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Abstract

We study how to extract randomness from some seufa@w some function f(x)
and some distributiory, we say that such a source has computational ninoey

k if any circuit of size 2 can only predict f(x) correctly with probability enost
(1/2) given input x sampled frony. We first show that it is impossible to have a

seedless extractor to extract from one single sowantaining computational

entropy. Then we show that it becomes possiblesiave allowed a seed which is
weakly random (instead of perfectly random) buttams some statistical min-
entropy, or even a seed which is not random atball contains some

computational min-entropy. This can be seen ags@tstvard extending the study
of multisource extractors from the traditional tistiical setting to a computational
setting. We reduce the task of constructing suctiaetors to a problem in

computational learning theory: learning linear fumks under arbitrary

distribution with adversarial noise, and we provaléearning algorithm for this

problem. In fact, this problem is a well-recognizate in computational learning
theory and variants of this problem have been studitensively before. Thus, in
addition to its application to extractors, our tgag algorithm also has

independent interest of its own.

Then, we consider computational independent-gynsburces. Just as an
independent-symbol source, which is a distributdoa(X,...,X;) over the set
({0,1}%" where these n symbols;X.,X, are independent, and the whole min-
entropy of X is k, a computational independent-sgmbource consists of n
mutually independent parts, (K1)[Xy) ° ... » (fo(X)|Xp), each {X;) of length d
such that for each i if given input sampled from X any circuit of size s can only
predict f(X;) with probability at most® for some ld, and the sum of/k is k.
We generalize Impagliazzo’'s well-known hardcore lsetma [Imp95] to show
that the extractor for independent-symbol sourceqLLTO6] still works for
computational independent-symbol sources. In fie, result of computational
extractors for computational independent-symbokasesiimplies a generalization
of the well-known XOR lemma. Finally, we provides&e upper bound on a
binary hardcore set in any black-box constructibhavdcore set.

Keywords: randomness extractors, computationalenimepy, learning linear
functions, independent-symbol sources, computatiodapendent-symbol
sources, generalized hardcore set lemma, genatadi2® lemma, blak-box
construction, size of hardcore set.
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Extracting Computational Entropy and Learning
Noisy Linear Functions

Chia-Jung Lee, Chi-Jen Lu, and Shi-Chun Tsai, Member, IEEE

Abstract—We study the task of deterministically extracting
randomness from sources containing computational entropy. The
sources we consider have the form of a conditional distribution
(f(X)|X), for some function f and some distribution X', and we
say that such a source has computational min-entropy k if any
circuit of size 2% can only predict f(x) correctly with probability
at most 2~* given input = sampled from X. We first show that it
is impossible to have a seedless extractor to extract from one single
source of this kind. Then we show that it becomes possible if we
are allowed a seed which is weakly random (instead of perfectly
random) but contains some statistical min-entropy, or even a
seed which is not random at all but contains some computational
min-entropy. This can be seen as a step toward extending the study
of multisource extractors from the traditional, statistical setting
to a computational setting. We reduce the task of constructing
such extractors to a problem in computational learning theory:
learning linear functions under arbitrary distribution with adver-
sarial noise, and we provide a learning algorithm for this problem.
In fact, this problem is a well-recognized one in computational
learning theory and variants of this problem have been studied in-
tensively before. Thus, in addition to its application to extractors,
our learning algorithm also has independent interest of its own,
and it can be considered as the main technical contribution of this

paper.

Index Terms—Computational min-entropy, randomness extrac-
tors, learning linear functions, computational complexity.

I. INTRODUCTION

ANDOMNESS has become a useful tool in computer sci-
R ence, as the most efficient algorithms known for many
important problems are randomized. However, when analyzing
the performance of a randomized algorithm, we usually assume
that the algorithm has access to a perfectly random source. In re-
ality, the random sources we have access to are usually not per-
fect but may contain some amount of randomness. The amount
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of randomness in a source is usually measured by its min-en-
tropy, where a source has min-entropy at least & if every element
occurs with probability at most 27*. From a source with some
min-entropy, we would like to have a procedure, called an ex-
tractor [30], [22], to extract almost perfect randomness, which
can then be used for randomized algorithms.

Most works on extractors focused on seeded extractors,
which can utilize an additional seed to aid the extraction. There
has been a long and fruitful line of results on constructing
seeded extractors (see [25] for a nice survey), which culmi-
nated in [21] and [13] with an optimal construction (up to
constant factors). However, there is an issue with using seeded
extractors. Namely, we need a seed which is perfectly random
and independent of the source we extract from. How do we
get such a seed? For some applications, this can be taken care
of (e.g., by enumerating through all possible seed values), but
for others, this seems to go back to the problem which we
try to solve using extractors. Can we get rid of the need for
a seed and have seedless extractors? For general sources, the
answer has been known to be negative [7]. On the other hand,
when the sources are restricted and have special structure, it
becomes possible to have seedless extractors. Examples of such
sources include samplable sources [28], bit-fixing sources [8],
[18], [10], independent-symbol sources [17], [19], and multiple
independent sources [7], [2], [3], [24], [6], [23].

In this paper, we would like to look for a more general class of
sources from which seedless extraction is still possible. In par-
ticular, we will consider sources which may contain no random-
ness at all in a statistical sense, but look slightly random to com-
putational-bounded observers, such as small circuits. That is, we
will go from a traditional, statistical setting to a computational
one. It is conceivable that in many situations when we consider
a source random, it may in fact only appear so to us, while its ac-
tual statistical min-entropy may be much smaller (or even zero)
especially if we take into account some correlated information
which we can observe. Another application of this notion is in
cryptography, and in fact the idea of extracting computational
randomness has appeared implicitly long ago since [29], [11],
[14], for the task of constructing pseudorandom generators from
one-way functions. The idea is that given a one-way function g,
it is hard to invert g(y) to get y, and this means that given the
(correlated) information g(y), y still looks somewhat random,
from which one can extract some bits that look almost random.
However, while there is a natural and well-accepted definition
for what it means that a distribution looks almost random [29], it
seems less clear how to define that a distribution looks slightly
random and how to measure the amount of randomness in it.
In fact, there are several alternatives which all seem reasonable,

0018-9448/$26.00 © 2011 IEEE



5486

but there are provable discrepancies among them [4], [15]. To
extract randomness from a source with so-called HILL-entropy
[4], the strongest among them, one can simply use any statis-
tical extractor, but we would like to extract randomness from
a broader class of sources. Here we consider a weaker (more
general) notion of computational randomness, which appears in
[15], and we call it computational min-entropy. A comparison
with other notions of computational randomness can be found
in [15].

A. Computational Min-Entropy

To model the more general situation that one may observe
some correlated information about the source, we consider the
setting with a pair of jointly distributed random variables } and
X, where V is the source from which we want to extract and X’
(could be empty) is some information which one can observe. To
stress that we want to measure the randomness of V conditioned
on X and to extract randomness from ) given the information
X, we use the notation (V| X') to denote such a joint distribution.
The correlation between ) and X is modeled by V = f(X) for
some function f. In the example of one-way permutation, f is
the inverse function g_l, which is hard to compute, and X is the
distribution of g(y) over a random y. Here in our definition, we
allow f to be probabilistic and we even do not require it to have
an efficient (or even computable) algorithm, and furthermore,
we do not require X to be efficiently samplable either. We say
that such a source (f(X")|X’) has computational min-entropy k
if given input 2 sampled from X', any circuit of size 2* can only
predict f(x) correctly with probability at most 27*.1 From the
distribution f(X"), we would like to extract randomness which
when given X still looks random to circuits of a certain size.
Note that a source ) with statistical min-entropy & can be seen
as such a source (f(X')|X) with computational min-entropy &,
where we can simply have no X’ or just have X" taking a fixed
value, and let f be a probabilistic function with ) as its output
distribution. This means that extractors for sources with com-
putational min-entropy can immediately work for sources with
statistical min-entropy, and thus results in the computational set-
ting can be seen as a generalization of those in the traditional,
statistical setting. On the other hand, for a deterministic func-
tion f, f(x) has no statistical min-entropy at all when given .
Still, according to our definition, as long as f is hard to compute,
(f(X)|X) in fact can have high computational min-entropy.

Extractors for such sources were implicitly proposed before
[11], [14], and they are seeded ones. That is, they need an addi-
tional seed which must be perfectly random and independent
of the source. In fact, it is known that any seeded statistical
extractor with some additional reconstruction property (in the
sense of [27]) gives a seeded extractor for such sources [4], [26],
[15]. However, just as in the statistical setting, several natural
questions arise in the computational setting too. To extract from
such sources, do we really need a seed? Can we use a weaker
seed which is only slightly random, instead of perfectly random,
in a statistical sense, or an even weaker seed which only looks
slightly random in a computational sense but may contain no

A more general definition is to have the circuit size as a separate parameter,
but our extractor construction does not seem to work for this more general def-
inition.
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randomness in a statistical sense? Seeing the seed as an addi-
tional independent source, a general question is: Can we have
seedless extractors for multiple independent sources in which
each source contains some computational min-entropy? We will
try to answer these questions in this paper. One can see this as a
step toward extending the study of multisource extractors from
the traditional, statistical setting to a new, computational setting.
One can also see this as providing a finer map for the landscape
of statistical extractors, according to the degree of their recon-
struction property.

B. Our Results

First, we show that it is impossible to have seedless extractors
for one single source, even if the source of length n can have a
computational min-entropy as high as n — 2 and even if we only
want to extract one bit.

Next, we show that with the help of a weak seed, it becomes
possible to extract randomness from such sources. We use a
two-source extractor of Lee et al. [20], denoted as EXT, which
takes two input strings v,w € {0,1}", sees them as vectors
from F*, where F = GF(2™) for some m with n = m/, and
outputs their inner product, denoted as (v, w), over F. As shown
in [20], it works for any two independent sources both con-
taining some statistical min-entropy. Moreover, it is also known
to work when one source contains some computational min-en-
tropy and the other, the seed, is perfectly random (in a statis-
tical sense) [12]. Our second result shows that it even works
when the seed only contains some statistical min-entropy. More
precisely, we show that given any source (f(X')|X) with com-
putational min-entropy k1 = n — k + O(k/logk) and an-
other independent source W with statistical min-entropy &, the
output ExT(f(X), W) given X cannot be distinguished from

random with advantage e = 27OV k/108%) by circuits of size
s = 2n—k+O(k/logk) That is, for any such Boolean circuit D,
|Pr[D(X,Ext(f(X))) =1] = Pr[D(X,U) = 1]| < ¢, where
U denotes the uniform distribution. Then we proceed to show
that the extractor even works when the seed only contains com-
putational min-entropy. More precisely, when we replace the
source W by a source (g())|)) with computational min-en-
tropy k, ExT(f(X),g(})) given (X, ) still cannot be distin-
guished with advantage € by circuits of size about s. This can be
seen as a seedless extractor for two independent sources, both
with computational min-entropy.

