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Abstract

String matching plays a central role in packet inspection applications such as intrusion detection, anti-virus, anti-spam
and Web filtering. Since they are computation and memory intensive, software matching algorithms are insufficient to meet
the high-speed performance. Thus, offloading packet inspection to a dedicated hardware seems inevitable. This paper pre-
sents a scalable automaton matching (SAM) coprocessor that uses Aho-Corasick (AC) algorithm with two parallel accel-
eration techniques, root-indexing and pre-hashing. The root-indexing can match multiple bytes in one single matching, and
the pre-hashing can be used to avoid bitmap AC matching which is a cycle-consuming operation. In the platform-based
SoC implementation of the Xilinx ML310 FPGA, the proposed hardware architecture can achieve almost 10.7 Gbps and
support over 10,000 patterns for virus, which is the largest pattern set from among the existing works. On the average, the
performance of SAM is 7.65 times faster than the original bitmap AC. Furthermore, SAM is feasible for either internal or
external memory architecture. The internal memory architecture provides high performance, while the external memory
architecture provides high scalability in term of the number of patterns.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Since detecting malicious traffic on the Internet,
such as viruses and intrusions, relies on looking
for signatures in the packet payload, traditional fire-
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walls that inspect only the packet header are
insufficient for detection. Thus, deeper packet
inspection such as intrusion detection, anti-virus,
anti-spam and Web filtering are required to detect
such application-level attacks that can be found in
the field. The essential part of such solutions is the
string matching which has been shown to be a
time-consuming component that should be acceler-
ated [1,2].
.
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For string matching, several algorithms and
hardware architectures have been proposed to
improve performance. Although the throughput of
some approaches can achieve up to 10 Gbps, their
common drawback is poor scalability. Their rules
and pattern sets are hardwired into the FPGA and
thus, the scalability is limited by the number of logic
cells and the size of the embedded memory in the
FPGA.

In this paper, we propose a scalable automaton
matching (SAM) which is based on the Aho-Cora-
sick (AC) algorithm with external memory architec-
ture. AC is a common algorithm with the following
features. First of all, AC has a deterministic perfor-
mance in the worst case. Secondly, AC is robust for
large and long patterns. Thirdly, AC can perform a
multiple patterns match in a single matching itera-
tion. However, the large memory usage is a critical
problem for the AC algorithm. Another AC-based
algorithm, the bitmap AC, improves memory utili-
zation by using a 256-bit bitmap to replace the
256 word-size pointers of each state in AC. Hence,
bitmap AC is the alternative that we adopted in this
work.

SAM is developed with two acceleration tech-
niques to archive a sub-linear matching time. The
first technique is root-indexing that comes from
the observing the AC’s high frequency root-visiting
behavior. The second technique is pre-hashing that
comes from the observing the time-consuming bit-
map operation during the bitmap AC matching.
To reduce this kind of operation, pre-hashing can
test quickly to avoid the bitmap AC matching.
For scalability, our architecture uses external mem-
ories to store the whole pattern database of SNORT
or even ClamAV.

Furthermore, SAM can easily update patterns
without interrupting the operation or shutting down
the machine since it is a memory based architecture.
In our evaluation, we implemented SAM on a Sys-
tem On Chip (SoC) based platform with Xilinx
FPGA Virtex2P and EDK design tool.

The rest of this paper is organized as follows. In
Section 2, we first introduce the related algorithms
and string matching hardware. Then, the proposed
architecture and acceleration techniques are pre-
sented and an example is given in Section 3. Section
4 presents the software and hardware implementa-
tion of the SAM approach. The performance analy-
sis, evaluation, and comparison with existing works
are given in Section 5. Finally, we draw up our con-
clusion in Section 6.
2. Background

2.1. Selecting matching algorithms for packet

inspection

To understand the appropriate requirements of
string matching algorithms, we surveyed the real
patterns from open source software including
SNORT (http://www.snort.org) for intrusion detec-
tion, ClamAV (http://www.clamav.net) for anti-
virus, SpamAssassin (http://spamassassin.apache.
org) for anti-spam, and SquidGuard (http://
www.squidguard.org) and DansGuardian (http://
dansguardian.org) for Web blocking. The necessary
requirements are variable-length, multiple patterns
and on-line processing for all packet inspection
systems.

Although the complex patterns such as class,
wildcard, regular expression and case sensitive pat-
terns might increase the expression power of the
patterns and has been used in some applications,
they can be converted into multiple simple patterns
[3], and they are optional for matching algorithms.

Current existing on-line string matching algo-
rithms for packet inspection can be classified into
four categories: dynamic programming, bit parallel,
filtering, and automaton algorithms. As summa-
rized in Table 1, dynamic programming [3] and bit
parallel [4] algorithms are inappropriate for vari-
able-length and multiple patterns, and the filtering
algorithms [5] have poor worst-case time complexity
O(nm), where n and m are the length of the text and
patterns, respectively. Only the automaton based
algorithms such as Aho-Corasick (AC) [6] support
variable-length and multiple patterns, and also have
the deterministic worst-case time complexity O(n).
Hence, the automaton based algorithm is a better
choice for the packet inspection system, and was
selected as the base to develop new approaches.

