% 3F
R 3F

e

FREMRASLR GRS PR PE 2

ARGV i S -

(Leakage Energy Management for Multithreaded Programs)

STUE EUEE BN SR
3 %% 1 NSC 97—2218—E—009—043—MY3
HEHREF: 98 £ 87 1 px 9 & 7% 31 ¢

ST N,

&
#
L
N
e
g
bi
=
P
A
Tl
X
=
&
*
pe
—
-
=
=
P
S
ik
o
L
N

ENC RO -
AL~ pse ?ﬂéép”mHﬁ >

IR B éa»~ﬁ4£@a;m & - i
(R & TRy 32 RMAF L RE >

A T

AP ELIRFERNLBT AN PR F P H2 5 EPF L B P R NS
HEGAES Y PRTIRFE S 28 B R PRSP0 L REHDRTE
R APaF - E Lk X ARG ¥ F hE (7 kAR (concurrent programming
model) &7~ #Fed 0 NI AP X TR E S P JAFEET RFIRT AN
WohAgd R FHY AP ATHELLRES P EEEMA O & (DT T RAARL M
MR T R AR 4 o (2)uE ¥ - & = % > 3% 1! may-be-used-in-parallel component-
activity data-flow analysis (MUP-CADFA) 4 477 j2 o 2\ i -) 7 73R40 > T - 7 7

FEL F s R DI EFES TR L AE T & (interaction) & 4 I & 1T -
B4 iR TREERS TP EE BT AN R
—~ ~ Abstract

This is the second year of our three-year project, called Leakage Energy Management for
Multithreaded Programs. The objective of the second-year project is to design a methodology
for leakage energy management for multi-core systems. In this project, we extended the
achievement of the first year and made in-depth survey on common concurrent programming
models in order to manage leakage on multi-core systems for different concurrent programming
models. In the second year of the project, we achieved some significant results: (1) we have
deeply investigated into concurrent programming models on the literature. (2) We extended the
achievement of the first year and proposed may-be-used-in-parallel component-activity
data-flow analysis (MUP-CADFA). We will keep doing research on this subject and extend our
research to multi-core architectures, and we will also research on the collaboration between

compilers and operating systems.

Keywords: Compilers, Multithreaded programs, Multi-core processors, Leakage energy

management

:‘/gﬁ;zpﬁq

BILE X EMPGEY CRT S S APENS I Gl kg R 0 RFIAT R
| R ETEE] A E BP0 ¢ F T 4R U RS R s BT PUR D i 40 2
FEABERFFAIAND AN GFEIFRH L UBEARPRELAE Ra 0 &
WAL RS Z A ot H - REERS R SRR FERNER
HREE FP AP FRATOH MR R AR CRDE A - A2 T g 1S
MR BAE R F TR SRALR FIEAE S 1 FIE S R HARNK Y AR RN R A
ek d GRALR - TG IREHET LFERS es B R CPURRE > & Bt Azt ¥

>
19

o o

Z

PTG R EF TR R FBE R N E S R s F
BED b b AR RAR A e s W H - TR LA ke R BN T e A
%ﬂj.]@_u;\,ﬂ HA s #Jwi?«’xi?f}'{ﬁ‘;ﬁ’)éﬁ}é ';L;—lg‘\aﬂ\:f,\ﬁ ;Espﬁa;;i{ﬁq;g

PR RIE R iR A AL (FA R S RILE 0 T (T RIS N R T4 oot P
o A o 35k S P g2 B (multi-core processor) &7 & ¢ =t 4%% » 4o Intel Core 2 Duo
B AT EMZ % 74 B IBMCell AdL BE o SF 5 P AT B R 2 6
FERA B oEP B Garo o HHFE AR ARIK R AN BT T T
7 (concurrency) R > "IN T FAL S P B R 4 ik o T 7 AR 4
PH-ERAMEL S B YARIFFAPRCRFBFEFAIZE FE L #BL B
BEREFAME T e @I AILE S o FI O B AR ST SR R
SRR EE 0 FA G R FRFHEREREMA NG RFI S P Bk

B BRAF FREHDET ML 3R 20 S0 Pt g AR i

FARI A AP FIELIBAIRAFHETRAEE 2 o E R RS TR T P due

4?

