Y32Y13Y23Y33Y14Y24Y34X1 X2X3;
TITLE 'A Second-Order Growth Model with Four Occasions by Specifying AR(1) for’;
TITLE2 '"The First-Level Errors Associated with the Construct Measured with Three’;
TITLE3 ' Indicators and Those Associated with the Indicators';

RUN;

35



APPENDIX 2
Derivation of the implied mean vector x4 and variance-covariance matrix X ofy

and x in Figure 2

Based on Equation 11, we have
F=A (T,+T. L+ )+8, =A T +ATL+AL +E,,
y=AF+e¢
=A (AT +ATL+AL, +E,)+&
=AAT +AATL+AAL +AL, +¢,

x=AE+0.
Therefore
p,=E(y)=A AT +A AT, 1,
#x :E(X):Ax (]
that is,
_ {”y} _[AAT +AAT 1
ﬂ - - H
ﬂx Axlu(f
and
L, =Cov(y)=A AT O AA+AAY AA+AY, A +0O,
=A, (AT @A+ A Y, A +P, A, +0,
L, =Cov(x)=A®.A +0,,
X, =Cov(y,x)=A AT DA,
L, =A@T.A Al
that is,

E‘F 3 } A, AT ®TA + AW, A +¥, A, +0, A AT.®A,

ADTAA, A DA, +0O,
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APPENDIX 3
More types of stationary and nonstationary level-1 error covariance structures with
four occasions

Structure ECM
Stationary:
CS (Compound symmetry) o, +0’
(o3} o, + 0'2
o, o, o, +0o’
(o 0, (o (o] + 0'2
TOEP (Toeplitz) o2
(o 0'2
o, o, o’
o, o, o 0o’
TOEP(q) TOEP(1) TOEP(2)
(Toeplitz with ¢ bands, g =1, 2, 3, 4. o’ ) o’ ,
Only the first ¢ bands of the matrix are 0 o , N ,
estimated, setting all higher bands equal 00 o ) 0 o0 o )
to zero.) 0 0 0 o] 0 0 o o
TOEP(3) TOEP(4)
0'2 l 0'2
o, o’ o, o’
c, o, & " |lo, o, o’
0 o, o 0'2_ o, o, 0, ¢’
Nonstationary:
CSH (Heterogeneous CS), o2
| pI<1. :

2
0,0,p O,
2
030, 030, Oj
2
0,0,p G4,0,Pp 0,030 0y
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APPENDIX 3 (Continued)

Structure ECM
Nonstationary:
TOEPH(q) TOEPH(1) TOEPH(2)
(Heterogeneous Toeplitz with g bands, o} o}
q= 19 29 39 4)5 0 0'22 0,0,0, 0'22
2 2 s
lp <1, | p, <1, | p|<1. 0 0 o 0  o0,p o
! : ’ 0 0 0 o 0 0 o,0.p O
TOEPH(3) TOEPH(4)
o} o}

UN(q)
(UN with g bands, ¢ =1, 2, 3, 4.)

2
0,00 O, R
0300, 0;0,0, O,

2
0 o,0,p,0,05p 0,

UN(T)
o}
0 o
0 0 o
0 0 0 o
UNQ)
o
o, O,

03 O3 O
0 o, o4

2
0,0,P1 O, )
0,010, 050,p, Oj 5
0,401P; 040,0, 0,050, 04

UN(2)
2
0,
2
O, O, ,
b
0 o, o ,
0 0 o4 o

UN(®4)
2
0,

2
O, O, ,
031 O3 O3 ,
Oy Oyn Opn Oy

Note. TOEP(4)=TOEP, TOEPH(1)=UN(1), TOEPH(4)=TOEPH, UN(4)=UN.
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A paper, “Using SAS PROC CALIS/TCALIS to Fit Error Covariance Structures of
Latent Growth Models,” derived from the first-year part of the project, has been submitted
to Structural Equation Modeling on March 29, 2010, to be considered for publication, and
is currently under review. The contribution of the paper is to facilitate fitting error

covariance structures of latent growth models.
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