We do not know if the statistical extractors of [2], [3], [24],
[6], and [23] for multiple independent sources can also work in
the computational setting, since to work in this setting, we need
them to have some reconstruction property. For the extractors
from [11] and [12], this property can be translated to a task in
learning theory, and the proofs there can be recast as providing
an algorithm for learning linear functions under uniform distri-
bution with adversarial noise. Our second result can be seen as
a generalization of [11] and [12], but we are facing a more chal-
lenging learning problem: learning linear functions under arbi-
trary distribution with adversarial noise. Our third result pro-
vides an algorithm for this problem, which, in addition to being
used to prove our second result, may have interest of its own.

In the learning problem, there is some unknown linear func-
tion v : F* — F, defined as v(w) = (v, w), which we want
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to learn, and there is a distribution W over F* = {0,1}" from
which we can sample w to obtain a training example (w, g(w)),
for some function ¢ : F* — F. The function ¢ can be seen
as a noisy version of v with some noise rate «, and there are
two noise models. In the adversarial-noise model, ¢ is a deter-
ministic function such that Pry,ew[q(w) # v(w)] < a. In the
random-noise model, ¢ is a probabilistic function such that in-
dependently for any w, Pr[g(w) # v(w)] < «. We consider the
more difficult adversarial-noise model, and our algorithm works
for an arbitrary distribution WV, while its complexity depends on
the min-entropy k of WW. More precisely, our algorithm samples
20(k/1ogk) training examples, runs in time 2n—k+O(k/logk)
and with high probability outputs a list containing every linear
function v satisfying Pry,ew[g(w) # v(w)] < «, for a =
(1 —1/|F|) — 27 9W*k/logk) The factor 2" * in our running
time is in fact unavoidable because one can easily find a distribu-
tion W (e.g., the first k bits perfectly random and the rest fixed)
for which the number of such v’s, and thus the running time, is
in fact at least 2" . Note that when WV is the uniform distribu-
tion (with £ = n), our algorithm runs in time 20(n/logn) gapd
takes 20"/ 1°87) samples.

Previously, the algorithm of Blum, Kalai, and Wasserman [5]
can learn under arbitrary distribution but in the random-noise
model, while that of Feldman et al. [9] can learn in the ad-
versarial-noise model but under the uniform distribution. Both
algorithms learn the parity functions on 7 variables, tolerate a
noise rate & < 1/2 — Q(1), run in time 2°0("/1°¢") and take
20(n/logn) samples. Very recently, Kalai, Mansour, and Verbin
[16] gave an algorithm which can learn the parity functions
under arbitrary distribution in the adversarial-noise model, but
the hypothesis they produce is not in the linear form, so it cannot
be used for our extractors. Furthermore, their algorithm only
produces one hypothesis instead of all the legitimate ones, and
their technique does not seem to generalize from the parity func-
tions to the linear functions over larger fields. Thus, to the best of
our knowledge, the task our learning algorithm achieves has not
been accomplished before. Finally, just as the result of [11] can
yield a list-decoding algorithm for Hadamard codes, so can ours,
while that of [16] cannot. In fact, our list-decoding algorithm
can work even when all but 2¥ symbols from the codeword are
erased and an « fraction of the remaining symbols are corrupted.
It can also be seen as list-decoding a punctured Hadamard code,
where a punctured code is obtained from a code by deleting all
but a small number of symbols from the codeword.

C. Our Techniques

For our impossibility result, we show that for any function
Ext:{0,1}" — {0,1}, there exists a function f : {0,1}3" —
{0,1}™ such that (f(X')|X') has computational min-entropy n—
2, but ExT(f(x)) takes an identical value for all x. We show
the existence of such a function f by a standard probabilistic
argument: in fact, a random function from {0, 1}3" to Ext ™" (b)
is likely to work, for the b € {0, 1} with the larger Ext*(b).

To show that our extractor works in the computational set-
ting, we follow the approach of [11] and reduce it to the task
of learning linear functions as we just discussed. More pre-
cisely, for the case when the source (f(X)|X) has computa-
tional min-entropy and the seed WV has statistical min-entropy,
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the reduction works as follows. Assume our extractor EXT does
not work, and thus some efficient distinguisher can tell the dis-
tribution of Exr(f(x),W) = (f(z), W) from random given
z, for a large fraction of xz from X. For any such z, we can
then predict the value (f(z), V) with a good probability, given
the ability to sample from W, which can then be used by the
learning algorithm to learn f(x). This would give us an effi-
cient algorithm for predicting f(x) for those z’s, if we could in
fact sample W efficiently. However, this may not be the case in
general as W could be any arbitrary distribution. Still, by an av-
erage argument, there must exist a small set of samples from W
which preserve this predicting probability, so we can hard-wire
them in to get a circuit which predicts f well. If the function f
is hard, this is impossible, so the assumed distinguisher cannot
exit, and EXT indeed works. For the case that the seed comes
from a distribution (g())|)) with computational min-entropy,
observe that g()) alone (without conditioning on )) must have
some statistical min-entropy, because otherwise it becomes easy
to predict. Then a very similar argument as above can be used.

Note that our results on extractors still depend on the exis-
tence of a good learning algorithm, and our main technical con-
tribution can be seen as providing such an algorithm. Our algo-
rithm can be seen as extending that of [5] from the random-
noise model to the adversarial-noise model. Note that in the
random-noise model, it is possible to predict the value of v(w)
with confidence for an input w by taking the majority vote on
several independent predictions, while in the adversarial-noise
model, this does not seem so and the learning task becomes
much harder.

Our learning algorithm works as follows. We start by sam-
pling some number K of training examples (w, ¢(w)) from
(W, g(W)). Note that each example (w, g(w)) gives us a linear
equation (v, w) = g(w) for the unknown v, so the K examples
gives us a system of K linear equations, some of which may
be wrong. We reduce the original problem of learning the un-
known v to the problem of solving such a noisy system of linear
equations. To solve the system, we proceed in two phases. In
the forward phase, we start from the system, and use several it-
erations to produce smaller and smaller systems with fewer and
fewer variables, until we have a small enough system which we
can afford to solve using brute force. Then we enter the back-
ward phase, and starting from the last system produced by the
forward phase, we work backward on larger and larger systems
produced in the forward phase to obtain solutions for more and
more variables. Since the possible solutions may not be unique,
we keep them all in a list in each iteration, and the list in the
final iteration of the backward phase is our output, which we
hope contains the correct v.

The forward phase is similar in spirit to an approach in [5]. The
key is to guarantee that after each iteration, the solution v is still
good for the new system in the sense that the new system still con-
tains a good fraction of correct equations with respect to v, so that
v will not be lost when solving this new system. Using an argu-
ment similar to that in [5], we can show that this does hold with a
significant probability. On the other hand, it is not clear whether
or not some iteration in the forward phase would turn many origi-
nally bad solutions into good ones for the new system (satisfying
a good fraction of its equations). That is, not only is v a good so-
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lution for the system, there are in fact too many good solutions
for it. If this happens, then in the backward phase when we try to
solve this system, we cannot afford to keep all such solutions, and
we have the risk of losing the actual solution v. This tricky situa-
tion does not arise in the random-noise model considered in [5],
so amuch simpler algorithm works there. However, in the adver-
sarial-noise model, this seems unavoidable. Fortunately, we can
show that with high probability, the systems we produce indeed
do not have too many good solutions. This turns out to rely on the
fact that our extractor is also a good statistical extractor, together
with the property, which we will show, that each system is likely
to have a distribution which is close to some good distribution
with high statistical min-entropy.

II. PRELIMINARIES

For any m € N, let U/,,, denote the uniform distribution over
{0,1}™. Let SIZE(s) be the class of functions computable by
Boolean circuits of size s. We say that a function D : {0,1}" —
{0, 1} is an e-distinguisher for two distributions X and )’ over
{0,1}™ if

[Pr[D(X) = 1] = Pr[D() = 1]| > =.

All logarithms in this paper will have base two.

We consider two types of min-entropy: statistical min-en-
tropy and computational min-entropy. The notion of statistical
min-entropy is a standard one, usually just called min-entropy.

Definition 1: We say that a distribution X" has statistical min-
entropy atleast k, denoted by Ho (X)) > k, if for any z;, Pr[X =
z] <27k

Next, we define the notion of computational min-entropy.
Here, we consider the more general setting of measuring the ran-
domness of a distribution V' given a correlated distribution X,
and we use (V|X) to denote such a joint distribution. The cor-
relation between V and X' is modeled by V = f(X') for some
function f, which could be either probabilistic or deterministic.

Definition 2: We say that a distribution (V|X) has compu-
tational min-entropy k, denoted by H.(V|X) = k, if for any
C € SIZE(2F), Pr[C(X) = V] < 27k,

We consider three kinds of extractors: statistical extractors,
hybrid extractors and computational extractors. The notion of
statistical extractors is a standard one for 2-source extractors,
usually just called 2-source extractors, while we introduce the
notions of hybrid extractors and computational extractors.

Definition 3: A function Ext : {0,1}"x {0,1}" — {0,1}™
is called a

* (k1, ko, e)-statistical-extractor if for any source V with
Hoo(V) > k1 and any source W, independent of ), with
Hoo(W) > ko, there is no e-distinguisher (without any
complexity bound) for the distributions (W, Ext(V, W))
and (W, U,,).

o (ki, ko, e, s)-hybrid-extractor if for any source (V|X)
with H.(V|X) > k; and any source W, independent of
(V|X), with Hoo (W) > ko, there is no e-distinguisher
in SIZE(s) for the distributions (X, W, Ext(V,V)) and
(X W, Up,).
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o (k1, ko, e, s)-computational-extractor if for any source
(V|X) with H.(V|X) > k; and any source (W|Y),
independent of (V|X), with H.OV|Y) > ko, there
is no e-distinguisher in SIZE(s) for the distributions
(X, Y, W,ExT(V,W)) and (X, Y, W,Uy,).

Remark 1: Note that the definition above corresponds to the
notion of strong extractors in the setting of seeded statistical ex-
tractors, which guarantees that even given the seed (the second
source), the output still looks random.