R MR B RALR FanR T 3L ¥ 5 0T R E dr(power gating) * E Gty 3R 2
Z g P AR M3k 0 B4 2002 # LCPC (Workshop on Languages and Compilers for Parallel
Computing) ¢ #& * #7% % & # 5 ”"Compiler analysis and supports for leakage power
reduction on microprocessors” > £ 2002 & % CC (Conference on Compiler Construction) € %
voarg & L4 57 Optimizing static power dissipation by functional units in superscalar
processors” » £ 2003 # % DATE (Design Automation and Test in Europe Conference) ¢ % ©
% & ¢ F = "Compiler support for reducing leakage energy consumption”st 2005 +# i
EMSOFT (International Conference On Embedded Software) ¢ & ¢ 3¢ # -4 57

Sink-N-Hoist Framework for Leakage Power Reduction”# 2006 # % ACM TODAES (ACM
Transactions on Design Automation of Electronic Systems) #p] ¢ #74 % % 4L 5" Compilers
for Leakage Power Reduction” s 2007 & % ACM TODAES (ACM Transactions on Design
Automation of Electronic Systems) # F| ¢ #r g & Z # % “"Compilation for Compact
Power-Gating Controls” % 3%~ ¢ » & i MRk &dp 4 02 A HE RN F TR A
Fdp s R RN REATHRET R4 B TIRA T4 4 (power-gating
instruction) ©x ¢ 7 & Jh fx #> 35 £ (power-on instruction) & & & B B 4p 4 (power-off
instruction) o Tk Ecds 3y 4 ThE ARSI B AR RJIE 1 2R (Tl b 1T TIRM B Ap 4
2 R BAH R JR 2R (7 M B ends 17 0 2009 £ Soumyaroop Roy # 4 % IEEE
International Symposium on Circuits and Systems ¢ 3% ® % % 7 " Exploration of Compiler

Optimization Techniques for Enhancing Power Gating” - H:# < 4 & #3448 b F B 3 it

A o P SFER N LR EEE R AT i R nE Y RT R o
Ra oo w g R R ALA F IR 2 g At H - 317 $ 4858 (single-thread program) o #3¢
5 3 17 % 4% 3% (multithreaded programs) |] 5 % B & 2 FHEA FEF a3 M %~ &2
HamEari @ o wa 28 T332y F* NEPORITEH
WIS RILE D T 0 A ?‘/,%‘%Fﬁéiit“é‘i%&°

I~ P332

B T 7 %47 3] (concurrent programming models)

AP AR eh T (7 A7 H 4] (concurrent programming model) @ OpenMP ~ CUDA -~
OpenCL » &7 » 3t ¢

(-) OpenMP

OpenMP E_r2 & % e {48 (Shared Memory)en= ;83 2 % “1& (7 chiz 222 F
oA #i7% (Master Thread) 5 334 $h T f5 e i * & &) -5 5% #-58 (Fork-Join
Model) k & 4 &3 77 T {7 % si.(parallel region) = 1% %1 F =3y {7 & 7| (threads)- &
A2 BB BB OpenMPRs > L & 17« & % (core elements) 3¢ 4> # 5 OpenMP

=Y

AZNAE Y Ao ERETHA T TARLAIBHEETR G ST B AP o

® = 3z ik (Shared Memory) » #4 {7 425 ;% enT {7 = ;% (Thread Based
Parallelism)

OpenMP E_H 3t % 2o f 48 FPERFHEDRARE > X 3 REAR

FEE ST
® L p-mii % (Fork-Join Model)

OpenMP&_r2 — i 2 #4 {7 %5 (Master thread) fi s 3 & chdd (7B S 2818 J7

#1797 & {7 kit (Statement) B 38 5| F T (7 0 (paraIIeI region) &
o B ARFEHE? AL (FORK) N - 27 T Feha 2 {7 4 T

SURIL TR AJLcngcit o AJT RS 0 R EHE (JOIN) # i 5 by i -
f s XA P RS R SR RJE A 1S 0 [B L Pfy (T 5 e B e
RUBBEFEFTARGFREFTDRERERFTTL o 40T BT

J
— — 2 e
master I
thread N
{ parallel region } { parallel region }
® i%.< &£ % (core elements)

F_*
0

OpenMP 7 & % (core elements) » 4-] # 28 5 01 § Az £ R X

BOpenMPEF #7 & 4 & c17 o KRB A7 N AT T doid e B 4ol BV T (T R B
P engd 17 Mg g (thread creation) » 1 ¥4 % (work sharing) » FAL Tk 5 ¢ 12
(Data-environment management) - 3% {7 % # (thread synchronization) » i *
F O FEh 3 @ h b 7 42 A& (user-level runtime routines) £ Jk B % %<
(environment variables) % 5% 27 %g 4] o

