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一、中英文摘要 

本研究計畫為兩年期計畫，分兩部分進行，第一部分為一般多屬性多方法潛伏成長模型

之建立，第二部分運用第一部分所提出之模型從事投資人情緒實證研究。第一部分的重

點在於成長模型中誤差共變結構之設定方法，已完成並撰文投稿 Structural Equation 

Modeling 期刊，研究進度符合預期。我們示範如何利用SAS PROC CALIS/TCALIS進行

誤差共變結構之配適，並提出一基於卡方差異檢定之有效方法以發掘 level-1 誤差共變

結構，另具體說明如何以 PROC TCALIS 中之 SIMTEST statement 進行誤差穩態檢

定，針對外顯變數與潛伏構念之成長模型，皆提供對應的 SAS 語法。  

關鍵詞：多屬性多方法，潛伏成長模型，二階成長模型，誤差共變結構，卡方差異檢定，

穩態 

 
This project consists of two parts. The first part is to develop a general multitrait- 

multimethod (MTMM) latent growth model. The second part is to apply the model proposed 

to an empirical study in investor sentiment. The focus of the first part is how to identify the 

error covariance structure. The task has been completed, with a paper submitted to Structural 

Equation Modeling. Using SAS PROC CALIS/TCALIS to fit error covariance structures of 

latent growth models (LGM) has been illustrated. A tutorial on the SAS syntax is provided for 

both manifest variables and latent constructs in LGM. While the second-level error 

covariance structure is usually specified as unstructured, an effective approach for identifying 

the first-level error covariance structure based on the sequential chi-square difference test is 

proposed and demonstrated. Moreover, how to test for stationarity of an error process by 

using the SIMTEST statement in ROC TCALIS is specifically addressed.  

Keywords: multitrait-multimethod (MTMM), latent growth model, second-order growth 

model, error covariance structure chi-square difference test, stationarity 
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二、報告內容 

The latent growth model (LGM) plays an important role in repeated-measure analysis over a 

limited occasions in large sample data (e.g., Meredith & Tisak, 1990; Muthén & Khoo, 1998; 

Preacher, Wichman, MacCallum, & Briggs, 2008, p.12; Singer & Willett, 2003, p.9). The 

model can not only characterize intraindividual (within-subject) change over time but also 

examine interindividual (between-subject) difference by means of a random intercept and 

random slopes, and is a typical application of the multilevel model (or hierarchical linear 

model (HLM)). The between-subject errors (representing random effects for the intercept and 

slopes) and the within-subject errors over time are conventionally referred to as level-2 and 

level-1 errors, respectively.  

LGM is also an application of structural equation modeling (SEM) (e.g., Bauer, 2003; 

Boolen & Curran, 2006; Curran, 2003; Duncan, Duncan, & Hops, 1996; Mehta & Neal 2005; 

Meredith & Tisak, 1990; Willet & Sayer, 1994). The structural modeling of multilevel data is 

a relatively new area of methodological research. SEM and HLM stem from different 

traditional statistical theory, and each has developed its own terminology and standard ways 

of framing research questions. However, it has become clear that there exists much overlap 

between the two methodologies under some circumstances. More specifically, when a 

two-level data structure arises from the repeated observations of a set of individuals over time 

(such that time is hierarchically nested within an individual), SEM is analytically equivalent 

to HLM (e.g., Bauer, 2003; Curran, 2003; MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 

1997; Raudenbush, 2001; Rovine & Molenaar, 2000; Willett & Sayer, 1994). Thus, despite 

the inherent differences between the estimation procedures by SEM and HLM, these two 

approaches provide analytically identical solutions for LGM. Nevertheless, the measurement 

model capabilities of SEM possess superiority in examining model fit to the HLM approach. 

The SEM approach also brings the possibility of modeling of change over time for latent 

constructs or multivariate data (e.g., Bollen & Curran, 2006, Chap. 7, 8; Chan, 1998; Duncan, 

Duncan, & Strycker, 2006, Chap. 4; Hancock, Kuo, & Lawrence, 2001; MacCallum, et al., 

1997; Rovine & Molenaar, 2000). As a result, SEM has become a more commonly used 

approach for longitudinal data. Specialized software such as Mplus (Muthén & Muthén, 2007), 

Mx (Neale, Boker, Xie, & Maes, 2003), AMOS (Arbuckle, 2006), EQS (Bentler & Wu, 2005), 

Lisrel (Joreslog & Sorbom, 2004), and SAS PROC CALIS (TCALIS in SAS 9.2) (SAS 

Institute Inc., 2007) are readily available and allow individuals to be measured at unique times, 

having unequal spacing between assessments. 
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Since errors within the same subject are often correlated across time (e.g., Preacher et al., 

2008, p.63; Sayer & Cumsille, 2001), not modeling autocorrelated errors present in 

longitudinal data or misspecifying error covariance structure has a substantial impact on the 

inferences for model parameters (e.g., Ferron, Dailey, & Yi, 2002; Kwok, West, & Green, 

2007; Murphy & Pituch, 2009; Sivo, Fan, & Witta, 2005). A variety of processes underlying 

level-1 errors can be used (e.g., Newsom, 2002; Singer & Willett, 2003, Chap. 7; Wolfinger, 

1996). The HLM software (Raudenbush, Bryk, & Congdon, 2005) provides the first-order 

autoregressive (AR(1)) option. The MIXED procedure in SAS/STAT (SAS Institute Inc., 

2007) contains many types of level-1 error processes such as unstructured (UN), compound 

symmetry (CS), AR(1), first-order autoregressive moving average (ARMA(1,1)), Toeplitz 

(TOEP), Toeplitz with q bands (TOEP(q)), etc. The processes are either stationary or 

nonstationary. The most general covariance structure is the so-called unstructured model, 

indicating that no structure is imposed and covariance estimates are to be determined by the 

data. However, the use of UN is likely to inflate type I error rates for the tests of the fixed 

effects (Kwok, West, & Green, 2007; Murphy & Pituch, 2009). Moreover, the number of 

parameters to be estimated becomes excessive and can cause convergence problems, 

especially when series length is long. Autocorrelations among level-1 errors are generally 

regarded as a nuisance. Although the error covariance structure is not of theoretical interest, 

failing to add its specification to the growth model would bias parameter estimates of primary 

interest (Sivo & Fan, 2008). While its specification is difficult to determine based on theory, 

how to conduct an effective specification search becomes needed (Kwok, West, & Green, 

2007), and will be discussed in this study.  

The growth curve ARMA(p, q) model has been proposed to filter out the effects of error 

autocorrelation on parameter estimates (e.g., Sivo et al., 2005; Sivo & Fan, 2008). The AR 

part is specified to represent the current value of a time series as a function of previous values 

of the same time series, and the MA part is specified to represent the current value of a time 

series as a linear function of the current and previous disturbances, which are independent and 

identically distributed. Note that the growth curve ARMA(1, 1) model differs from the model 

specified by using the REPEATED statement with TYPE=ARMA(1,1) in SAS PROC 

MIXED. The within-subject error covariance matrix (ECM) with an ARMA(1,1) structure 

can be well captured by the latter only. In fact, PROC MIXED, based on the HLM approach, 

contains more than 30 different types of level-1 preprogrammed structures. Although it is a 

powerful tool, how to identify an appropriate structure is not documented. Besides, PROC 

MIXED cannot handle higher-order latent growth models. To improve, use PROC CALIS/ 
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TCALIS, which is based on the SEM approach. How modeling longitudinal change can be 

effectively done under a broad class of error covariance structures based on the SEM 

framework is rarely seen, and will be specifically addressed in this study. The purpose of this 

article is to give a tutorial on the syntax using PROC CALIS/TCALIS for handling 

longitudinal change in a manifest variable and that in a latent construct, known as a 

second-order growth model (Hancock, Kuo, & Lawrence, 2001). For the purpose of 

verification, we use the data generated from a given model so that the syntax can be checked 

for correctness by comparing if parameter estimates obtained are close to the population 

values. In addition, PROC MIXED will be used with respect to the manifest variable to 

further confirm the results obtained. Two sample SAS programs will be provided. One is for 

modeling longitudinal change in a manifest variable, and the other for modeling the change in 

a latent construct. In this study, an effective approach for identifying the first-level error 

covariance structure based on the sequential chi-square difference test will be proposed. 

