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Abstract 

Many decision-making or choice problems in Marketing incorporate preferences. How to 

assist decision makers in understanding the decision context and improving inconsistencies in 
judgments are two important issues in ranking choices. This study develops a decision-making 

framework based on the screening, ordering, and choosing phases. Two optimization models and 

a Decision Ball model are proposed to assist decision makers in improving inconsistencies and 

observing relationships among alternatives. By examining a Decision Ball, a decision maker can 
observe ranks of and similarities among alternatives, and iteratively adjust preferences and 

improve inconsistencies thus to achieve a more consistent and informed decision.  

Key words:  Decision Ball; Visualization; Ranking; Inconsistency; Decision-making 
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1. Introduction 

Many decision-making or choice problems in Marketing incorporate preferences (Liechty 
et al, 2005; Horsky et al. 2006; Gilbride and Allenby, 2006). Keeney (2002) identified 12 

important mistakes frequently made that limit one’s ability in making good value judgments, in 

which “not understanding the decision context” and “failure to use consistency checks in 

assessing value trade-offs” are two critical mistakes. Hence, how to assist decision makers in 
understanding the decision context and adjusting inconsistencies in judgments are two important 

issues in ranking choices. 

There is evidence that decision makers’ preferences are often influenced by the visual 

background information (e.g., Simonson and Tversky 1992; Tversky and Simonson, 1993; 
Seiford and Zhu, 2003). From marketing it is known from consumer choice theories that context 

impacts the choices consumers make (Seiford and Zhu, 2003). For example, a product may 

appear attractive against a background of less attractive alternatives and unattractive when 

compared to more attractive alternatives (Simonson and Tversky, 1992). Visual representations 
can simplify and aggregate complex information into meaningful pattern, assist people in 

comprehending their environment, and allow for simultaneous perception of parts as well as a 

perception of interrelations between parts (Maruyama, 1986; Meyer, 1991; Sullivan, 1998). 

Hence, how to provide visual aids to help decision makers make a more informed decision is the 
first issue addressed by this study. 

Ranking alternatives incorporating preferences is a popular issue in decision-making. One 

common format for expressing preferences is to use pairwise comparisons, which forces one to 

make a direct choice of one object over another when compariing two objects, rather than 
requiring one to comparing all objects simultaneously (Cook et al., 2005). For example, in sports 

competitions, such as tennis, football and baseball, pairwise rankings are the typical input 

(Hochbaum and Levin, 2006). Several methods have been proposed (e.g., Saaty, 1980; Jensen, 

1984; Genest and Rivest, 1994) to rank alternatives in pairwise comparisons fashion. However, 
inconsistencies are not unexpected, as making value judgments is difficult (Keeney, 2002). The 

ranks different methods yield do not vary much when the decision makers’ preferences are 

consistent.  But, if a preference matrix is highly inconsistent, different ranking methods may 

produce wildly different priorities and rankings.  Hence, how to help the decision makers to 
detect and improve those inconsistencies thus to make a more reliable decision is the second issue 

addressed here. 

Multicriteria decision makers tend to use screening, ordering and choosing phases to find 

a preference (Brugha, 2004). They tend to make little effort in the first phase as they screen out 
clearly unwanted alternatives, use somewhat more effort in the second phase as they try to put a 
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preference order on the remaining alternatives, and reach the highest effort in the final phase 

when making a choice between a few close alternatives.  

This study develops a decision-making framework based on these three phases. 
Preferences in pairwise comparison fashion are adopted in the choosing phase. Two optimization 

models and a Decision Ball model are proposed to assist decision makers in improving 

inconsistency and observing relationships among alternatives. By examining Decision Balls, a 

decision maker can iteratively adjust preferences and improve inconsistencies thus to achieve a 
more consistent decision. The proposed approach can be extensively applied in Marketing. 