(=) CUDA

7w 5% (kernel function) 5 CUDA®E v GPUSY, {7 #ic 838 8 e = » 30 «*;L 7 g
RAGRE A A F B o FA R TERAE? - 5 - AEHH
GPUshiefatl~ 7 2 PREA chis o R RUERF &3 ﬁyféﬂ B H
RAFELE o

® 7. 3% (kernel function)

CUDAC &4 aCiF 3 » fu;‘#fﬁﬁi;‘—ké T & CHE 2 A5 el 2 et e
Foo get el e N 7 e CUDA #4157 4 51| T (7 cjgt 4 (AN o

® {7 %t A& (Thread Hierarchy)

&CUDA® - # {7 #(thread) 3 t7 .« ¥ &] chiE & & = o ¥ CUDAY § % BH
FanpE R FF BALE M7 (threads)HE & — 44 {7 8 % #(thread block) » %+
B RRAES - B (grid) + $ TP SR 7D § R AN -
ol r REEIDLERT FE TR LT R

® =R rs & (Memory Hierarchy)

Grid

Block (0, 0) Block (1, 0)

e | | |

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

4ot Bl 77 0 CUDA R HERFH TV A S eI F 3BT - &

BT EHF L p oo F F (register) > & B {7 ® H (thread block) » #7 £
FERMT RN DORARTEINGLER RLG AR DL Y o G D
HEFEANT L 3B4p ot (global memory) o # #icie i 4 (Constant
memory) B 8_% 3 & f258 £ * e fic o 453 CUDAH e BAREFEF & - 2% i

VAR

Host

+=p
+>

[
T
Cii

7P i Ry

B i

% - i
I A B o LI TS

HH = : F

BERE BRI R

BT

"L\

=

5
%

s R e g SR
2EFRE 45 1Py DRAM FLE S
(=) OpenCL

OpenCLA BN ehE W S o A28 2 » EPw S B A BFEH 7 =
Bed T N G T (7 (data-parallel) £ i 43T {7 (task-parallel) » w0 ¥ 4p i ;
CUDAS Ri4p 2 5 OpenMP » # 17w dhdd 79 A R A2 3% 3+ (program) % 5 i
FRe A ;; iz B (in-order) £* ¢ & (out-of-order)#4 {7 +% = - OpenCL = By & ~ 3
% 4 22 CUDAT 2 -

g
)

® 3 {7H;% (execution model)

oo (kernel) » A & e 47 H 24258 4p 1230 Cendn 54150 > W RE AT A
(Data-parallel) 2 = 732»1‘ 7 (task-parallel) e T {7 3 L 44 {7 ; F R L 7
(Data-parallel) - LT F e ¢ oo w&) N R a3t 8 ¢ (N-Dimensional
computation domaln) He 2 g.%°7 % B w3 (work-item) » 4p 5
WCUDAY &I 7 » FF a1 (TR P IEMNARKITE LI ITEH
(work-group) (#p 5 CUDA 1 thread block);m f1 iT@48 ¥ ch1 (T p 7 0 3
APAE 0 4 ¥ LR T R (Synchronize) o @ 7 OpenCLv’ v TS BAITE
e P 75 i1 (7 (task-parallel) » & i®f+-T (7 i3] @ 5 47 (3t i
BAAXENI BHEFES > WPRFAF DT 20penCL? > E5xT 7
FLANERE B RF0penCLAFv P ¥ UG Eaig * i fg@*
FILE

® % F 3k 3+ (program)

EREPeBE B St o Apit - BEESGUE o B EE PR E R
(applications queue kernel execution instances) » %< & B £ & > §F (T pF5
Mg R ¥ ik B (in-order) 2§ A (out-of-order) k #% {7 o

® =Bt H;Y (memory model)

f#}—'

o B HTE 0 F4F selBAE (private memory) 0 B F BT P G & B
EE - Bair

B8 > 5 WCUDA T 3 F - % F e it (Local memory)

