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Abstract

In this report, we present a finite difference method to track a net-
work of curves whose motion is determined by mean curvature. To
study the effect of inhomogeneous surface tension on the evolution of
the network of curves, we include surfactant which can diffuse along
the curves. The governing equations consist of one parabolic equation
for the curve motion coupled with a convection-diffusion equation for
the surfactant concentration along each curve. Our numerical method
is based on a direct discretization of the governing equations which
conserves the total surfactant mass in the curve network. Numerical
experiments are carried out to examine the effects of inhomogeneous
surface tension on the motion of the network, including the von Neu-
mann law for cell growth in two space dimensions.

Keywords: Front-tracking method; Motion by mean curvature; Triple-
junction; Surface tension; Surfactant

1 Problem Description

Interface phenomena have been studied extensively not only due to their
importance in applications but also for the computational challenges they
impose. Motion by mean curvature has been used as a model for various
physical problems including multiphase flows and growth of grain boundary
in poly-crystals [3]. Level-set method is a popular choice for these type of
problems [9]. In [1], a direct finite difference method was used to study the
evolution of a network of curves due to its simplicity and efficiency.
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In this paper, we generalize the grain growth problem discussed in [1] by
including the effect of an inhomogeneous surface tension. For practical prob-
lems, it is difficult to maintain constant surface tension as insoluble surface
active agents (surfactant) are common and their presence could significantly
affect the value of the surface tension, therefore the dynamics of interface
motion [2]. To account for the effect of the surface tension on the inter-
facial dynamics of a complex network of interfaces, we consider a network
of curves in a two dimensional setting and assume that there is a surfac-
tant distributed along the curve and the surface tension varies according
to the surfactant concentration. As in [1], we consider the situation with
triple-junctions, i.e., three phase boundaries, described by parametric curves
Xi(s, t), s ∈ [0, 1] for i = 1, 2, 3 as shown in Fig. 1. Throughout this paper,
we define τ i(s, t) = Xi

s/|Xi
s| as the unit tangent vector of the curve i. The

motion of equations are defined as

Xi
t = σi Xi

ss

|Xi
s|2

, (1)

where σi(s, t) is the surface tension along the curve Xi and is determined by
the surfactant concentration Γi(s, t). By taking inner product with normal
vector ni = Xi⊥

s /|Xi
s|, Eq. (1) becomes

Xi
t · ni = σi Xi

ss

|Xi
s|2

· Xi⊥
s

|Xi
s|

= σi κi, (2)

where κi is the local mean curvature of the curve X i. Thus the normal
velocity of curve motion is proportional to the local mean curvature and the
surface tension coefficient.

The presence of surfactant reduces the surface tension, and in this paper
we use the simplified nonlinear Langmuir equation of state [10]

σi = σc(1 + ln(1− βi Γi)). (3)

Along the curve, the surfactant concentration is governed by the transport
equation [12, 4]

Γi
t + (∇s ·U i) Γi = µ∇2

s Γi, (4)

where ∇s is the surface gradient operator and ∇2
s = ∇s · ∇s is the surface

Laplacian. U i = Xi
t is the velocity of the curve. In this paper , the diffusion

coefficient of the surfactant concentration µ is assumed to be a constant for all
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Fig. 1: A three-curve network.

curves. Note that the above time derivative is taken by fixing the tracking
parameter s. Therefore, our equation is different from the one derived by
Stone [11] where the time derivative is taken with respect to the fixed Eulerian
position. For clarity, the above surface divergence and surface Laplacian can
be written explicitly as

∇s ·U i =
∂U i

∂τ i
· τ i =

∂U i

∂s
· τ i

/∣∣∣∣∂Xi

∂s

∣∣∣∣ (5)

∇2
s Γi =

∂

∂s

(
∂Γi

∂s

/∣∣∣∣∂Xi

∂s

∣∣∣∣)/∣∣∣∣∂Xi

∂s

∣∣∣∣ . (6)

We assume that each curve meets the domain boundary with a right angle
at s = 0. More precisely, let b(α) be the given parametric representation of
the domain with α ∈ [0, 2π]. The conditions at the domain boundary are
given by

Xi(0, t) = b(αi) (7)

for some αi such that
τ i(0, t) · b′(αi) = 0. (8)
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We further assume that there is no surfactant flux across the domain bound-
ary