2.2. AC related algorithms

Before performing AC matching, there is a need
to construct a state machine from the patterns.
Adapting from the example in [6], Fig. 1a–c are
AC’s three major functions for patterns ‘‘TEST’’,
‘‘THE’’, ‘‘HE’’.

The first Goto function shown in Fig. 1a starts
with an empty root node and adds states to the state
machine for each pattern. That Goto function is a
tree structure that shares common prefixes with
all of the patterns. During the matching the Goto

http://www.snort.org
http://www.clamav.net
http://spamassassin.apache.org
http://spamassassin.apache.org
http://www.squidguard.org
http://www.squidguard.org
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Table 1
Comparison of the on-line string matching algorithms

Algorithm Dynamic programming Backward filtering Automaton Bit parallel

Description Matrix operations to
compute the similarity
between text and pattern

Discarding window of text that
is not a substring of pattern in
backward scanning

Search through a
Deterministic Finite
Automaton (DFA)

Simulate Non-Deterministic
Finite Automaton (NFA) by
bitwise operations

Average time
complexity

O(n) Sub-linear O(n) O(n)

Worst time
complexity

O(n) O(nm) O(n) O(n)

Text length Fixed short length Variable long length Variable long length Variable long length
Pattern

length
Fixed short length Variable short length Variable long length Fixed short length

Multiple
pattern

No Yes Yes Yes

Regular
expression

No No Yes Yes

Advantage
for
hardware

Simple systolic array circuit Storage is normally smaller than
automaton

Comparison is a
lookup operations

Bitwise operation is fast

Disadvantage
for
hardware

Not feasible to have a large
systolic array

Long latency to compute
discarding window

Table size is larger
than bit-parallel

Not feasible to have a long bit
mask

Typical
algorithm

Edit distance Boyer–Moore Aho–Corasick Shift-OR
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Fig. 1. (a) Goto function. (b) Output function. (c) Failure

function. (d) AC table implementation.
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function is traversed from one state to the other
with the text byte by byte.

The second is the Output function shown in
Fig. 1b needs a table to store the matched pattern
with their corresponding state in the Goto tree. Out-

put function records a matched state for a matched
pattern if that current state is matched during the
visiting.

The third is the Failure function as shown in
Fig. 1c. During the construction, failure states are
added from the state, where their longest prefix also
leads to a valid state in the Goto tree. During the
matching Failure function is used when a match
fails after a partial match.
After the construction of a machine, the AC state
machine is traversed from the current node to the
next node according to the input byte.

For the data structure of the Goto Function,
there are two alternatives to store the next state
links:

• The first alternative is the construction of a 2D-
array table. Each state has 256 next state pointers
for all of the ASCII input cases, as shown in
Fig. 1d. It is the most popular implementation
for fast matching, but it wastes memory space
when the table is sparse.

• In the second alternative, data structure uses the
link list, and each state only has the link list of
existing next states. This kind of data structure
has a smaller space requirement, but it is slow
when there are many next states.

AC is a typical deterministic finite automaton
(DFA) based on string matching. However, there
are several variations of it. Bitmap AC [7] uses bit-
map compression to reduce the storage of AC
states. AC_BM [8] is a combination of the AC
and Boyer Moore (BM) algorithms, and aims to
improve the conventional AC from O(n) to the
sub-linear time complexity. AC_BDM [9] combines
AC with backward DAWG matching (BDM) to
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Fig. 2. Data structure of bitmap AC for state i, using bitmap to
locate the next state.
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improve the average-case time complexity of the
conventional AC. Bit-split AC [10] splits the width
of the input text into a smaller bit width to reduce
the memory usage and the number of comparisons
when selecting the next states. Since AC_BM has
the worst-case time complexity O(nm) and overhead
for switching between AC and BDM, and bit-split
AC requires a large match vector for each bit-split
state, they are impractical for large patterns. Thus,
a scalable bitmap AC with space efficiency is more
preferable for our embodiment.

Bitmap AC is a compromise between table and
link list approaches. It resolves the wasted memory
of the AC table that uses 256 next pointers for each
state. Bitmap AC maintains a 256-bit bitmap for
each state to indicate whether a valid next state with
a given character is valid or invalid, and it requires
traversing along the failure pointer path. Fig. 2
shows the data structure of bitmap AC and how it
locates the next state.

Bitmap AC solves this problem for AC. How-
ever, in order to locate the next state in bitmap
AC, it must count all 1s in the 256-bit bitmap. This
is known as a time-consuming operation that is
dominated by loading the state and performing
the population count.
2.3. Hardware-based string matching

Since sting matching is a bottleneck for packet
inspection systems [1], hardware solutions are
required for high-speed content processing. Among
the existing string matching hardware, the most
prevalent one is the finite automaton (FA) based
hardware because it has support for deterministic
matching times and large patterns. FA based hard-
ware can be divided into deterministic FA (DFA)
and non-deterministic FA (NFA) based hardware.
DFA based hardware has a unique transition that
activates one state at a time and normally has a lar-
ger number of states compared to NFA. NFA can
handle multiple transitions at one time, but it
requires parallel circuits for comparing its variable
multiple next states. Thus, majority of DFA based
hardware uses the table or link list to store their pat-
terns, and most NFA based hardware uses parallel
reconfigurable circuits to handle their patterns.