Possible applications are the selection of promotion plans, decisions regarding product sourcing, 

choice of marketing channels, evaluation of advertising strategy, research of customer 

behavior …etc. 
The reasons why this study uses a sphere model instead of a traditional 2-dimensional 

plane or a 3-dimensional cube model are described as follows. A 2-dimensional plane model 

cannot depict three points that do not obey the triangular inequality (i.e. the total length of any 

two edges must be larger than the length of the third edge) neither can it display four points that 
are not on the same plane. For instance, as illustrated in Figure 1, consider three points, Q1, Q2, Q3, 

where the distance between Q1Q2, Q2Q3, and Q1Q3 are 3, 1, and 6, respectively, as shown in 

Figure 1(b). It is impossible to show their relationships by three line segments on a 2-dimensional 

plane, as shown in Figure 1(a).  If there are four points, Q1, Q2, Q3, and Q4, which are not on the 
same plane, as shown in Figure 1(c), it is impossible to present these four points on a 

2-dimensional plane too. In addition, a sphere model is also easier for a decision maker to observe 

than a 3-dimensional cube model because the former exhibits alternatives on the surface of a 

sphere rather than inside the cube. 
This paper is organized as follows. Section 2 reviews the relevant literature. Section 3 

sets the three-phase decision making framework, including the screening, ordering and choosing 

phases. Section 4 proposes a weight-approximation model and a Decision Ball model to support a 

decision maker to filter out poor alternatives in the ordering phase. Section 5 develops an 
optimization model which can assist a decision maker in improving inconsistencies in preferences, 

and provides three methods to allow a decision maker to iteratively adjust his preferences in the 

choosing phase. Sections 4 and 5 form the main theoretical part of this paper; therefore, readers 

only interested in the application of proposed approach can skip these two sections. Section 6 
uses an example to demonstrate the whole decision process. 

 

2. Relevant Literature 
Several visualization approaches have been developed to provide visual aids to support 

decision-making process. For instance, Li (1999) used deduction graphs to treat decision 
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problems associated with expanding competence sets. Jank and Kannan (2005) proposed a spatial 

multinomial model of customer choice to assist firms in understanding how their online 

customers’ preferences and choices vary across geographical markets. Kiang (2001) extended a 
self-organizing map (SOM) (Kohonen, 1995) network to classify decision groups by neural 

network techniques. Many studies (Kruskal, 1964; Borg and Groenen, 1997; Cox and Cox, 2000) 

adopted Multidimensional scaling (MDS), which is widely used in Marketing, to provide a visual 

representation of similarities among a set of alternatives. For instance, Desarbo and Jedidi (1995) 
proposed a new MDS method to spatially represent preference intensity collected over 

consumers’ consideration sets. However, most of conventional visualization approaches are 

incapable of detecting and improving the decision makers’ inconsistent preferences. Gower 

(1977), Genest and Zhang (1996) proposed a powerful graphical tool, the so-called Gower Plot, to 
detect the inconsistencies in decision maker’s preferences on a 2-dimensional plane. Nevertheless, 

the Gower plots do not provide suggestions about how to improve those inconsistencies either. 

A pairwise-comparison ranking problem can be provided with magnitude of the degree of 

preference, intensity ranking; or in terms of ordinal preferences only, preference ranking. These 
are sometimes referred to also as cardinal versus ordinal preference (Hochbaum and Levin, 2006). 

Many studies (Saaty, 1980; Saaty and Vargas, 1984; Hochbaum and Levin, 2006; etc.) use 

multicriteria decision making approaches to find a consistent ranking at minimum error. However, 

conventional eigenvalue approaches cannot treat preference matrix with incomplete judgments. 
And, most of them focus on adjusting cardinal or ordinal inconsistencies instead of adjusting both 

cardinal and ordinal inconsistencies simultaneously. Li and Ma (2006)(2007) developed goal 

programming models which can treat incomplete judgments and improve cardinal and ordinal 

inconsistencies simultaneously. However, the ranks of and similarities among alternatives can be 
displayed.  

This study cannot only improve cardinal and ordinal inconsistencies simultaneously but 

provide visual aids to decision makers. They can observe ranks of and similarities among 

alternatives, and iteratively adjust their preferences to achieve a more consistent decision. 
 

3. Setting the Decision-Making Framework 
The proposed decision-making framework is illustrated by the screening, ordering, and 

choosing phases as listed below: 
(i) The screening phase: the decision maker tries to screen out clearly unwanted alternatives. 

The decision maker specifies upper and/or lower bounds of attributes to screen out poor 

alternatives. 

(ii) The ordering phase: the decision maker tries to put a preference order on the remaining 
alternatives.  
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 The decision maker roughly specifies partial order of alternatives. 

