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Abstract

Process precision index C, has been widely used in the manufacturing industry to provide numerical measures of process precision,
which essentially reflects product quality consistency. Precision measures using C, for normal processes, contaminated normal processes,
have been investigated extensively, but are neglected for truncated normal processes. Truncated normal processes are common in the
manufacturing industry, particularly, for factories equipped with automatic machines handling fully inspections, and scrap/rework prod-
ucts falling outside the specification limits. If the processes follow the normal distribution, then the inspected products (processes) must
follow the truncated normal distribution. In this note, we consider the precision measure for truncated normal processes. We investigate
the analytically intractable sampling distribution of the estimated Cp,, and obtain a rather accurate approximation. Using the results, we
develop a practical testing procedure for practitioners to use in their in-plant applications.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Process capability indices, which establish the relation-
ships between the actual process performance and the man-
ufacturing specifications, have been the focus of recent
research in quality assurance and process capability analy-
sis. The precision index C, is the first process capability
index appeared in the literature, which is defined in Kane
[9] as:

_ USL-LSL
a 60 ’

where USL and LSL are the upper and lower specification
limits, and ¢ is the process standard deviation. The index
C, was designed to measure the magnitude of the overall
process variation relative to the manufacturing tolerance,
which is used for controlled normal processes. Clearly,
the index measures the manufacturing precision, which re-
flects product quality consistency (uniformity), an impor-
tant criterion for judging manufacturing quality. A small
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value of C, implies that the product quality is not consis-
tent causing complaints from the customers not only dam-
aging marketing potentials but also more cost for repair.
The use of the capability indices was first explored
within the automotive industry. Ford Motor Company
[7] has used C, to keep track of the process performance
and to reduce process variation. Recently, the manufactur-
ing industries have been making an extensive effort to
implement statistical process control in their plants and
supply bases. Capability indices have received increasing
usage not only in capability assessments, but also in the
evaluation of purchasing decisions, which are becoming
the standard tools for quality report. Proper understanding
and use of them are essential for the company to maintain
capable product supplies. Process precision measures using
C,, for normal or contaminated normal processes based on
one single, multiple, (X, R), or (X, S) control chart samples,
have been investigated extensively. Examples include Kane
[9], Cheng and Spiring [2], Chou and Owen [3], Kirmani
et al. [10], Kocherlakota [11], Pearn et al. [13], Pearn
et al. [14], Pearn and Wu [15], Pearn et al. [16], and Pearn
and Chang [12]. But, research in precision measure using
C, has been neglected for truncated normal processes.
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Truncated normal processes are common in the manufac-
turing industry, particularly, for manufacturing factories
equipped with automated inspection systems handling fully
inspections. Products falling outside the manufacturing
specification limits must be scrapped or reworked. If the
manufacturing process follows the normal distributions,
then the inspected products (process) must follow the trun-
cated normal distributions. Clearly, product uniformity
would be the primary concern rather than the process yield.

2. Truncated processes

In the manufacturing industry, particularly, for those
making electronics accessories such as resistors, induc-
tances, capacitances, smart fuses, electronic system protec-
tion components, the factories often set the manufacturing
specifications more stringent than what the customers have
requested to ensure product reliability and safety. In those
cases, automatic inspection machines are often equipped to
handle fully inspections. Products falling outside the man-
ufacturing specification limits are scrapped or reworked. In
other cases, the factories may have several customers
requesting different specifications. Products must be sorted
according to the customer’s specifications. The factories
only ship products to the customer that is within each cus-
tomer’s specifications. If the manufacturing process follows
the normal distribution, then the inspected products must
follow the truncated normal distribution. Figs. 1 and 2
depict a typical normal and the associated truncated
processes.

Due to the truncation, the usual normality characteristic
no longer exists for the data, even if the original process is
normal, creating a problem when the customer attempts to

—
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Fig. 1. A normal process.
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Fig. 2. A truncated normal process.

assess process precision using the defined precision formula
with the truncated data. A popular approach for handling
the non-normal distribution is to first transform the non-
normal data into normal one then apply the existing meth-
ods to the transformed data using the z-scores. Existing
transformation techniques include Box—Cox power trans-
formation [1], Johnson transformation [8], and Gilchrist
quantile transformation [5]. Chou et al. [4] applied the
Johnson transformation to convert the truncated normal
data into the normal one to measure process capability.
Those transformations provide easy ways to deal with
non-normal distributions, but lack of theoretical justifica-
tion. Further, it is difficult to interpret the results since
the transformed data may have lost the important charac-
teristics of the original distribution.

