O U oo

b 0
NSC89 2213 E 009 027
88 8 1 8 7 31

89 10

26



Minimizing Hot-spot contention and critical path length

for the mutual exclusion problem
NSC 89-2213-E-009-027

88 8

1 89 7 31

E-mail address: tlhuang@csie.nctu.edu.tw

Abstract

Optimal solutions exist for the mutua
exclusion problem minimizing the product of
two measures. 1) hot spot contention, or
maximal number of pending operations for
any individual variable in any execution of
the algorithm, and 2) critical path length, or
remote memory
references executed by a process in one life

maximal  number  of
cycle. That the two measures constitute a
trade-off for the problem was aso known.
However, the existing solutions achieve
optimality by enforcing a binary tournament
tree for the contending processes and
therefore permit no flexibility in the trade-off
between the two measures. We present the
first agorithm that permits flexibility in

fixing a desrable value of hot spot

contention while keeping critical path length
at the lowest possible level.

Keywords. Mutual Exclusion, Hot Spot
Contention, Distributed
algorithms

Memory contention, the extent to which
processes access the same location
simultaneously, has long been recognized by
practitioners as one of the key factors that
slow down the execution of a shared memory
program, especially when the number of
processors is large. Hot spot contention, the
maxima number of pending operations for
any individual variable in any execution of
the algorithm, is of particular interest since it
is a simple measure of the worst contention
at any instant in the execution. To aleviate
hot spot contention, techniques of
tournament trees to limit the number of
contending requests had been widely used, at
the expense of increasing critical path length,
which is the maximal number of memory
operations executed by any process in one
life cycle. Despite its importance in practice,
until the recent formal model proposed by
Dwork et al. [1], complexity analysis of
memory contention for asynchronous shared



memory agorithms had not been adequately
addressed. With their forma model, a tight
bound O (log n), where n is the number of
processes, on the product of critical path
length and hot spot contention, for the one-
shot mutual exclusion problem was proved.
The product can be considered as an estimate
of the worst-case protocol delay for any
process in one life cycle. The problem,
however, is merely a part of the mutua
exclusion problem. We consider in this
article the mutual exclusion problem, the
solution to which is a necessity for resource
sharing in any multiprocessor system. The
previous lower bound Q (fog n) for the sub-
problem is necessarily a lower bound for the
full problem. Since there exist already binary
tournament tree-based mutual exclusion
algorithms that requires O (log n) on the
product, our agorithm is merely a new
member, not the first, of the class that
reaches optimality.

It is premature to suggest that one
measure clearly dominates the other in
affecting system performance in practice,
algorithms that permit flexibility in choosing
an appropriate value for hot spot contention
while keeping critical path length at the
lowest possible level are of general interest.
Prior optimal solutions [4, 5] require that the
tournament tree be binary, resulting in the
longest critica path length in the optimal
trade-off. Our algorithm not only permits
flexibility in fixing a vaue for hot spot
contention but also retains optimality in
minimizing the product of the two measures.

that both
compare&swap and fetch&store primitives

The agorithm assumes

are available. Prior optimal solutions assume
only atomic read/write registers. Whether the
lack of flexibility in their part is inevitable
without the support of read-modify-write
registers is interesting but not yet
investigated.

Dwork et a. [1] proposed a formal
model of memory contention  for
asynchronous shared memory algorithms. A
specia type of agorithms is defined as a
wait-free protocol if it requires no waiting for
other processes in al executions. Three
measures intended to facilitate efficiency
analysis of any such protocol are contention,
hot spot contention and critical path length.
Contention is the ratio of the worst-case
execution's contention cost divided by n. An
execution's contention cost are the sum over
all processes of the numbers of memory
access dtals that were incurred by each
process in its execution of the protocol. Hot
spot contention is the maximal number of
pending operations for any variable in any
execution. It is meant to measure the
contribution of an individual variable to the
execution's contention cost. Critica path
length is the maxima number of memory
operations executed by any process in one
life cycle. The product of hot spot contention
and critical path length is intuitively the
worst-case protocol delay incurred by any
processin one life cycle.

For wait-free protocols using read-
modify-write  primitives, the  above
mentioned memory contention model is
accurate enough to make useful comparisons,
yielding several lower bound and tight bound
results for some well-known problems.



However, there are important problems that
admit no wait-free solutions even when read-
modify-write primitives are available. Mutual
exclusion and barrier synchronization, among
others, are problems whose solutions must
use some type of busy waiting, if shared
memory is the sole medium for
synchronization.

For those synchronization problems that
entail busy waiting, techniques of looping
only on loca variables, or local spin, have
proved effective in shared memory systems
that allow each processor to declare part of
the global address space as its local area
which is mapped to some fast local memory
locations for the processor. If each processor
spins only on its local variables, there would
be no contention cost incurred by the
spinning since the local areas are non-
overlapping between any pair of processors.
One remote write is sufficient to wake up a
waiting processor. In order to facilitate
efficiency anaysis for these agorithms in
real systems, we need to review how the
measure of the product (the protocol delay) is
taken. The delay experienced by a processin
a busy waiting loop depends largely on the
length of the application that other processes
are engaging at the moment. Little can be
done for protocol designers to reduce the
length of waiting delay. Therefore we should
not count the number of al memory
references (local or remote) of the worst-case
execution as the critical path length (which
can be arbitrarily large). We should count
only the number of references to remote
variables (which can be local variables of
others) asthe critical path length.

compare& swap(r: public register, old, new :
value) returns(value)

previous :=r
if previous=old
then r:= new

fi
return previous

Figure 1. Compare& swap promitive.

type g-node = recor d
wait : Boolean int True
direct : Boolean int Fasg
hold : Boolean int True

Figure 2: Per Process data structures for the base
algorithm.