We will need the following statistical extractor from [20],
which generalizes the construction from [7]. For any m € N
with m|n, let £ = n/m, and see any = € {0,1}" as an /-dimen-
sional vector = (z1, 2, ...,x¢) overF = GF(2™). Then for
any z,y € F?, let (x, y) be their inner product over F defined as

l
=1

Theorem 1: [20] The function ExT : {0,1}" x {0,1}" —
{0,1}™ defined as Ext(u,v) = (u,v) is a (ki1, ko, €)-statis-
tical-extractor when k1 + ko > n + m + 2log(1/e) — 2.

We will need the following fact about statistical extractors.

Lemma 1: Let ExT : {0,1}" x {0,1}" — {0,1}" be
any (k1, ko, €)-statistical-extractor. Then for any source W over
{0,1}" with Hoo (W) = k2 and any function ¢ : {0,1}" —
{0,1}™, there are at most 2% different v’s satisfying

= > m .
Py [ylu) = Exr(o,u)] > 1/27 + ¢

Proof: Let V be the set consisting of such »’s and let V
be the uniform distribution over V. Consider the distinguisher
D defined as D(w,u) = 1 if ¢(w) = w and D(w,u) = 0
otherwise. Then, the difference

D(w,E , =1] - D(w,u) =1
vev,u]few[ (w, Exr(v,w)) = 1] wew,ieum[ (w,u) =1]
is equal to

vemroplaw) = Exr(vw)] = Pr - g(w) = u]

which is at least
1/2" +e—1/2™ =e.

This implies that log |V| = Hoo (V) < k1, because otherwise it
would contradict the fact that EXT is a good statistical extractor.
|

Finally, we will need the following lemma about obtaining
predictors from distinguishers. The Boolean case (m = 1) is
well known, and a proof for general m can be found in [12].

Lemma 2: For any source Z over {0,1}" and any function
b:{0,1}™ — {0,1}™, if there is an e-distinguisher D for the
distributions (Z,b(Z2)) and (Z,U,,), then there is a predictor
P with D as oracle which calls D once and runs in time O(rn)
such that

ZIE’rZ[PD(z) =b(2)] > (1+¢)/2™.
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III. AN IMPOSSIBILITY RESULT

Just as in the statistical setting [7], we show that seedless
extractors do not exist either in the computational setting. In
fact, we show the impossibility result even for sources with a
computational min-entropy as high as n — 2.

Theorem 2: For any n1,n € N with ny > 3n and for any
function Ext : {0,1}" — {0, 1}, there exists a deterministic
function f : {0,1}™ — {0,1}"™ such that H.(f(X)|X) =
n — 2 for X = U, but ExT(f(z)) takes the same value for all
x (so can be easily distinguished from random).

Proof: Consider any function Ext : {0,1}" — {0,1}.
Assume without loss of generality that |[Ext'(1)| > 271
Then we will show the existence of a function f such that
H.(f(X)|X) = n — 2 but ExT(f(2)) = 1 for all . In fact, a
standard argument can show that a random function is likely to
work, as we will describe next.

Consider a random function f : {0,1}™ — Ext~*(1). Fix
any C' : {0,1}" — {0,1}"™ € SIZE(2"~?), and for each
xz € {0,1}™, define a binary random variable C, such that
C, = lifandonly if C(z) = f(z). Observe that ) C, is the
number of x satisfying C'(z) = f(«). Note that

Zc

and let 4 = 2=~ Then by a Chernoff bound (see e.g.,
[1]), we have

Pr|) €, >2u| <279M = 2-2C""),
Since [SIZE(2"~2)| < 29("2") and n; > 3n, a union bound
gives

Pr
f

3C € SIZE(2" ") st Y Co > 21

< 90(2") g0
< 1.
Hence, there exists some f, such that Pr,.[C(z) = f(z)] < 2

2= = 2=("=2) forany C' € SIZE(2"~2), but Ex7(f(z)) = 1
for any x. This completes the proof.

IV. HYBRID AND COMPUTATIONAL EXTRACTORS

In this section, we show that the function Ext : FExF¢! — F
defined in Theorem 1 as

Ext(v,w) = (v, w),

which is known to be a good statistical extractor, is also a good
hybrid extractor and a good computational extractor.

Theorem 3: Forany k > Q(log” n), any m < O(+y/k/log k)

dividing n, any ¢ > 2-OWk/1ogk) any ¢ < gn—k+O(k/logk)
and for some k; = n — k + O(k/logk), the function
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T : {0,1}" x {0,1}" — {0,1}™ defined above is both
a (ki,k,e,s)-hybrid-extractor and a (ki,k,e, s)-computa-
tional-extractor.

The proof for Theorem 3 relies on the following result, which
gives an algorithm for the problem of learning linear functions
under arbitrary distribution with adversarial noise.

Theorem 4: For any k > Q(log?n), any m < O(k/logk)
dividing n, and any § > 2~ OV k/108k) there exists a learning
algorithm A with the following property. Given any source W
over {0,1}" = F* with Ho.(W) > k and any function ¢ :
F' — F, the algorithm A samples 29/ 1°8k) (raining exam-
ples from the distribution (), ¢()V)) and then runs in time
on—k+O(k/logk) 1o output a list of size 27~ F+Ok/10gk) which
with probability 1 — o(1) contains every v € F* satisfying

Pr [q(w) =

> m .
P (v,0)] > 1/2™ + 8

Note that as in a standard learning-theoretical setting, we do
not count the complexity of sampling the training examples (or
just count each sampling as unit cost) in Theorem 4. We will
prove the theorem in the next section, and now let us see how it
is used to show Theorem 3.

Proof: (of Theorem 3)

First, we prove that the function EXT is a good hybrid ex-
tractor. Consider any source (V|X") with H.(V|X) > k; and any
source W, which is independent of (V|X), with Hoo (W) > k.
Assume for the sake of contradiction that there exists an e-dis-
tinguisher D € SIZE(s) for the distributions (X', W, (V, W))
and (X, W,U,,). By Lemma 2, this implies the existence of a
predictor € SIZE(s + O(m)) with

Pr [Q(z, w) = (v, w)] 2

1 2m,
TeX vEV ,WEW ( + E)/

Let § = /2™t > 2=O(k/1o8k) ‘and call any (x, v) heavy if

Pr [Q(z,w) =

Lr (v,w)] > 1/2™ + 6.

Then a Markov inequality shows that

me({’,ﬁev[(m,v)ls heavy] > 6.

Given any heavy (z, v), we want to predict v from z with a
good probability. This can be reduced to the task of learning
the linear function (v,-), through noisy training examples
(w, q(w)), with g(w) = Q(z,w), under the distribution
w € W. Consider the algorithm C' which on input z calls the
algorithm A in Theorem 4 using the function ¢(-) = Q(=z,-),
and outputs a random element in the list produced by A. It
samples 20(k/ log k) independent elements, denoted as W, from
W, makes 20(/10gk) calls to @, and for any heavy (z,v) it
outputs v with probability (1 — o(1)) - 2~ (n=k+O(k/logk))
Then Pr, , w[C(z) = v] is at least

Pr{(z,v) is heavy] - PrW[C(:v) = | (z,v) is heavy]

which is at least

6-(1—o0(1))- 9~ (n—k+0O(k/logk)) > o—(n—k+O(k/logk))



5490

That is, we have

Pr [C(z) = v] > 2~ (n=k+O(k/logk))
z 0, W

We are almost done except that we still cannot bound the
complexity of the algorithm C because it needs a way to sample
elements from the source V¥ which may not have an efficient
sampling algorithm, unlike in the learning setting where one
does not count the complexity of sampling. Fortunately, by an
average argument, the bound above still holds for some fixed
W, and we can simply hard-wire it into C'. Similarly, we can do
this for other random choices of C, and it is not hard to show
that one can have a resulting circuit of size

|W|O(1) + 2O(k/ logk) | (S + O(m)) + 2n—k+0(k/ log k)

which is at most

2n—k+0(k/ log k) )

Thus, for some large enough k1 = n—k+O(k/log k), we have
a circuit of size smaller than 2¥* which can predict v correctly
with probability at least

27(n7k+0(k/ log k)) > 27191‘

This contradicts the assumption that H.(V|X) > ki, which
means that the distinguisher D assumed at the beginning cannot
exist, so EXT is a good hybrid extractor as claimed.

Next, we prove that EXT is also a good computational ex-
tractor, and the proof is almost identical. Consider two inde-
pendent sources (V|X') and (W|Y), with H.(V|X) > k; and
H.(W|Y) > k. Observe that the distribution of ¥/ must have
statistical min-entropy at least k, because otherwise the pre-
dictor which always outputs the value with the largest mea-
sure can predict W correctly with probability larger than 2%,
a violation of the assumption that H.(W|Y) > k. Then we
can follow the proof above: assuming the existence of a distin-
guisher for EXT, we can obtain a predictor of size smaller than
21 with some 20(*/1°¢k) elements from (W, ))) hard-wired
in it, which can predict V correctly with probability larger than
27F1_ This contradicts the fact that H.(V|X) > ki1, so EXTis a
good computational extractor. ]

V. LEARNING NOISY LINEAR FUNCTIONS
In this section, we prove Theorem 4. Recall that given any
source W over {0,1}" = F* with Hoo(W) > k, any § >
2-O(V/k/ Ing), and any function q : F! — F, we would like
to learn some unknown v € F* such that

Pr la(w) = (v,w)] 2 1/27 +6.

6]

Since such v may not be unique, we will list them all. Let us
first imagine one such fixed v.

We start by randomly choosing K = 2¢(k/1°8k) jndepen-
dent training examples (with replacement) from the distribution
(W, ¢(W)), for some large enough constant ¢ (depending on
8). Let W(© denote the K x ¢ matrix and ¢(©) the K -dimen-
sional vector, both over [, such that for each training example
(w, g(w)), WO has w € F* as a row and ¢(©) has q(w) € F
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1) For t from 1 to 7' do
a) Partition the equations of [WW (=1 |¢(t=1)]
into at most 2™¢ groups (recall that
[F| = 2™) according to their first blocks
in W (same block value in the same

group).

b) Within each group, randomly select an
equation which we call pivot.

¢) Within each group, subtract the pivot
from each equation.

d) Remove the pivots and delete the first
block from each equation. Let [W (1) |¢(¥)]
be the resulting system of equations.

Fig. 1. FORWARD PHASE.

1) Set VT =F®=k/m and set V() = for
0<t<T-1.
2) For t from 7' — 1 down to 0 do
(a) Forany z € FxV{+1 which is §,-good
for [W®)|g®):
if [V®| <L
then include z into V),
else report “error” and halt.
3) Output V().