For DFA based hardware, there are three com-
mon designs in recent string matching hardware:
Aho-Corasick (AC) based hardware [11,12] Regular
Expression (RE) based hardware [13,14] and
Knuth–Morris–Pratt (KMP) [15–17] based hard-
ware. To save more states, KMP and AC are simpli-
fied from RE DFA by disabling their regular
expression patterns. Each AC DFA supports multi-
ple simple patterns, and each KMP DFA support
single simple patterns only. Thus, many KMP
DFAs use duplicated hardware to support multiple
patterns.

As for NFA based hardware, there are two vari-
ations: comparator NFA [18,19], which uses the dis-
tributed comparators, and decoder NFA [20], which
the uses the character decoder (shared decoder) to
build their NFA circuits.

Other existing non-DFA based hardware are the
parallel comparator [21–23], Bloom filter [24], sys-
tolic array [25] and parallel-and-pipeline [26] hard-
ware in our classification. Parallel comparator
based hardware improves the performance of brute
force algorithm by exploiting architecture parallel-
ism and pipelining. Bloom filter based hardware
uses multiple hashing keys for quick approximate
matching. Using systolic array implementing
dynamic programming for string matching is only
proper for short patterns and text because the cir-
cuit size is proportional to the length of the patterns
and text. Parallel and pipeline hardware uses naı̈ve
string matching and only accelerates processing
time by increasing the hardware circuits. Like the
systolic array, this approach also has the drawback
of only being suited for short-length patterns.

3. SAM design

Although bitmap AC has the good worst-case
matching time complexity in O(n), this is insufficient
for high speed processing. In this paper, we present
a scalable automaton matching (SAM) that is built
on an embedded based system and applied to a net-
work gateway to perform deep content filtering as



Fig. 3. Packet inspection gateway with SAM coprocessor, which
performs two techniques: root-indexing matching for the root
state and the pre-hashing matching for the non-root states before
the AC matching.
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shown in Fig. 3 SAM employs two techniques:
novel pre-hashing for the non-root state and root-
indexing for the root state to accelerate automaton
based algorithms. The pre-hashing approach is a
quick scanning for the non-root state to avoid the
time-consuming automaton matching. First of all,
the idea is hashing the substring of text and compar-
ing the result with the vector for the suffixes of the
state in the bitmap AC automaton. If a non-hit
occurs, the slow automaton matching is not
required. For the root state, the root-indexing
approach uses a compressed technique to remember
all the next states whose lengths are counting from
the root state, less than l (l > 1). Thus, multiple
bytes of length l, rather than one byte, can be han-
dled in one single matching for the root state to
accelerate the matching speed. Actually, since the
root state is often visited in the matching operation,
the root-indexing approach is an effective accelera-
tion approach.

3.1. Root-indexing matching

In the AC tree, most of the failure links point to
the root state, i.e., it will always go back to the root
state when there is no next state for a given charac-
ter. Thus, it is efficient to apply root-indexing in the
root state where it can match multiple characters
simultaneously. In Fig. 4, root-indexing comprises
kroot index tables IDX[1, . . .,kroot] and a root next
table NEXT, where kroot denotes the maximum
length of root-indexing matching at the same time.
Each entry of IDX stores a partial address for locat-
ing the next state in NEXT.
For example, if patterns are ‘‘TEST’’, ‘‘THE’’
and ‘‘HE’’, IDX1 to IDX4 will at least contain the
appearing characters in the corresponding position
as {‘‘H’’,‘‘T’’} for level one, {‘‘E’’,‘‘H’’} for level
2, {‘‘E’’,‘‘S’’} for level 3, {‘‘T’’} for level 4, respec-
tively. However, since the latter tables are required
to contain the entries of former tables, IDX1 to
IDX4 will actually contain {‘‘H’’,‘‘T’’}, {‘‘E’’,‘‘H’’,
‘‘T’’}, {‘‘E’’,‘‘H’’,‘‘S’’,‘‘T’’} and {‘‘E’’,‘‘H’’,‘‘S’’,
‘‘T’’}, respectively.

In numbering the entries of IDX tables, the first
IDX has 2 appearing characters and thus, ‘‘H’’
and ‘‘T’’ are numbered ‘‘01’’ and ‘‘10’’ in the binary
format, respectively. The second IDX table using
‘‘01’’, ‘‘10’’ and ‘‘11’’ stands for {‘‘E’’,‘‘H’’,‘‘T’’},
respectively. The NEXT table, indexed by a concat-
enation address of lookup value from the all the
IDX tables, is used to store all the next states within
length kroot. In the example of Fig. 4,
10_01_001_000, 10_01_011_100, 10_10_001_000
and 10_11_000_000 are concatenation addresses to
locate the next states for ‘‘TEE’’, ‘‘TEST’’, ‘‘THE’’
and ‘‘TT’’, respectively.