∇sΓ
i(0, t) · τ i(0, t) =

∂Γi

∂s
(0, t) = 0. (9)

At the triple-junction (s = 1), three curves meet and we have geometric
constraints

X1(1, t) = X2(1, t) = X3(1, t). (10)

Since the above conditions only provide two equations for three curves, one
more condition is required, which comes from the Young-Laplace equation
(balance of surface tension)

3∑
i=1

σi(1, t) τ i(1, t) = 0 (11)

where the tangent vectors join at and point away from the triple-junction.
When βi are identical, the surface tensions take the same value at the junc-
tion. Thus, the Young-Laplace condition implies that the angles between
these curves are 120 degree which results in the famous law of Plateau.

We also need to impose the boundary conditions for surfactant concen-
tration at the triple-junction

Γ1(1, t) = Γ2(1, t) = Γ3(1, t) (12)

3∑
i=1

∇sΓ
i(1, t) · τ i(1, t) =

3∑
i=1

∂Γi

∂s
(1, t)

/∣∣∣∣∂Xi

∂s
(1, t)

∣∣∣∣ = 0. (13)

Eq. (12) represents the continuity of the surfactant concentration, while
Eq. (13) implies zero net tangential flux at the triple-junction. From the
surfactant equation (4) and boundary conditions Eq. (9)-(13), we can easily
verify that the total surfactant mass along the three curves is conserved, i.e.,

d

dt

(
3∑

i=1

∫ 1

0

Γi(s, t)

∣∣∣∣∂Xi

∂s

∣∣∣∣ ds

)
= 0. (14)

2 Numerical Method

For each parametric curve i, we set up a mesh sk = (k − 1/2)∆s, k =
1, 2, . . . M where ∆s = 1/M , and use a collection of discrete points (La-
grangian markers) X i

k = X i(sk, n∆t) to represent the curve at time t = n∆t.
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The surfactant concentrations and surface tensions on each curve are also
defined on these Lagrangian markers and denoted by Γi

k = Γi(sk, n∆t) and
σi

k = σi(sk, n∆t), respectively. For clarity, we use the variables with tilde

as the values at the next time step; that is, X̃
i

k = X i(sk, (n + 1)∆t) and
Γ̃i

k = Γi(sk, (n + 1)∆t). The motion of the curves is computed by advancing
the values X i

k, Γi
k at time step n∆t to X̃ i

k, Γ̃i
k at time step (n + 1)∆t. The

numerical time integration consists of the following steps.

1. Compute the surface tension on each curve i

σi
k = σc(1 + ln(1− βi Γi

k)), k = 1, 2, . . . M (15)

2. Solve the equation of motion (1) by an explicit scheme as in [1]

X̃ i
k −X i

k

∆t
= σi

k

(X i
k+1 − 2X i

k + X i
k−1)/∆s2

|(X i
k+1 −X i

k−1)/(2∆s)|2
. (16)

Here, we use the central difference schemes to approximate the first
and second derivatives. Note that the above discretization is valid at
the interior points k = 1, 2 . . . M . Next we provide the details on how
to find the boundary points X̃ i

0 and X̃ i
M+1 which are associated with

the domain boundary s = 0 and the triple-junction s = 1, respectively.

(a) At the domain boundary, we discretize Eqs. (7) and (8) by central
difference approximation as

X̃
i

1 + X̃
i

0

2
= b(αi),

X̃
i

1 − X̃
i

0

∆s
· b′(αi) = 0, (17)

from which we obtain

(X̃
i

1 − b(αi)) · b′(αi) = 0. (18)

Since the boundary curve b(α) and its tangent b′(α) is known
analytically, the above scalar algebraic equation can be solved
very easily. Once αi is found, the domain boundary point can be
extrapolated by

X̃ i
0 = 2b(αi)− X̃ i

1. (19)
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(b) At the triple-junction, we discretize Eqs. (10) and (11) as

X̃
1

M+1 + X̃
1

M

2
=

X̃
2

M+1 + X̃
2

M

2
=

X̃
3

M+1 + X̃
3

M

2
= X̃p, (20)

σ1
p

X̃p − X̃
1

M

|X̃p − X̃
1

M |
+ σ2

p

X̃p − X̃
2

M

|X̃p − X̃
2

M |
+ σ3

p

X̃p − X̃
3

M

|X̃p − X̃
3

M |
= 0. (21)

The details of marker location at the triple-junction can be found in
Fig. 2.