Fig. 2. BACKWARD PHASE.

as an entry. Note that each training example (w, g(w)), with

w = (wy,ws,...,wp), gives us a linear equation

wyv1 + wave + + -+ + weve = q(w)

forv = (v1,v9,...,v0) € F*. Thus from these K training ex-
amples, we obtain a system of K linear equations, denoted as
[W(©)|¢(9], and we would like to reduce the task of learning v
to that of solving this system of linear equations. However, this
system is highly noisy as about 1 — 1/2™ fraction of the equa-
tions are likely to be wrong, according to (1). We will roughly
follow the approach of Gaussian elimination (which works for
noiseless systems of linear equations), but will make substantial
changes in order to deal with our noisy case.

Our algorithm consists of two phases: the forward phase,
shown in Fig. 1, and the backward phase, shown in Fig. 2. The
forward phase works as follows, which is similar to an ap-
proach of Blum et al. [5]. Starting from the system [ () |¢(9)]
of linear equations, we use several iterations to produce smaller
and smaller systems with fewer and fewer variables, until we
have a small enough system which we can afford to solve using
brute force. More precisely, we choose the parameters

T =log+/k/logk and d = k/(mT),

divide each row of W) into ¢ /d blocks, with each block con-
taining d elements in [, and proceed in 7' iterations, as shown in
Fig. 1. Note that after iteration ¢, we have the system [V (1)|¢(")]
which has £ — dt variables and K (*) equations, with

K® > K —t2md
— 2C(k/ log k) _ tzk/T
> 2(1(1(:/ log k)/2
— K/2,
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for a large enough constant c. The key is to guarantee that the
system still contains a good fraction of correct equations. Let

o = 6/2and 6, = (6;_1/2) fort > 1.

A simple induction shows that for t < T

85 = 52f/23-2t72 > (6/8)? > 9—0.1c(k/logk) _ K’O'l,
for a large enough constant c. We say that any z € F/~7 is
6-good for the system [W () |¢(D)] if it satisfies at least 1 /2™ 46,
fraction of equations in the system. Let v € F‘~% denote v
without its first ¢ blocks, and we call the forward phase good
if for every ¢, v(*) is 8;-good for [W®)|¢(*)]. Lemma 3 below,
which will be proved in Section V-A, guarantees that the for-
ward phase is good with a significant probability.

Lemma 3: The forward phase is good with probability at least
2—O(k/ log k) )

For the backward phase, we start from the last system
[W(T)]¢(™)] produced by the forward phase, and work back-
ward on larger and larger systems produced in the forward
phase to obtain solutions for more and more variables. More
precisely, we go from ¢ = T — 1 down to £ = 0, and while in
iteration ¢, we try to find all possible solutions which extend
solutions from iteration ¢ 4 1 and are &;-good for [W®*)|¢(*)], as
shown in Fig. 2. However, in order to bound the running time,
we will stop including the solutions once their number grows
beyond the threshold

[ = on—k+m+T+2 log(1/67) _ 2n7k+0(k/ log k).

If this happens, we may fail to include the actual solution v in
our final list. Call the backward phase good if for every t, the
number of such &;-good solutions for [W®)|¢(*)] is at most L,
or equivalently, it never reports “error.” Lemma 4 below, which
will be proved in Section V-B, guarantees that the backward
phase is indeed good with a high probability.

Lemma 4: The backward phase is not good with probability
at most 2~2(F)

From Lemma 3 and Lemma 4, the probability that both the
forward and backward phases are good is at least

2—O(k/ logk) _ Z_Q(k) — Z_O(k/ log k).

Assuming that both phases are good, a simple induction shows
that v € V® for any ¢ and hence v € V() Thus, we have
shown that any fixed v satisfying the bound in (1) is contained in
the list V(9 of size at most L with probability 2~©(*/log %) Wwe
can further reduce the probability of missing this v to 27«(™)
by repeating the process 20/ 1°8%) times, and take the union
of the produced lists. Then a union bound shows that some v
satisfying (1) is not included in the final output with probability
only o(1).

Finally, let us measure the complexity of our algorithm. First,
K < 20(k/10gk) training examples are sampled from the dis-
tribution (W, ¢(W)). Next, each iteration of the forward phase
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works on a system of at most K equations with at most n vari-
ables and runs in time poly (K, n), and hence the whole forward
phase runs in time

T - poly(K,n) = O(log(k/log k)) - poly(K)
S 20(k/ log k)7

since k > Q(log?n). Then, each iteration of the backward
phase runs in time

0™ . LK)
< 2O(k/ log k) | 2n—k+O(k/ log k) | 2O(k/ log k)
< 2n7k+0(k/ log k).

so the whole backward phase runs in time

O(log(k/ log k)) . gn—k+O(k/ log k) < gn—k+0(k/logk)_

Finally, the process is repeated for 20/ 1°2k) times, and thus
the total running time is

9O(k/log k) . (2O(k/ log k) 4 on—k+O(k/ log k))

<2n7k+0(k/ log k) )

As a result, we have Theorem 4. To complete the proof, it re-
mains to prove Lemma 3 and Lemma 4, which we do next.

A. Proof of Lemma 3

First, by a Chernoff bound, we know that v = v(®) satisfies
less than 1/2™ 4 6 fraction of equations in [W(*)|¢(”)] with
probability at most 2255 5) = o(1). That is, v(?) is §y-good
for [W(©)|¢(®] with probability 1 — o(1). Next, we need the
following lemma.

Lemma 5: In the forward phase, if =1 is §,_;-good for
(W=D |1, then v is §,-good for [W ®)|¢(™)] with prob-
ability at least ;.

Proof: Let 7 = &._1. Assume that v(*=1) is 7-good,
so it satisfies at least Q}ﬂ + 7 fraction of equations in the
system [W(#=1|q(*=1D], Partition equations in the system
[W=D|4*=D] into groups according to their first blocks,
as in Step 1(a) of the forward phase. Suppose group 7 con-
tains p; fraction of equations in [W (=D |g(*=D] and »(*~1)
satisfies = + 7; fraction of equations in the group, for some
T € [—QT,

t 1 — 5= ]. Then we have

1 1
ZPr(%-Fﬂ) > ot )

We would like to count the expected fraction of new equa-
tions satisfied by v(*~1), where we count equations in their
multiplicity. Before doing that, let us first count the fraction
with respect to the system obtained before Step 1(d) (before re-
moving pivots). Let us denote a generic equation of the system
(WD ]gt=D] by (wtD]gt=1). Consider any group i. For
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u € F, let a,, denote the fraction of equations (w(*=1)]¢*=1)
in the group which are off by a value u in the sense that

gt~ = (=D =Dy 4y,

Note that for v(*=1) to satisfy a new equation, which is the dif-
ference between two equations, these two involved equations
must be off by the same value. Therefore, the expected frac-
tion of new satisfied equatlons in this group is Y_, a2, which
under the constralnt = 2m + 7; achieves its minimum when
y = 2% - 2,,1 I for all other u # 0. Hence, after one itera-
tion, the expected fraction of new equations in group ¢ (before
removing pivots) satisfied by v(*~1) is at least

Lon) wemon (Lo om )
gm T Ti om ~ gm _ 1

(1Y 2-2 141
=20 \gm) T T Ty
1
_2—m+7

Combing all groups together, the expected fraction of satisfied
equations overall (before removing the pivots) is at least

Di| 57— + T = L + piTi,Z
2 g 2
1 L ’
> om T me

> 1 2

= 2_'m +7 ’
where the first inequality is due to Jensen inequality, and the
second inequality uses the bound ), p;7; > 7 implied by that
in (2).

To get the expected fraction of satisfied equations in the final
system [W*)|¢(*)], after performing Step 1(d), observe that we
only need to discard at most 27 = 20(k/log k) equations, each
with measure m < 4. so the total discarded measure, de-
noted as , is at most

gmd . 2 50/ 10gh) o g=c(k/logh) < T_

for a large enough constant c. As a result, the expected fraction
of equations in [W®)|¢(*)] satisfied by v(*) is at least
2m

1 1 L S
1-4 om 2 nz
1 T2

> 4

- 2m + 2
1

=—420
om + ty

1
472 —

by recalling that 7 = 6;_; and 6; = (&;_1/2)>. Finally, by a
Markov inequality, we have the lemma. [ |

Then by Lemma 5 and an induction, the forward phase is good
with probability at least

T
(1—o(1 II&__I—O II&B
t=1
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1-o(1))(6/8)""

> (
> 270(19/ log k) )

This proves Lemma 3.

B. Proof of Lemma 4

Recall that a solution is &;-good for the system [W (") |¢()] if
it satisfies at least 1/2™ + 4, fraction of the equations. For any
t such that 0 <t < T — 1, consider the following event:

+ B®: the number of 6,-good solutions for [W®)|¢(*)] ex-

ceeds L.
Thus, our goal is to show that

T-1

\/ B®

t=0

< 9—Q(k)

We will prove this by a union bound, so our goal is reduced to
bounding each Pr[B®] for0 <t < T — 1.

To get a quick idea, let us first consider how to bound
Pr[B(®)]. Note that since EXT is a good statistical ex-
tractor and VW has a high min-entropy, Lemma 1 guaran-
tees that the number of z satisfying the probability bound
Pryewlg(w) = (z,w)] > 1/2™ + 60/2 is at most L. Any
other z is very unlike to be §p-good for [W(|¢(D] by a
Chernoff bound because each row of W (%) is sampled indepen-
dently from W. Since B(®) happens only when any such z (not
satisfying that probability bound) is 6g-good, a union bound
shows that Pr[B()] is indeed small.

Now for t > 1, to follow this idea to bound Pr[B(t)], we
would also like the distribution of W denoted as S®, to
have the nice property that each of its rows comes indepen-
dently from a high min-entropy source. Unfortunately, this is not
true in general,2 and a much more involved analysis is needed.
Our approach is to consider the distribution S®) conditioned on
the choice of pivots in the first ¢ iterations. We call a particular
choice of the pivots a restriction of the pivots, which includes
fixing the indices and the values of some rows as pivots while
leaving other rows free. We will show that the distribution S*)
conditioned on most restrictions is close to a distribution with
the nice property. For our purpose here, instead of using the
standard definition of “closeness” (which would be measured
according to the statistical distance), we consider the following
one.

Definition 4: We say that two distributions are ~y-close if the
probabilities of any event according to the two distributions are
within a multiplicative factor of v from each other.