3.2. Pre-hashing matching

The pre-hashing method can quickly examine the
existence of next states to further avoid slow AC
matching. Before the pre-hashing matching, it is
necessary to build the pre-hashing bit vector in
the preprocessing phase. First, we input the AC
tree, which was built using conventional AC algo-
rithm. For each state, we extract suffixes with the
length 1.
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When suffixes are obtained, the pre-hashing algo-
rithm hashes suffixes into bit vectors. This proce-
dure of building the bit vectors for state 1 is
illustrated in Fig. 5a. In Fig. 5b and c, the mask
of the rightmost four bits of the characters and
the transformation from binary to one-hot represen-
tation are used as the hash function in our design.
However, a better mask position is adjustable for
a lower false positive according to the characteris-
tics of the patterns.

In pre-hashing matching, the pre-hashing unit
reads a byte substring and then hashes the sub-
string. The hash result will be indicated by the
pre-hashing unit. When the pre-hashing unit indi-
cates a non-hit, the next state will be obtained from
the root-indexing unit. However, if the hit condition
is indicated by the pre-hashing unit, a slow bitmap
AC matching will be performed.
3.3. System architecture

A preferable searching architecture is suggested
in Fig. 6, where a string matching coprocessor per-
forms three independent matching units in parallel.
Hence, the control logic coordinates pre-hashing,
root-indexing and bitmap AC matching for parallel
processing. Also each matching function has its
individual memory interface to access its pre-pro-
cessing data. Since the design methodologies of
SoC are popular and have matured in recent times,
this specific component is quite feasible for use in
modern IC technology.

In the SAM coprocessor, the three units can read
the text in different lengths and perform their
matching concurrently. This example processes a
one-byte substring for AC matching, a two-byte
Fig. 5. (a) AC tree of state 1 for building the bit vector. (b) and
(c) example of building the bit vector for length 1 and length 2
suffixes of state 1 in the preprocessing phase.
substring for pre-hashing matching, and a four-byte
substring for root-indexing matching in a single
matching iteration. The root-indexing and bitmap
AC are used to locate the next states, and the pre-
hashing matching is used to decide on which is the
next state to be used in the next matching iteration.

4. SAM implementation

4.1. Pre-processing and simulation software

The pre-processing procedure generates essential
data structures for the proposed hardware, as
shown in Fig. 7a. The Make_Goto() and Make_
Failure() functions are original functions defined
by the AC algorithm, and our data structures were
further on built according to the table constructed
from these two basic functions. For bitmap AC,
the Make_Bitmap() function builds a 256-bit bit-
map for each state and sets 1 to the corresponding
bit position for each existing next state. It also
builds the next state table for each state. The next
function is Build_Index() which builds the
IDX[1,. . .,k] tables and root next table NEXT for
root-indexing pre-processing. In the final stage,
Build_BitVector() sets 1 to the bit vector by hashing
the function according to all the next states of both
the current state and the recursive failure node for
pre-hashing preprocessing.

After the pre-processing procedure is finished,
the simulation of SAM can perform matching
according to the flow in Fig. 7b. For every matching
iteration, the first current state is checked. When the
current state is in the root state, the Root-Index()

matching is performed otherwise Pre-Hash() is
performed.
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If Pre-Hash() reports a non-hit situation, the
current state will be set to the root state directly,
and will do root-indexing matching. If a hit situa-
tion is reported, Search_Bitmap() will check the
existence of the next state for a given byte. If
Search_Bitmap() = 1, the next state will be obtained
from the base address pointer of the next state table
plus the return value of Bitmap_offset(). Note that
if Search_Bitmap() reports zero, the current state
will be set to the failure state in the while loop until
the current state becomes the root state. This C
model can be the golden model for the proposed
hardware design, and it can also be used to gather
statistics for performance analysis.
4.2. Root-indexing and pre-hashing functions

Since bitmap AC has been done in previous
work, its detailed function implementation is not
described in this paper, and only the important
root-indexing and pre-hashing functions are dis-
cussed. In pre-processing, procedures Build_Index()

and Build_BitVector() are the two important
functions.

The root-indexing technique comprises kroot root
index tables IDX ½1;...;kroot� and a root next table
NEXT, where kroot denotes the maximum length
of root-indexing matching. Each entry of IDX stores
a partial address for locating the next state in
NEXT, where the partial address is a sequential
integer to represent the order of characters appear-
ing in the corresponding substrings in the suffixes of
the root state.

In the pre-processing of the root-indexing, Buil-

d_Index(S) is first invoked to build IDX ½1;...;kroot� as
Fig. 8. The length of input text and the number of
IDX tables are equal to kroot. This function builds
the IDX table from IDX1 to IDX kroot . It first per-
forms IDXj[x] 0 to initialize the current IDX table
and then performs IDXj+1[x] IDXj[x] to bring the
later IDXj to the former IDXj�1, and, finally, per-
forms IDXj[aj [x]] q to set the index value from
the current character of the suffixes, where a are
the suffixes of S0, such that a from a set of possible
transition paths from root state S0 to the states
within length kroot, and can be defined as
a g(S0,kroot). The xth suffix of length j in a will
be indexed into the entry by IDXj[aj[x]] and num-
bered by an increasing value q. If the corresponding
entry in IDXj appears in suffixes aj[x], q will be put
into that entry and increased by one.