 An optimization model and a Decision Ball model are developed to assist decision 

maker in calculating and viewing ranks of and similarities among alternatives. 
 The decision maker filters out poor alternatives according to the information 

displayed on the Decision Ball. 

(iii) The choosing phase: the decision maker tries to make a final choice among a few 

alternatives. There are four steps in this phase, including specifying pairwise-comparison 
preferences, detecting and improving inconsistencies, adjusting preferences, and 

determining the best alternatives. 

 Specifying pairwise-comparison preferences. Decision maker has to make more 

sophisticated comparisons for the remaining alternatives in this phase. 
Pairwise-comparison fashion, like analytical hierarchy process (AHP; Saaty, 1980), 

is adopted here because it is good for choosing phase (Brugha, 2004). 

 Detecting and improving inconsistencies. Because inconsistent preferences may 

result in unreliable rank order, significant inconsistencies should be modified to 
obtain a more consistent solution. An optimization model is proposed to assist 

decision maker in detecting and improving inconsistencies. After inconsistencies 

have been reduced, the ranks of and similarities among alternatives are calculated 

and displayed on a Decision Ball. 
 Adjusting preferences. According to the information displayed on the Decision Ball, 

the decision maker can iteratively adjust his preferences and see the corresponding 

changes on the Decision Ball. 

 Determining the best alternatives. Decision maker makes the final choice with the 
assistance of the Decision Ball. 

The detailed explanations about the ordering and choosing phases are illustrated in the 

following two sections. 

 

4. The models for ordering phase 
Consider a set of alternatives A = {A1, A2, …, An} for solving a choice problem, where the 

decision maker selects m criteria to fulfill. The values of criteria c1, …, cm for alternative Ai are 

expressed as ci,k, for k = 1,…, m. All criterion values are assumed to be continuous data. Denote C 

= mnkic ×][ ,  as the criterion matrix of the decision problem. Denote kc  and kc  as the lower 

and upper bounds of the criterion value of ck, respectively. The value of kc  and kc  can be 

either given by the decision maker directly or calculated by the minimum and maximum raw 
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criterion value of ck . The score function in this study is assumed to be in an additive form because 

it is the most commonly used form in practice and more understandable for the decision maker 

(Belton and Stewart, 2002). Denote Si as the score value of an alternative Ai. An additive score 
function of an alternative Ai (ci,1, ci,2, …, ci,m) is defined as below: 
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a weight vector, (ii) 1)(0 ≤≤ wiS .  In order to make sure that all weights of criteria and scores 

of alternatives are positive, a criterion ci,k with cost feature (i.e., a DM likes to keep it as small as 

possible) is transferred from ci,k to ( kik cc ,− ) in advance.  

Following the score function, the dissimilarity function of reflecting the dissimilarity 

between alternatives Ai and Aj is defined as 
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where 1)(0 , ≤≤ wjiδ  and )()( ,, ww ijji δδ = . Clearly, if ci,k = cj,k for all k then )(, wjiδ = 0.  

In the ordering phase, a decision maker has to roughly specify partial order of alternatives. 
If the decision maker prefers Ai to Aj, denoted as ji AA ; , score of Ai should be higher than that of 

Aj (Si > Sj). However, there may be some inconsistent preferences. For instance, a decision maker 
may specify ji AA ; , kj AA ; and ik AA ; . A binary variable ti,j is used to record the inconsistent 

relationship between Ai and Aj: if ji AA ;  and Si > Sj, then ti,j =0; otherwise, ti,j = 1. A weight 

approximation model for ordering phase is developed as follows: 

Model 1  (Weight approximation model for ordering phase) 
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, 0,  , kwwww kkkk ∀≥≤≤                                        (6) 

}1,0{, ∈jiu , M is a large value, ε  is a tolerable error.              (7) 

The objective of Model 1 is to minimize the sum of ti,j. Expressions (3) and (4) are from 
the definition of an additive score function (1). Expression (5) indicates that if ji AA ;  
and ε+≥ ji SS , then ti,j =0; otherwise, ti,j = 1, where ε  and  M are a computational precision 

and a large value which can be normally set as 610− and 610 , respectively. Denote kw and 

kw as the lower and upper bound of wk, which could be set by the decision maker as in 

Expression (6). From (1) and (2), the score Si of alternative Ai and dissimilarity ji,δ between 

alternative Ai and Aj can be calculated based on the results of Model 1.  