Fig. 2: Details of marker location at the triple-junction.

3. Update surfactant concentration Γ̃i
k as follows. Firstly, we rewrite the

surfactant concentration in a form as

∂Γi

∂t

∣∣∣∣∂Xi

∂s

∣∣∣∣+ ∂

∂t

∣∣∣∣∂Xi

∂s

∣∣∣∣ Γi = µ
∂

∂s

(
∂Γi

∂s

/∣∣∣∣∂Xi

∂s

∣∣∣∣) , (22)

by multiplying (4) with the stretching factor
∣∣∣∂Xi

∂s

∣∣∣ and using the fol-

lowing equation [4]

∂

∂t

∣∣∣∣∂Xi

∂s

∣∣∣∣ = (∇s ·U i)

∣∣∣∣∂Xi

∂s

∣∣∣∣ . (23)
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Denoting the discrete stretching factor by

|DsX
i
k+1/2| =

∣∣∣∣X i
k+1 −X i

k

∆s

∣∣∣∣ , (24)

|DsX
i
k| =

1

2
(|DsX

i
k+1/2|+ |DsX

i
k−1/2|), (25)

we can now discretize (22) by an explicit and symmetric scheme as

Γ̃i
k − Γi

k

∆t

|DsX̃
i

k|+ |DsX
i
k|

2
+
|DsX̃

i

k| − |DsX
i
k|

∆t

Γ̃i
k + Γi

k

2

= µ
1

∆s

(
(Γi

k+1 − Γi
k)/∆s

|DsX
i
k+1/2|

−
(Γi

k − Γi
k−1)/∆s

|DsX
i
k−1/2|

)
(26)

on the interior points k = 1, 2 . . . M . For the values on the boundary
points Γ̃i

0 and Γ̃i
M+1, we will use the conditions at domain boundary

s = 0 and the triple-junction s = 1, respectively.

(a) At the domain boundary s = 0, we use central difference to dis-
cretize Eq. (9) and obtain Γ̃i

0 = Γ̃i
1.

(b) At the triple-junction s = 1, we approximate Eqs. (12) and (13)
by

Γ̃1
M+1 + Γ̃1

M

2
=

Γ̃2
M+1 + Γ̃2

M

2
=

Γ̃3
M+1 + Γ̃3

M

2
= Γ̃p, (27)

(Γ̃1
M+1 − Γ̃1

M)/∆s

|DsX̃
1

M+1/2|
+

(Γ̃2
M+1 − Γ̃2

M)/∆s

|DsX̃
2

M+1/2|
+

(Γ̃3
M+1 − Γ̃3

M)/∆s

|DsX̃
3

M+1/2|
= 0 (28)

Substituting Eq. (27) into Eq. (28) yields an single equation for
surfactant concentration at the triple-junction Γ̃p. Once Γ̃p is
found, Γ̃i

M+1 can be easily obtained from Eq. (27).

Note that, by taking the summation of both sides of Eq. (26) and using
the numerical boundary condition at the triple-junction (28), one can
easily verify that

3∑
i=1

M∑
k=1

Γ̃i
k |DsX̃

i

k|∆s =
3∑

i=1

M∑
k=1

Γi
k |DsX

i
k|∆s. (29)
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This is the discrete version of the conservation of total surfactant mass
along all the curves, corresponding to the mid-point rule discretization
for the integral in Eq. (14).

It is interesting to note that the numerical scheme (16) for Eq. (1) is
independent of the mesh width ∆s. Since the scheme is explicit, the
time step size must be chosen similarly in [1] by

∆t =
1

8
min{i,k}

|X i
k+1 −X i

k−1|2

σi
k

. (30)

Under this constraint, the time step becomes smaller if the length of
any curve shortens in which the marker spacing becomes smaller. One
way to maintain the marker resolution is to delete the markers in an
appropriate way so that the time step size can be maintained. One
the other hand, if the curve stretches and the marker spacing is too
coarse, then we need to add more markers along the curve. The de-
tails of marker redistribution technique can be found in [1, 4]. One
important thing during the marker redistribution process is to keep
the mass conservation of the surfactant. This can be done in a local
way. For instance, in the segment of adding more marker points, we
simply distribute the surfactant mass into those points uniformly. On
the other hand, in the segment of removing marker points, we add
up those surfactant mass to be a new surfactant concentration in the
new combining segment. Thus, the overall surfactant mass is conserved
exactly without any scaling.