S is the set of all AC states, and jSj is the number
of states built by conventional AC algorithm from a
set of multiple patterns P. Let bi,j be the set of suf-
fixes of length j for state Si, and bi,j,x represents the
xth suffix in length j for state Si. A transition func-
tion g can collect the possible bi,j from Si to the
states with length j.

Build_BitVector(S) builds the pre-hashing bit
vector in the preprocessing phase, as seen in
Fig. 9. This function first inputs the AC tree that
is built by the conventional AC algorithm. Then,
it extracts suffixes bi within the length kpre-hash for
the specific state Si by using g(Si,kpre-hash), where
kpre-hash is the maximum length of the pre-hashing
suffixes, and is also the length of the substring in
the text for each pre-hashing matching. bi also
includes the failure links in the AC tree. When suf-
fixes are obtained, the pre-hashing algorithm hashes



Fig. 9. Function for building pre-hashing bit vectors.

Fig. 11. Function for pre-hashing matching.
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the suffixes into bit vectors by Vi,j Hj(bi,j,x), where
Hj is a hashing function for the corresponding bit
vector Ve,j and the same Hj is used for all states.

4.3. Matching functions

In the matching phase of root-indexing, Root_In-

dex(z) inputs a substring of the text z to locate the
new state Sc in parallel, and is defined in Fig. 10.
The lookup operation inputs z[j] into IDXj(z[j]) to
generate a NA, repeatedly, which is defined as
NA NA�IDXj[z[j]], where symbol � is a concate-
nation operation. When NA is obtained, Sc is then
looked up by NEXT[NA].

In the searching phase, the pre-hashing performs
Pre � Hash(w,Vc) to rapidly match the current state
in the AC tree, as shown in Fig. 11, where w is the
current compared substring of the text, and Vc is
the current bit vector.

The operation TNj Hj(w[1,. . .,j])&Vc,j per-
forms the bitwise AND (&) for Hj(w[1,. . .,j]) and
Vc,j, in order to return a true non-hit TNj for length
j. TNj is 1 (True) if the hashed w[1,. . .,j] bit is set in
Vc,j. The pre-hashing matching returns False (no

match) when ^
kpre-hash

j¼1
TN j 6¼ 1, where the operation
Fig. 10. Function for root-index matching.
^
kpre-hash

j¼1
is a conditional AND for multiple TNj whose

amount is kpre-hash. This means that the longer w will
not be further matched when the shorter w is not
matched.
4.4. Hardware implementation

Xilinx ML310 is a FPGA based platform for
SAM system as shown in Fig. 12. This platform
has 2448 Kbits internal block RAM, 30816 LUTs
and two hardwired IBM PPC405 processors. For
the peripheral, ML310 has one Ethernet port, one
PCI slot for additional NIC extension, one 256
MB DDR RAM module and one CF card to store
the image of the file system. During the operation,
the packets are inputted from the on board Ethernet
port, and processed by the PPC 405 CPU. Of
course, if the SAM is implemented, the deep packet
inspection of the packets is offloaded to SAM
engine.

For the development tools, the Xilinx EDK and
Synplicity SynplifyPro are used in the system imple-
mentation. The EDK can generate the bit streams
Fig. 12. Development platform for the SAM implementation.
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Fig. 14. The finite state machine of SAM hardware.
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from the hardware/software co-design files of
SRAM implementation. For the software design,
the files include the mapping address define files
and the drivers of all peripherals needed for building
the complete RTOS image. For the hardware
design, the Verilog is used to design string matching
hardware, then ModelSim and Debussy are the sim-
ulator and debugger tools, respectively, to verify the
SAM design.

The proposed architecture is a parallel design
where all modules are working at the same time.
The block diagram of the hardware implementation
has the following major modules as shown in
Fig. 13.

• FSM Unit controls the working flow of the whole
hardware system.

• Root-Indexing Unit is used for fast state indexing
at the root state.

• Pre-Hashing Unit tests the bit vector for two
input bytes by hashing function and sending the
hashing result to FSM.

• Bitmap AC Unit counts all 1s for locating the
next state.

• SM Controller Unit provides the control registers
including the length of text buffer and enable the
signal for the software to program.

The most important module in SAM hardware
is the FSM Unit. Once the SM controller Unit is
enabled, FSM Unit controls all other modules
in parallel and its detailed operations are given in
Fig. 14. In the FSM diagram, the starting state is
the IDLE state. When the control signal is enabled,
the FETCH state fetches a waiting text if the text
SM
Controller

FSM

Root-
Indexing

Unit

Index Table

Pre-Hashing
Unit

Bitmap AC
Unit

control

root_state

root_index_en

pre_hash_en

ac_match_en

data

root_index_over

state#

hit

        no_hit

            ac_match_over

failure

offset

text_buffer_1

text_buffer_2

current
state

register

bitmap

interrup

B
us

t

addr

data       pre_hash_over

Fig. 13. The block diagram of proposed matching architecture.
buffer is empty. Otherwise, the MATCH state will
enable Root-Indexing Unit, Pre-Hashing Unit, and
Bitmap AC Unit simultaneously.