Moreover, how to test if an error process is stationary by using PROC TCALIS will be 

demonstrated. 

 

LATENT GROWTH MODEL 

In this section, we briefly introduce the LGM with a variety of level-1 error covariance 

structures through a typical example depicted in Figure 1. In the figure, y1–y4 denote 

repeated-measures on four occasions and X a level-2 predictor. 
iαη  is the random intercept 

representing the initial status for individual i, 
iβη  is the random slope showing the 

individual’s linear rate of change per unit increase in time. The first-level model can be 

written as  
 

*= +yy Λ η ε ,                             (1) 
 

where 1 2 3 4[    ]y y y y ′=y , *

1 2 3 4 1 2 3 4

1    1    1    1  1        1         1        1
      1  1  1  1T T T Tλ λ λ λ

⎡ ⎤ ⎡ ⎤′ = =⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦yΛ , [  ]α βη η ′=η , and 

1 2 3 4[    ]ε ε ε ε ′=ε . tλ  is the measurement time points (Tt = 1, 2, 3, 4), and ε  denotes level-1 

errors. The double-headed curved arrows presented in Figure 1 indicate that tε  are 

correlated. The factor loading associated with initial status are all fixed at 1, whereas those 

associated with the slope are set at the value tλ  to reflect the particular time point t for 

individual i . A common coding of tλ  for different time points is to set 1λ  = 0 for baseline 
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and 1t tTλ = − for the follow-ups. For this model, subject i’s growth trajectory is a straight 

line, 
i itα βη λη+ , tλ = 0, 1, 2, 3.  

 

---------------------------------------------------- 

Insert Figure 1 about here 

---------------------------------------------------- 

 

The second-level model can be written as 

0= + +xΓ Γ x ηη ζ ,                           (2) 

where 0 00 01[  ]γ γ ′=Γ , 10 11[  ]γ γ ′=xΓ , [ ]X=x , [  ]
α βη ηζ ζ=ηζ . Both growth factors 

(intercept and slope), αη  and βη  , are influenced by a subject-level predictor X. 00γ  and 

10γ  denote, respectively, the intercept and slope of the regression of αη  on X, 01γ  and 11γ  

are those of βη  on X, and 
αηζ  and 

βηζ are level-2 errors. It is assumed that ηζ  and ε  are 

uncorrelated. The models can be rewritten in combined form as 

 
* *

0( )y y η= + + +xΛ Γ Γ x Λ εy ζ ,                        (3) 
 
based on which the mean vector μ  and the covariance matrix Σ  of the manifest variables 

y1–y4 and X can be expressed as functions of the model parameters as follows: (Bollen & 

Curran, 2006, p.134-135): 

 
*

0( )⎡ ⎤+⎡ ⎤
= = ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

y y x x

x x

Λ Γ Γμ
μ

μ
μ

μ
,                      (4) 

 

* * *

*

( )⎡ ⎤′′ + +
⎢ ⎥=
⎢ ⎥′′⎣ ⎦

y x xx x y y x xx

xx x y xx

Λ Γ Σ Γ Ψ Λ Θ Λ Γ Σ
Σ

Σ Γ Λ Σ

ηζ ε
,                 (5) 

 

where εΘ  and Ψ
ηζ
denote the variance-covariance matrices of ε and ζη, respectively, and 

xμ  and xxΣ  denote, respectively the mean vector and the variance-covariance matrix of 

predictors ( Xμ=xμ  and 2
Xσ=xxΣ  for this model since there is only one predictor). 
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The first-level errors, 1ε , 2ε , 3ε , and 4ε , are assumed to be normally distributed with zero 

means. The general form of the ECM is unstructured, and is given by 

 

1

2 1 2

3 1 3 2 3

4 1 4 2 4 3 4

2

2

2

2

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

σ

σ σ

σ σ σ

σ σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Θε .                         (6) 

 

The corresponding option given in SAS PROC MIXED is TYPE=UN. Other types of ECM, 

with less parameters (parsimonious) may be desirable. The chi-square test resulting from 

PROC CALIS (not available by PROC MIXED) can be used to help determine an appropriate 

type. The second-level errors 
αηζ  and 

βηζ are assumed to be normally distributed with zero 

means. Their covariance matrix is usually specified as unstructured (Murphy & Pituch, 2009): 

 
2

2

η η ηα α β

η η ηα β β

ζ ζ ζ

ζ ζ ζ

σ σ

σ σ

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

Ψ
ηζ

.                           (7) 

 
 

Types of Level-1 Error Covariance Structures and SAS Statements 

Any type of ECM, εΘ  or Ψ
ηζ

, can be expressed as a set of linear and/or nonlinear 

constraints. The SAS statements by PROC CALIS for specifying six types of the first-level 

error covariance structure are summarized in Table 1. They include the first-order 

autoregressive (AR(1)), the first-order autoregressive moving-average (ARMA(1,1)), the 

second-order autoregressive (AR(2)), heterogeneous ARH(1), heterogeneous Toeplitz 

(TOEPH), and unstructured (UN), commonly considered in time series analysis and among 

which there exist nested relationships (Kwok, West, & Green, 2007). Stationarity is assumed 

for the first three processes, and should be examined to justify the use of the corresponding 

ECM.  

 

---------------------------------------------------- 

Insert Table 1 about here 

---------------------------------------------------- 
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Statements by SAS PROC MIXED.  PROC MIXED provides a REPEATED statement, 

in which many types of the first-level error covariance structure can be specified through the 

TYPE= option (e.g., Singer, 1998). 

 
Statements by SAS PROC CALIS.  The STD, COV, and PARAMETERS statements in 

PROC CALIS can be used together to specify any type of ECM ( εΘ  or 
ηζ

Ψ ). The 

PARAMETERS statement defines additional parameters that are not specified in the models, 

and uses both the original and additional parameters for modeling ECM. In other words, each 

specific type of ECM is composed of functions of the original and additional parameters.  

Example 1: Θε  Resulting from ARMA(1,1)  

The ECM resulting from the stationary ARMA(1,1) process, defined as 1 1 1 1t t t tε φ ε ν θν− −= + − , 

where 1φ  denotes the autoregressive parameter, 1θ  the moving average parameter, and tν  

a white noise process (independent and identically distributed disturbances) (Box, Jenkins, & 

Reinsel, 1994, p.77), is given by 

 

12

2 1

3 2 1

1
1

1
1

ε

ρ
σ

ρ ρ
ρ ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Θε ,                         (8) 

 

where 1 1 1 1
1 2

1 1 1

( )(1 )
(1 2 )
φ θ φ θρ

φ θ θ
− −

=
− +

, 1 1,  2,  3,k k kρ φ ρ −= = with the constraints of 1| | 1φ <  and 

1| | 1ρ < . Program 1 in Appendix 1 illustrates how to use SAS PROC CALIS for modeling 

LGM with an ARMA(1,1) level-1 ECM and an unstructured level-2 ECM for four equally 

spaced time points. Under the assumption of stationarity for level-1 errors, their variances are 

equal, the autocovariances at lag 1 are equal, and the autocovariances at lag 2 are equal as 

well. Level-2 error variances/covariances are unstructured, as shown in Equation 7. Therefore, 

the STD and COV statements for specifying error variances and pairwise covariances are 

given as follows: 
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***************************************************************************; 

STD 

   E1=VARE, E2=VARE, E3=VARE, E4=VARE, D0=VARD0, D1=VARD1; 

COV 

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1,   

E1 E3=COV_lag2, E2 E4=COV_lag2, 

E1 E4=COV_lag3,  

D0 D1=COVD0D1; 

***************************************************************************; 

In the STD statement, VARE represents the estimate of the common variance 2
εσ  of the four 

level-1 errors 1ε – 4ε  (denoted by E1-E4), and VARD0 and VARD1 the estimates of the 

variances, 2

ηα
ζσ  and 2

ηβ
ζσ , of the two level-2 errors 

αη
ζ  and 

βη
ζ  (denoted by D0 and D1). 