It suffices to note that the lower bound
for one-shot mutual exclusion is necessarily
the lower bound for the full mutual exclusion
problem because a solution for the latter must
aso solve the former. Proof of the lower
bound result for one-shot mutua exclusion
can be found in Dwork et a. [1].

Figure 3 is the base agorithm that will
be reused in the full-fledged algorithm. The
base algorithm decented from the circular
list-based agorithm (CL agorithm) by Fu
and Tzeng [3], with two important
improvements: deadlock freedom in entering
C region and lockout freedom in entering R
region.

Figure 2 shows the data structure of the
memory space that is alocated for each
process.



start

—

‘ T1: g-nodeinit ‘

!

R region

‘ T2: next := fetch& store(L,1) ‘

< T4: await not (|->vvait)>

"C region

‘ E8: next->wait ;= fase ‘

E9: |->direct?

E10: await not (I->hold)

4 Y

‘ EL: next := compare& swap(L,|,nil) ‘

Rregion yes @

no

Cregion

‘ E3: I->wait := true ‘

v

‘ E4: next->direct := true ‘

‘ E5: next->wait ;= fase ‘

Y

( E6: await not (I->wait) )

v

| E7:next>hold =fdlse |
R region ‘

Figure 3: The base algorithm.

Here we explain how the algorithm
works. Let P be the process that is executing.
T1 is the initidization for g-node. T2 is to
contend for the privileged value nil a the
RMW register L. If Pis the first to execute
the fetch&store, it will have the test result
“yes' later a T3 and enter C region
immediately. Meanwhile, the unique address
of the P's g-node (1) is stored at the RMW
register as part of the atomic operation at T2.
For those contending processes that have

been defeated at T2, each will be busy
waiting at T4 by aloca spin on the wait bit
of its g-node. The winning process P will be
charged some controller duty. The popular
compare&swap primitive, see Figure 1, is
used by the current controller to decide
whether there are other processes interested
in entering critical section. If not, the nil
value is assigned to L and the controller has
nothing else to do. If so, the value of L is
returned and assigned to the private variable
next. That value is the address of some
processs g-node and that process will be
assigned as the next controller. The two other
bits (direct and hold) of each g-node are used
to transfer the duty of controller from the
current one to the next. The direct bit is to
inform the next controller that it is assigned
as such. The hold bit is to hold the next
controller at E10 until the current controller
finishes a run of wake-up operations and
executes E7. It is easy to observe from the
flowchart that a process will be able to leave
E region if it passes E6. A process cannot be
kept waiting indefinitely at E6 because the
fetch& store primitive regulates the g-node
addresses in such a way that the wake-up
signal sent by Pat E5 is bound to come back
in finite steps asasignal to release Pat E6.

Discussion

The base agorithm decented from work
by Fu et a. [3]. The full-fledged algorithm
reused the well-known idea of kary
tournament tree and succeeded in keeping hot
spot contention constant k. Prior solutions
require that k be two, while we alow an
arbitrary constant k Hence, our solution
reveals the existence of atight bound for the
trade-off that matches the intuition of



flexibility in the trading.

Like all known tournament tree-based

mutual exclusion algorithms, the full-fledged
algorithm does not enjoy bounded-bypass for
fairness. It enjoys lockout freedom, though.
The difficulty here is that although we do not
allow zero-speed process, we do allow high-
speed processes to take steps with no upper
limit. Those high-speed processes can ruin
any preset bound for bypass, if any kind of
tournament tree is used in order to reach
optimality in the trade-off.

Dwork Herlihy

Waarts 1997 Journal of the ACM

11

[21

[31

[41

[51

[1]

Formalism

Cynthia Dwork, Maurice Herlihy and Orli Waarts.
Contention in shared memory agorithms.
Journal of the ACM, 44(6): 779-805, November
1997.

Ledie Lamport. The Mutual exclusion problem —
Part | and I1. Journal of the ACM, 33(2): 313-348,
April 1986.

S. S. Fu and N.-F. Tzeng, A circular list-based
mutual excluson scheme for large shared-
memory multiprocessors. |EEE Transactions on
Parallel and Distributed Systems, vol . 6, no. 6,
pp. 628-639, June 1997.

J. H. Yang and J. H. Anderson. A fast, scalable
mutual  exclusion  agorithm.  Distributed
Computing, vol. 9, pp. 51-60, Spring-Verlag
1995.

Yih-Kuen Tsay. Deriving a scalable algorithm for
mutual exclusion. /n Proceeding of the 12" Int.
symposium on distributed computing (DISC’98),

Sep.1998.



	page1
	page2
	page3
	page4
	page5
	page6