If the current state is a root or the result of pre-
hashing is non-hit, FSM Unit moves to ROOT_-
MATCH to keep the Root-Indexing Unit working.
Once the root-indexing matching is done, the cur-
rent state will be assigned by Root-Indexing Unit

at SET_ROOT_IDX state. Afterward, the FSM

Unit will return to MATCH state to match subse-
quent texts. When a hit situation is reported, the
Bitmap AC Unit and Root-Indexing Unit are trig-
gered in AC_MATCH state, and the next state is
assigned by root-indexing module if the current
state of AC is required to set to root by failure link.
Otherwise, the next state is provided by the Bitmap

AC Unit.
As for the pattern updating, SAM can update

patterns without interrupting the operation or shut-
ting the machine down. Since the pattern is stored in
the programmable memory, with the size of the cur-
rent pattern sets and the download speed, the pat-
tern data can easily be updated in a flash and
thus, there is no need to shutdown the machine.
In addition to that, SAM can also support the
non-interrupting (incremental) update if the data
structure of the SAM is ordered by state number.
5. Evaluation

5.1. Formal analysis

If pre-hashing, root-indexing and bitmap AC are
to run as the sequential algorithm, the average time
is

T avg time ¼
T hash þ P root � T root þ ð1� P rootÞ � T AC

ðkroot � P rootÞ þ ð1� P rootÞ
;

ð1Þ



a

b

Fig. 15. (a) Proot simulation for length 1–4 and Ptn from 0.1 to
0.9. (b) The values for the diagram (a).
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where Tavg_time is the average time to process a byte,
Thash is the pre-hashing matching time, Proot is the
probability of using the root-indexing matching,
Troot is the root-indexing matching time, and TAC

is the AC matching time.
However, in the hardware, the pre-hashing, root-

indexing and AC can be performed in parallel, and
the computation of the next states in these three
units are independent. Thus, the average time can
be reduced to

T avg time ¼
P root � T root þ ð1� P rootÞ � T AC

ðkroot � P rootÞ þ ð1� P rootÞ
: ð2Þ

The number of state skipping depends on the pat-
tern sets (form of automaton) and input data (net-
work traffic). Hence, the objective performance
should consider the average case.

Since AC matching is the critical path, the worst-
case time of SAM is equal to TAC, i.e.,

T worst time ¼ T AC: ð3Þ
The probability Proot is an average probability to
visit the root state and is equal to the average prob-
ability of the true non-hit. Proot is calculated by

P root ¼
Xkpre-hash

j¼1

P tnc j; ð4Þ

where Proot is computed by summing the condi-
tional probabilities of a true non-hit Ptnc_j, which
is the conditional probability of a true non-hit for
length j. Now, if the (j � 1)th pre-hashing is not
matched, then the jth pre-hashing function cannot
be matched either. Ptnc_j is determined from the
unconditional probability of a true non-hit Ptn_ j.
Ptn_1 is the first unconditional probability of a true
non-hit Ptn_ j, and can be obtained by

P tnc 1 ¼ P tn 1; ð5Þ
The subsequent Ptnc_ j for length j can be computed
by

P tnc j ¼ 1�
Xj�1

y¼1

P tnc y

 !
� P tn j; ð6Þ

where
Pj�1

y¼1P tnc y is a summing probability of the
previous Ptnc_ j. When the shorter suffix indicates a
true non-hit, the longer suffix definitely outputs a
true non-hit too. Hence, Ptnc_ j is computed by
subtracting the previous summing probabilityPj�1

y¼1P tnc y , and multiplying by Ptn_ j. Ptn_ j is the
unconditional probability of a true non-hit, which
is referred from [24] as
P tn j ¼ 1� 1

M

� �jbjj

; ð7Þ

where jbjj is the number of suffixes for the corre-
sponding length j, and M is the size of the bit vector.
Pre-hashing intends to improve the probability of a
true non-hit by increasing the non-matching suf-
fixes. Thus, using one hashing function for each
bit vector is sufficient and can significantly reduce
hardware cost and latency.

In Fig. 15, notation Ptn is the same as the previ-
ous Ptn_1 and Ptn_ j. In our observation, a higher Ptn

results in better matching performance because
fewer text bytes need to perform AC matching.
Fig. 15 shows the Proot value by computing Eq.
(4) and it obviously shows that a short length of suf-
fixes can also achieve an acceptable Proot whose
value is larger than 0.4. Therefore, setting the max-
imum suffix length kpre-hash to 2 is sufficient. For
example, when Ptn is set to 0.6 and kpre-hash is set
to 2, Proot is equal to 0.84.

