
1

行政院國家科學委員會補助專題研究計畫成果報告
※※※※※※※※※※※※※※※※※※※※※※※※※
※ ※
※　 互斥問題之熱點衝突與路徑長度極小化　 　 ※
※　　　　　　　　　　　　　　　　　　　　　　　※
※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：þ個別型計畫　　□整合型計畫

計畫編號：NSC 89－2213－E－009－027－

執行期間：88年 8月 1日至 89年 7月 31日

計畫主持人：黃 廷 祿

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：國立交通大學資訊工程學系

中　華　民　國　89 年 10月 26日

2

行政院國家科學委員會專題研究計畫成果報告
互斥問題之熱點衝突與路徑長度極小化

 Minimizing Hot-spot contention and critical path length
for the mutual exclusion problem
計畫編號：NSC 89-2213-E-009-027
執行期限：88 年 8 月 1 日至 89 年 7 月 31 日
主持人：黃廷祿 國立交通大學資訊工程學系

E-mail address: tlhuang@csie.nctu.edu.tw

一、中文摘要

互斥問題為古典分散式演算法常被探
討之問題。針對熱點衝突之度量與路徑長
度兩者之積求其最佳化之演算法早已存
在，但這些演算法僅允許固定的二元樹狀
結構，因而無從調節兩個度量之互相消
長。吾人提出較具調節彈性之演算法，而
不失其最佳化之特性。

關鍵詞：互斥問題、熱點衝突、分散式演
 算法

Abstract

Optimal solutions exist for the mutual
exclusion problem minimizing the product of
two measures: 1) hot spot contention, or
maximal number of pending operations for
any individual variable in any execution of
the algorithm, and 2) critical path length, or
maximal number of remote memory
references executed by a process in one life
cycle. That the two measures constitute a
trade-off for the problem was also known.
However, the existing solutions achieve
optimality by enforcing a binary tournament
tree for the contending processes and
therefore permit no flexibility in the trade-off
between the two measures. We present the
first algorithm that permits flexibility in
fixing a desirable value of hot spot

contention while keeping critical path length
at the lowest possible level.

Keywords: Mutual Exclusion, Hot Spot
Contention, Distributed
algorithms

二、緣由與目的

Memory contention, the extent to which
processes access the same location
simultaneously, has long been recognized by
practitioners as one of the key factors that
slow down the execution of a shared memory
program, especially when the number of
processors is large. Hot spot contention, the
maximal number of pending operations for
any individual variable in any execution of
the algorithm, is of particular interest since it
is a simple measure of the worst contention
at any instant in the execution. To alleviate
hot spot contention, techniques of
tournament trees to limit the number of
contending requests had been widely used, at
the expense of increasing critical path length,
which is the maximal number of memory
operations executed by any process in one
life cycle. Despite its importance in practice,
until the recent formal model proposed by
Dwork et al. [1], complexity analysis of
memory contention for asynchronous shared

3

memory algorithms had not been adequately
addressed. With their formal model, a tight
bound Θ(log n), where n is the number of

processes, on the product of critical path
length and hot spot contention, for the one-
shot mutual exclusion problem was proved.
The product can be considered as an estimate
of the worst-case protocol delay for any
process in one life cycle. The problem,
however, is merely a part of the mutual
exclusion problem. We consider in this
article the mutual exclusion problem, the
solution to which is a necessity for resource
sharing in any multiprocessor system. The
previous lower bound Ω(log n) for the sub-

problem is necessarily a lower bound for the
full problem. Since there exist already binary
tournament tree-based mutual exclusion
algorithms that requires Ο(log n) on the

product, our algorithm is merely a new
member, not the first, of the class that
reaches optimality.