Observe that one can generate the matrix W ®) in an alterna-
tive way by first choosing the pivots in ¢ iterations and then gen-
erating the matrices W), .. .| W® consistent with the pivots.
Formally, the dlstrlbutlon S (t) (the distribution of the matrix
W ®)) can be generated in two passes as follows. In the first pass,
we select a restriction of pivots in the first ¢ iterations, denoted
as R ... R® by running the forward phase on the matrix
W sampled from WV and collecting the pivots, which include
the indices and the values of rows as pivots, in each iteration. In

2This is true in the simple case considered by [5] that one has W = U, to
start with. In this case, for each ¢, one can easily show that each row of W (%)
does come independently from the uniform distribution 4y, — 1.
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the second pass, we again sample a matrix W (%) from W and
then run the forward phase accordingly for £ iterations to derive
the matrix W), under the condition, denoted as I RO ... R
that the pivots selected in the ¢ iterations match R, ... R(®),
Let D) = (S®|Ipa. gw) denote such a conditional dis-
tribution of W (%) with respect to the restriction R, ..., R(®),
Now consider the following event about D , over the distribu-
tion of R, ... R® selected in the first pass.

o E®: the distribution D® is ~;-close to some distribu-
tion D) which has K (*) rows, each coming independently
from a distribution W) with Ho, (W®) > k—t(md+1),
for some v, < K2"'(2'-1) < oVEK,

The following lemma, which will be proved later, shows that

when conditioned on E), the probability of B®) is indeed
small.

Lemma 6: For any ¢t suchthat) <¢ < T — 1,
Pr[BM | EW] < 27%k),

Next, we would like to show that £(®) happens with high
probability. Note that for ¢ = 0, the event E(°) always happens
because the initial distribution D(®) has the nice property itself,
so we have D(© = D) and Y =1.Forl <t<T—1,we
use induction to show that

Pr |:_|E(t)i| <Pr [—.E(t) | E(t—l)} +Pr |:_|E(t—1)i|
< i:Pr [ﬁE(ﬂ |E(T—1>} :
r=1

and then we rely on the following lemma, which will be proved
later.

Lemma 7: Forany tsuchthatl <t < T —1,

Pr [ﬁE@ |E<H>} < 9~ UK),

From these two lemmas, we have that for any ¢ such that
1<t<T-1,

Pr [BY)]
<Pr [B“) | E(t)] 4 Pr [ﬁ E(t)}
<Pr [B“) | E(t)} + zt:Pr [ﬁE“) |E(T—1>}
r=1
<9—90),
For t = 0, we have
Pr [B(U)} — Pr [B(O) | E(O)} < 9- k)

As a result, a union bound gives us

T-1 T-1
Pr \/ BW| < Z Pr [B(t)} <7T.27 90 = 2*9(1’6)7
t=0 t=0

which proves Lemma 4. Thus, it remains to prove Lemma 6 and
Lemma 7, which we do in the next two subsections.
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C. Proof of Lemma 6

Let us first count the number of solutions z such that

) = m
weI:/\s(i) [q (w) = <z,w)} >1/2™ 4+ 6,/2.

Let Z denote the set of such 2’s. Note that W®) is a source over
Fé—td = {0, 1} t)™ with Ho (W) > k—t(md+1). Thus
by Theorem 1 and Lemma 1, we have

|Z| < QUt=tdymtm+21og(2/8:)=2=(k—t(md-+1))
— 2n*k+’m+t+210g(1/6t)

< L.

This means that for the event B(*) to happen, some = ¢ 7 must
be 6;-good.

Consider any restriction R, ..., R® such that the event
E® happens. If we sample the matrix W) according to the
distribution D), which has each row coming independently
from W), then any fixed z ¢ 7 is 6;-good (satisfying at least
1/2™ + 6, fraction of equations in [W®)|¢(1)]) with probability
at most 2~ Q6K by a Chernoff bound, and a union bound
shows that

Pr [B(t)} < Pr{3z ¢ Z:2is Si—good
< 9gn. 279(651(“))
< 9=,

Now if we sample W) according to the distribution D(*) =
(SO |Ipay.. gw), which is y-close to D) (given that E®)
happens), the probability is only scaled up by a factor ~;. Thus,
we have

Pr [Ba)} <y - 27 UKT)
D(t)
< 2\/? ) 2—Q(K°'8)

< 27Uk,

Since the bound holds for any restriction R(), ..., R® such
that the event £(*) happens, we have the lemma.

D. Proof of Lemma 7

Let us consider any restriction RV ..., R#=1) such that the
event E(*~1) happens, and we will show that E(*) happens with
high probability, over the selection of R®). More precisely, the
assumption that E(*~1) happens means that we start iteration ¢
from the distribution D*~1) which is close to some nice distri-
bution P*~1), and our task is to show that with high probability
over the selection of R(t), the resulting conditional distribution
D® after iteration ¢ is close to another nice distribution D(t),
so that E(® happens. For this, we need to figure out which of
these R(®)’s make E*) happen.

Note that for a restriction R(*), the corresponding distribution
D) is obtained by applying Steps 1(c) and 1(d) on the matrix
W =1 sampled from D*~1) under the condition that it is con-
sistent with R(Y). The restriction R® fixes some 7 < 24 rows
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D=1 .

p(t-1) ~ Independent

Yt—1-close rows sampled

from W~

1
DM .

D) ~ DM = Independent
fyf_l-close [B-close rows sampled

from W

Fig. 3. If D=1 is close to D=1, then D™ is close to D*), conditioned on I

of the matrix W (=1 as pivots and it has the effect on the dis-
tribution D=1 that all the rows of W *=1) must belong to the
r groups of those  rows. We would like the effect to be small,
and we consider the following event, over the selection of R®,
+ G®:those elements in the support of W*~1) which would
belong to those r groups of R(*) when selected as rows
of W (=1 (i.e., those with their first blocks matching one
of the first blocks of the r rows in R(t)) have a combined
measure of p > 1/2 in the distribution W(~1),
We will show that if G(*) happens then E(*) happens. For this,
let us consider any fixed restriction R(*) such that G*) happens,
and let us use I(:) to denote the event that the pivots chosen in
iteration # match those in R®). Our approach is illustrated in
Fig. 3.

First, let us consider the case of starting iteration ¢ from the
nice distribution D=1 instead of D=1, conditioned on
Ipe, and let D® be the resulting distribution after iteration ¢.
The following claim shows that D(*) is in fact close to a nice
distribution.

Claim 1: For some < K Zmd, the distribution D®) is
[-close to some nice distribution D(*) described in the event
E® (i.e., D™ has K(*) rows, each coming independently from
a distribution W) with Ho, (W®)) > k — t(md + 1)).

Next, let us go back to the actual situation of starting itera-
tion ¢ from the distribution D=1 instead of D(*~1 as we did
in the above claim. Using the assumption that DED) s close
to D=1 our next claim shows that when we start iteration ¢
from the distribution D*~1) conditioned on T R(t, the resulting
distribution D(*) is close to the distribution D(*).

Claim 2: The distribution D®) is v2_,-close to the distribu-
tion D),

From these two claims, we can conclude that D® is ~¢-close
to D), for v, =2, < fytz_lemd, which by induction is at
most

K2”"1(2*’—2)K2’""’ < K2’""(2*—1) < 2\/?'

This implies that for any restriction R® such that the event G'(*)
happens, the event £() must happen as well. Therefore, the
probability that £(*) does not happen is at most the probability
that G does not happen, which we bound by the following
claim.

Claim 3: The probability over the selection of R(*) that G(*)
does not happen is at most 2~ (%),

We have shown that for any restriction R, ..., R¢=1 such
that the event E(*—1) happens, the probability, over the selection
of R, that the event E(*) does not happen is at most 2~ (%)
This implies that Pr[-E®) | E¢=D] < 2=2%K) which proves
Lemma 7. Thus, it remains to prove the three claims above,
which we do next.

Proof: (of Claim 1)

Recall that we have fixed a restriction R®) which fixes some
rows as pivots such that the event G(*) happens, and we use T ()
to denote the event that the pivots selected during iteration ¢
match those in the restriction R®). In this claim, we consider the
situation of starting iteration ¢ from the nice distribution D*~1)
conditioned on the event Ip().

First, let us see how the distribution D*~1) is affected by the
conditioning on I, . Consider any fixed matrix M of K(*) =
K1 _ 1 rows, insert the rows of R(® at the proper places to
get a fixed matrix W =1 of K (*=1) rows, and let us use Iyy-(:—1)
to denote the event that a randomly sampled matrix from D(—1)
equals this matrix W (*=1)_If the matrix has a row not in the r
groups of R™), then Prpi—1) [Iyyi-1) | Ipey] = 0. Otherwise,
PrD(t—1) [Iv[,r(f,fl) | IR()‘,)] is

KW — r
(Hj:l wt 1)(Mj)) ’ (Hi:l ﬁ)

K1) T l; r ’
Zi1+---+/T=K(1);/,20 (11,---,zr) ’ (qu=1 Pi ) ) (H1:=1 ﬁ)
where W= (M) is the measure of the j’th row of M in
W=D ¢’ is the number of rows of M in group i, and p; is
the measure of group 7 in W1 Note that for some vy, cvp €
[K ", 1], the numerator equals

K®
[T o) | o,
j=1

while the denominator equals

10 r
Z <£17"'7‘€7‘> ' (HPf) Qg

L4, =K(#):0,>0

- K@
Z Pi s (X
i=1

K@

P a2,
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where S°7_, pi = p > 1/2 as we assume that the event G(*)
happens. As a result, for 3 = 5L € [K~", K"], we have

K®
W=D (M)
P I s(t—1 I )| = MM S T4 - [,
D(tfl)[ we- | Tpo] jlzll ; B

Note that the first factor above can be seen as the probability
when we sample each row of the matrix independently ac-
cording a new distribution W(t’l), which is the distribution
W=D restricted to those r groups of R(*) and normalized
by their measure p. Thus, although the conditioning on the
event Ip) may destroy the independence so that we can no
longer see each row as coming independently from W1 we
can somehow have the independence restored by considering
another distribution W~ with some distortion factor 0.
More precisely, we have shown that the distribution D(*~1)
conditioned on the event I () is B-close to a nice distribution,
denoted as f)(t_l), which has each of its remaining row (not
fixed by R(*)) coming independently from W= with
HOO(W(t_l)) 2 HOO(W(t_l)) — log(1/p)
>k—(t—1)(md+1)—1.
Next, let us see what the resulting distribution D@ will be when
Steps 1(c) and 1(d) are performed on the distribution pt-1)
conditioned on Ir(+). Again, we first consider the case of ap-
plying the two steps on the nice distribution D=1 instead.
When we perform Step 1(c) to subtract from each row its cor-
responding pivot, which is a fixed value, each resulting row
still remains independent from others. However, the distribu-
tion of each resulting row is now changed to another distribution
which may have a smaller min-entropy than that of W= be-
cause different initial rows after subtracting their corresponding
pivots may result in the same value. Still, the number of such
initial rows can be at most 2™ since no two such rows can
come from the same group, which implies that the min-entropy
only decreases by at most md. Then after performing Step 1(d)
to remove the pivots and delete the first blocks, the resulting
matrix has each row coming independently from some distribu-
tion W(*) with min-entropy at least

Hoo WD) —md > k — t(md + 1).