For the space evaluation, we need first of all to
determine the bit vector size M. Since the probabil-
ity of a true non-hit is defined in Eq. (7), M can be
determined by given number of suffixes jbj and Ptn

as

M ¼ 1

1� p
1
jbj
tn

: ð8Þ

Fig. 16. shows that M increases exponentially as jbj
grows and thus, M is feasible when jbj is small.



a

b

Fig. 16. (a) The simulation result of bit vector size M for Ptn

from 0.1 to 0.9, with the number of suffixes jbj from 2 to 2048. (b)
The values for the diagram (a).
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The space requirement can be determined by
summing the bitmap AC space SizeAC, the pre-hash-
ing bit vector space Sizepre-hash, and the root-index-
ing space Sizeroot, as

Sizetotal ¼ SizeAC þ Sizeroot þ Sizepre-hash: ð9Þ

The original space requirement of bitmap AC, Si-
zeAC, is mainly dominated by the state table, which
is equal to the number of states jSj multiplied by the
state size Sizestate,

SizeAC ¼ jSj � Sizestate: ð10Þ

Each state size Sizestate includes one byte of state
information, the failure and next state address
Sizestate_address, and the size of the bitmap Sizebitmap

for locating the next state. Hence, Sizestate can be
determined by

Sizestate ¼ 1þ Sizestate address � 2þ Sizebitmap: ð11Þ

The pre-hashing size Sizepre-hash is determined fromPkpre-hash

j¼1 Mj, which is the size of all bit vectors for one
state, where Mj is a bit vector size for length j, and
kpre-hash is the maximum length of the pre-hashing.
jSj is the number of states. Thus, Sizepre-hash is ob-
tained from

Sizepre-hash ¼
Xkpre-hash

j¼1

Mj � jSj: ð12Þ

Sizeroot, which includes all root-indexing tables and
the root next table. The size of all root-indexing ta-
ble is 256 multiplied by kroot, and the root next table
is the number of the next state addresses multiplied
by the state address size Sizestate_address. The number
of root next state addresses is the cross product of
the number of appearing alphabets in the index ta-
bles IDXj and one zero entry. Sizeroot is formulated
as
Sizeroot ¼ 256� kroot þ prodkroot
j¼1 ðjIDX jj þ 1Þ

� Sizestate address: ð13Þ
5.2. Simulation analysis

This simulation analysis can determine the per-
formance of our simulation software. In our analy-
sis, the test contents are execution files in Linux and
Windows, as well as normal text files. The 32-bit bit
vector and 1000 virus patterns are used to evaluate
the proportion of root-indexing matching and bit-
map AC matching.

There are two important factors which can affect
the rate of the non-hit case. The first factor is the
number of patterns. As the number of patterns
increases, the branches of a node also increase. This
means that the performance will be degraded by
raising the rate of the hit portion. The second factor
is the size of the bit vector for pre-hashing matching.
The 8-bit bit vector is a choice for the development
environment when the memory resource is limited,
while the 32-bit bit vector has a better performance
when enough memory is available.

After analyzing these two key factors, the non-hit
rate for different sizes of the bit vector and the num-
ber of patterns in the three different data types are
shown in Fig. 17. As the pattern set increases, the
32-bit bit vector has a better relative improvement
than the 16-bit bit vector. In addition to the hit rate,
the false positive rate of pre-hashing matching is
also affected by the size of the bit vector. The false
positive will lead to a little penalty in the clock
cycles in the internal SRAM architecture.

For the proposed architecture, the 256-bit
bitmap, 32-bit bit vector, two 8-bit width IDX

table, one root next table, base address pointer of
the next state table and failure state pointer are
the data structures we used. Each state takes 384
bits and 336 bits to store data structures when the
representation bit of the state number is 32 and
16 bits, respectively. For the overall memory
usages, 303 kB and 265 kB are the combined mem-
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Fig. 17. The non-hit rate of 8-bit, 16-bit and 32-bit bit vectors for
(a) text files. (b) Windows execution files. (c) Linux execution
files.
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ory usages for vector size 32 and 16 bits,
respectively.

In addition to the above simulation, we also con-
ducted two simulations for the large patterns, which
are the static real patterns and the dynamic real net-
work traffic simulation. The static simulation of real
patterns assumes that the probability of non-hit for
the text (network traffic) is a uniform distribution,
i.e., the performance is no influence by network traf-
fic, and that the result can be obtained with the
equations of Section 5.1.

In this analysis, we chose the virus signatures
from http://www.clamav.net. Since the virus signa-
tures have a lot of patterns with long patterns as
well, such patterns are sufficient to evaluate the per-
formance of our SAM algorithm. The virus signa-
tures have 10,000 patterns and generate 402,173
states. When kpre-hash and kroot are both 2, and the
other parameters are assumed to be the same as
the above-mentioned setting, then the conditional
probabilities of true non-hit for length 1 and length
2 can be computed as Ptn_1 = 0.29 and Ptn_2 = 0.14.
According to Proot equation, the probability of root-
indexing matching is computed as Proot = 0.43.