In the COV statement, COV_lag1 and COV_lag2 represent, respectively, the common level-1 

error autocovariance estimates at lag 1 and lag 2. COV_lag3 is the estimate of the error 

autocovariance at lag 3. CD0D1 is the estimate of 
η ηα β

ζ ζσ . Parameters 1ρ  and 1φ  defined in 

Equation 8 and their relationships with the autocovariances can be specified by using the 

following PARAMETERS statement. Starting values for estimating 1ρ  and 1φ  are needed 

and should appear in the parenthesis. Population parameters are used as starting values to 

achieve convergence more efficiently for simulation studies (Paxton, Curran, Bollen, Kirby, & 

Chen, 2001). 

***************************************************************************; 

PARAMETERS  

PHI1 RHO1 (0.6 0.7); 

   COV_lag1=RHO1*VARE;  

COV_lag2=PHI1* COV_lag1;  /* i.e., COV_lag2=PHI1*RHO1* VARE; */ 

   COV_lag3=PHI1* COV_lag2;  /* i.e., COV_lag3=(PHI1**2)*RHO1*VARE; */ 

***************************************************************************; 

‘COV_lag1=RHO*VARE’ corresponds to the requirement that the common autocovariance at 

lag 1 be equal to 2
1εσ ρ . The syntax corresponding to the requirements for the common 

autocovariances at lag 2 (= 2
1 1εσ φ ρ ) and lag 3 (= 2 2 2

1 2 1 1ε εσ φ ρ σ φ ρ= ) is given in a similar way. 
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The constraints of 1| | 1φ <  and 1| | 1ρ <  are specified by the following BOUNDS statement: 

***************************************************************************; 

BOUNDS 

   –1. < PHI1 < 1.,  –1. < RHO1 < 1.; 

***************************************************************************; 

Example 2: Θε  Resulting from TOEPH 

The ECM resulting from heterogeneous Toeplitz is given by 

 

1

2 1 2

3 1 3 2 3

4 1 4 2 4 3 4

2

2
1

2
2 1

2
3 2 1

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

σ

σ σ ρ σ

σ σ ρ σ σ ρ σ

σ σ ρ σ σ ρ σ σ ρ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Θε ,                 (9) 

where 
tεσ denotes the standard deviation for tε , t = 1, 2, 3, 4, and jρ  the autocorrelation at 

lag j, j = 1, 2, 3, with the constraints of | | 1jρ < , j = 1, 2, 3. The level-1 error variances are 

allowed to be unequal but the autocorrelations at the same lag are equal. The STD and COV 

statements used for specifying estimates of error variances and pairwise covariances are given 

as follows: 

***************************************************************************; 

STD 

   E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4, 

   D0=VARD0, D1=VARD1; 

COV 

   E1 E2=COVE1E2, E1 E3=COVE1E3, E1 E4=COVE1E4, 

 E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4,  

D0 D1=COVD0D1; 

***************************************************************************; 

VARE1–VARE4 represent the estimates of the four level-1 error variances, and VARD0 and 

VARD1 those of the two level-2 error variances. COVE1E2–COVE3E4 represent the 

corresponding level-1 error autocovariance estimates, and COVD0D1 the level-2 error 

autocovariance estimate. Since 
t t t t t tε ε ε ε ε εσ σ σ ρ

′ ′ ′
= and the autocorrelations at the same lag are 
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constrained to be equal, the following PARAMETERS statement needs to be added: 

***************************************************************************; 

PARAMETERS  

RHO1 RHO2 RHO3 (0.7 0.6 0.7); 

   COVE1E2=SQRT(VARE1)*SQRT(VARE2)*RHO1; 

   COVE1E3=SQRT(VARE1)*SQRT(VARE3)*RHO2; 

   COVE1E4=SQRT(VARE1)*SQRT(VARE4)*RHO3; 

   COVE2E3=SQRT(VARE2)*SQRT(VARE3)*RHO1; 

   COVE2E4=SQRT(VARE2)*SQRT(VARE4)*RHO2; 

   COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHO1;  

***************************************************************************; 

The constraints of | | 1jρ < ( j = 1, 2, 3) can be handled by using the BOUNDS statement 

given below. 

***************************************************************************; 

BOUNDS 

–1. < RHO1 < 1. , –1.< RHO2 <1., –1.< RHO3 < 1.;  

***************************************************************************; 

The LINEQS statement used for this example is the same as that given in Example 1.  
Although there are many defaulted error covariance structures in PROC MIXED, 

modification is not allowed for any of them. In contrast, PROC CALIS can be used to specify 

any error covariance structure to meet researchers’ need. For example, the AR(2) process, 

given by 1 1 2 2t t t tε φ ε φ ε ν− −= + + , where 1φ  and 2φ  are autoregressive parameters and tν  a 

white noise process (Box, Jenkins, & Reinsel, 1994, p.54), leads to the following level-1 

ECM: 

 

12

2 1

3 2 1

1
1

1
1

ε

ρ
σ

ρ ρ
ρ ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,                       (10) 

 
where 0 1,ρ =  1 1 2/ (1 )ρ φ φ= − , and 1 1 2 2 ,  2,  3,k k k kρ φ ρ φ ρ− −= + =  with the constraints of 

2| | 1φ < , 2 1 1φ φ+ < , and 2 1 1φ φ− < . It is not possible to model AR(2) for level-1 errors by 

using PROC MIXED, but the task can be done by using PROC CALIS, with the statements 

shown in Table 1. Note that the last two constraints are specified by using the LINCON 
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statement. PROC CALIS is certainly more flexible than PROC MIXED. 

SAS statements by PROC CALIS for modeling other types of stationary and nonstationary 

level-1 error processes such as those presented in Appendix 3 can be obtained in a similar 

way. 

 
AN EFFECTIVE APPROACH FOR IDENTIFYING THE FIRST-LEVEL ERROR 

COVARIANCE STRUCTURE 
 
By following the sequential chi-square difference test (SCDT) given by Anderson and 

Gerbing (1988), an effective approach is proposed to identify the first-level error covariance 

structure as follows: 

Stage 1: Testing for stationarity of the first-level error process.  

The conditions of stationarity include the equality of error variances and the equality of 

error autocovariances at any lag (Box, Jenkins, & Reinsel, 1994, p. 24-26). For example, for 

the model shown in Figure 1, the null hypothesis of stationarity is given by H01: 

1 2 3 4 2 1 3 2 4 3 3 1 4 2

2 2 2 2 ,  ,  .ε ε ε ε ε ε ε ε ε ε ε ε ε εσ σ σ σ σ σ σ σ σ= = = = = =  To test H01, we use the 

SIMTEST statement in PROC TCALIS, in addition to the STD and COV statements given in 

Example 2, as follows: 

***************************************************************************; 

SIMTEST  ERR_STATIONARY_TEST = [VAREQ_1 VAREQ_2 VAREQ_3 

COVLag1EQ_1 COVLag1EQ_2 COVLag2EQ]; 

VAREQ_1=VARE1–VARE2;   

VAREQ_2=VARE1–VARE3;   

VAREQ_3=VARE1–VARE4;  

COVLag1EQ_1=COVE1E2–COVE2E3; 

COVLag1EQ_2=COVE1E2–COVE3E4;  

COVLag2EQ=COVE1E3–COVE2E4;  

***************************************************************************; 

The null hypothesis given above can be reexpressed as H01:
1 2

2 2 0,ε εσ σ− =
1 3

2 2 0,ε εσ σ− =  

1 4

2 2 0,ε εσ σ− =  
2 1 3 2

0,ε ε ε εσ σ− =  
2 1 4 3

0,ε ε ε εσ σ− =  
3 1 4 2

0,ε ε ε εσ σ− =  in which six functions of 

the model parameters, named VAREQ_1, VAREQ_2, VAREQ_3, COVLag1EQ_1, 

COVLag1EQ_2, and COVLag2EQ, respectively, are all equal to zero. To conduct a 

simultaneous test for the six functions by using the SIMTEST statement, we first assign a 
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name, ERR_STATIONARY_TEST, for the test, and then put the function names inside a pair 

of brackets ‘[’ and ‘]’. The six functions are defined in the SAS programming statements, and 

follow after the SIMTEST statement. VAREQ_1, VAREQ_2, and VAREQ_3 represent the 

differences between 
1

2
εσ  and each of the other error variances. COVLag1EQ_1 and 

COVLag1EQ_2 represent, respectively, 
2 1 3 2ε ε ε εσ σ−  and 

2 1 4 3ε ε ε εσ σ− , the two pairwise 

comparisons among the three error covariances at lag 1. COVLag2EQ is the contrast between 

the two error covariances at lag 2. The SIMTEST statement would lead to a chi-square test 

(with 6 degrees of freedom) for examining stationarity.  