3. Distribution of the estimated C, for truncated processes

For the truncated normal processes, we consider the fol-
lowing natural estimator, where G2 (estimated variance) is
defined to be > (X; —)_()2/(11 -1)

6'p _ USL - LSL.

60

If we denote the truncated normal distribution truncated at
(a, b), a < x <b, as N(u, ¢*)|", then the probability density
function of N(x, ¢*)|” can be expressed below, where & is
the cumulated distribution of N(0,1). Exact probability
density and the distribution functions of C, are difficult
to find. We will apply the Edgeworth expansion technique
[6] to derive a rather accurate approximation

) = ﬂ#_(p exp (35017

Je(5)-+(5")

3.1. Edgeworth approximation

For a random variable Y with zero mean and unit var-
iance, the second-order Edgeworth approximation of the
probability density function and the cumulative distribu-
tion function of Y, denoted f and F, respectively, can be
written as

10) =00 14 §psH0) 4 350 s0) + 73031600 .

m
FO) = 00) - $0){ gosHa0) + 350a0) + 3038150
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where ¢ and @ stand for the probability density function
and the cumulative distribution function of N(0, 1), and
H,, Hs, Hy, Hs and Hg are the Hermite polynomials
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defined below, where p; = E(Y?) and p, = E(Y*) — 3 are
the 3rd and 4th order moments of Y, respectively.

Hy(y) =y =1, Hi(y)=»'=3y, Hi(y)=y"-67+3,
Hs(y) =y’ — 10y° + 15y, Hg(y) =° — 15" +45)* — 15.
Let (X}, X5,. .., X,,) be a random sample from N(0, 1)|Z

The second-order Edgeworth approximations of the prob-
ability density function and the cumulative distribution
function of C can be obtained as follows: (i) find the first
eight moments of X distributed as N(0,1)|, (i) let
U=>",X;—X)" and find the first four moments of U,
denoted w;, i=1,...,4, (iii) let Y= (U — p;)/a, where o7
is the variance of U, and find the parameters p; and p4 in
Egs. (1) and (2), (iv) find fy(y) and Fy(y) in Egs. (1) and
(2). Since C, = (USL —LSL)/6G = vn— 1(USL — LSL)/
(6\/7—071—;71 ), then the approximate cumulative distribu-
tion function and probability density function of C are
of the following forms, for w > 0,

Fe (w) = prob(Cp < w)

pmb<\/ [(USL - LSL) _ W)
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Therefore,
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where r = (W - ,u1>/01
For random sample (X1,  X,,..., X,) taken from
N(u, 902)|2 with upper specification limit USL and lower
specification limit LSL, we have the following propositions.
Propositions

(1) Let(Z,, Zs,. .., Z,)be a random sample from N (0, 1)\f
with ¢=(a — ,u)/qo and d=(b— we. Also, let
U=TL® =X, V=SL@-2 Y=
(U~ w)/oy and Y =(V — )/, where p; = E(U),

= Var(U), u, = E(V) and o3 = Var(V). Then we
have u; = (pz,uz, o= q)zaz and the distributions of
Y and Y” are the same.

(2) Let f@p(w) and f@p(w) be the second-order Edge-
worth approximate cumulative distribution function
and probability density function of C, obtained in
Egs. (3) and (4) for the random sample from

N(O, 1)t|i Z)fz with upper specification limit
USL = (USL w)/¢ and lower specification limit

LSL = (LSL — u)/¢. Then, the second-order Edge-
worth approximate cumulative distribution function
and probability density function of C, are
Fe (w) =F¢ (w) and f¢ (w) = f¢ (w), respectively:

Fo,0 =1 (#0) = 60 {goutt)

+%P4H3(r) 712P3H5( )})
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(n —1)(USL — LSL) ,
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Fig. 3. Pdf plots for (a, b)

=(0, 3), (L.5, 2), (2, 2), from left to right, with n = 30.
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Fig. 4. Pdf plots for (a, b) = (0, 3), (1.5, 2), (2, 2), from left to right, with n = 50.