3 Numerical Results

As in [1], we consider the network of curves inside the unit disk such that
b(α) = (sin α, cos α), where α ∈ [0, 2π]. For comparison purposes, we will
present results for the cases without surfactant (clean) and with surfactant
(contaminated). Using the equation of state given by Eq. (15), βi=0 implies
no surfactant exists on the curves, in which we do not need to solve the
surfactant equation (4). Thus, the clean network of curves has a uniform
surface tension σ = σc = 1. For the following test, we choose the mesh width
on each curve ∆s = 1/16 and the time step ∆t = 0.0001.
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3.1 Three-curve network

As the first example, we consider the evolution of three curves in the unit
disk with initial configuration as in [1]

X1(s, 0) = (1− s)(−1/2,−
√

3/2) (31)

X2(s, 0) = (1− s)(−1/2,
√

3/2) (32)

X3(s, 0) = (1− s, sin2(πs)/4). (33)

The above initial configuration is shown in Fig. 1. To examine the effect
of the surfactant on the curves motion, we compare the cases with (βi =
0.25, i = 1, 2, 3) and without surfactant (βi=0, i = 1, 2, 3). For the case
with surfactant, the diffusion coefficient is chosen as µ = 0.1. The initial
surfactant concentration is uniformly distributed only along the curve 3 so
that Γ1(s, 0) = Γ2(s, 0) = 0 and Γ3(s, 0) = 1.

Fig. 3 shows the time evolution of these three curve networks. We denote
the clean curve network (without surfactant) by solid line, while the conta-
minated curve network (with surfactant) by dotted line. As demonstrated
in [1], the curve 3 will be flattered out to make the shape between curves 2
and 3 convex. Thus, the area between between curves 2 and 3 decrease as
time evolves. Since the existence of the surfactant along the curve 3 reduces
the surface tension, the curve motion becomes slower than the clean curve
network. Fig. 4 shows the surfactant distribution along each curves. One
can easily see that due to the effect of diffusion, the surfactant on curves 1
and 2 are no longer zero.

3.2 von Neumann law

In 1952, von Neumann [7] showed that the rate of the change of the area of a
given bubble (a curved polygon) in two-dimensional dry foam is independent
of bubble size and solely dependent on the number of walls (or edges). The
original derivation is based on the rate of gas diffuses through a permeable
wall. In our case, the rate of area change of the domain is given by

dA

dt
=
∑

i

∫
Ui · nids =

∫
Σ

σ κ ds, (34)

where Ui ·ni represents the normal velocity of the curve i per unit length, as
discussed earlier. Note that, the above integral of mean curvature is over all
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Fig. 3: The time evolution of curve networks: solid lines for βi = 0 and
dotted lines for βi = 0.25.

Fig. 4: Distribution of the surfactant concentration on curve 1 (left), curve
2 (center), curve 3 (right).
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the curves that enclose the area. When σ is a constant, the enclosed area is
polyhedral-shaped with arcs edged, the above integral can be simplified as

dA

dt
= σ

(
n∑

i=1

αi − 2π

)
=

π

3
σ
(
n− 6

)
, (35)

where αi = π/3 is the exterior (turning) angle at the vertex, and n is the
number of walls. A similar derivation can be found in [6, 5, 7].

When surface tension varies, however, (35) is no longer valid. For exam-
ple, αi does not always take the value of π/3. It will be interesting to examine
how the area changes under a similar setup. We start with a single n-vertices
inner cell with circular arcs and connect those vertices with n straight lines
to the domain boundary. In particular, the cell boundary is a circle of radius
0.5. Note that, the number of lines is the same as the number of vertices on
the inner cell. Along each line or circular arc, we lay out a parametrization
on those curves. So a cell network with n vertices should have 2n curves and
n triple-junction.