If stationarity is supported, then go to Stage 2A; otherwise go to Stage 2B.  

Stage 2A: Identifying the type of stationary process using SCDT.   

We fit the model with stationary level-1 error processes sequentially, starting from 

TOEP(1), the most constrained one (the most parsimonious stationary one as well), followed 

by the order of AR(1), (ARMA(1,1) or AR(2)), and TOEP, according to the degree of 

constraint. TOEP, the least constrained (the least parsimonious) structure, is actually the 

saturated stationary one. At each step, we first test if the model fit using the current structure, 

denoted by MT, is significantly different from the model fit using TOEP, denoted by MS, with 

the chi-square difference test. The difference of the chi-square statistic for MT and that for MS 

is distributed as a chi-square distribution with degrees of freedom equaling the difference of 

the number of parameters within the two ECM. The significant result indicates that the 

current MT possesses significantly worse model fit, and we enter the next step by updating MT 

with a less constrained structure. The test is continued until the fit does not show significant 

difference (denoted as MT − MS = 0), and MT is the error covariance structure we need. 

Stage 2B: Identifying the type of nonstationary process using SCDT. 

The SCDT is conducted for nonstationary processes in a similar way as Stage 2A, 

following the order of UN(1), ARH(1), TOEPH, and UN. UN(1) is the most parsimonious of 

all. UN is the saturated structure. 

The reasons to recommend TOEP(1), AR(1), (ARMA(1,1) or AR(2)), and TOEP in Stage 

2A, and UN(1), ARH(1), TOEPH, and UN in Stage 2B are simply because they are nested 

and easy to interpret. More detailed structures may also be used if they can meet the same 

conditions. A flow chart for identifying the first-level error covariance structure is given in 

Figure 3.  
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Illustrations 

 
Two illustrations are given. The first one is based on the data generated from the linear 

growth model shown in Figure 1 with the TOEPH level-1 error structure and the UN level-2 

error structure. Population parameters and the sample covariance matrix of y1–y4 and X are 

given in Table 2. The sample size of 300 was used (Muthén & Muthén, 2002).  

 

---------------------------------------------------- 

Insert Table 2 about here 

---------------------------------------------------- 

 

Following the approach for identifying the first-level error covariance structure, we first 

test for stationarity. Since stationarity was rejected ( 2
6dfχ = = 123.93, p <.0001), we proceeded 

with a specification search for a nonstationary process. Error covariance structures were fit 

sequentially. We started by fitting UN(1). Since the model fit between UN(1) and UN was 

significant (chi-square difference = 15.903 with df = 6, p = .014), UN(1) should not be 

adopted. Then we fit ARH(1), a less constrained one. Since the model fit between ARH(1) 

and UN became insignificant (chi-square difference = .441 with df = 5, p = .994), the 

sequential search was terminated by choosing ARH(1) as the first-level error covariance 

structure. The improvement of ARH(1) over UN(1) can be verified by the significant results 

between UN(1) and ARH(1) (chi-square difference = 15.462 with df = 1, p <.0001). Although 

the final structure identified, ARH(1), is not the one specified in the population model 

(TOEPH), their performance in model fit was insignificant (chi-square difference = .441 with 

df = 2, p = .802). ARH(1) is preferred since it is more parsimonious (with two less 

parameters). The results of SCDT are summarized in Table 3. The parameter estimates of the 

final model (with ARH(1)) are also reported in the same table by using both PROC CALIS 

(the SEM approach) and PROC MIXED (the HLM approach) for the purpose of verification. 

It appears that parameter estimates resulting from the two approaches are pretty close. The 

model fit was satisfactory ( 2
6dfχ = = 1.483, p = .961, AGFI = .996, RMSEA = .000). However, 

the test for stationarity and the sequential chi-square difference tests that can be implemented 

by PROC CALIS cannot work under PROC MIXED. Moreover, while the estimates of εΘ  

and 
ηζ

Ψ could be obtained by both PROC MIXED and PROC CALIS, the significance test 

for error covariances can be achieved by PROC CALIS only. Two approaches yield about the 
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same results when PROC MIXED works. PROC CALIS supplies richer information in model 

fit and parameter inference. 

 

---------------------------------------------------- 

Insert Table 3 about here 

---------------------------------------------------- 
 

The second illustration is based on the data given in Singer and Willett (2003, Chap. 7). 35 

people completed an inventory measuring their performance on a timed task called 

“opposite’s naming” on each of four days, spaced exactly one week apart. At wave 1, they 

also completed a standardized instrument assessing general cognitive skill, used as a 

subject-level predictor. The growth model used is exactly the one shown in Figure 1. Since 

stationarity was not rejected ( 2
6dfχ = = 3.302, p = .77), the covariance structure to be identified 

should come from the pool of stationary processes. Error covariance structures were fit 

sequentially, by using TOEP(1) in the first step. The results are summarized in Table 4. Since 

the model fit between TOEP(1) and TOEP was insignificant (chi-square difference = 2.801 

with df = 4, p = .592), no further examination was needed, and we selected TOEP(1) to be the 

first-level error covariance structure. The level-1 errors were uncorrelated and identically 

distributed in this case. The model fit was good ( 2
10dfχ = = 6.68, p = .755, AGFI = .987, 

RMSEA = .000). The parameter estimates by fitting TOEP(1) are also given in the same table 

by using both PROC CALIS and PROC MIXED. Again, the results are close to each other. 

 

---------------------------------------------------- 

Insert Table 4 about here 

---------------------------------------------------- 
 
 

SECOND-ORDER LATENT GROWTH MODELS 
 

When the growth trajectory is to be analyzed for a latent construct, measured with multiple 

indicators, only the SEM approach can work, based on the second-order LGM (e.g. Bollen & 

Curran, 2006, Chap. 8; Hancock, Kuo, & Lawrence, 2001; Preacher et al., 2008, Chap. 3; 

Sayer & Cumsille, 2001). In Figure 2, latent construct F is measured with three indicators, 

y1–y3, which are observed at four occasions. The constructs at the four occasions, denoted by 

1F – 4F , are termed the first-order factors, and the growth factors (i.e., intercept and slope), 
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denoted by αη  and βη , are termed the second-order factors. There exist a predictor 

construct, ξ, for the growth factors, and it is measured with three indicators, x1–x3. The errors 

associated with the indicators y1–y3, jtε , j = 1, 2, 3; t = 1, 2, 3, 4, and those associated with 

the first-order factors, 
1 4F Fζ ζ− , are level-1 errors. The errors associated with the 

second-order factors, 
αηζ  and 

βηζ , and those associated with the indicators x1–x3 , δ1–δ3, are 

level-2 errors. The level-1 errors associated with the same indicator at different points in time 

( 1 4 ,j jε ε−  j = 1, 2, 3) are serially correlated. They are linked in the figure by three solid lines 

with four arrowheads, one line for each indicator. 
1 4F Fζ ζ−  are serially correlated as well 

(Sivo, 2001). They are linked by a dash line with four arrowheads. Their covariance structures 

need to be well identified, and can be done by using the approach proposed in the previous 

section. Other errors are assumed to be uncorrelated. 