That is, after performing Steps 1(c) and 1(d) on the distribution
D=1 the resulting distribution, denoted as D*), satisfies the
condition in event E*) Finally, let us get back to the actual case
of starting with the distribution D=1 conditioned on I R(t)-
Since it is B-close to D ~1), the resulting distribution D) after
applying the two steps is J-close to the corresponding resulting
distribution D®), which proves the claim. ]

Proof: (of Claim 2)

In this claim, we go back to the actual situation of starting
iteration ¢ from the distribution D=1 instead of D¢~1) as we
just did. We would like to show that the resulting distribution
D® when starting from D¢~ is 42 | -close to the distribution
D when starting from D*~1 . For this, it suffices to show
that for any event A, the probabilities of Prpe—1[A | Ixw]
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and Prp_1)[A | Igw] are within a multiplicative factor of
42 ;. This is true because from the fact that D*~1) and
D¢ are ~,_;-close, we know that Prp—1)[Ig] and
Pric—1)[Lg ] are within a multiplicative factor of v;_1, and
so are Prp—1)[A A Ipw] and Pry_i) [A A T ]. ]

Proof: (of Claim 3)

Note that the restriction R(*) can be selected by sampling a
matrix W (=1 according to the distribution D*~1) and then ap-
plying Steps 1(a) and 1(b) to select the pivots. Thus, the prob-
ability that G does not happen is at most the probability that
all the K¢~V rows of W*=1 lie in some r groups with a com-
bined measure of p < 1/2 in the distribution W*~1),

Again, let us first consider the case of sampling W *~1) ac-
cording to the distribution D*~1) | instead of D*~1). Note that
there are at most 22" ways of choosing the r groups with a
combined measure of p < 1/2 in W*~1) and the probability
that all the K~ > K/2 independent rows lie in any partic-
ular choice of such r groups is at most (1/2)%/2. Then a union
bound shows that the probability of having p < 1/2 is at most

gm d

22" (1/2)K/% < 9= UK,

Next, let us go back to actual case of sampling W(*=1) ac-
cording to the distribution D(=1) Note that the probability of
having p < 1/2 according to D#=1) can only be larger than that
according to D=1 by at most a factor of v;_1, and hence it is
still at most

Y - 279 < VK  9-Q(K) < 2~ K)
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Abstract. The seminal hardcore lemma of Impagliazzo states that for
any mildly-hard Boolean function f, there is a subset of input, called the
hardcore set, on which the function is extremely hard, almost as hard as a
random Boolean function. This implies that the output distribution of f
given a random input looks like a distribution with some statistical ran-
domness. Can we have something similar for hard functions with several
output bits? Can we say that the output distribution of such a general
function given a random input looks like a distribution containing several
bits of randomness? If so, one can simply apply any statistical extractor
to extract computational randomness from the output of f. However, the
conventional wisdom tells us to apply extractors with some additional
reconstruction property, instead of just any extractor. Does this mean
that there is no analogous hardcore lemma for general functions?

We show that a general hard function does indeed have some kind
of hardcore set, but it comes with the price of a security loss which is
proportional to the number of output values. More precisely, consider a
hard function f : {0,1}" — [V] = {1,...,V} such that any circuit of size
s can only compute f correctly on at most i(l — ) fraction of inputs,
for some L € [1,V — 1] and v € (0,1). Then we show that for some
I C [V] with |I| = L + 1, there exists a hardcore set Hy C f~*(I) with
density v/ ( LYH) such that any circuit of some size s’ can only compute
f correctly on at most Fﬁ fraction of inputs in H;. Here, s’ is smaller
than s by some poly(V,1/¢e,log(1/7)) factor, which results in a security
loss of such a factor. We show that it is basically impossible to guarantee
a much larger hardcore set or a much smaller security loss. Finally, we
show how our hardcore lemma can be used for extracting computational
randomness from general hard functions.

1 Introduction

Impagliazzo’s hardcore lemma [9] is a fundamental result in complexity theory
which states that any mildly-hard function has a subset of inputs on which it
is extremely hard. More precisely, consider a function f : {0,1}"™ — {0, 1} such
that any circuit of size s disagrees with f on at least § fraction of inputs, and

0. Owe, M. Steffen and J.A. Telle (Eds.): FCT 2011, LNCS 6914, pp. 78[89] 2011.
© Springer-Verlag Berlin Heidelberg 2011



Computational Randomness from Generalized Hardcore Sets 79

we call such a function (4, s)-hard where the parameter § is called the hardness
of f. Then the hardcore lemma asserts that there exists a subset H C {0,1}"
of density 0 such that any circuit of size s’ must disagree with f on at least
155 fraction of inputs from H, for some s’ slightly smaller than s. This means
that given a random input z in H, although the value of f(x) is fixed and thus
has no randomness at all in a statistical sense, it still looks like a random bit to
small circuits. Because of this nice property, the hardcore lemma has become an
important tool in the study of pseudo-randomness. For example, it was used in
[9] for an alternative proof of Yao’s XOR lemma [20], used in [I7] for constructing
a pseudo-random generator directly from a mildly-hard function without going
through the XOR lemma, and more recently used in [I5JI8T9I6] for amplifying
hardness of functions in NP. The parameters of the hardcore lemma were later
improved by [TOU7I2].

Note that Impagliazzo’s hardcore lemma works for Boolean functions. It says
that the output of a hard function given a random input looks like a random bit
and thus contains statistical randomness, when the input falls in the hardcore set.
When using the lemma, the hard function is usually evaluated at several inputs
in order to obtain several output bits, which together can be argued to contain
some sufficient amount of randomness. Usually, the amount of randomness in
a distribution is measured by its min-entropy, where a distribution has min-
entropy at least k if every element occurs with probability at most 27*. Then
from a distribution with some min-entropy, one applies a so-called randomness
extractor [2IJT4] to extract a distribution which looks almost random.

On the other hand, there are natural functions with many output bits which
are believed to be hard, such as factoring and discrete logarithm, and one may
be able to extract several bits at once from one output value. This is also related
to the problem of extracting randomness from sources with computational ran-
domness, studied in [3[8/12]. One may wonder if there is an analogous hardcore
lemma for a general non-Boolean function, which can guarantee that the out-
put distribution given a random input will look like one with some min-entropy,
hopefully much larger than one. For example, assume that a one-way permu-
tation g : {0,1}" — {0,1}™ exists, whose inverse function f = g~! is hard to
compute by small (say, polynomial-size) circuits. Then, if one could show that the
distribution of = f(y) given a random y looks like having some min-entropy to
small circuits, one could simply apply any extractor on x. However, the conven-
tional wisdom does not suggest so and the following counter example seems to be
known as a folklore. Given an efficiently-computable extractor E and a one-way
permutation g, the function EXT defined as EXT(z,u) = E(g(x), u) is still an ex-
tractor, but its output can be easily computed (and hence does not look random
at all) given y = g(z) and u. To extract such computational randomness, pre-
vious works all resorted to extractors with some reconstruction property, which
roughly corresponds to error correcting codes with efficient decoders (see, e.g.,
[16] for a definition).

Does this mean that there is no analogous hardcore lemma for general func-
tions? If we consider a hard function f : {0,1}" — {0,1}? with two, instead of
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one, output bits, it may be hard to believe that we can no longer have any kind
of hardcore lemma for it. But can we guarantee the existence of a hardcore set
H such that f(z), for a random z € H, looks like a random value in {0, 1}??
The answer is no in general because f may in fact have at most three possible
output values, so we have to settle for something weaker. One approach is to see
each output bit of a (d, s)-hard function f : {0,1}" — {0,1}% as a Boolean func-
tion, so some of these d Boolean functions must have hardness £2(§/d) and they
have Boolean hardcore sets (with two output values) of density (2(§/d) using
Impagliazzo’s lemma. Unfortunately, this only gives a very weak result because
even if f is extremely hard, with § close to 1 — 2%, one may still only be able
to guarantee one bit of randomness in the output of f if those Boolean hardcore
sets are disjoint.

We are looking for something stronger, in which more bits of randomness
can be guaranteed. We consider a general (4, s)-hard function f of the form
f:{0,1}" — [V] ={1,...,V}. We discover that a good way to see its hardness
is to express it in the form of 6 = 1 — | (1 — ), for some L € [1,V — 1] and
~v € (0,1), and we obtain the following results.

First, we show that any function with such hardness has a hardcore set with
L + 1 output values. More precisely, we show that for such a hard function f,
there exist some I C [V] with |I| = L + 1 and some H; C f~1(I) of density
|Hr|/2™ >~/ (L‘-/H) such that any circuit of size s’ can only compute f correctly
on }4151 fraction of the inputs in Hj, where s’ is smaller than s by a factor of
poly(V,1/e,log(1/7)). Let us call such a set H; an (I,e,s") hardcore set, and
let us take a close look at what our result says as L varies. At one end of the
spectrum with L = V — 1, our result guarantees the existence of a hardcore set
Hjp, with I = [V], such that f restricting to the set H; has almost the largest
possible hardness and it looks like a random function from H; to [V]. Note that
when V' =2 (and L = 1), we have Impagliazzo’s hardcore lemma as our special
case. As L becomes smaller, the hardness decreases, and it is no longer possible
to always have a hardcore set with V' output values. Nevertheless, our result
shows that one can still have a hardcore set Hy with |I| = L + 1 output values,
such that f restricting to Hj looks like a random function from H; to I.

