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Abstract

We give a complete proof of a set of identities Eq.(14) proposed recently from calculation of high-

energy string scatterings. These identities allow one to extract ratios among high-energy string

sacttering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime.

The proof is based on a signless Stirling number identity in combinatorial theory. The results are

valid for arbitrary real values L rather than only for L = 0, 1 proved previously. The identities

for non-integer real value L were recently shown to be realized in high-energy compactified string

scatterings [31].
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Recently high-energy fixed angle string scattering amplitudes were intensively investi-

gated [1–11] for string states at arbitrary mass levels. One of the motivation of this calcula-

tion has been to uncover the fundamental hidden stringy spacetime symmetry conjectured

more than twenty years ago in [12–14]. An infinite number of linear relations among high

energy scattering amplitudes of different string states were derived and the complete ratios

among the amplitudes at each fixed mass level can be determined. An important new in-

gredient of this string amplitude calculation was based on an old conjecture of [15–17] on

the decoupling of zero-norm states (ZNS) in the spectrum, in particular, the identification

of inter-particle symmetries induced by the inter-particle ZNS [15] in the spectrum.

Another fundamental regime of high-energy string scattering amplitudes is the Regge

regime (RR) [18–23]. See also [24–26]. Since the decoupling of ZNS applies to all kine-

matic regimes, one expects some implication of this decoupling in the RR. Moreover, it is

conceivable that there exists some link between the patterns of the high energy scattering

amplitudes in the fixed angle regime, or Gross Regime (GR), and RR. It was found that the

number of high-energy scattering amplitudes for each fixed mass level in the RR is much

more numerous than that of GR calculated previously. In contrast to the case of scatter-

ings in the GR, there is no linear relation among scatterings in the RR. Moreover, it was

discovered that the leading order amplitudes at each fixed mass level in the RR can be

expressed in terms of the Kummer function of the second kind. More surprisingly, for those

leading order high energy amplitudes A(N,2m,q) in the RR with the same type of (N, 2m, q)

as those of GR, one can extract from them the ratios T (N,2m,q)/T (N,0,0) in the GR by using

this Kummer function. The calculation was based on a set of identities which depend on

a parameter L(M2
i ) = 1 − N where M2

i = 2(N − 1), i = 1, ..4, are the mass square of the

string scattering states. The proof of these identities for L = 0, 1 was previously given in

[27–29] based on a set of signed Stirling number identities developed in 2007 [30].

In this letter, we are going to prove these identities for arbitrary real values L by using

a signless Stirling number identity. It is remarkable to see that the identities suggested by

string theory calculation can be rigorously proved by a totally different mathematical method

in combinatorial theory. It is also very interesting to see that, physically, the identities for

arbitrary real values L in Eq.(16) can only be realized in high-energy compactified string scat-

terings considered very recently [31]. This is mainly due to the relation M2 = (K25)
2
+ M̂2

where K25 is the winding momentum corresponding to the compactified string coordinate
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[31]. All other high-energy string scattering amplitudes calculated previously [27–29] cor-

respond to integer value of L only. A recent work on string D-particle scatterings [32] also

gave integer values L.

We begin with a brief review of high energy string scatterings in the fixed angle regime,

s,−t → ∞, t/s ≈ − sin2 φ

2
= fixed (but φ 6= 0) (1)

where s, t and u are the Mandelstam variables and φ is the CM scattering angle. It was

shown [4, 5] that for the 26D open bosonic string the only states that will survive the

high-energy limit at mass level M2
2 = 2(N − 1) are of the form

|N, 2m, q〉 ≡ (αT
−1)

N−2m−2q(αL
−1)

2m(αL
−2)

q|0, k〉, (2)

where the polarizations of the 2nd particle with momentum k2 on the scattering plane were

defined to be eP = 1
M2

(E2, k2, 0) =
k2
M2

as the momentum polarization, eL = 1
M2

(k2, E2, 0) the

longitudinal polarization and eT = (0, 0, 1) the transverse polarization. In Eq.(2), N,m and

q are non-negative integers and N ≥ 2m+2q. It can be shown that the high-energy vertex in

Eq.(2) are conformal invariants up to a subleading term in the high-energy expansion. Note

that eP approaches to eL in the GR. For simplicity, we choose k1, k3 and k4 to be tachyons.