 
---------------------------------------------------- 

Insert Figure 2 about here 

---------------------------------------------------- 

 
The second-order LGM pictorially presented in Figure 2 can be represented in matrix form 

as follows: 

*

0

,

,

,

,

ξ

ξξ

= +

= +

= +

= + +

y

x

y

y Λ

x Λ

Λ ζ

Γ Γ ζ

F

η

F

δ

F η

η

ε

                          (11)  

                                 
where 11 21 31 12 22 32 13 23 33 14 24 34 1 2 3 1 2 3 4[            ] , [   ] , [    ] ,  [  ] ,y y y y y y y y y y y y x x x F F F F α βη η′ ′ ′ ′= =xy F = η =    

11 21 31 12 22 32 13 23 33 14 24 34[ ]ε ε ε ε ε ε ε ε ε ε ε ε ′=ε , 1 2 3[   ]δ δ δ ′=δ , 
1 2 3 4

[    ]F F F Fζ ζ ζ ζ ′=ζF , and 

[ζ  ζ ]
α βη η ′=ζη . yΛ  and xΛ  denote the loading matrices in the measurement model, *

yΛ  

denotes the loading matrix in the growth model, and 0Γ  and ξΓ  denote, respectively, the 

vector of intercepts and slopes of the regressions of the growth factors η  on the predictor 

construct ξ . They are specifically shown in Table 5. It is assumed that ( ) ( )E E= =ε δ  

( ) ( )E E= =ζ ζ 0ηF , ( , ) ( , ) ( , ) ( , )Cov ξ Cov ξ Cov ξ Cov ξ= = = =ζ ζ 0Fδ εη , and ( , )Cov =ε δ   

( , ) ( , ) ( , ) ( , ) ( , )Cov Cov Cov Cov Cov= = = = =ζ ζ ζ ζ ζ ζ 0F F Fε ε δ δη η η . In addition, Cov(εjt, εj’t’ ) = 
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0, j ≠ j’. Let Θε , Ψ
ηζ
,Ψ

Fζ
, and ξΦ  denote, respectively, the variance-covariance matrices 

of ε , ζη , ζF, and ξ . The implied mean vector and the variance-covariance matrix of y and x 

are given in Appendix 2. Because Θε  and Ψ
Fζ

 involve time occasions, their covariance 

structures need to be identified. Since the four level-1 error processes, 1 11 12 13 14[    ]ε ε ε ε ′=ε , 

2 21 22 23 24[    ]ε ε ε ε ′=ε , 3 31 32 33 34[    ]ε ε ε ε ′=ε , and 
1 2 3 4

[ζ  ζ  ζ  ζ ]F F F F ′=ζF , associated with the 

indicators y1–y3 and the construct F, respectively, are assumed to be uncorrelated, the 

approach proposed previously for identifying the first-level error covariance structure can be 

used individually for each of them. However, the assumption of the uncorrelatedness of 1ε , 

2ε , and 3ε  may be violated due to systematic effects. The chi-square difference test can be 

used to test for the assumption. 

 
---------------------------------------------------- 

Insert Table 5 about here 

---------------------------------------------------- 
 

Statements by SAS PROC CALIS/TCALIS 

 
SAS Program 2 in Appendix 2 are used for fitting AR(1) for ε j (j = 1, 2, 3) (the first-level 

errors associated with the same indicator across four time points) and ζF (the first-level errors 

associated with the construct across four time points), and fitting UN for ζη (the second-level 

errors) by using SAS PROC CALIS. There are two parameters in AR(1) for each error 

process. The parameters to be estimated simultaneously include 2
jεσ , 1 jεφ , j = 1, 2, 3, and 

2
Fςσ , 1 Fζφ . The assumption of stationarity requires that 1| | 1

jεφ <  and 1| | 1
Fζφ < .  

In the STD statement, the first-level error variance estimates associated with the same 

indicator/the construct are set equal across time by using the same names. In the COV 

statement, we specify the same name for the lag-1 autocovariances to each indicator and the 

construct, and similarly for the lag-2 autocovariances. In the PARAMETERS statement, the 

additional covariance structure parameters for AR(1) need to be defined first, one for each 

indicator and the construct (i.e., 1 jεφ  and 1 Fζφ ), with initial values given in the parentheses, 

and then SAS programming statements are used to specify the relationships among the 

parameters delineating the particular error covariance structure for all indicators and the 
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construct. The principles are exactly the same as before. The requirements of ‘ 1| | 1
jεφ <  and 

1| | 1
Fζφ < ’ are specified by the BOUNDS statement. 

  The approach proposed for identifying the error covariance structure is also applicable for 

the second-order LGM. The first stage is to test, for stationarity,  

11 12 13 14 12 11 13 12 14 13 13 11 14 12

21 22 23 24 22 21 23 22 24 23 23 21 24 22

31 32 33 34 32 31 33 32 34 33

2 2 2 2
01_1

2 2 2 2
01_ 2

2 2 2 2
01_ 3

H : ,  ,  ,

H : ,  ,  ,

H : ,  ,  

ε ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

= = = = = =

= = = = = =

= = = = =
33 31 34 32

,ε ε ε εσ σ=

 

 
and 

1 2 3 4 2 1 3 2 4 3 3 1 4 2

2 2 2 2
01_ 4H : ,  ,  ,

F F F F F F F F F F F F F Fς ς ς ς ς ς ς ς ς ς ς ς ς ςσ σ σ σ σ σ σ σ σ= = = = = =  

individually for each of the first-level error processes, 1 2 3,  ,  ,ε ε ε  and ,ζF by using the 

SIMTEST statement in PROC TCALIS mentioned in the previous section, followed by the 

steps in stage 2A for identifying the specific stationary error process or in stage 2B for 

identifying the specific nonstationary error process using SCDT.  

 

Illustration  

We demonstrate identifying the covariance structures of Θε  and ζΨ
F

with another dataset of 

size 300 generated from the second-order LGM in Figure 2. The population parameters with 

the AR(1) covariance structure for level-1 error processes 1ε , 2ε , 3ε , and ζF and the sample 

covariance matrix of y and x resulting from the simulated dataset are presented in Table 5. 

The RANDNORMAL function in PROC IML (SAS 9.2) was used to generate multivariate 

normal data. Since the uncorrelatedness of 1ε , 2ε , and 3ε  was supported (chi-square 

difference = 30.866 with df = 48, p = .97408), stationarity could be assessed and specification 

search could be conducted individually. Since stationarity was further supported for all 1ε , 

2ε , 3ε , and ζF ( 2
6dfχ = = 7.604, 7.049, 4.043, and 2.691 with p = .269, .316, .671, and .845), 

we proceeded to search for stationary structures. When identifying the first-level ECM for a 

specific error process, TOEP was specified for the other three processes. The results of SCDT 

are reported in Table 6. AR(1) was identified for 1ε , 2ε , 3ε , and TOEP(1) for ζF. The 

parameter estimates by fitting AR(1) for 1ε , 2ε , 3ε  and TOEP(1) for ζF were close to the 
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population parameters specified in Table 5. The model fit was satisfactory ( 2
112dfχ = = 107.53, p 

= .602, AGFI = .996, RMSEA = .000).  

 

---------------------------------------------------- 

Insert Table 6 about here 

---------------------------------------------------- 
  

CONCLUSION 
 

This article illustrates the use of the SAS PROC CALIS/TCALIS to fit error covariance 

structure of latent growth models. A tutorial on the syntax has been provided for both 

manifest variables and latent constructs. An effective approach for identifying the first-level 

error covariance structure based on the sequential chi-square difference test has been 

proposed and demonstrated. In particular, how to test for stationarity of an error process, not 

discussed in the SEM or HLM literature, was specifically addressed. The illustrations based 

on simulated data have well reflected the effectiveness of the approach for identifying the 

error covariance structures. It is our hope that the approach proposed will help applied 

researchers obtain a better understanding about the specification of error covariance structure 

in latent growth models.  

The joint use of the STD, COV, PARAMETERS, LINCON, and BOUNDS statements in 

PROC CALIS can be extended for other types of ECM in a similar way to meet analysts’ 

need. However, there exist some limitations. First, the design underlying LGM should be 

balanced. Second, time points should be equally spaced when testing for stationarity. Third, 

large samples are required to justify the use of SEM. In addition, if the errors associated with 

different indicators at the same occasion in the second-order LGM are correlated, a joint test 

for stationarity should be conducted, and the SCDT for identifying error covariance structures 

should also be carried out simultaneously. How to deal with these situations needs to be 

further studied. 
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TABLE 1 
SAS Statements in PROC CALIS for Specifying Different Types of the First-Level Error 

Covariance Structure with Four Occasions 

Structure (Θε ) Statements in PROC CALIS 

AR(1) (first-order autoregressive): 
1 1t t tε φ ε ν−= + ,  

12
2

1 1
3 2

1 1 1

1
1

1
1

ε

φ
σ

φ φ
φ φ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

1| | 1φ < . 