Notice that in our first result, we can only guarantee a hardcore set of density
v/ ( LYH), and one may wonder if it is possible to guarantee a larger one. Our
second result shows that this is basically impossible. More precisely, we show the
existence of a (4, s)-hard function f : {0,1}" — [V], with§ = 1— ] (1—~) and s >
poly(v,1/L,2™), which has no (I,¢, s") hardcore set of density 4(L + 1)/ (L‘-/H)
for any I C [V] with |I| = L 4+ 1, where s’ = poly(n). Note that the density
achieved by out first result and that ruled out by our second result are off by an
O(L) factor, and we believe that the bound of our second result may be improved.
On the other hand, our second result is strong in the sense that even when we
start from a function which is hard against very large circuits of exponential
size, it is still impossible to have a hardcore set of a small density against small
circuits of polynomial size.
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With a small hardcore set, one can only say that the output of a hard function
f looks somewhat random when the input falls into that small set. This alone
is not good enough for the purpose of randomness extraction because the vast
majority of inputs are outside of the hardcore set and may contribute a large
error. Our next result shows that in fact we can have not just one but a collection
of disjoint hardcore sets, and they together cover all but a small fraction of the
inputs, which implies that the output of f looks somewhat random for most
input. More precisely, we show that for a (8, s)-hard function, with § > 1 —27%,
its output distribution given a random input looks close, within some distance ¢,
to a distribution with min-entropy {2(k), by circuits of size s’ = s/poly(V, 1/e).
This implies that we can simply apply any seeded statistical extractor to extract
computational randomness from the output of f as long as s is large (say, super-
polynomial) or V' is small (say, polynomial). This also works for seedless multi-
source extractors, and in particular, it fits nicely with the setting of independent-
symbol sources studied in [I2] in which each symbol is considered to come from a
small set. Therefore, we can generalize the result of [12] from a statistical setting
to a computational one: given multiple independent sources, over a small set of
symbols, which look slightly random to polynomial-size circuits but may have
no min-entropy at all, the statistical extractor there can be used to produce an
output which looks almost random to polynomial-size circuits.

Note that in our hardcore set result, there is a security loss of some factor
poly(V, 1/¢) in circuit size. That is, starting from a function which is hard against
circuits of size s, we can only guarantee the hardness of a hardcore set against
circuits of size s’, with s’ smaller than s by that factor. Consequently, with s =
poly(n), we can only extract randomness from a function with V' < poly(n) (or
equivalently, with O(log n) output bits). One may wonder if such a security loss of
circuit size can be avoided. Our final result shows that this is basically impossible,
if the proof is done in a certain black box way. Here, we use the notion of black-
box proofs for hardcore sets introduced in [I3]. Informally speaking, a black-box
proof is realized by an oracle algorithm R such that for any function f and any
collection G of circuits, if G breaks the hardcore set condition, then R breaks the
hardness of f by using GG only as an oracle. In this black-box model, we show that
any algorithm R must make at least ¢ = 2((V'k/e?)log(1/d)) queries in order
to show the existence of a hardcore set with k output values. This translates to
a loss of a ¢ factor in circuit size, because the resulting circuit of R® is larger
than those in G by this factor. This explains the need of using reconstructive
extractors, instead of just any extractors, on the input of a one-way permutation
discussed before, since there we have a large V' = 2™. Finally, we would like
to clarify a potential confusion with the security loss of using reconstructive
extractors in previous works. When applying reconstructive extractors on the
output of a hard function f, previous results also suffered some loss of circuit
size in the same sense: the outputs of extractors only look random to smaller
circuits compared to those which the hardness of f is measured against. However,
the loss is in terms of the output length m of extractors, instead of the output
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length of f. More precisely, the loss factor is poly(2™), which again limits us to
extracting O(logn) bits when f is hard against circuits of size s = poly(n).

2 Preliminaries

For n € N, let [n] denote the set {1,...,n}, and let U, denote the uniform
distribution over {0, 1}". For a set X, we let | X| denote the number of elements
in X, and for a subset S C X, we say that S has density |S|/|X| in X. For a
set X and an integer n € N, we use the notation (if) to denote the collection of
subsets S C X such that |S| = n. When we sample from a finite set, the default
distribution is the uniform one. All logarithms used in this paper will have base
two. Let SIZE(s) be the class of functions computable by circuits of size s. We
measure the hardness of computing a function in the following way.

Definition 1. A function f is (8, s)-hard if any circuit in SIZE(s) must fail to
compute f correctly for at least a & fraction of inputs.

Impagliazzo [9] considered Boolean functions and show that any hard function
must have a hardcore set such that the function restricted to the hardcore set
is extremely hard. In this paper, we consider general functions of the form f :
X — [V], for some input set X and for the output set [V] with integer V' > 2.
For such general functions, we introduce our notion of generalized hardcore sets
as follows.

Definition 2. For a function f : X — [V] and some I C [V], we say that
a subset of inputs H C f~Y(I) is an (I,e,s) hardcore set if for any circuit
C € SIZE(s), Pryen [C(x) = f(x)] < (1 +¢€)/|I|. We say that such an H is a
hardcore set with |I| output values.

Note that f(x) € I for any € H, so the above probability bound says that
f restricted to H looks like a random function from H to I. We say that a
distribution looks like another one if there is no distinguisher for them, defined
as follows.

Definition 3. A function D : X — {0,1} is an e-distinguisher for two distri-
butions X and Y over X if |Pr[D(X) = 1] — Pr[D(Y) = 1]| > ¢, and we call
such a function D an (e, s)-distinguisher if D € SIZE(s).

We measure the amount of randomness in a distribution X by its min-entropy,
and we say that X has min-entropy at least k, denoted by Huoo(X) > k, if for
any x, Pr[x = x] < 27%. From a source which is only weakly random (with some
min-entropy), we would like to have a procedure called an extractor to extract a
distribution which is almost random. When trying to extract randomness from a
single source, one usually needs an additional short seed, and such an extractor
is called a seeded one, which is defined as follows.

Definition 4. A function EXT : {0,1}" x {0,1}¢ — {0,1}™ is called a (seeded)

(k,e)-extractor if for any distribution X over {0,1}™ with Hoo(X) > k, there is
no e-distinguisher for the distributions EXT(X,Uy) and Uy,.
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When there are at least two independent sources which are weakly random, it
becomes possible to have a seedless extractor, which is defined as follows.

Definition 5. A function ExT : ({0,1}")" — {0,1}™ is called a (seedless)
t-source (k,e)-extractor if for any t independent distributions Xi,..., X over
{0,1}™ with Zie[t] Hoo(X;) > k, there is no e-distinguisher for the distributions
EXT(XY,...,X) and Up,.

3 Generalized Hardcore Set

In this section, we generalize Impagliazzo’s hardcore lemma [9] from the case of
Boolean functions to the case of general functions. More precisely, we have the
following.

Lemma 1. Let f: X — [V] be a (6, s)-hard function, with § >1— | (1—7) for
some vy € (0,1) and some integer L € [V —1]|. Then for any € > 0, there exist
s’ = s/poly(V,1/e,log(1/7)) and I € (1:[‘-/5-}1) such that f has an (I,¢e,s")-hardcore
set Hy of density |Hy|/|X| > 'y/(LYH).

To prepare for the proof of Lemmalll let us first recall Nisan’s proof of Impagli-
azzo’s hardcore lemma (for Boolean functions) described in [9]. The proof is by
contradiction, which starts by assuming that a (p, s)-hard function f: X — I,
with |I| = 2, has no hardcore set of density p. Then the key step there is to
use the min-max theorem of von Neumann to show the existence of a subset of
inputs T' C X of density less than p and a collection of circuits Ay C SIZE(s')
with |A7| < O((1/£2)1og(1/p)) such that for any = ¢ T,

Then by letting C' be the circuit computing the majority of those circuits in
Arp, one has C(z) = f(z) for every x ¢ T, which contradicts the fact that f is
(p, s)-hard.

We would like to extend this idea to a general function f : X — [V], with
V' > 3. First, it is straightforward to verify that a similar argument using the
min-max theorem can also prove the following lemma.

Lemma 2. Suppose f : X — [V] does not have an (I,e,s")-hardcore set of
density p in X, for some I C [V]. Then there exist a subset of inputs Ty C f~1(I)
of density less than p in X and a collection of circuits Ay C SIZE(s") with
|Ar] < O((1/e%)1og(1/p)) such that for any x € f~1(I)\ 11,

However, unlike the Boolean case, it is not clear how to construct a circuit C'
to approximate f from these collections of circuits. This is because for an input
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x with Praca, [A(z) = f(z)] > |}|7 it is still possible that the majority value of
A(z), for A € Ay, differs from f(z). Moreover, given an input z, we do not know
which subset I contains f(z), so we do not even know which collection A; of
circuits might help. A more careful analysis is needed, and now we proceed to

prove Lemma [I1

Proof. Assume for the sake of contradiction that there is no (I,¢, s’)-hardcore

set of density ~y/ ( LYH) in X for any I € ( L[‘ﬁl). Then we know from Lemma

that for any I € (1:[‘-/s-]1)’ there exist a collection Ay C SIZE(s') with |A7| <

O((1/€%) log((L‘_f_l) /7)) and a subset T of inputs with density less than ~/ (L‘j_l)

in X such that for any € f~1(I) \ T1, Praca, [A(z) = f(z)] > Li_l. Let T be

the union of all such T;’s, and we have Pryex [z € T| < (LYH) . 7/<LYH) = .
Note that for any « ¢ T, we can rule out the value v as a candidate for f(z) if

v is contained in some I € ( Eﬁl) such that the following condition holds:
1
=l < .
Ay M) =< (1)

This suggests the randomized algorithm R described in Figure [l which tries to
compute f(x) by ruling out the candidates one by one.

1. Let @ = [V].
2. While |Q| > L 4+ 1 do the following:

(a) Choose any I C Q with [I| =L + 1.

(b) Delete from @ any v € I such that the condition (IJ) holds.
3. Output a random element in Q.

Fig. 1. The randomized algorithm R

Observe that each iteration of the while loop in algorithm R has at least
one v deleted from @, because it is impossible that all the L 4+ 1 outcomes
have probability more than L«lkl' Thus, R exits the while loop after at most
V iterations, and for any input « ¢ T, the value f(z) remains in the final Q,
with |Q| < L, which implies that R outputs f(z) correctly with probability at
least }4 By an averaging argument, one can fix the randomness of R to obtain
a deterministic circuit C such that C(z) = f(z) for at least ; fraction of z ¢ 7.
As a result, we have

Pr[C() = f@0)] > Prlzg T) PrC(e) = (@) |2 ¢ T] > (1-7) 1 >1-4.

On the other hand, the size of the circuit C is at most

potv(v) -0 (/2t0g () )2) ) - <o

for some s’ = s/poly(V, 1/e,1og(1/7)), which contradicts the hardness condition
of f. This implies that the assumption of no hardcore set at the beginning is
false, which proves Lemma [l g
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4 Density of Hardcore Sets

For the generalized hardcore set lemma in Section Bl one may wonder whether
it is possible to guarantee the existence of a much larger hardcore set. In this
section, we show that this is basically impossible. Formally, we have the following.

Theorem 1. For any§ =1— [ (1—~), withy € (0,1/2(L+1)) and L <V —1,
there is a (0, s)-hard function f :{0,1}" — [V], for some s > poly(y,1/L,2"),
such that the following condition holds:

— Forany I € (L[—s-}l) and € < 2L7 there exists some s’ < poly(n) such that f

has no (I,e,s")-hardcore set of density 4(L + 1)/ (L‘_T_l) in {0,1}™.