A Decision Ball model is then constructed to display all alternatives Ai in A = {A1, A2, …, 

An} on the surface of a hemisphere. A non-metric multidimensional scaling technique is adopted 
here to provide a visual representation of the dissimilarities among alternatives. The arc length 

between two alternatives is used to represent the dissimilarity between them, e.g., the larger the 

difference, the longer the arc length. However, because the arc length is monotonically related to 

the Euclidean distance between two points and both approximation methods make little difference 
to the resulting configuration (Cox and Cox, 1991), the Euclidean distance is used here for 

simplification. 

In addition, the alternative with a higher score is designed to be closer to the North Pole 

so that alternatives will be located on the concentric circles in the order of score from top view. 

For the purpose of comparison, we define an ideal alternative *A , where ),...,,( 21** mcccAA =  
and  1* =S . *A is designed to be located at the north pole with coordinate ),,( *** zyx = (0, 1, 0). 

The following propositions are deduced: 
Proposition 1  The relationship between )(,* wiδ  (the dissimilarity between Ai and A*)) and 

Si(w) is expressed as )(1)(,* ww ii S−=δ . 
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Denote di,j as the Euclidean distance between Ai and Aj . Let jijid ,, 2δ= , such that if 
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ji,δ  = 0 then di,j = 0 and if ji,δ  = 1 then di,j = 2 , where 2  is used because the distance 

between the north pole and equator is 2  when radius = 1. Denote the coordinates of an 
alternative Ai on a ball as (xi, yi, zi). The relationship between yi and Si is expressed as 

Proposition 2  .2 2
iii SSy −=                                   

<Proof> Since 22
,*

2222
,* )1(22)0()1()0( iiiiii Szyxd −==−+−+−= δ ,  

it is clear 22 iii SSy −= . Clearly, if Si = 1 then yi = 1; if Si = 0, then yi = 0. 

Based on the non-metric multidimensional scaling technique, denote jid ,
ˆ  as a 

monotonic transformation of ji,δ  satisfying following condition: if qpji ,, δδ < , then 

qpji dd ,,
ˆˆ < . The coordinate (xi, yi, zi) of alternative Ai all i can be calculated by the following 

Decision Ball model:  

Model 2  (A Decision Ball Model) 

},,{ iii zyx
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s.t.    iSSy iii ∀−=    ,2 2 ,                                                   (8) 

qpjiqpji dd ,,,,   , ˆˆ δδε <∀−≤ ,                                         (9) 

jizzyyxxd jijijiji ,   ,)()()( 2222
, ∀−+−+−= ,                          (10) 

izyx iii ∀=++     , 1222 ,                                              (11) 

 1,1 ≤≤− ii zx , 10 ≤≤ iy , i∀ , ε  is a tolerable error.                    (12) 

The objective of Model 2 is to minimize the sum of squared differences between di,j and 

jid ,
ˆ . Expression (8) is from Proposition 2, where the alternative with a higher score is designed 

to be closer to the North Pole. Expression (9) is the monotonic transformation from ji,δ  to jid ,
ˆ . 

All alternatives are graphed on the surface of the northern hemisphere (11)(12). 

Model 2 is a nonlinear model, which can be solved by some commercialized optimization 

software, such as Global Solver of Lingo 9.0, to obtain an optimum solution. One restriction of 

this model is the running time that may considerably increase when the number of alternatives 
becomes large because the time complexity of Model 2 is n2. This model has good performance 
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when the number of alternatives less than 10. However, in this case of alternatives more than 10, 

some classification techniques, like k-means (MacQueen,1967) for instance, can be used to 

reduce the solving time by dividing alternatives into several groups. The coordinates of group 
centers are calculated first. Then, these group centers are treated as anchor points. The coordinates 

of alternatives can be obtained by calculating dissimilarity between alternatives and anchor points. 

Thus, all alternatives can be displayed on the Decision Ball within tolerable time. 

According to the information displayed on the Decision Ball, the decision maker can 
select better alternatives into the next phase. 