STD 
E1=VARE, E2=VARE, E3=VARE, E4=VARE,  
D0 =VARD0, D1 =VARD1; 

COV 
E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1,  
E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3,  
D0 D1=CD0D1; 

PARAMETERS  PHI1 (0.6); 
COV_lag1= PHI1*VARE; COV_lag2=(PHI1**2)*VARE; 
COV_lag3= (PHI1**3) *VARE; 

BOUNDS 
–1. < PHI1 < 1. ; 

ARMA(1,1) (first-order 
autoregressive moving average): 

1 1 1 1t t t tε φ ε ν θν− −= + − ,  

12

2 1

3 2 1

1
1

1
1

ε

ρ
σ

ρ ρ
ρ ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
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, 

1 1 1 1
1 2

1 1 1

1 1 1 1

( )(1 ) ,
(1 2 )

,  2,  3,  | | 1,  | | 1.k k k

φ θ φ θρ
φ θ θ

ρ φ ρ φ ρ−

− −
=

− +
= = < <

STD 
   E1=VARE, E2=VARE, E3=VARE, E4=VARE, 

D0=VARD0, D1=VARD1; 
COV 

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1,  
E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3,  
D0 D1=CD0D1; 

PARAMETERS  PHI1 RHO1 (0.6 0.7) ; 
   COV_lag1=RHO1*VARE;  

COV_lag2=PHI1* COV_lag1; 
   COV_lag3=PHI1* COV_lag2; 
BOUNDS 

–1. < PHI1 < 1., –1. < RHO1 < 1. ; 

AR(2) (second-order AR): 
1 1 2 2t t t tε φ ε φ ε ν− −= + + , 

12

2 1

3 2 1

1
1

1
1

ε

ρ
σ

ρ ρ
ρ ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

0 1 1 21, / (1 )ρ ρ φ φ= = − , 

1 1 2 2 ,  2,  3,k k k kρ φ ρ φ ρ− −= + =  

2| | 1φ < , 2 1 1φ φ+ < , 2 1 1φ φ− < . 

STD 
  E1=VARE, E2=VARE, E3=VARE, E4=VARE, D0=VARD0, 

D1=VARD1; 
COV 

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1, 
E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3,  
D0 D1=CD0D1; 

PARAMETERS PHI1 PHI2 (0.5 0.4);  
  RHO1= PHI1/(1–PHI2); 

COV_lag1=RHO1*VARE; 
  COV_lag2=PHI1*COV_lag1+ PHI2 *VARE;  

COV_lag3=PHI1*COV_lag2+PHI2*COV_lag1; 
LINCON 

PHI2 + PHI1 < 1., PHI2 –PHI1 < 1.; 
BOUNDS 

–1. < PHI2 < 1.; 
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TABLE 1 (Continued) 

Structure Statements in PROC CALIS 
UN (unstructured): 

1

2 1 2

3 1 3 2 3

4 1 4 2 4 3 4

2

2

2

2

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

σ

σ σ

σ σ σ

σ σ σ σ
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

STD 
   E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4, 
   D0=VARD0, D1=VARD1; 
COV 
   E1 E2=COVE1E2, E1 E3=COVE1E3, E1 E4=COVE1E4, 

 E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4,  
D0 D1=CD0D1; 

TOEPH (heterogeneous Toeplitz):  

1

2 1 2

3 1 3 2 3

4 1 4 2 4 3 4

2

2
1

2
2 1

2
3 2 1
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ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε
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σ σ ρ σ
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, 

1 2 3| | 1,  | | 1,  | | 1ρ ρ ρ< < <  

STD 
   E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4, 
   D0=VARD0, D1=VARD1; 
COV 
   E1 E2=COVE1E2, E1 E3=COVE1E3, E1 E4=COVE1E4, 

 E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4,  
D0 D1=CD0D1; 

PARAMETERS RHO1 RHO2 RHO3 (0.7 0.6 0.7); 
   COVE1E2=SQRT(VARE1)*SQRT(VARE2)*RHO1; 
   COVE1E3=SQRT(VARE1)*SQRT(VARE3)*RHO2; 
   COVE1E4=SQRT(VARE1)*SQRT(VARE4)*RHO3; 
   COVE2E3=SQRT(VARE2)*SQRT(VARE3)*RHO1; 
   COVE2E4=SQRT(VARE2)*SQRT(VARE4)*RHO2; 
   COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHO1;  
BOUNDS 

–1. < RHO1 < 1. , –1.< RHO2 <1., –1.< RHO3 < 1.;  

ARH(1) (heterogeneous AR(1)):  

1

2 1 2

3 1 3 2 3

4 1 4 2 4 3 4

2

2

2 2

3 2 2

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε
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σ σ ρ σ σ ρ σ

σ σ ρ σ σ ρ σ σ ρ σ
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⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

| | 1ρ <  

STD 
   E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4, 
   D0=VARD0, D1=VARD1; 
COV 
   E1 E2=COVE1E2, E1 E3=COVE1E3, E1 E4=COVE1E4, 

 E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4,  
D0 D1=CD0D1; 

PARAMETERS RHO (0.7); 
   COVE1E2=SQRT(VARE1)*SQRT(VARE2)*RHO; 
   COVE1E3=SQRT(VARE1)*SQRT(VARE3)*RHO**2; 
   COVE1E4=SQRT(VARE1)*SQRT(VARE4)*RHO**3; 
   COVE2E3=SQRT(VARE2)*SQRT(VARE3)*RHO; 
   COVE2E4=SQRT(VARE2)*SQRT(VARE4)*RHO**2; 
   COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHO;  
BOUNDS 

–1. < RHO < 1.;  

Note. The second-level ECM, 
2

2
ηα

η

η η ηα β β

ζ

ζ ζ ζ

σ

σ σ

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

ζΨ , is estimated with type = UN. 



 24

TABLE 2 
Population Parameters of the Model in Figure 1 Based on the First-Level Error Covariance 

Structure of TOEPH and the Sample Covariance Matrix of y1–y4 and X Resulting from a 
Dataset of Size 300 Generated from the Model 

*

1 0
1 1
1 2
1 3

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

yΛ , 01

11

4
6

γ
γ

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
xΓ , 2 1Xσ= =xxΣ , 0Xμ= =xμ , 

00
0

10

10
4

γ
γ

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
Γ , 

2

2

15
 

7 10
ηα

η η ηα β β

ζ

ζ ζ ζ

σ

σ σ

⎡ ⎤ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
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, 
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ε
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σ

σ σ ρ σ
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σ σ ρ σ σ ρ σ σ ρ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Θε

1 2 3 4

2 2 2 236, 25, 49, 40ε ε ε εσ σ σ σ= = = =  

1ρ = .7, 2ρ = .6, 3ρ = .7 
 

Sample Covariance Matrix 

  y1 y2  y3  y4 X 
y1 72.272 99.943 140.297 175.400 5.497 
y2 99.943 200.547 292.249 374.457 12.923 
y3 140.297 292.249 462.949 587.170 20.360 
y4 175.400 374.457 587.170 786.616 27.348 
X 5.497 12.923 20.360 27.348 1.205 
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TABLE 3 
Summary of SCDT for Identifying the First-Level ECM and Parameter Estimates by Fitting 

ARH(1) Based on the Sample Covariance Matrix Shown in Table 2 
 
Step 

 
Structure 

02 : =T SH M M  (SCDT) Assessment of model fit 

  2χ  df  2χΔ  dfΔ 2
r dfP χΔ> Δ   2

rP χ>  AGFI RMSEA

0 UN  1.042 1    .307 .984 .012 
1 UN(1) 16.945 7 15.903 6 .014 .018 .966 .069 
2 ARH(1) 1.483 6   .441 5 .994 .961 .996 .000 
  TOEPH 1.042 4 .000 3 1.000 .903 .996 .000 

Parameter estimates by fitting ARH(1)  

  
Parameters 

Estimates by using 
PROC CALIS 

Estimates by using 
PROC MIXED 

ARH(1) 
for Θε : 1

2 1 2

3 1 3 2 3

4 1 4 2 4 3 4

2

2

2 2

3 2 2

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

σ

σ σ ρ σ

σ σ ρ σ σ ρ σ

σ σ ρ σ σ ρ σ σ ρ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

**

* **

* * **

* **

***

 36.48  
 21.32   27.57
 18.54   23.97    46.07
12.06   15.60    29.98  43.18

ˆ .67 .ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

**

**

**

**

***

36.34  
 21.24   27.46
 18.46   23.87    45.89
 12.01    15.53     29.85  42.96

ˆ .67 .

a

a a

a a a

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

UN for 
Ψ

ηζ
:  

2

2
ηα

η η ηα β β

ζ

ζ ζ ζ

σ

σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 *** ***
10.46   
  9.10 6.26

⎡ ⎤
⎢ ⎥⎣ ⎦

 *** ***
10.45   
  9.07 6.24

⎡ ⎤
⎢ ⎥⎣ ⎦

 

 
00 01

10 11

γ γ
γ γ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
*** ***

*** ***

10.58 4.03
 4.60  6.05

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
*** ***

*** ***

10.58 4.03
 4.60  6.05

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Note. {UN(1),ARH(1),TOEPH(1)}TM = , MS = UN, 2χΔ = the chi-square difference between MT and MS, 
dfΔ = the difference of df associated with MT and MS, 2

r dfP χΔ> Δ  denotes the p-value of the chi-square difference 
test. 
a Test for significance cannot be achieved. 
*p < .05, **p < .01, ***p < .001. 