It turned out that the high-energy fixed angle scattering amplitudes can be calculated by

using the saddle-point method. An infinite number of linear relations among high-energy

scattering amplitudes of different string states were derived and the complete ratios among

the amplitudes at each fixed mass level can be calculated to be [4, 5]

T (N,2m,q)

T (N,0,0)
=

(

− 1

M2

)2m+q (
1

2

)m+q

(2m− 1)!!. (3)

Alternatively, the ratios can be calculated by the method of decoupling of two types of ZNS

in the old covariant first quantized string spectrum. Similarly, the ratios for closed string

[9], superstring [8] and D-brane scatterings [10] can be obtained.

Another high-energy regime of string scattering amplitudes, which contains complemen-

tary information of the theory, is the fixed momentum transfer t or RR. That is in the

kinematic regime

s → ∞,
√
−t = fixed (but

√
−t 6= ∞). (4)

It was found [27] that the number of high energy scattering amplitudes for each fixed mass

level in this regime is much more numerous than that of fixed angle regime calculated
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previously. On the other hand, it seems that both the saddle-point method and the method

of decoupling of zero-norm states adopted in the calculation of fixed angle regime do not

apply to the case of Regge regime. However the calculation is still manageable, and the

general formula for the high energy (s, t) channel open string scattering amplitudes at each

fixed mass level can be written down explicitly.

It was shown that a class of high-energy open string states in the Regge regime at each

fixed mass level N =
∑

n,m lkn +mqm are [27, 29]

|pl, qm〉 =
∏

l>0

(αT
−l)

pl
∏

m>0

(αL
−m)

qm|0, k〉. (5)

For our purpose here, however, we will only calculate scattering amplitudes corresponding

to the vertex in Eq.(2). The relevant kinematics are

eP · k1 ≃ − s

2M2
, eP · k3 ≃ − t̃

2M2
= −t−M2

2 −M2
3

2M2
; (6)

eL · k1 ≃ − s

2M2

, eL · k3 ≃ − t̃′

2M2

= −t +M2
2 −M2

3

2M2

; (7)

and

eT · k1 = 0, eT · k3 ≃ −
√
−t. (8)

Note that eP does not approach to eL in the RR. The Regge scattering amplitude for the

(s, t) channel was calculated to be [27] (We choose to calculate eL amplitudes. The eP

amplitudes can be similarly discussed.)

A(N,2m,q)(s, t) = B

(

−1− s

2
,−1 − t

2

)√
−t

N−2m−2q
(

1

2M2

)2m+q

· 22m(t̃′)qU
(

−2m,
t

2
+ 2− 2m,

t̃′

2

)

. (9)

In Eq.(9) U is the Kummer function of the second kind and is defined to be

U(a, c, x) =
π

sin πc

[

M(a, c, x)

(a− c)!(c− 1)!
− x1−cM(a + 1− c, 2− c, x)

(a− 1)!(1− c)!

]

(c 6= 2, 3, 4...) (10)

where M(a, c, x) =
∑∞

j=0
(a)j
(c)j

xj

j!
is the Kummer function of the first kind. Note that the

second argument of Kummer function c = t
2
+ 2− 2m, and is not a constant as in the usual

case.
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It can be seen from Eq.(9) that the Regge scattering amplitudes at each fixed mass level

are no longer proportional to each other. The ratios are t dependent functions and can be

calculated to be [27, 28]

A(N,2m,q)(s, t)