 

5. The models for choosing phase 

In this phase, the decision maker has to make more sophisticated comparisons for 
the remaining alternatives. Pairwise comparisons are adopted here (Brugha, 2004). For some 

i and j pairs, assume a decision maker can specify pi,j, the ratio of the score of Ai to that of Aj, 

which is expressed as 

pi,j  = ji
j

i e
S
S

,× ,                                                 (13) 

where Si is the score of Ai and jie ,  is a multiplicative term accounting for inconsistencies, as 

illustrated in the Analytic Hierarchy Process (AHP) (Saaty, 1980). It is assumed that pi,j = 1/pj,i.  
If the decision maker cannot specify the ratio for a specific pair i and j then φ=jip , . Denote P 

= nnjip ×][ ,  as a nn×  preference matrix. P is incomplete if there is any φ=jip , . P is perfectly 

consistent if ei,j =1 for all ji,  (i.e. pi,j = Si/Sj for all i, j). P is ordinally inconsistent (intransitive) 

if for some i, j, k∈  {1, 2, 3, …, n} there exists pi,j > 1, pj,k > 1, but pi,k  < 1. P is cardinally 

inconsistent if for some i, j, k∈  {1, 2, 3, …, n} there exists kjjiki ppp ,,, ×≠  (Genest and 

Zhang, 1996). 

If P is complete and ordinal consistent, all Ai can be ranked immediately. However, if 
there is ordinal or highly cardinal inconsistency, these inconsistencies should be improved before 
ranking because significant inconsistencies may result in unreliable rank order.  

An optimization model, developed by a goal-programming optimization technique, is 

developed to assist decision maker in detecting and improving inconsistencies. In order to reduce 

the ordinal inconsistency, a binary variable ui,j is used to record if the preference pi,j, specified by 
the decision maker, is suggested to be reversed or not. If pi,j is suggested to be reversed, then ui,j  
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= 1; otherwise, ui,j = 0. A variable ji,α , defined as the difference between pi,j and Si/Sj, is used to 

indicate the degree of cardinal inconsistency of pi,j: the larger the value of ji,α , the higher the 

cardinal inconsistency. The inconsistencies improving model is formulated as below: 

Model 3  (Inconsistencies improving model ) 
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      }1,0{, ∈jiu , M is a large value, ε  is a tolerable error.              (20) 

This model tries to improve ordinal and cardinal inconsistencies simultaneously. The first 

objective (Obj1) is to achieve ordinal consistency by minimizing the number of preferences 

(i.e., jip , ) being reversed. Constraint (14) means: when φ≠jip ,  and 1, ≠jip , ui,j = 0, if (i) 

 )1( and )1( , >> ji
j

i p
S
S

or (ii)  )1( and )1( , << ji
j

i p
S
S

; and otherwise ui,j = 1. A tolerable 

positive number ε  is used to avoid 1=
j

i

S
S

. Constraint (15) means: when pi,j = 1, if Si = Sj; then 
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ui,j = 0; otherwise ui,j = 1. The second objective (Obj2) is to reduce cardinal consistency by 

minimizing the ji,α  values, i.e. to minimize the difference between 
j

i

S
S

 and jip , . Since 

ordinal consistency (Obj1) is more important than cardinal consistency (Obj2), Obj1 is multiplied 

by a large value M in the objective function. Constraints (17) and (18) come from Notation 1. 

Constraint (19) sets the upper and lower bound of weights. An improved complete preference 

matrix can be obtained as  P’  = nnjip ×][ '
, , where 

j

i
ji S

S
p ='

,  if φ=jip ,  or ui,j = 1; otherwise, 

jiji pp ,
'
, = . 

Model 3 is a nonlinear model, which can be converted into the following linear mixed 0-1 
program: 
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  (17) ~ (20), 

where (21), (22) and (23) are converted from (14), (15) and (16) respectively.  

After the weight vector, (w1, w2, …, wm), is found, ∑
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)(wδ can be calculated. All alternatives are shown on a Decision Ball by 

Model 2.  

According to the information visualized on the Decision Ball, the decision maker can 

iteratively adjust his preferences by the following ways: 
(i)    Adjusting preference order. Since alternative with a higher score is designed to be closer 
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to the North Pole so that a decision maker can see the rank order by the location of 

alternative: the higher the latitude, the higher the score. If the decision maker would like 

to adjust a preference order, from A1 ≺ A3 to A1 ; A3  for instance, a constraint 
ε+≥ 31S S  will be added into Model 3.  

