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—~ ~ Abstract

This is the second year of our three-year project, called Leakage Energy Management for
Multithreaded Programs. The objective of the second-year project is to design a methodology
for leakage energy management for multi-core systems. In this project, we extended the
achievement of the first year and made in-depth survey on common concurrent programming
models in order to manage leakage on multi-core systems for different concurrent programming
models. In the second year of the project, we achieved some significant results: (1) we have
deeply investigated into concurrent programming models on the literature. (2) We extended the
achievement of the first year and proposed may-be-used-in-parallel component-activity
data-flow analysis (MUP-CADFA). We will keep doing research on this subject and extend our
research to multi-core architectures, and we will also research on the collaboration between

compilers and operating systems.

Keywords: Compilers, Multithreaded programs, Multi-core processors, Leakage energy

management
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® {7 %t A& (Thread Hierarchy)

&CUDA® - # {7 #(thread) 3 t7 .« ¥ & ] chiE & & = o ¥ CUDAY § % BH
FanpE R FF BALE M7 (threads)HE & — 44 {7 8 % #(thread block) » %+
B RRAES - B (grid) + $ TP SR 7D § R AN -
ol r REEIDLERT FE TR LT R

® =R rs & (Memory Hierarchy)

Grid

Block (0, 0) Block (1, 0)

e | | |
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May-be-Used-in-Parallel Component-Activity Data-Flow Analysis (MUP-CADFA)

Cin (n) = U Cour (m) (1)

m: a predessor of n

Cour (n) = Caen (n) U (Cin (n) — CkrLL (n)) (2)
Cueir (n) = U (n,c),where ¢ € Cour (n) (3)
TC (f) = U Clrean (71) (4)
Ynet
. C‘f !' F . .
MayCgen (n) = UmECOM(n) vea(m) ifn € P )
1%} otherwise
O i ‘f [ C‘

A'{ayC'KILL (.n) — U?nEancestor'(Prod(n)) Ut {(WI«) 1 n e — (6)

) otherwise
MayC (n) = Uneprodn MayCour E‘m-) —TC(T(n)) ifne (.,‘ o

m a predessor of n Ajayc ouT (m) otherwise

MayCouvr (n) = MayCqen (n) U (MayC (n) — MayCrkrrr (n)) (8)
CParalici (n) = Uc, where (#,¢) € MayC(n) (9)

We define Cusii(n), Cin(n), Cout(n), Ceen(n), and Cyy.(n) for each PEG node n to gather the
component-activity data-flow information. We say that a component activity is generated at n
if a component is required for this execution, symbolized as Cgen(n), and that it is killed if
the component is released for this execution, symbolized as C;..(n). The flow equation (1)
follows from the observation that Ciy(n) is the union of component activities arriving from
all the predecessors of B. Equation (2) formulates the component activities after node n is
executed—the component activities are either generated in node n or not released yet.



We create a data-flow equation which computes the component utilization Cyg(n) in
Equation (3). It computes the component utilization by collecting component activities ¢ that
is still active from nodes before n or generated by node n. The Cyg(n) consists of
two-dimensional vectors, (n, c), where n is a PEG node that use ¢ components. Unlike
Cout(n) set, Cusi(n) records not only the component-activity ¢ for node n but also node n
itself. The paired component-activity and node information is important to MUP-CADFA,
because we need it to trace component-activity along MHP nodes. Another important
information to MUP-CADFA is the relationship of threads and nodes. To symbolize this
relationship, we say that a node n belongs to thread t as T(n) = t. The component activities of
a specific thread t, symbolized as TC(t), is gathered by traveling a possible nodes of a thread
as in Equation (4).

We use an iterative approach to compute the desired results of Cyi(n), Cin(n), and Cour(n)
after Cgen(n) and C . (n) has been computed for each nodes.

For gathering the may-be-used-in-parallel component activity information, we define four set
MC(n), MCour(n), MCgen(n), and MCyL(n) for each PEG node n. We also define a
ancestor(n) set which gathers node n’s predecessors and their predecessors recursively. The
computation of may-be-used-in-parallel execution is by tracking paired component-activity
and node information. When a node n is a normal CFG node without communication with
other threads, its MHP nodes would be completely the same as its predecessor, and it would
continue passing all the information to its successor. We say that a component activity is
generated to a producer node n when n triggers its consumer node Cons(n), which makes the
successor of Cons(n) be able to executed concurrently with n. Equations (5) and (7) describe
the case above. On another hand, we say that a component activity is killed from a consumer
node m when its producer Prod(m) triggers m, which means that the ancestor of Prod(m)
would not executed with m concurrently, so the component activity of ancestor(Prod(m))
could be killed in Equation (6).