It is premature to suggest that one
measure clearly dominates the other in
affecting system performance in practice,
algorithms that permit flexibility in choosing
an appropriate value for hot spot contention
while keeping critical path length at the
lowest possible level are of general interest.
Prior optimal solutions [4, 5] require that the
tournament tree be binary, resulting in the
longest critical path length in the optimal
trade-off. Our algorithm not only permits
flexibility in fixing a value for hot spot
contention but also retains optimality in
minimizing the product of the two measures.

The algorithm assumes that both
compare&swap and fetch&store primitives

are available. Prior optimal solutions assume
only atomic read/write registers. Whether the
lack of flexibility in their part is inevitable
without the support of read-modify-write
registers is interesting but not yet
investigated.

Dwork et al. [1] proposed a formal
model of memory contention for
asynchronous shared memory algorithms. A
special type of algorithms is defined as a
wait-free protocol if it requires no waiting for
other processes in all executions. Three
measures intended to facilitate efficiency
analysis of any such protocol are contention,
hot spot contention and critical path length.
Contention is the ratio of the worst-case
execution's contention cost divided by n. An
execution's contention cost are the sum over
all processes of the numbers of memory
access stalls that were incurred by each
process in its execution of the protocol. Hot
spot contention is the maximal number of
pending operations for any variable in any
execution. It is meant to measure the
contribution of an individual variable to the
execution's contention cost. Critical path
length is the maximal number of memory
operations executed by any process in one
life cycle. The product of hot spot contention
and critical path length is intuitively the
worst-case protocol delay incurred by any
process in one life cycle.

For wait-free protocols using read-
modify-write primitives, the above
mentioned memory contention model is
accurate enough to make useful comparisons,
yielding several lower bound and tight bound
results for some well-known problems.

4

However, there are important problems that
admit no wait-free solutions even when read-
modify-write primitives are available. Mutual
exclusion and barrier synchronization, among
others, are problems whose solutions must
use some type of busy waiting, if shared
memory is the sole medium for
synchronization.

For those synchronization problems that
entail busy waiting, techniques of looping
only on local variables, or local spin, have
proved effective in shared memory systems
that allow each processor to declare part of
the global address space as its local area
which is mapped to some fast local memory
locations for the processor. If each processor
spins only on its local variables, there would
be no contention cost incurred by the
spinning since the local areas are non-
overlapping between any pair of processors.
One remote write is sufficient to wake up a
waiting processor. In order to facilitate
efficiency analysis for these algorithms in
real systems, we need to review how the
measure of the product (the protocol delay) is
taken. The delay experienced by a process in
a busy waiting loop depends largely on the
length of the application that other processes
are engaging at the moment. Little can be
done for protocol designers to reduce the
length of waiting delay. Therefore we should
not count the number of all memory
references (local or remote) of the worst-case
execution as the critical path length (which
can be arbitrarily large). We should count
only the number of references to remote
variables (which can be local variables of
others) as the critical path length.

compare&swap(r: public register, old, new :
 value) returns(value)

previous := r
if previous = old

then r:= new
fi
return previous

Figure 1: Compare&swap promitive.

type q-node = record
wait : Boolean int True;

 direct : Boolean int False;
 hold : Boolean int True;

Figure 2: Per Process data structures for the base
algorithm.

三、結果與討論
　　

It suffices to note that the lower bound
for one-shot mutual exclusion is necessarily
the lower bound for the full mutual exclusion
problem because a solution for the latter must
also solve the former. Proof of the lower
bound result for one-shot mutual exclusion
can be found in Dwork et al. [1].

Figure 3 is the base algorithm that will
be reused in the full-fledged algorithm. The
base algorithm decented from the circular
list-based algorithm (CL algorithm) by Fu
and Tzeng [3], with two important
improvements: deadlock freedom in entering
C region and lockout freedom in entering R
region.

Figure 2 shows the data structure of the
memory space that is allocated for each
process.

5

Figure 3: The base algorithm.