(ii)    Adjusting dissimilarity. The distance between two alternatives on a Decision Ball implies 

the dissimilarity between them: the larger the dissimilarity, the longer the distance. 

Therefore, if a decision maker observes the Decision Ball and decides to adjust the 

dissimilarity relationship, from  )()( 2,13,1 ww δδ <  to  )()( 2,13,1 ww δδ > for example, 

a constraint  )()( 2,13,1 ww δδ >  (i,e. ε+
−
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be added into Model 3. 

(iii)   Adjusting preference matrix. A decision maker can choose to adjust the preference matrix 

directly. The value of pi,j in Model 3 will be modified according to the change in the 
preference matrix.  

Solving Model 3 yields a new set of weights, and an adjusted Decision Ball will be 

displayed. The decision maker can iteratively adjust his preferences until he feels no adjustments 

have to be made. A final choice can be made with the assistance of a resulting Decision Ball. 
 

6. Application to choice data: selection of a store location 
Example 1 (Selection of a store location) 

The choice of a store location has a profound effect on the entire business life of a retail 
operation. Suppose a manager of a convenience store in Taiwan who needs to select a store 

location from a list of 43 spots A = {A1, …, A43}. The manager sets four criteria to fulfill: (c1) 
sufficient space, (c2) high population density, (c3) heavy traffic, and (c4) low cost. Store size is 

measured in square feet. The number of people who live within a one-mile radius is used to 
calculate population density. The average number of vehicle traffic passing the spot per hour is 

adopted to evaluate the volumes of traffic. Cost is measured by monthly rent. The criteria values 

of 43 candidate locations are listed in the criterion matrix C1, as shown in Table 1.  
The manager would like to rank choices incorporating his personal preferences. The 

manager can rank these choices by the following three phases: 

Phase 1 – the screening phase 
The manager tries to screen out clearly unwanted alternatives by setting upper or lower 

bound of each criterion. He sets the minimum space required to be 800 square feet, the minimum 
population density to be 700, the minimal traffic to be 400, and the maximum rental fee to be 
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5000. That is, 1c = 800, 2c = 700, 3c = 400 and 4c = 5000. The values of 1c , 2c , 3c  and 

4c  can be set as the maximum values of c1, c2, c3 and minimum value of c4, i.e. 1c = 1500, 

2c = 1260, 3c =780, and 4c = 3100. After filtering out alternatives with criterion values 

exceeding these boundaries, only 23 choices {A3, A4, A6, A7, A8, A11, A13, A15, A17, A18, A21, A23, A24, 
A25, A26, A29, A31, A32, A34, A37, A40, A42, A43} are remaining for the next phase. 

Phase 2 – the ordering phase  
The decision maker roughly specifies partial order of alternatives. He specifies A3; A7, 

A7; A37, A15; A8, A17; A6, A31; A25 and A42; A40. The minimum weight of each criterion is set as 

kw = 0.01 for all k by the decision maker. Applying Model 1 to these                 

preference relationships yields w = {w1, w2, w3, w4} = {0.21, 0.43, 0.01, 0.35}, t15,8 =1, and the 

rest of ti,j = 0. The objective value is 1. The variable t15,8 = 1 indicates the preference relationship 
A15; A8 should be reversed. When checking criterion matrix in Table 1, all criterion values of A8 

are better than or equal to those of A15 which makes A15 ; A8 impossible; therefore, the 

relationship between A15 and A8 is reversed. 

The score of alternatives can be calculated according to Expression (1), where S3 = 0.54, 
S4 = 0.10, S6 = 0.33, S7 = 0.54, S8 = 0.71, S11 = 0.29, S13 = 0.59, S15 = 0.36, S17 = 0.53, S18 = 0.31, S21 

= 0.30, S23 = 0.30, S24 = 0.45, S25 = 0.22, S26 = 0.39, S29 = 0.23, S31 = 0.22, S32 = 0.42, S34 = 0.46, S37 

= 0.39, S40 = 0.31, S42 = 0.34, S43 = 0.24. The dissimilarity between alternatives can also be 

calculated according to Expression (2). 
Applying Model 2 to this example yields coordinates of alternatives. The resulting 

Decision Ball is displayed in Figure 2. Because the alternative with a higher score is designed to 

be closer to the North Pole, the order of alternatives can be read by the latitudes of alternative: the 

higher the latitude, the higher the score. The order of top ten alternatives is A8 ; A13 ; A3; A7 

; A17; A34; A24; A32; A37 ; A26. In addition, the distance between two alternatives represents 

the dissimilarity between them: the longer the distance, the larger the dissimilarity. For instance, 

the dissimilarity between A26 and A37 is smaller than that of between A37 and A7.  