4. Accuracy of the approximation

To investigate the accuracy of the proposed Edgeworth
approximation, we perform some simulation study and
compare our Edgeworth approximation with the simulated
exact distribution. The comparisons are shown in Figs. 3
and 4, which include the plots of two probability density
function curves with sample sizes n = 30, 50, and the plot
of the y>-approximation to the probability density function
for reference, where the curve in (__) is the Edgeworth
approximation, the curve in (- -) is the simulated exact dis-
tributions, and the curve in (—- - ) is the y*-approximation
based on 10° replications,. The y*approximation is
obtained from treating the truncated N(0,1)|> as N(0,1).
It can be seen that as the sample size nreaches 50, the Edge-
worth approximation and the simulated exact distributions
are almost indistinguishable. In fact, even with n = 30 the
Edgeworth approximation is quite satisfactory for practical
purposes.
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Fig. 5. Plots of ¢y versus u for C, =1.00, « =0.05, n =30, 50, 70, 100,
200, 300 (top to bottom in plot).
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Fig. 6. Plots of ¢y versus u for C, =1.25, o =0.05, n =30, 50, 70, 100,
200, 300 (top to bottom in plot).
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Fig. 7. Plots of ¢y versus u for C, =1.45, o =0.05, n =30, 50, 70, 100,
200, 300 (top to bottom in plot).
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Fig. 8. Plots of ¢, versus u for C,, = 1.6, & = 0.05, n = 30, 50, 70, 100, 200,
300 (top to bottom in plot).

5. Precision testing with critical values

It should be noted that the Edgeworth approximation
involves the unknown parameter p, which must be esti-
mated in real applications. The estimation of u certainly
introduces additional sampling errors while calculating
the critical values for capability testing purpose, which
makes our approach less reliable. To examine the behavior
of the Edgeworth approximation against the parameter p,
we calculate the critical values for various values of pu.
The results are displayed in Figs. 5-8. For process follow-
ing N(y, goz)|(l), Figs. 5-8 plot ¢( against u for n = 30, 50, 70,
100, 200, 300 (top-bottom), and C=1.0, 1.25, 1.45, 1.6
with o = 0.05. The results are consistent for all « we exam-
ined. The results show that the critical values increase as

2279
Table 1
Critical values for C, = 1.0, 1.25 with n = 30(5)250
n (Cps @)
(1.0, (1.0, (1.0, (1.25, (1.25, (1.25,
0.01) 0.025) 0.05) 0.01) 0.025) 0.05)

30 2.794517 1.760149 1.626345 4.316283 3.16443 2.580338

40 2.36794 1.695656 1.544734 3.649149 2.718395 2.149509

50 1.939296 1.618963 1.44188  3.090662 2.300438  1.955648

60 1.739607 1.514651 1.378022 2.567752 2.091684 1.842099

70 1.621796 1.446652 1.334188 2.304392 1.963231 1.766068

80 1.541955 1.39775 1.301488 2.143279 1.875859 1.711496

90 1.484196 1.360873 1.27625 2.03464  1.812773  1.670765
100 1.440103 1.331843 1.256012 1.953766 1.763693 1.638086
110 1.404932 1.308206 1.239234 1.890281 1.723718  1.610926
120 1.376705 1.288818 1.225325 1.841312 1.692069 1.589104
130 1.353181 1.27245 1.213478 1.798154 1.663592  1.569188
140 1.332651 1.257978 1.202907 1.763002 1.639908 1.552421
150 1.315972 1.246108 1.194168 1.735264 1.620952  1.538862
160 1.300378 1.234907 1.185857 1.710594 1.603974  1.526613
170  1.287472 1.225556 1.178895 1.689546 1.589249  1.515966
180 1.275465 1.216804 1.172343 1.668838 1.574641 1.505294
190 1.264806 1.208968 1.166471 1.653491 1.563791  1.497254
200 1.255798 1.202312 1.161419 1.637769 1.552555  1.488986
210 1.246387 1.195365 1.156154 1.620875 1.540307  1.479918
220 1.238516 1.189506 1.151701 1.610325 1.532668 1.474234
230 1.231934 1.184568 1.147925 1.598137 1.523803  1.467589
240 1.22506  1.179396 1.143997 1.587806 1.51628 1.461932
250 1.218624 1.174554 1.140269 1.578308 1.509238  1.456618

the process mean u increases, but converges to a constant
as p increases to infinity.