B (% 216Kb) " - % > CUDAHE % e B4 « > 8/% #ice il

(global/constant memory) » ¥ & % 3t B 1 iT@ ¢ > 4F i.uCUDA_m}_ié H=2)-% 10

a4 (host memory) » **CPU¥ e i d o T4 = 54 &rﬁ&? FLIE A

c'r‘éﬁﬁiﬂ»i % ¥ (device)® e ® oty HELS 5 (host)-> 23 (global)->%
¢ (local) -

Private Private Private Private
Memory Memaory Memaory Memory

Work-Item Work-ltem Work-ltem Work-ltem

Local Memory Local Memory

Workgroup Workgroup

Global/Constant Memory

| Computer Device

Host Memory

May-be-Used-in-Parallel Component-Activity Data-Flow Analysis (MUP-CADFA)

Cin (n) = U Cour (m) (1)

m: a predessor of n

Cour (n) = Caen (n) U (Cin (n) — CkrLL (n)) (2)
Cueir (n) = U (n,c),where ¢ € Cour (n) (3)
TC (f) = U Clrean (71) (4)
Ynet
. C‘f !' F . .
MayCgen (n) = UmECOM(n) vea(m) ifn € P)
1%} otherwise
O i ‘f [C‘

A'{ayC'KILL (.n) — U?nEancestor'(Prod(n)) Ut {(WI«) 1 n e — (6)

) otherwise
MayC (n) = Uneprodn MayCour E‘m-) —TC(T(n)) ifne (.,‘ o

m a predessor of n Ajayc ouT (m) otherwise

MayCouvr (n) = MayCqen (n) U (MayC (n) — MayCrkrrr (n)) (8)
CParalici (n) = Uc, where (#,¢) € MayC(n) (9)

We define Cusii(n), Cin(n), Cout(n), Ceen(n), and Cyy.(n) for each PEG node n to gather the
component-activity data-flow information. We say that a component activity is generated at n
if a component is required for this execution, symbolized as Cgen(n), and that it is killed if
the component is released for this execution, symbolized as C;..(n). The flow equation (1)
follows from the observation that Ciy(n) is the union of component activities arriving from
all the predecessors of B. Equation (2) formulates the component activities after node n is
executed—the component activities are either generated in node n or not released yet.

We create a data-flow equation which computes the component utilization Cyg(n) in
Equation (3). It computes the component utilization by collecting component activities ¢ that
is still active from nodes before n or generated by node n. The Cyg(n) consists of
two-dimensional vectors, (n, c), where n is a PEG node that use ¢ components. Unlike
Cout(n) set, Cusi(n) records not only the component-activity ¢ for node n but also node n
itself. The paired component-activity and node information is important to MUP-CADFA,
because we need it to trace component-activity along MHP nodes. Another important
information to MUP-CADFA is the relationship of threads and nodes. To symbolize this
relationship, we say that a node n belongs to thread t as T(n) = t. The component activities of
a specific thread t, symbolized as TC(t), is gathered by traveling a possible nodes of a thread
as in Equation (4).

We use an iterative approach to compute the desired results of Cyi(n), Cin(n), and Cour(n)
after Cgen(n) and C . (n) has been computed for each nodes.

For gathering the may-be-used-in-parallel component activity information, we define four set
MC(n), MCour(n), MCgen(n), and MCyL(n) for each PEG node n. We also define a
ancestor(n) set which gathers node n’s predecessors and their predecessors recursively. The
computation of may-be-used-in-parallel execution is by tracking paired component-activity
and node information. When a node n is a normal CFG node without communication with
other threads, its MHP nodes would be completely the same as its predecessor, and it would
continue passing all the information to its successor. We say that a component activity is
generated to a producer node n when n triggers its consumer node Cons(n), which makes the
successor of Cons(n) be able to executed concurrently with n. Equations (5) and (7) describe
the case above. On another hand, we say that a component activity is killed from a consumer
node m when its producer Prod(m) triggers m, which means that the ancestor of Prod(m)
would not executed with m concurrently, so the component activity of ancestor(Prod(m))
could be killed in Equation (6).

After computing MC and MCgour sets, we have to take a step to symmetrize all nodes in MC.
The symmetry step is done by adding all Cygi(m) into MC(n) if (n, *) € MC(m). Since the
change of MC set would affects MCour set, all nodes that have been symmetrized should
recompute their MCour set until all sets are saturated.

Finally, we could compute themay-be-used-in-parallel component activity Cparaer by
unpacking the vectorized component utilization information in MC sets as shown in Equation

9).