 26

TABLE 4 
Summary of SCDT for Identifying the First-Level ECM with the Dataset in Singer and 

Willetts (2003, Chap. 7) and Parameter Estimates by Fitting TOEP(1)  
 
Step 

 
Structure 

02 : =T SH M M  (SCDT) Assessment of model fit 

2χ  df  2χΔ  dfΔ 2
r dfP χΔ> Δ  2

rP χ>  AGFI RMSEA

0 TOEP 3.879  6    .693 .988 .000 
1 TOEP(1) 6.680 10 2.801 4 .592 .755 .987 .000 

Parameter estimates by fitting TOEP(1) 

  
Parameters 

Estimates by using 
PROC CALIS 

Estimates by using 
PROC MIXED 

TOEP(1) 
for Θε : 

2

2

2

2

0
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0 0 0
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σ
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σ
σ

⎡ ⎤
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⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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0 159.5
0 0 159.5
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⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Ψ

ηζ
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2

2
ηα

η η ηα β β

ζ

ζ ζ ζ

σ

σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 
***

** **
1194.00

170.19  102.23
⎡ ⎤
⎢ ⎥−⎣ ⎦

 
***

** **
1159.38

165.31  99.29
⎡ ⎤
⎢ ⎥−⎣ ⎦

 

 
00 01

10 11

γ γ
γ γ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
*** ***

**

164.40 26.96     
.11 .43  

⎛ ⎞
⎜ ⎟

−⎝ ⎠
 

*** ***

**

164.37 26.96
.12   .43

⎛ ⎞
⎜ ⎟

−⎝ ⎠
 

Note. MT  = TOEP(1), MS = TOEP, 2χΔ = the chi-square difference between MT and MS, dfΔ = the difference 
of df asassociated with MT and MS, 2

r dfP χΔ> Δ  denotes the p-value of the chi-square difference test. 
*p < .05, **p < .01, ***p < .001. 
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TABLE 5 
Population Parameters of the Model in Figure 2 Based on the First-Level Error Covariance 
Structure of AR(1) and the Sample Covariance Matrix Resulting from a Dataset of Size 300 

Generated from the Model 
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1.00 0 0 00 0 0
 .75 0 0 00 0 0
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TABLE 5 (Continued) 

Sample Covariance Matrix 

 y11 y21 y31 y12 y22 y32 y13 y23 y33 y14 y24 y34 x1 x2 x3 

y11 2.913 1.971 2.264 4.399 3.157 3.604 5.876 4.324 5.006 7.515 5.578 6.348 2.356 2.120 1.767 
y21 1.971 1.817 1.648 3.018 2.474 2.529 4.131 3.254 3.542 5.286 4.053 4.464 1.679 1.459 1.279 
y31 2.264 1.648 2.038 3.542 2.616 3.059 4.855 3.613 4.224 6.215 4.625 5.325 1.941 1.732 1.440 
y12 4.399 3.018 3.542 8.107 5.715 6.551 11.064 8.111 9.336 14.236 10.600 12.042 4.339 3.795 3.212 
y22 3.157 2.474 2.616 5.715 4.504 4.782 7.973 6.159 6.825 10.380 7.915 8.810 3.227 2.770 2.373 
y32 3.604 2.529 3.059 6.551 4.782 5.616 9.111 6.765 7.869 11.794 8.831 10.096 3.643 3.167 2.674 
y13 5.876 4.131 4.855 11.064 7.973 9.111 16.115 11.807 13.508 20.694 15.446 17.487 6.146 5.398 4.509 
y23 4.324 3.254 3.613 8.111 6.159 6.765 11.807 9.164 10.076 15.353 11.756 13.052 4.655 4.031 3.359 
y33 5.006 3.542 4.224 9.336 6.825 7.869 13.508 10.076 11.685 17.517 13.160 15.015 5.285 4.590 3.851 
y14 7.515 5.286 6.215 14.236 10.380 11.794 20.694 15.353 17.517 27.455 20.437 23.108 8.119 7.070 5.884 
y24 5.578 4.053 4.625 10.600 7.915 8.831 15.446 11.756 13.160 20.437 15.666 17.349 6.140 5.315 4.400 
y34 6.348 4.464 5.325 12.042 8.810 10.096 17.487 13.052 15.015 23.108 17.349 19.815 6.902 5.994 4.986 
x1 2.356 1.679 1.941 4.339 3.227 3.643 6.146 4.655 5.285 8.119 6.140 6.902 4.330 3.038 2.648 
x2 2.120 1.459 1.732 3.795 2.770 3.167 5.398 4.031 4.590 7.070 5.315 5.994 3.038 2.893 2.111 
x3 1.767 1.279 1.440 3.212 2.373 2.674 4.509 3.359 3.851 5.884 4.400 4.986 2.648 2.111 2.755 
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TABLE 6 
Summary of SCDT for Identifying the First-Level ECM for 1ε , 2ε , 3ε , and ζF and Parameter 

Estimates by Fitting the Final Model Based on the Sample Covariance Matrix Shown in Table 5  
 

Process 
 

Step 
 

Structure 
02 : =T SH M M  (SCDT) Assessment of model fit 

2χ  df 2χΔ  dfΔ 2
r dfP χΔ> Δ  2

rP χ>  AGFI RMSEA

1ε  0 TOEP  95.01 103    .700 .966 .000 
 1 TOEP(1) 157.70 106 62.69 3 <.0001 .001 .994 .040 
 2 AR(1)  96.59 105  1.58 2 .454 .709 .996 .000 

2ε  0 TOEP  95.01 103    .700 .966 .000 
 1 TOEP(1) 408.04 106 313.04 3 <.0001 <.0001 .978 .098 
 2 AR(1)  95.97 105    .96 2 .619 .724 .996 .000 

3ε  0 TOEP  95.01 103    .700 .966 .000 
 1 TOEP(1) 154.27 106 59.26 3 <.0001 .002 .993 .039 
 2 AR(1)  99.11 105  4.10 2 .129 .644 .996 .000 

ζF 0 TOEP  95.01 103    .700 .966 .000 
 1 TOEP(1) 100.99 106  5.98 3 .112 .619 .996 .000 

Parameter estimates by fitting the final model (AR(1) for 1ε , 2ε , 3ε , TOEP(1) for Fζ , and UN for ηζ ) 
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2
112dfχ = = 107.53, p = .602, AGFI = .996, RMSEA = .000. 

Note. {AR(1),TOEP(1)}TM = , MS = TOEP, 2χΔ = the chi-square difference between MT and MS, dfΔ = the 
difference of df associated with MT and MS, 2

r dfP χΔ> Δ  denotes the p-value of the chi-square difference test. 
*p < .05, **p < .01, ***p < .001. 



 30

 

1ε

Intercept
  ( ) αη

Slope
( ) βη

1y 2y 3y 4y

2ε 3ε 4ε

10γ 11γ

1

00γ 01γ

2 1ε εσ
3 2ε εσ

4 3ε εσ
3 1ε εσ

4 2ε εσ
4 1ε εσ

X

1 1 1 1 0 1 2 3

Time 1 Time 2 Time 3 Time 4

αηζ
βηζ

η ηα βζ ζσ

 
 

FIGURE 1. Linear latent curve model with four repeated measures and a covariate X. 
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FIGURE 2. A second-order growth model, representing linear change in four repeated 
measures of a latent construct with three indicators (adapted from Chan (1998) and Preachers 
et al. (2008)). 
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FIGURE 3. A flow chart for identifying the first-level error covariance structure. 
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APPENDIX 1 
Sample SAS programs for LGM 

 
Program 1 
A SAS Program for LGM by Specifying the First-Level ECM to be ARMA(1,1) with the 
SEM Approach (PROC CALIS) and the HLM Approach (PROC MIXED) 
 
/* The dataset used for PROC CALIS should be a multi variable dataset.  