For a fixed C,, we can show that as u goes to infinity,
the truncated distribution converges to the one with the fol-
lowing probability density function: It is not difficult to see
by mathematical calculation that the limiting distribution

Table 2
Critical values for C, = 1.45, 1.6 with n = 30(5)250
n (Cp, o)
(1.45, 0.01) (1.45, 0.025) (1.45, 0.05) (1.6, 0.01) (1.6,0. 025) (1.6, 0.05)
30 8.572409 5.343088 3.294039 11.446713 6.224281 3.821585
40 6.363363 3.536507 2.639193 8.38591 4.129412 2.987645
50 4.222455 2.860835 2.363412 5.095149 3.26171 2.65657
60 3.283793 2.556249 2.208911 3.781049 2.881282 2.470017
70 2.874418 2.377558 2.108354 3.274906 2.671544 2.354434
80 2.633257 2.256377 2.03555 2.975242 2.526123 2.268466
90 2.474914 2.169447 1.981041 2.787863 2.425927 2.206393
100 2.362937 2.104317 1.938902 2.648507 2.346255 2.155433
110 2.276493 2.051991 1.904171 2.54817 2.286325 2.115986
120 2.212996 2.012272 1.877286 2.469746 2.237993 2.083496
130 2.151299 1.972697 1.850139 2.404124 2.196408 2.055109
140 2.106501 1.943379 1.829735 2.35162 2.162315 2.031463
150 2.068041 1.91761 1.811594 2.299781 2.128026 2.007449
160 2.034336 1.894918 1.795439 2.265739 2.105156 1.991337
170 2.006867 1.876097 1.781945 2.237792 2.086106 1.977691
180 1.984408 1.860485 1.770746 2.204655 2.063282 1.961463
190 1.960649 1.843902 1.758678 2.179068 2.045644 1.948685
200 1.936284 1.826875 1.746182 2.151657 2.026502 1.934587
210 1.920153 1.815351 1.737809 2.134823 2.014623 1.925914
220 1.905415 1.804889 1.730021 2.114113 1.99992 1.915076
230 1.889552 1.793463 1.72151 2.091025 1.983284 1.90293
240 1.877048 1.784395 1.714845 2.079924 1.975328 1.897004
250 1.863506 1.774557 1.707539 2.062491 1.962687 1.887491
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of N(u, )], » say X, as u — oo, has the following density
function:

exp (%)
cexp (F) — 1)’

where the constant ¢ satisfies

<1>2 __cen(y) L@ e (d) +
6C, c(exp(3) — 1) (exp (3) — 1)

_ ((cz —c*exp (&) + )

Fexp (1) - 1)

Consequently, to eliminate the need for further estimat-
ing the parameter u we could calculate the critical values
using the obtained asymptotic distribution. The critical
value can be solved as the following for given C,, n and
o — risk.

1 1
Co = 6( /0'),,,1,“

. . 1
where (1/6),,_, is the (1 — o)th quantile of 5
This approach ensures that the Type-I error will be always
no greater than the designated value «, hence the result is
more reliable. Tables 1 and 2 summarize the critical values
co for C=1, 1.25, 1.45, and 1.6, with sample sizes

n = 30(5)250, and o — risk = 0.01, 0.025, 0.05.
6. A light emitting diodes example

Consider a Light Emitting Diodes (LEDs) manufactur-
ing process. The application of LEDs is expanding rapidly
including color displays, traffic signals, roadway signs, air-
port signaling and lighting. As various LED applications
are developed, accurate specifications of LED characteris-
tics become increasingly important. However, serious dis-
crepancy in measurement is gathered from different LED
manufacturers and users. A transfer of photometric scales
from traditional luminous intensity standard lamps to
LEDs is not a trivial task causing large uncertainties. The
temperature-dependent characteristics and a large variety
of optical designs of LEDs make it even more difficult to
reproduce measurements. In order to solve this problem,
the factory has been requested to provide calibrated stan-
dard LEDs for luminous intensity and luminous flux to
improve the accuracy of measurement at industry level.