Note that the theorem says that even for a function which is hard against very
large circuits of exponential size, one can only guarantee a hardcore set of a small
density against small circuits of polynomial size. However, there is a gap of a
4(L + 1) factor between the density of a hardcore set ruled out by Theorem [I]
and the density achievable by our Lemma, [

Proof. We show the existence of such a function f by a probabilistic method. Let
T denote the first 2(L + 1)~ fraction of the input space {0, 1}", and let us divide
T into ( L +1) disjoint parts of equal size (assuming for simplicity of presentation

that T can be divided evenly), denoted by Ty, for I € ( L[‘ﬁl). Then we choose
the function f:{0,1}" — [V] randomly in the way such that independently for

each input z,

fla) = a random value %n I, if x €Tt for some I € (1:[_5_}1)
a random value in [L], if = ¢ T.

We need the following lemma; the proof is by a standard probabilistic argument
and is omitted here due to the page limit.

Lemma 3. Pry[f is not (0,s)-hard] < 1, for some s = poly(vy,1/L,2").

This lemma implies the existence of a function f which is (4, s)-hard, and let
us fix one such f. It remains to show that this f satisfies the condition of the
theorem. For any I € (L[‘_ﬁl) and any H C f~(I) of density 4(L + 1)vy/ (L‘:Ll) in
{0, 1}", consider the algorithm A which outputs a random value in I N J when
z € Ty for some J € ( L[‘ﬁl) and outputs a random value in [L] when = ¢ T.
Then the probability, over © € H and the randomness of A, that A(z) = f(z) is

at least

11 11
P Tyl - P T - _
TRyt =t By e T (L L+1)

1 1 1
1t o L(L+1) > L+1
there exists a fixing of the randomness of A to get a deterministic circuit which
preserves the above bound. Since we can do this for every I and H, the condition
of the theorem is satisfied, which proves the theorem. a

1
P Ty -
zelﬁ[xe I] L+1

which is at least for any € < 21L This means that



86 C.-J. Lee, C.-J. Lu, and S.-C. Tsai

5 Extracting Computational Randomness

In this section, we show that one can extract randomness from the output of a
hard function. For this, we first show that the output of a hard function looks
somewhat random, even given the input. More precisely, we have the following.

Lemma 4. Let f : X — [V] be a (8,5)-hard function, with 6 > 1 —27F for
some positive k € R. Let X be the uniform distribution over X. Then for any

€ (0,1), there exist some s’ > s/poly(V,1/e) and a distribution V (correlated
with X' ) such that the following two conditions hold.

— The distributions (X, f(X)) and (X,V) have no (e, s')-distinguisher.

— Procx [Hoo(VIX = 1) < [k/3]] < 27F/3,

The proof of Lemma [ is omitted here due to the page limit. The basic idea
is that by applying Lemma [I] repeatedly, we can find a collection of disjoint
hardcore sets covering a large fraction of inputs. Then by extending the idea in
[17], we can show that when a randomly sampled input z falls into one of these
hardcore sets, its output looks like a random value from some set.

According to Lemma M the output distribution of a hard function looks like
one with some min-entropy, given a randomly selected input. This suggests the
possibility that one can simply apply any extractor to extract randomness from
the output. Formally, we have the following theorem, for the case of seeded
extractors. Due to the page limit, the proof is omitted here.

Theorem 2. Let f: X — {0,1} be a (8, 5)-hard function with § > 1—27% and
let X be the uniform distribution over X. Then for any seeded (k/3,¢)-extractor
ExT : {0,1}° x {0,1}¢ — {0,1}™ computable in SIZE(so), the distributions
(X,EXT(f(X),Uq)) and (X,Up,) have no (€, §)-distinguisher, for some &€ < 2e +
27k/3 and 5 > s/poly(2¢,1/e) — so.

Note that many constructions of seeded extractors are in fact computable by
small circuits, of size sg < poly(¢/¢). Then, for example, when k > 2(¢) and
e = poly(27%), we have & < 2= and 5 > 8/20(6). This means that as long as
s is large enough (or ¢ is small enough), any single-source seeded extractor can
be used to extract randomness in the computational setting.

For the case of seedless extractors, we have the following. Due to the page
limit, the proof is omitted here.

Theorem 3. For i € [t], let f& : X — {0,1}* be a (69, s)-hard func-
tion with 6@ > 1— 275" and let k = Y, kO Let X = (XM, x®),
where each X is an independent uniform distribution over X, and let
FxX) = (fOXMD), . fOXWD)). Then for any seedless t-source (k/7,¢)-
extractor EXT : ({0,1}%)! — {0,1}™ computable in SIZE(so), the distribu-
tions (X, EXT(f(X))) and (X,Uy,) have no (&, 5)-distinguisher, for some & <
(t+1)e+ 2720 /1) and 5> s/poly(2¢,1/e) — so.

Let EXT be the seedless t-source extractor in [11], which is computable by a
small circuit, with sy < poly(tf/¢). Then, for example, when te = poly(2~%)
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and k > (¢ for a large enough constant ¢, we have & < 2=12(8) and 5 > 5/20(@.
Again, this means that when s is large enough (or ¢ is small enough), any seedless
multi-source extractor can also work in the computational setting.

6 Loss of Circuit Size

Recall that in our generalized hardcore set lemma (Lemma[Il), there is a loss of
circuit size by a factor of poly(V') for functions with V' output values. That is,
from a (4, s)-hard function, we can only guarantee the existence of an (I, ¢, s’)-
hardcore set with s’ < s/poly(V). In this section, we show that such a loss of
circuit size is in fact unavoidable, if the proof is done in a black-box way. Before
we can formally state our result, we need to introduce some definitions. Let Fx v
denote the collection of functions from X to [V].

Definition 6. Given a collection G C Fx v, we say that a function f € Fx v is
(k, p,e,G)-easy if for any I € ([‘2]) and any H C f~Y(I) of density |H|/|X| > p,
there is a function g € G such that Pryep [g(x) = f(x)] = '1=.

Next, we define our notion of a black-box proof, which is realized by some oracle
algorithm R(). We allow R to be non-uniform and randomized, and we use the
notation Rf?a(x) to denote that R is given an oracle G, an advice string «, a
random string r, and an input x.

Definition 7. We say that an oracle algorithm R") realizes a (8, k, p, €, S) black-
boz proof of hardcore sets for functions in Fx v, if the following holds. For any
f € Fxy and any G C Fx v with |G| = S, if f is (k,p,e,G)-easy, then there
exists some advice o such that

Pr [R7(x) # f(v)] <.

Here we allow R to make adaptive queries, but for simplicity we consider only
the case that R on input x queries functions in the oracle at all . That is, R
may first queries g;(z) for some g; € G, and depending on the answer, R next
queries g;(z) for some g; € G, and so on. Note that our proof for the generalized
hardcore sets is done in this black-box way, and so do all the known proofs
for Impagliazzo’s hardcore set lemma. Our result in this section shows that any
algorithm realizing such a black-box proof must make many queries to the oracle.

Theorem 4. Suppose V> w(l), 0 < § < 1— (4logV)/V, 0 < e < 1/3,
0<p<1,and S > Q(VF1E3/e2)log(1/p)). Consider any oracle algorithm
which uses an advice of length 7 < 0o(0|X|) and realizes a (6,k,¢€,S, p) black-
box proof of hardcore sets for functions in Fx . Then it must make at least
2((Vk/e?)1og(1/8)) oracle queries.

Note that the theorem says that even if we start from a very hard function,
with é close to one, and even if we only want a hardcore set with & = 2 output
values, any algorithm realizing such a black-box proof still need to make many
queries, which corresponds to a large loss of circuit size. In particular, a loss by
a V factor is unavoidable. Now let us prove the theorem.
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Proof. Consider any R which realizes such a black-box proof. Assume that R
makes at most ¢ = o((V'k/e?)log(1/5)) oracle queries, and we will show that this
leads to a contradiction. In particular, we will show the existence of a function
f and a collection of functions G = {gr; : I € ([Z]) and ¢ € [T]}, for some
T = 2((VE®/e?)log(1/p)), such that f is (k,p,e,G)-easy but Pr, .[RF(z) #
f(x)] > 0, for any advice «, which violates the requirement for a black-box proof.
We will prove the existence of such f and G by a probabilistic argument.

We choose f € Fx y randomly such that independently for each input x, f(z)
takes a uniformly random value in [V]. Then we choose each gr,; in the following
way:

— Independently for each input x € f~(I), gr.i(x) takes the value f(z) with
probability (14 2¢)/k and each other value in I with probability (1 —2¢/(k—
1)/k.

— Independently for each input = ¢ f~1(I), gr:(z) takes each value in I with
probability 1/k.

Our key lemma is the following.

Lemma 5. For any advice o and any input x, we have Pry ¢ [RS®(z) #

f@)] = V.

Due to the page limit, we omit the formal proof of Lemma [l and only sketch the
proof idea here. Consider any advice o and any input x. Recall that in our model,
any query made by R%(x) is of the form g;;(z), for some g;; € G, and the
outcome of such a query has a distribution close to the uniform over the k£ values
in I, which is independent of f. When R makes only a small number of queries,
we can show that the distribution of the sequence of outcomes corresponding
to the queries is still close to a distribution which is independent of f, with the
outcome of each query being independent and uniform over some k values. That
is, such an R cannot fully exploit the small correlation between f and G, and
hence it behaves similarly when the useful oracle G is replaced by a useless one
which is independent of f. However, without a useful oracle, R cannot possibly
predict a random f well, which implies that even given G, R cannot predict f
well either.

Using this lemma together with a Hoeffding bound, one can show that for any
advice a,

Pr [Pr[RE() £ f(a)] < 8] < 270X,

Then, using a union bound, we have

f,%r,r [Ha € {0,1}7: I;r [RE(z) # f(2)] < (5] <27.27201XD < o(1), (2)

when 7 < 0(6]X|). Next, we need the following; the proof is by a simple proba-
bilistic argument and is omitted here due to the page limit.

Lemma 6. Pry ¢ [f is not (k,p,e,G)-easy] < o(1).
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From Lemma [B] and the bound in (2l), we can conclude the existence of some
f and G such that f is (k,p,e,G)-easy but Pry g, [RE(x) # f(x)] > § for
any advice «, which contradicts the requirement for a black-box proof of hard-
core sets. Therefore, any R realizing such a black-box proof must make at least

2((Vk/e%)1log(1/6)) queries, which proves Theorem [l O
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