Based on the information provided on the Decision Ball, assume the decision maker 
decides to select the top eight alternatives to make more sophisticated comparisons. That is, only 

A8, A13, A3, A7, A17, A34, A24 and A32 are remaining for the next phase. 

Phase 3 – the choosing phase 
In the choosing phase, the manager uses pairwise comparisons to express preferences 

among pairs of choices in preference matrix R1, as listed in Table 2. Because the manager is 
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unable to make comparison among some spots, the relationships p3,34, p7,17, p8,24, p13,34 are left 

blank, which means R1 is incomplete. The preference matrix R1 is ordinally inconsistent because 
there is an intransitive relationship among A3, A8 and A32. That is, A3 is preferred to A8 (p3,8 > 1), 

and A8 is preferred to A32  (p8,32 > 1); however, A32 is preferred to A3  (p3,32 < 1). R1 is also 
cardinally inconsistent. For instance, there exists p3,8 = 1.6, p8,13 = 2.5; but, p3,13 = 2 (1.6 ×  2.5 = 

4, that is 13,313,88,3 ppp ≠× ).  

Applying Model 3 to the example yields Obj1 = 1, Obj2 = 3.91, u3,8 = 1 and the rest 

of ui,j = 0, (w1, w2, w3, w4) = (0.04, 0.19, 0.06, 0.71), (S3, S7, S8, S13, S17, S24, S32, S34) = (0.55, 

0.55, 0.78, 0.27, 0.39, 0.40, 0.74, 0.51). The variable u3,8 = 1 implies that the value of p3,8 is 

suggested to be changed from p3,8 >1 to p3,8 <1 (i.e. from A3 ; A8 to A3 ≺A8) to improve 

ordinal inconsistency. The values of unspecified preferences can be computed as p3,34 = 
34

3
S
S  

= 1.08, , p7,17, = 1.41,  p8,24 = 1.93, and p13,34 = 0.76. The corresponding Decision Ball is 

shown in Figure 3. The order of alternatives is A8 ; A32 ; A3 ; A7 ; A34 ; A24 ; A17.  

According to the information observed on the Decision Ball, the decision maker can 
iteratively adjust his preferences. Suppose he would like to adjust a preference order from A7 

;A34 to A34 ;A7.  A constraint ε+≥ 734S S  is added into Model 3. Solving Model 3 yields 

Obj1 = 3, Obj2 = 3.96, u3,8 = u7,34 = u17,24 = 1 and the rest of ui,j = 0, (w1, w2, w3, w4) = (0.01, 0.13, 

0.17, 0.69), (S3, S7, S8, S13, S17, S24, S32, S34) = (0.53, 0.50, 0.76, 0.27, 0.44, 0.40, 0.71, 0.51). In 
order to satisfy the relationship A34 ;A7, the relationship between A17 and A24 has to be reversed 

(u17,24 = 1). Applying Model 2 to this result yields a new set of coordinates. An adjusted Decision 

Ball is displayed in Figure 4. On this Decision Ball, the latitude of A34 is higher than that of A7.  

By seeing the relationships of alternatives displayed on the Decision Ball in Figure 4, the 
decision maker would like to adjust some dissimilarity relationships between alternatives. His 

adjustment is that the dissimilarity between A3 and A8 is larger than that of between A7 and A8. A 

constraint ε+
−

−
≥

−

−
∑∑
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m

k kk

kk
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w

cc
cc

w
1
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1

,8,3 ||||
 is added into Model 3. Solving Model 3 

again yields Obj1 = 5, Obj2 = 4.33, u3,8 = u7,34 = u17,24 = u3,7 = u8,32 = 1 and the rest of ui,j = 0, (w1, 

w2, w3, w4) = (0.01, 0.04, 0.19, 0.76), (S3, S7, S8, S13, S17, S24, S32, S34) = (0.51, 0.53, 0.74, 0.19, 