The dataset used for PROC MIXED should be a multi record dataset.  
SAS codes for manipulating datasets were given in Singer (1998) */ 

 
PROC CALIS METHOD=ML UCOV AUG; 

LINEQS 
      Y1 = 1 F_Alpha + 0 F_Beta + E1, 
      Y2 = 1 F_Alpha + 1 F_Beta + E2, 
      Y3 = 1 F_Alpha + 2 F_Beta + E3, 
      Y4 = 1 F_Alpha + 3 F_Beta + E4, 
      F_Alpha = GA00 INTERCEPT + GA01 X + D0, 
      F_Beta = GA10 INTERCEPT + GA11 X + D1; 

STD 
      E1=VARE, E2=VARE, E3=VARE, E4=VARE, X=VARX, 

D0=VARD0, D1=VARD1; 
COV 

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1,  
E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3,  
D0 D1=COVD0D1; 

PARAMETERS PHI1 RHO1 (0.6 0.7); 
      COV_lag1=RHO1*VARE;  

COV_lag2=PHI1* COV_lag1; 
      COV_lag3=PHI1* COV_lag2; 

BOUNDS 
–1. < PHI1 < 1., –1. < RHO1 < 1. ; 

VAR Y1 Y2 Y3 Y4 X; 
TITLE 'LGM_SEM with ECM=ARMA(1,1)'; 

RUN; 
 
PROC MIXED METHOD=ML COVTEST; 

CLASS ID;  
MODEL Y=TIME X TIME*X / SOLUTION DDFM=BW; 
REPEATED / SUBJECT=ID TYPE=ARMA(1,1) R RCORR; 
RANDOM INTERCEPT TIME / SUBJECT=ID TYPE=UN G GCORR; 
TITLE 'LGM_HLM with ECM=ARMA(1,1)'; 

RUN; 
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Program 2 
A SAS Program for a Second-Order Growth Model by Specifying the First-Level ECM to be 
AR(1) with the SEM Approach (PROC CALIS) 
 
PROC CALIS METHOD=ML UCOV AUG;  
   LINEQS 
     Y11 = 1 F1 + EY11,  Y21 = LY21F1 F1 + EY21,  Y31 = LY31F1 F1 + EY31, 
     Y12 = 1 F2 + EY12,  Y22 = LY22F2 F2 + EY22,  Y32 = LY32F2 F2 + EY32, 
     Y13 = 1 F3 + EY13,  Y23 = LY23F3 F3 + EY23,  Y33 = LY33F3 F3 + EY33, 
     Y14 = 1 F4 + EY14,  Y24 = LY24F4 F4 + EY24,  Y34 = LY34F4 F4 + EY34, 
     X1 = 1 F7 + EX1,    X2 = LX2F7 F7 + EX2,     X3 = LX3F7 F7 + EX3, 
     F1 = 1 F_Alpha + 0 F_Beta + EZF1,  

F2 = 1 F_Alpha + 1 F_Beta + EZF2,  
     F3 = 1 F_Alpha + 2 F_Beta + EZF3,  
     F4 = 1 F_Alpha + 3 F_Beta + EZF4,  
     F_Alpha = GA00 INTERCEPT + GA10 F7 + EZF5, 
     F_Beta = GA01 INTERCEPT + GA11 F7 + EZF6, 
     F7 = F7_int INTERCEPT + EZF7; 

STD 
     EY11-EY14=4*VARE1, EY21-EY24=4*VARE2, EY31-EY34=4*VARE3, 
     EX1=VAREX1, EX2=VAREX2, EX3=VAREX3, 
     EZF1-EZF4=4*VARZF, EZF5=VAR_Intercept, EZF6=VAR_Slope, EZF7=VARZF7; 

COV 
/* for the first-level errors associated with indicator 1 */ 

     EY11 EY12=COV1_lag1, EY12 EY13=COV1_lag1, EY13 EY14=COV1_lag1,  
     EY11 EY13=COV1_lag2, EY12 EY14=COV1_lag2, EY11 EY14=COV1_lag3, 

/* for the first-level errors associated with indicator 2 */ 
     EY21 EY22=COV2_lag1, EY22 EY23=COV2_lag1, EY23 EY24=COV2_lag1,  
     EY21 EY23=COV2_lag2, EY22 EY24=COV2_lag2, EY21 EY24=COV2_lag3, 

/* for the first-level errors associated with indicator 3 */ 
EY31 EY32=COV3_lag1, EY32 EY33=COV3_lag1, EY33 EY34=COV3_lag1,  

     EY31 EY33=COV3_lag2, EY32 EY34=COV3_lag2, EY31 EY34=COV3_lag3, 
/* for the first-level errors associated with the construct */ 

     EZF1 EZF2=COVZ_lag1, EZF2 EZF3=COVZ_lag1, EZF3 EZF4=COVZ_lag1,  
     EZF1 EZF3=COVZ_lag2, EZF2 EZF4=COVZ_lag2, EZF1 EZF4=COVZ_lag3,  

/* for the second-level errors associated with growth factors */ 
EZF5 EZF6=CZF5ZF6; 

PARAMETERS  PHI1  PHI2  PHI3  PHIZ  (0.5 0.7 0.6 0.4); 
/* for the first-level errors associated with indicator 1 */ 
COV1_lag1=PHI1*VARE1; COV1_lag2= (PHI1**2)*VARE1;  
COV1_lag3=(PHI1**3)*VARE1; 
/* for the first-level errors associated with indicator 2 */ 
COV2_lag1=PHI2*VARE2; COV2_lag2=(PHI2**2)*VARE2;  
COV2_lag3=(PHI2**3)*VARE2; 
/* for the first-level errors associated with indicator 3 */ 

     COV3_lag1=PHI3*VARE3; COV3_lag2=(PHI3**2)*VARE3; 
     COV3_lag3=(PHI3**3)*VARE3; 

/* for the first-level errors associated with the construct */ 
COVZ_lag1=PHIZ*VARZF; COVZ_lag2= (PHIZ**2)*VARZF;  

     COVZ_lag3=(PHIZ**3)*VARZF; 
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BOUNDS 
     –1.< PHI1<1.,  –1.< PHI2<1.,  –1.< PHI3<1.,  –1.< PHIZ<1. ;  

LINCON  /* invariance across time is assumed */ 
      LY21F1=LY22F2, LY21F1=LY23F3, LY21F3=LY24F4,  

LY31F1=LY32F2, LY31F1=LY33F3, LY31F3=LY34F4; 
VAR Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X1 X2 X3; 
TITLE 'A Second-Order Growth Model with Four Occasions by Specifying AR(1) for’; 
TITLE2 'The First-Level Errors Associated with the Construct Measured with Three’; 
TITLE3 ' Indicators and Those Associated with the Indicators';  

RUN; 
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APPENDIX 2 
Derivation of the implied mean vector μ  and variance-covariance matrix Σ  of y 

and x in Figure 2 
 
Based on Equation 11, we have 

* * * *
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APPENDIX 3 
More types of stationary and nonstationary level-1 error covariance structures with 

four occasions 
 

Structure ECM 
Stationary: 
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TOEP (Toeplitz) 
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Nonstationary:  

CSH (Heterogeneous CS), 
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APPENDIX 3 (Continued) 
Structure ECM 

Nonstationary: 
TOEPH(q) 
(Heterogeneous Toeplitz with q bands, 
q = 1, 2, 3, 4), 

1 2 3| | 1,  | | 1,  | | 1ρ ρ ρ< < < . 
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Note. TOEP(4)=TOEP, TOEPH(1)=UN(1), TOEPH(4)=TOEPH, UN(4)=UN.  
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三、計畫成果自評 

A paper, “Using SAS PROC CALIS/TCALIS to Fit Error Covariance Structures of 

Latent Growth Models,” derived from the first-year part of the project, has been submitted 

to Structural Equation Modeling on March 29, 2010, to be considered for publication, and 

is currently under review. The contribution of the paper is to facilitate fitting error 

covariance structures of latent growth models. 
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