=~ = e 2> =2

2 2E B 454
AERFRY AP LR R
(=) *FREBEHEIF»FT

AR *F = AT 7 S 207 (OpenMP ~ CUDA ~ OpenCL) i 7% » # 7 >

£ R B R

Rl OpenMP CUDA OpenCL
2RI BE C,C++, Fortran | C, C++ C
B I CPU GPU CPU, GPU,¥I {4
IR H e BRI | SR
et ki
SRR K K T
Rtk 3.0 3.0 1.0
< EpT =t [T i T = AeS =i P&ﬁ“j
AT
=g (Loop) | & ik 5% IR 1
=g (if CPU (g
statement)g= GPU Fii
MR AREPER | R $ B CYBIRE | B
"] Open64 fivEi7)

(=) May-be-Used-in-Parallel Component-Activity Data-Flow Analysis (MUP-CADFA)

We incorporated the low-power optimization phase just before code generation; that is,
after all traditional performance optimizations are performed. Hence, the additional
phase has little or nearly no influence on performance; it only inserts power-gating
instructions or predicated-power-gating instructions and thus barely affects execution
behavior. The implementation was based on SUIF2 and the Control Flow Graph (CFG)

and Machine libraries from Machine-SUIF. Figure 1 shows the compilation flow.

C Source

SUIF 4
Low-Power Optimization

Classical Optimization

Perform MUP-CADFA to analysis

High SUIF to Low SUIF

l Compor
i)

MachSUIF "" o ‘u

Representation Translation

— =
Alpha Assembly Code

Figure 1 A compilation flow of power management for multithreaded programs

To verify our proposed MTPGA algorithm and PPG mechanism, we focus on
investigating component utilization in MHP region. We first apply two floating point
DSPstone programs to each hardware thread and measure the power consumption of
ALUs and multipliers, including four integer ALUs, an integer multiplier, four floating
point ALUs, and a floating point multiplier. For exploring the efficiency of our MTPGA

and PPG mechanism, we experiment every possible combination of two threads and
report the best, worst, and average power consumption for every DSPstone
program. Figure 2 shows the normalized power consumption in all function units with
PPG mechanism to one without PPG mechanism. The average normalized power
consumption of worst, best, and average results are 89.75%, 53.27%, and 62.75%,

respectively.

Figure 3 shows our experiment result of random selected six groups of DSPstone
programs and their power consumption of ALUs and multipliers. The first column shows
the selected programs. From column two to column four we presents the component
turn-off rate (i.e., component turn-off cycle count/execution cycle count) of floating
point ALU, floating point multiplier, and integer multiplier, respectively. The fourth and
fifth column shows the energy consumption of all ALUs with or without PPG
mechanism. The last column reports the power consumption reduced by PPG
mechanism. The average of normalized power consumption is 73.15%. Compared to the
two-thread version, the experiment result of power saving slightly decays, but it still
shows that our MTPGA and PPG mechanism are practicable in reducing leakage power
at various multithreading environments.

100%
80%
60%
40%
20%

0%

B Worst
m Best

Average

Figure 2 The worst, best, and average normalized power consumption of thread combinations for

DSPstone programs

Turn-0ff Rate Energy
Concurrent Threads . : L
i FP ALU FP MUL MUL with PPG w/o PPG lmprovement

matrix Linatrix2, i 2dim, biquad _N_sections 55! 35617.22 90.977
convolution, n_complex_updates, lms. n_real_updates T159.10 ¥
fir, complex_multiply. bigquad_one_seetion, matlx3 . 5078.80 ; y
dot_product, complex_update, real_update, matrixl 20.67% 34807.91 b . ‘!H "l/
matrix2, fir2dim. bigquad_N_sections. convolution 30.47% 15.93% 31989.53 JJu’F())L 80.37%
n_complex_updates, Ims, n_real_updates, fir 80,95% 59,11% THE0.15 11320.04 66.96%
complex_multiply, biquad_one_section, matlx3, dot_product 94.31% 96.39% 385034 T497.21 51.48%

Figure 3 Component turn-off rate and power consumption of four concurrent executed threads

= v FF A K

P B A s AT ,ui’éﬁi%éév’%ﬂ’{" 7q - %ﬁ%ﬁg’?ﬁiﬁ?ii"i%ﬁé i

PR EDPE FoAPEya? 22 25 mP I HTRENTRT 0N *g LU
ForrPEy ¢ # Ff 2 2010 International Conference on Embedded Software

(EMSOFT'10)[14] > # &3+ % $ P h2 B R « A K A F 5% T M3 T84 5 {7
2 RRALN FRAPM R PR AR SBIE N 2 B 0E

N

10.