0.39, 0.36, 0.78, 0.53). This result shows that in addition to rank reversal of A3 and A8, A7 and A34, 
A17 and A24 (u3,8 = u7,34 = u17,24 =1), the relationship between A3 and A7, A8 and A32 are suggested to 

be reversed to satisfy the adjustment of dissimilarity. A corresponding Decision Ball is depicted 

in Figure 5.  
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Suppose the decision maker stops further adjustment. The decision maker can make a final 

decision based on the Decision Ball in Figure 5. From the latitude of alternatives, the decision 

maker can tell the rank of choices as A32 ;A8;A34;A7 ;A3;A17;A24;A13. The best choice is 
A32. The dissimilarity between alternatives can be read by the distance between them. For instance, 

the dissimilarity between A3 and A34 is the smallest because the distance between them is the 

shortest. That is, if A32 , A8 and A34 are not available, A3 as well as A7 will be a good choice.  

It is important to notice that A3 is more similar to A34 than A7 is but A34;A7 ;A3. This kind 
of relationship is possible. For instance, comparing with three alternatives A, B, C with benefit 

criterion values (5, 5, 5), (4, 4, 6) and (3, 5, 5), given equal weight and kc  = 0 and kc  =10 for 

k = 1…3. The scores of three alternatives are SA = 0.5, SB = 0.47, and SC = 0.43. The dissimilarities 

between alternatives are A,Bδ  =0.1, C,Bδ  =0.1 and CA,δ  =0.067. It is obvious that A; B;C 

but C is more similar to A than B is because CA,δ < A,Bδ . 

Example 1 was solved by Global Solver of Lingo 9.0 [20] on a Pentium 4 personal 
computer. The running time was less than 3 minimums for three phases totally. 
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Table 1  Criterion Matrix C1 of Example 1 

C 1 C 2 C 3 C 4 C 1 C 2 C 3 C 4

Store
Size Population Traffic Rental

Fee
Store
Size Population Traffic Rental

Fee
A 1 1600 580 320 3200 A 23 960 750 650 3900

A 2 390 680 450 2900 A 24 860 1100 550 4350

A 3 850 1140 550 4000 A 25 866 810 550 4400

A 4 1000 750 440 5000 A 26 1058 750 450 3500

A 5 900 840 450 5500 A 27 998 1100 750 5200
A 6 1000 900 500 4400 A 28 665 900 650 3900

A 7 1500 840 450 3800 A 29 1055 800 450 4600
A 8 800 1260 600 3500 A 30 1008 900 650 5100

A 9 755 700 400 1800 A 31 1100 850 520 4950
A 10 1400 600 500 4800 A 32 885 720 420 3100

A 11 1100 720 480 4000 A 33 750 780 185 2800
A 12 700 800 450 4800 A 34 1205 880 580 3950

A 13 1300 1250 650 4950 A 35 1900 400 280 3000
A 14 1250 1500 800 6800 A 36 680 1500 950 5200

A 15 800 900 420 3900 A 37 920 780 480 3400
A 16 820 500 450 3200 A 38 1204 1200 550 5300

A 17 1000 1200 780 4600 A 39 580 1000 850 5500
A 18 1300 720 420 4200 A 40 850 960 520 4500

A 19 950 700 330 3500 A 41 565 665 380 2500
A 20 1550 550 390 4100 A 42 980 920 650 4400

A 21 850 780 480 3800 A 43 810 810 520 4200

Alternative Alternative

 
 

Table 2  Preference matrix R1 of Example 1 
p i,j A 3 A7 A 8 A 13 A 17 A 24 A 32 A 34

A 3 1.4 1.6 2 1.2 2 0.5
A 7 0.5 1.5 2 0.5 2
A 8 2.5 2 1.2 1.5
A 13 0.6 0.6 0.8
A 17 0.5 0.5 0.7
A 24 0.5
A 32 2
A 34  
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Figure 2  The resulting Decision Ball 
after Phase 2 
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after Phase 3 
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Figure 4  The resulting Decision Ball 

after adjusting A34;A7 
Figure 5  The resulting Decision Ball 
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