As for the dynamic simulation of the real net-
work traffic, the SAM performance is actually not
only affected by the pattern sets but also the net-
work traffics. Thus, the over 120 MB ethereal cap-
tured data were selected as the text to evaluate the
above-mentioned URL patterns. Using the same
conditions (10,000 virus patterns) with static real
pattern simulation, Proot in the dynamic simulation
of the real network traffic is 0.49, which is close to
0.43 in the static simulation.
5.3. Hardware analysis and comparison

As previously mentioned, our approach is flexible
for both internal and external memory architecture.
External memory architecture is suitable for large-
pattern applications with modest throughput, such
as the anti-virus and anti-spam applications. On
the other hand, internal memory architecture can
be used for high performance with fewer patterns,
such as IDS and firewall applications.

The operating frequency of the synthesis result
for our internal SRAM architecture is 350 MHz as
reported by SynplifyPro. The root-indexing module
takes 2 clock cycles to index a mapping state. The
bitmap AC matching module takes 8 clock cycles
per operation. Thus, the throughput can be esti-
mated by the probability, frequency and processing
bits per cycle. The best case throughput, wherein no
byte has been matched, is 5.6 Gbps. The throughput
in the average case, depending on the average pro-
portion of the root-indexing matching and the bit-
map AC matching, can be estimated at 5.37 Gbps.
For the worst case, all bytes are matched in the text
buffer. The throughput is 1.56 Gbps.

It is obvious that the average case has a very high
performance, and is very close to that in the best
case. It also has moderate performance in the worst
case. This result demonstrates that our pre-hashing
and root-indexing techniques are robust for high-
performance packet inspection applications.

Compared to pure bitmap AC in hardware
design, 96% of bitmap AC matching can be avoided
by our two proposed techniques. This can be esti-
mated by the portion of root-indexing, false-positive
and non-hit cases at 96.18%. Furthermore, the
throughput of pure bitmap AC hardware in the
identical hardware environment can be estimated
at 440 Mbps. Thus, our throughput is almost 7.65
times faster than the original bitmap AC in the aver-
age case.

Since our design is memory based architecture, in
the implemented FPGA, Xilinx Virtex2P with speed
grade 6 consumed only 1,688 LUTs and 106 Block
RAMs, and are far less than that of other works.
Compared to memory-based architecture work
[17], the 384 bits of memory usage for each state is
much less than their 8192 bits which use 256 32-
bit pointers. Also, the operating frequency of
350 MHz does not decrease as the number and size
of patterns grow.

Since many related works [11,12,14,24–26]
employed the duplicate hardware for parallel pro-

http://www.clamav.net
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cessing, the two engine architecture of SAM would
be fair in this comparison. The double-engine
SAM requires a simple control finite state machine
(FSM) to coordinate the two single SAM control-
lers, and needs two extra cycles for each single
SAM operation. The double-engine SAM has a
slightly slow clock rate than the single engine
SAM. Moreover, our optimally utilized dual port
block RAM of the Xilinx FPGA not only doubles
the performance, but it does not increase an extra
block RAM.

The results demonstrate that our design has
throughput at 10.7 Gbps and a support pattern of
21,563 bytes.

We compared and analyze about 12 major hard-
ware from recent related works as shown in Fig. 18.
The common goals for such kind of hardware are to
pursue a higher throughput and a larger pattern
size, which are the major evaluated factors in this
comparison. Pattern sizes are used for measuring
scalability with the unit in byte, and the throughput
factor is used for measuring performance with the
unit in giga bit per second (Gbps).

Nevertheless, 21,563 bytes is not the largest
amount for the external memory version. The pro-
posed SAM architecture is scalable to support more
patterns with high performance, and SAM can be
implemented with external multiple memory banks.
Although external memory produces overhead for
memory access, ASIC hardware can often run at a
much higher speed than FPGA devices. For
instance, the previous example with 21,302 patterns
only ran at a clock rate of 800 MHz only to main-
tain about 10 Gpbs throughput with 35 MB mem-
Fig. 18. SAM comparison with the other string matching
hardware.
ory requirement, which is quite feasible in today’s
technology.
6. Conclusion

In this paper, we presented an architecture which
takes scalability, flexibility and performance into
consideration. Root-indexing and pre-hashing are
the acceleration techniques used to improve the per-
formance of our design. Also, our data structures
are compressed and stored in either the internal
SRAM or the external DRAM. The internal SRAM
architecture provides an average of 10.7 Gbps
throughput with the size limitation of patterns.
The external DRAM architecture provides high sca-
lability for the large number of patterns with accept-
able throughput.

The internal SRAM architecture is implemented
on the Xilinx Virtex2P FPGA-based platform. The
string matching function of the target application
ClamAV is also modified to set up the string match-
ing engine. We tuned the hardware design according
to the analysis results of our software simulation,
and also built a prototype system for packet inspec-
tion applications such as IDS, URL blocking and
ClamAV.

For a robust system evaluation, SAM should be
operated in a real network environment for our
future work. At the moment, the SAM implementa-
tion is a prototype system only and is not yet ready
for field trial evaluation.
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