A photometric technique has been developed to deter-
mine the effective reference plane of a photometer with
an uncertainty of 0.2 mm, using a photometric bench and
a stable integrating sphere source instead of a tungsten fil-
ament lamp. With this method, any photometer head with
unknown reference plane position can be calibrated for
LED measurements at any distances longer than 10 cm
within an uncertainty of less than 1%. The alignment of
LEDs is still a major uncertainty component for luminous
intensity. As described above LEDs generally do not follow

the inverse-square law, so setting the distances accurately is
critical to achieve reproducible results. One method of set-
ting the alignment is permanently mounting an LED in a
mount that has a reference surface. The distance from the
tip of the LED to the reference surface can be measured
accurately. The angular alignment will not change because
the reference surface will align the LED with the apparatus.
A good method is aligning the bare LEDs optically. Using
a fixed telescope, a point in space is defined along the detec-
tor axis. The detector is on a translational stage with an
optical encoder. We have established a capability for cali-
brating the luminous intensity of LEDs and built a tenta-
tive measurement set up for LED measurements in the
photometric bench to make the calibration service avail-
able for submitted LEDs. The measurement of LED lumi-
nous intensity currently has an overall uncertainty of 1.5%
for LEDs with a special fixture, and 3% for normal bare
LEDs with no alignment aids. A dedicated small photo-
metric bench for LED measurements is to be built. Long-
term stability and temperature dependence of these LEDs
will be studied and standard LEDs for luminous intensity
are to be developed. LEDs are unique light sources and
are very different from traditional lamps in terms of phys-
ical size, flux level, spectrum and spatial distribution. The
transfer of photometric scales from Iuminous intensity
standard lamps to LEDs has not been trivial and large dis-
crepancies among companies have been measured. The fac-
tory has established two measurement conditions for single
element LEDs with diameters less than 10 mm. These two
measurement techniques compare LED luminous intensi-
ties without strictly using point source conditions. The fac-
tory has started research programs to establish appropriate
measurement methods and calibration standards for all
photometric quantities of LEDs. In particular, the mea-
surement of luminous intensity of LED sources will be
focused in our study. We investigated a particular model
of the LED product with the upper and the lower specifica-
tion limits of luminous intensity are set to USL = 90 mcd,
LSL =40 mcd. The precision requirement is set to
C, = 1.33.

A total of 120 observations were collected from a stable
process in the factory are displayed in Table 3. It can be
examined that the data is collected from the truncated nor-
mally process. To determine whether the process precision
is satisfactory, we calculate C, = 1.7008. Since the 95%

Table 3
A total of 120 observations

68 61 61 66 64 63 66 61 66 64 58 61
86 70 56 64 63 64 63 59 64 61 66 64
63 61 63 60 69 65 69 59 69 53 57 63
68 66 67 60 78 64 65 65 92 62 59 58
63 64 76 35 66 91 63 62 57 66 67 67
59 59 59 59 55 63 60 64 57 62 59 62
64 62 63 60 57 63 62 59 66 64 68 68
62 62 66 67 65 66 65 68 57 59 64 63
61 62 46 64 62 52 71 64 66 62 59 63
69 59 62 58 62 62 63 72 60 60 69 64
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and 99% confidence lower bound are 1.4935 and 1.4246
exceed 1.33, we can conclude that the process precision is
satisfactory.

7. Conclusion

Process precision index C, has been widely used in the
manufacturing industry to provide numerical measures
on process precision (product quality consistency). Preci-
sion measures using C, for normal processes have been
investigated extensively, but is neglected for truncated nor-
mal processes. In this short note we considered the preci-
sion measure using the index C, for truncated normal
processes. We investigated the analytically intractable sam-
pling distribution of the estimated C,, and obtained a
rather accurate approximation. The approximation is used
to develop a practical procedure for testing process preci-
sion. Practitioners can use the proposed procedure on their
in-plant applications to obtain reliable decisions.
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