Here we explain how the algorithm
works. Let P be the process that is executing.
T1 is the initialization for q-node. T2 is to
contend for the privileged value nil at the
RMW register L. If P is the first to execute
the fetch&store, it will have the test result
``yes'' later at T3 and enter C region
immediately. Meanwhile, the unique address
of the P 's q-node (I) is stored at the RMW
register as part of the atomic operation at T2.
For those contending processes that have

been defeated at T2, each will be busy
waiting at T4 by a local spin on the wait bit
of its q-node. The winning process P will be
charged some controller duty. The popular
compare&swap primitive, see Figure 1, is
used by the current controller to decide
whether there are other processes interested
in entering critical section. If not, the nil
value is assigned to L and the controller has
nothing else to do. If so, the value of L is
returned and assigned to the private variable
next. That value is the address of some
process's q-node and that process will be
assigned as the next controller. The two other
bits (direct and hold) of each q-node are used
to transfer the duty of controller from the
current one to the next. The direct bit is to
inform the next controller that it is assigned
as such. The hold bit is to hold the next
controller at E10 until the current controller
finishes a run of wake-up operations and
executes E7. It is easy to observe from the
flowchart that a process will be able to leave
E region if it passes E6. A process cannot be
kept waiting indefinitely at E6 because the
fetch&store primitive regulates the q-node
addresses in such a way that the wake-up
signal sent by P at E5 is bound to come back
in finite steps as a signal to release P at E6.

Discussion

The base algorithm decented from work
by Fu et al. [3]. The full-fledged algorithm
reused the well-known idea of k-ary
tournament tree and succeeded in keeping hot
spot contention constant k. Prior solutions
require that k be two, while we allow an
arbitrary constant k. Hence, our solution
reveals the existence of a tight bound for the
trade-off that matches the intuition of

T1: q-node init

T2: next := fetch&store(L,I)

T3: next = nil?

T4: await not (I->wait)

E8: next->wait := false

E9: I->direct?

E10: await not (I->hold)

E1: next := compare&swap(L,I,nil)

E2: next = I?

E5: next->wait := false

E3: I->wait := true

E4: next->direct := true

E7: next->hold := false

E6: await not (I->wait)

C region

C region

R region

R region

start

R region

yes

no

noyes

yes

no

6

flexibility in the trading.

Like all known tournament tree-based
mutual exclusion algorithms, the full-fledged
algorithm does not enjoy bounded-bypass for
fairness. It enjoys lockout freedom, though.
The difficulty here is that although we do not
allow zero-speed process, we do allow high-
speed processes to take steps with no upper
limit. Those high-speed processes can ruin
any preset bound for bypass, if any kind of
tournament tree is used in order to reach
optimality in the trade-off.

四、計畫成果自評

本計畫大致上沿 Dwork、Herlihy 與
Waarts 在 1997 年 Journal of the ACM 的
文章[1]之方向，提出較具實用性調節功能
之改良，但不失其原有學理性之最佳化之
特性。自評在 Formalism 程度稍弱，演算
法尚缺正確性之嚴謹證明；在實用性方面
稍有改良。

五、參考文獻

[1] Cynthia Dwork, Maurice Herlihy and Orli Waarts.
Contention in shared memory algorithms.
Journal of the ACM, 44(6): 779-805, November
1997.

[2] Leslie Lamport. The Mutual exclusion problem –
Part I and II. Journal of the ACM, 33(2): 313-348,
April 1986.

[3] S. S. Fu and N.-F. Tzeng, A circular list-based
mutual exclusion scheme for large shared-
memory multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, vol . 6, no. 6,
pp. 628-639, June 1997.

[4] J. H. Yang and J. H. Anderson. A fast, scalable
mutual exclusion algorithm. Distributed
Computing, vol. 9, pp. 51-60, Spring-Verlag
1995.

[5] Yih-Kuen Tsay. Deriving a scalable algorithm for
mutual exclusion. In Proceeding of the 12th Int.
symposium on distributed computing (DISC’98),
Sep.1998.

	page1
	page2
	page3
	page4
	page5
	page6