From the von Neumann law, one can easily see that the cell with more
than six walls will grow while the one less than six walls will shrink when the
surface tension is constant. More specifically, the area of a cell with n = 6
remains unchanged while the cells with n = 5 and n = 7 should have the
same growth (decay) rate. Fig. 5 shows the time evolution of a six vertices
cell with (dotted line) or without surfactant (solid line). One can easily see
that in the absence of surfactant, the cell area does not change. However,
with surfactant, the system behaves differently. For illustrative purposes, we
add surfactant only along one line segment Γ(s, 0) = 1 initially, and choose
β1 = 0.75, β2 = 0.5, β3 = 0.25 in Langmuir equation along the rightmost
three curves network (same set up as in Fig. 1) and keep other βi = 0.25,
then the symmetry is broken due to unbalanced surface tension, as shown
in Fig. 5. Fig. 6 and Fig. 7 are the corresponding motions for the cells with
n = 5 and n = 7, respectively. It is interesting to see that the unbalanced
surface tension slows down the decay rate for the 5 vertices cell area and
speeds up the area growth for 7 vertices cell. This is due to the fact with
different βi and surfactant concentration, thus, different surface tension along
the rightmost three curves network. Fig. 8 shows the plot of cell area versus
time for the cell with and without surfactant for different nodes n = 5 , 6,
and 7. One can see the result confirms the prediction by the von Nuemann
law when there is no surfactant.
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Fig. 5: The time evolution of six nodes cell. Solid line: without surfactant;
Dotted line: with surfactant. Γ1(s, 0) = Γ2(s, 0) = 0, Γ3(s, 0) = 1 and the
rest of Γi(s, 0) = 0; β1 = 0.75, β2 = 0.5, β3 = 0.25, the rest of βi = 0.25.

Fig. 6: The time evolution of five nodes cell. Solid line: without surfactant;
Dotted line: with surfactant. Γ1(s, 0) = Γ2(s, 0) = 0, Γ3(s, 0) = 1 and the
rest of Γi(s, 0) = 0; β1 = 0.75, β2 = 0.5, β3 = 0.25, the rest of βi = 0.25.
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Fig. 7: The time evolution of seven nodes cell. Solid line: without surfactant;
Dotted line: with surfactant. Γ1(s, 0) = Γ2(s, 0) = 0, Γ3(s, 0) = 1 and the
rest of Γi(s, 0) = 0; β1 = 0.75, β2 = 0.5, β3 = 0.25, the rest of βi = 0.25.

Fig. 8: The cell area versus time, for the cases with and without surfactant.
Without surfactant (solid lines), the area evolves as predicted by the von
Neumann law while for the case with surfactant (dotted lines), the rate of
growth is increased for n = 7 while the rate of decay for n =5 is decreased.
The area for n = 6 also increases.
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As our final example, we present the results when surfactant is added
initially Γi(s, 0) = 1 to all the outside line segments connecting the center
network (cell) to the boundary. The inner cell boundaries are thus kept
clean (without surfactant) initially. In this case, the initial exterior turning
angles of the center network are all less than π/3, which reduces the value of∑7

i=1 αi − 2π in the von Neumann law. Therefore, we expect that the center
network grows much less than the case without surfactant. Furthermore,
the cell area should increase again as the surfactant diffuses into the center
network, as shown in Figs 9 and 10.

Fig. 9: The time evolution of seven nodes cell. Solid line: without surfactant;
Dotted line: with surfactant. βi = 0.25.

4 Conclusion

In this paper, we propose a finite difference method to track curves motion
whose normal velocity is determined by surface tension times the local mean
curvature. We introduce the surfactant into the curves network and the
surface tension varies following surface diffusion of the surfactant. The equa-
tions of motion are governed by a parabolic equation for the curve motion
as well as a convection-diffusion equation for the surfactant concentration
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Fig. 10: The cell area versus time, for the cases with and without surfactant
for n = 7. Without surfactant (solid lines), the area evolves as predicted
by the von Neumann law while for the case with surfactant (dotted lines),
the area decreases in the beginning but increases later on as the surfactant
diffuses into the center network.

along each curve. Our numerical method is based on direct discretization of
the governing equations and the associated boundary conditions, which con-
serves the total surfactant mass in the curve network. Numerical examples
are presented to illustrate how the inhomogeneous surface tension affects the
the motion of the curves and the evolution of the curve network.
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