A(N,0,0)(s, t)
= (−1)m

(

− 1

2M2

)2m+q

(t̃′ − 2N)−m−q(t̃′)2m+q

·
2m
∑

j=0

(−2m)j

(

−1 +N − t̃′

2

)

j

(−2/t̃′)j

j!
+O

{

(

1

t̃′

)m+1
}

(11)

where (x)j = x(x+1)(x+2)...(x+ j−1) is the Pochhammer symbol which can be expressed

in terms of the signed Stirling number of the first kind s (n, k) as following

(x)n =

n
∑

k=0

(−)n−ks (n, k)xk. (12)

It was proposed in [27] that the coefficients of the leading power of t̃′ in Eq.(11) can be

identified with the ratios in Eqs.(3). To ensure this identification

lim
t̃′→∞

A(N,2m,q)

A(N,0,0,)
=

T (N,2m,q)

T (N,0,0)
=

(

− 1

M2

)2m+q (
1

2

)m+q

(2m− 1)!!, (13)

one needs the following identity

2m
∑

j=0

(−2m)j

(

−L− t̃′

2

)

j

(−2/t̃′)j

j!

= 0(−t̃′)0 + 0(−t̃′)−1 + ... + 0(−t̃′)−m+1 +
(2m)!

m!
(−t̃′)−m +O

{

(

1

t̃′

)m+1
}

(14)

where L = 1 − N and is an integer. For all four classes [8] of high-energy superstring

scattering amplitudes, L is an integer too [29]. A recent work on string D-particle scatterings

[32] also gives an integer value of L. Note that L effects only the sub-leading terms in

O
{

(

1
t̃′

)m+1
}

. Here we give a simple example for m = 3 [28, 29]

6
∑

j=0

(−2m)j

(

−L− t̃′

2

)

j

(−2/t̃′)j

j!

=
120

(−t̃′)3
+

720L2 − 2640L+ 2080

(−t̃′)4
+

480L4 − 4160L3 + 12000L2 − 12928L+ 3840

(−t̃′)5

+
64L6 − 960L5 + 5440L4 − 14400L3 + 17536L2 − 7680L

(−t̃′)6
. (15)

Mathematically, Eq.(14) was exactly proved [27–29] for L = 0, 1 by a calculation based on

a set of signed Stirling number identities developed very recently in combinatorial theory in
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[30]. For general integer L cases, only the identity corresponging to the nontrivial leading

term (2m)!
m!

(−t̃′)−m was rigoursly proved [29], but not for other ”0 identities”. A numerical

proof of Eq.(14) was given in [29] for arbitrary real values L and for non-negative integer m

up to m = 10. It was then conjectured that [29] Eq.(14) is valid for any real number L and

any non-negative integer m. Physically, it is important to discover recently [31] that Eq.(14)

for any non-negative integer m and arbitrary real values L can be realized in high-energy

compactified string scatterings. This is due to the dependence of the value L on winding

momenta K25
i [31]

L = 1−N − (K25
2 )2 +K25

2 K25
3 . (16)

All other high-energy string scatterings calculated previously [27–29, 32] correspond to in-

teger value of L only. It is thus of importance to rigorously prove the validity of Eq.(14) for

arbitrary real values L.

We now proceed to prove Eq.(14). We first rewrite the left-hand side of Eq.(14) in the

following form

2m
∑

j=0

(−2m)j

(

−L− t̃′

2

)

j

(−2/t̃′)j

j!

=

2m
∑

j=0

(−1)j
(

2m

j

) j
∑

l=0

(

j

l

)

(−L)j−l

l
∑

s=0

c (l, s)

(

−2

t̃′

)j−s

(17)

where we have used the signless Stirling number of the first kind c (l, s) to expand the

Pochhammer symbol

(x)n =

n
∑

k=0

c (n, k) xk. (18)

The coefficient of (−2/t̃′)i in Eq.(17), which will be defined as G (m, i), can be read off from

the equation as

G (m, i) =
2m
∑

j=0

j
∑

l=0

(−1)j+i

(

2m

j

)(

j

l

)

(−L)j−lc (l, j − i) . (19)

One needs to prove that

1.G (m,m) = (2m− 1)!!, for all L ∈ R; (20)