After computing MC and MCgour sets, we have to take a step to symmetrize all nodes in MC.
The symmetry step is done by adding all Cygi(m) into MC(n) if (n, *) € MC(m). Since the
change of MC set would affects MCour set, all nodes that have been symmetrized should
recompute their MCour set until all sets are saturated.

Finally, we could compute themay-be-used-in-parallel component activity Cparaer by
unpacking the vectorized component utilization information in MC sets as shown in Equation

9).

=~ = e 2> =2

2 2E B 454
AERFRY AP LR R
(=) *FREBEHEIF»FT

AR *F = AT 7 S 207 (OpenMP ~ CUDA ~ OpenCL) i 7% » # 7 >

£ R B R



Rl OpenMP CUDA OpenCL
2RI BE C,C++, Fortran | C, C++ C
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(= ) May-be-Used-in-Parallel Component-Activity Data-Flow Analysis (MUP-CADFA)

We incorporated the low-power optimization phase just before code generation; that is,
after all traditional performance optimizations are performed. Hence, the additional
phase has little or nearly no influence on performance; it only inserts power-gating
instructions or predicated-power-gating instructions and thus barely affects execution
behavior. The implementation was based on SUIF2 and the Control Flow Graph (CFG)

and Machine libraries from Machine-SUIF. Figure 1 shows the compilation flow.

C Source

SUIF 4
Low-Power Optimization

Classical Optimization

Perform MUP-CADFA to analysis

High SUIF to Low SUIF

l Compor
i)

MachSUIF "" o ‘u

Representation Translation

— =
Alpha Assembly Code

Figure 1 A compilation flow of power management for multithreaded programs

To verify our proposed MTPGA algorithm and PPG mechanism, we focus on
investigating component utilization in MHP region. We first apply two floating point
DSPstone programs to each hardware thread and measure the power consumption of
ALUs and multipliers, including four integer ALUs, an integer multiplier, four floating
point ALUs, and a floating point multiplier. For exploring the efficiency of our MTPGA



and PPG mechanism, we experiment every possible combination of two threads and
report the best, worst, and average power consumption for every DSPstone
program. Figure 2 shows the normalized power consumption in all function units with
PPG mechanism to one without PPG mechanism. The average normalized power
consumption of worst, best, and average results are 89.75%, 53.27%, and 62.75%,

respectively.

Figure 3 shows our experiment result of random selected six groups of DSPstone
programs and their power consumption of ALUs and multipliers. The first column shows
the selected programs. From column two to column four we presents the component
turn-off rate (i.e., component turn-off cycle count/execution cycle count) of floating
point ALU, floating point multiplier, and integer multiplier, respectively. The fourth and
fifth column shows the energy consumption of all ALUs with or without PPG
mechanism. The last column reports the power consumption reduced by PPG
mechanism. The average of normalized power consumption is 73.15%. Compared to the
two-thread version, the experiment result of power saving slightly decays, but it still
shows that our MTPGA and PPG mechanism are practicable in reducing leakage power
at various multithreading environments.

100%
80%
60%
40%
20%

0%

B Worst
m Best

Average

Figure 2 The worst, best, and average normalized power consumption of thread combinations for

DSPstone programs

Turn-0ff Rate Energy
Concurrent Threads . : L
i FP ALU FP MUL MUL  with PPG  w/o PPG  lmprovement

matrix Linatrix2, i 2dim, biquad _N_sections 55! 35617.22 90.977
convolution, n_complex_updates, lms. n_real_updates T159.10 ¥
fir, complex_multiply. bigquad_one_seetion, matlx3 . 5078.80 ; y
dot_product, complex_update, real_update, matrixl 20.67% 34807.91 b . ‘!H "l/
matrix2, fir2dim. bigquad_N_sections. convolution 30.47% 15.93% 31989.53 JJu’F() )L 80.37%
n_complex_updates, Ims, n_real_updates, fir 80,95% 59,11% THE0.15 11320.04 66.96%
complex_multiply, biquad_one_section, matlx3, dot_product 94.31% 96.39% 385034 T497.21 51.48%

Figure 3 Component turn-off rate and power consumption of four concurrent executed threads
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