11.

12.

13.

14.

q

\\\ﬁr

T

Steven Dropsho, Volkan Kursun, David H. Albonesi, Sandhya Dwarkadas, and Eby G.
Friedman. ~~Managing static leakage energy in microprocessor functional units," In
Proceedings of the 35th International Symposium on Microarchitecture (MICRO'02),
pages 321-332, Istanbul, Turkey, November 2002.

Yen-Hsiang Fan, Yuan-Shin Hwang, Yi-Ping You, and Jeng-Kuen Lee,
““Compiler-based vs. Hardware-based Power Gating Techniques for Functional Units,"
in Proceedings of the 6th Workshop on Optimizations for DSP and Embedded Systems
(ODES-6), pp. 26-35, Boston, MA, April 6, 2008.

Siddharth Rele, Santosh Pande, Soner Onder, and Rajiv Gupta. ~~ Optimizing static
power dissipation by functional units in superscalar processors,” In Proceedings of the
11th International Conference on Compiler Construction (CC'02), pages 261-275,
Grenoble, France, April 2002.

S. Roy, N. Ranganathan, S. Katkoori, "A Framework for Power Gating Functional
Units in Embedded Microprocessors”, IEEE Transactions on Very Large Scale
Integrated Systems, Volume 17, Issue 11, November 2009, Page(s):1640-1649

S. Roy, N. Ranganathan, S.Katkoori, "Compiler Directed Power Gating in Embedded
Microprocessors", in Proceedings of IEEE International Conference on Computer
Design, October 2009, pages 35-40.

S. Roy, N. Ranganathan, S.Katkoori, "Exploration of Compiler Optimization
Techniques for Enhancing Power Gating", in Proceedings of IEEE International
Symposium on Circuits and Systems, May 2009, pages 1004-1007.

S. Roy, S. Katkoori, N. Ranganathan, "A Compiler Based Leakage Reduction
Technique by Power-Gating Functional Units in Embedded Microprocessors”, in
Proceedings of 20th International Conference on VLSI Design, Jan 2007, pages 215 -
220.

Yi-Ping You, Chingren Lee, and Jeng-Kuen Lee, “"Compiler Analysis and Supports for
Leakage Power Reduction on Microprocessors,” in Proceedings of the 15th Workshop
on Languages and Compilers for Parallel Computing (LCPC'02), College Park, MD,
July 25-27, 2002. (also in Lecture Notes in Computer Science, Vol. 2481,
Springer-Verlag, Germany, pp. 45-60, 2005.)

Yi-Ping You, Chingren Lee, and Jenq Kuen Lee, ~"Compilers for Leakage Power
Reduction,” ACM Transactions on Design Automation of Electronic Systems, Vol. 11,
Issue 1, ACM, New York, pp. 147-164, January 2006.

Yi-Ping You, Chung-Wen Huang, and Jenq Kuen Lee, ~"A Sink-N-Hoist Framework for
Leakage Power Reduction,” in Proceedings of the ACM International Conference on
Embedded Software (EMSOFT'05), pp. 124-133, Jersey City, NJ, September 18-22,
2005.

Yi-Ping You, Chung-Wen Huang, and Jenq Kuen Lee, ~"Compilation for Compact
Power-Gating Controls,” ACM Transactions on Design Automation of Electronic
Systems, Vol. 12, Issue 4, Article 51, ACM, New York, September 2007.

Yi-Ping You and Jenq Kuen Lee, ~"Compiler Frameworks for Leakage Power
Reduction," in Student Poster Session of ACM SIGPLAN/SIGBED 2005 Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES'05), Chicago, IL,
June 15-17, 2005.

W. Zhang, Mahmut T. Kandemir, Narayanan Vijaykrishnan, Mary Jane Irwin, and V.
De. “"Compiler support for reducing leakage energy consumption," In Proceedings of
the 6th Design Automation and Test in Europe Conference (DATE'03), pages
1146-1147, Messe Munich, Germany, March 2003.

Wen-L.i Shih, Yi-Ping You, Chung-Wen Huang and Jeng Kuen Lee, ™ Compiler for
Leakage Power Reduction on Multithreaded Programs,”” Submitted to International
Conference on Embedded Software 2010.