2.G (m, i) = 0, for all L ∈ R and 0 ≤ i < m. (21)
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From the definition of c (n, k) in (18), we note that c (n, k) 6= 0 only if 0 ≤ k ≤ n. Thus

c (l, j − i) 6= 0 only if j ≥ i and l ≥ j − i. We can rewrite G (m, i) as

G (m, i) =

2m
∑

j=i

j
∑

l=j−i

(−1)j
(

2m

j

)(

j

l

)

(−L)j−lc (l, j − i)

=

2m−i
∑

k=0

k+i
∑

l=k

(−1)k+i

(

2m

i+ k

)(

i+ k

l

)

(−L)k+i−lc (l, k)

=

2m−i
∑

k=0

i
∑

p=0

(−1)k+i

(

2m

i+ k

)(

i+ k

p+ k

)

(−L)i−pc (k + p, k)

=
i

∑

p=0

(−L)i−p

2m−i
∑

k=0

(−1)k+i

(

2m

i+ k

)(

i+ k

p+ k

)

c (k + p, k)

= (−1)i
i

∑

p=0

(−L)i−p

(

2m

i− p

) 2m−i
∑

k=0

(−1)k
(

2m− i+ p

k + p

)

c (k + p, k)

≡ (−1)i
i

∑

p=0

(−L)i−p

(

2m

i− p

)

S2m−i (p) (22)

where we have defined

SN (p) =

N
∑

k=0

(−1)k
(

N + p

k + p

)

c (k + p, k) . (23)

It is easy to see that for fixed m and 0 ≤ i < m, G (m, i) is a polynomial of L of degree i,

expanded with the basis 1, (−L)1, (−L)2,. . . . Note that p ≤ i < m, so 2m− i ≥ p+ 1. For

Eq.(21), we want to show that SN (p) = 0 for N ≥ p + 1. For this purpose, we define the

functions

Cn (x) =
∑

k≥0

c (k + n, k)xk+n. (24)

The recurrence of the signless Stirling number identity

c (k + n, k) = (n + k − 1) c (n + k − 1, k) + c (n+ k − 1, k − 1) (25)

leads to the equation

Cn (x) =
x2

1− x

d

dx
Cn−1 (x) , (26)

with the intial value

C0 (x) =
1

1− x
. (27)
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The first couple of Cn (x) can be calculated to be

C1 (x) =
x2

(1− x)3
, C2 (x) =

x4 + 2x3

(1− x)5
, C3 (x) =

x6 + 8x5 + 6x4

(1− x)7
. (28)

Now by induction, it is easy to show that

Cn (x) =
fn (x)

(1− x)2n+1 , where fn (x) = x2n +O
(

x2n−1
)

, (29)

and

fn (1) = (2n− 1)!!. (30)

In order to prove Eq.(21), we note that (−1)NSN (p) is the coefficient of xN+p in the function

(1− x)N+p Cp (x) = fp (x) (1− x)N−p−1 = xN+p−1 +O (· · · ) , (31)

which is obviously zero for N ≥ p + 1. This proves SN (p) = 0 for N ≥ p + 1 and thus

Eq.(21).

In order to prove the first identity in Eq.(20), we first note that the above argument

remains true for i = m and 0 ≤ p < i. So Eq.(20) corresponds to the case p = i = m. By

using Eq.(22), we can evaluate

G (m,m) =

m
∑

k=0

(−1)k+m

(

2m

k +m

)(

k +m

k +m

)

c (k + p, k) =

m
∑

k=0

(−1)k+m

(

2m

k +m

)

c (k + p, k) .

(32)

Equation.(32) corresponds to the coefficient of x2m in the function

(1− x)2mCm(x) =
fm (x)

1− x
= fm (x) (1 + x+ x2 + ....). (33)

By Eq.(30), this coeffieient is

fm (1) = (2m− 1)!!. (34)

This proves Eq.(20). We thus have completed the proof of Eq.(14) for any non-negative

integer m and any real value L.
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