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The FCC’s approval for the first commercial operation in TV white space (TVWS) gives a new momentum
to the development of cognitive radio (CR) in TVWS. On the other hand, the rapid growth of Cloud computing
makes it possible and more economical to build a CR metropolitan area network with commodity hardware. In
view of the opportunity and challenges brought about by these two technologies, we propose a CR Cloud
Networking (CRCN) model that is able to support CR access in TVWS. Making use of the flexible and vast
computing capacity of the Cloud, a database and a cooperative spectrum sensing (CSS) algorithm that estimates
the radio power map of licensed users are realized on a CR Cloud (CRC) implemented with Microsoft’s
Windows Azure Cloud platform. The CRC can support CSS, CR channel access and mobility management. A
medium access control protocol is also developed for this CRCN model to collect sensing reports and provide
access to the TVWS and CRC services. Through this CRCN prototype, important network parameters such as the
mean squared errors in CSS, the CR channel vacating delay and the Cloud-based handover time are evaluated for
the design and deployment of the CRCN concept. In addition, to further improve the performance of the CSS
algorithm, we investigate running it on the popular Amazon EC2 public cloud using the Hadoop computing
platform provided by Amazon. We found that the design and implementation of Hadoop do not suit the CSS
algorithm well. We have successfully improved Hadoop to achieve great performance speedup over Amazon
EC2 public cloud.
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Keywords—cloud computing; Cognitive Radio; Channel access control; resource allocation; Bayesian
Sparse Learning
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CRaMNET

A X 1.CSS
University of OQulu 2. Spectrum database

Specnet, Microsoft

Aachen University

1. Ad-Hoc CR network
2. Decentralized CR MAC
3. Spectrum sensing

1. Ad-Hoc CR network

2. Channel aggregationy3, Network Sync Spectrum

database

Spectrum Bridge

CWC, NICT, Japan Virginia Tech

CRCN, NCTU
1. Cloud-based CR network
2. FD-TDMA CR MAC

3. Radio power map (RPM) database
4. Cooperative spectrum sensing (CSS)
5. Cloud-based mobility management
6. Dynamic spectrum access (DSA)

7. Network Sync

1. Ad-hoc/mesh Network
2. Reconfigurable radio

3. Heterogeneous network
management

1. Reconfigurable radio
2. Cloud-based heterogeneous

network management
. Vertical handover

Coral
/Research Centre, Canada

CogNet/ORBIT, Rutgers\University
1. WiFi CR network
2. TD/CSMA/CA CR MAC
3. Beamforming

4. Radio environment

awareness map

5. Network management
system
6. Network Sync

1. Ad-hoc/mesh network
2. Reconfigurable MAC
3. Spectrum sensing

4. Software defined radio
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HDFS Architecture

Metadata (Name, replicas, ...):

Metadata ops ~ Namenode /homeffoo/data, 3, ...
Block ops
Read Datanodes Datanodes
i = i
N > Replication EW -

- ] _IBlocks

g \ H_J
' ,
Rack 1 Write Rack 2

W= - HDFS % {7 & M(& 4 [18]) -

Hadoop #2;* B #1232 % MapReduce » BB #F K i AR S T AL« LT OB 25 - - B
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LR R EIE R

2:get new job 1D

1:run job 4: submit job { B
M::.Redm 'un]o’Msum'w ................ B Joblracker 5 initialize job

cient JVM Goretrieve .t
dient node e spls jobtracker node
3: copy job 7: heartbeat
resources (returns task)
v
Shared  *
FileSystem | —————— TaskTracker
(e.q. HDFS) 8: retrieve job
resources :
9: laun(hg
4
childJVM
Child
10: run%
A 4
MapTask
or
ReduceTask
tasktracker node

Bz ~ MapReduce 7 # FI[19]
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WA P - B E e 5 - 3 maptask £ — B reduce task sjob s34 7 n 42 %k #Lp heartbeat ¥ & 1% job
HEBFF PP R TRE =)
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T T 1
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- Task running time
. Idle time

Run cleanup task ey Hearth eat
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Time v
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Abstract—A Cognitive Radio Cloud Network (CRCN) in TV
White Spaces (TVWS) is proposed in this paper. Under the
infrastructure of CRCN, cooperative spectrum sensing (SS) and
resource scheduling in TVWS can be efficiently implemented
making use of the scalability and the vast storage and computing
capacity of the Cloud. Based on the sensing reports collected on
the Cognitive Radio Cloud (CRC) from distributed secondary
users (SUs), we study and implement a sparse Bayesian learning
(SBL) algorithm for cooperative SS in TVWS using Microsoft’s
Windows Azure Cloud platform. A database for the estimated
locations and spectrum power profiles of the primary users are
established on CRC with Microsoft’s SQL Azure. Moreover
to enhance the performance of the SBL-based SS on CRC,
a hierarchical parallelization method is also implemented with
Microsoft’s dotNet 4.0 in a MapReduce-like programming model.
Based on our simulation studies, a proper programming model
and partitioning of the sensing data play crucial roles to the
performance of the SBL-based SS on the Cloud.

Index Terms—Cognitive Radio, Cloud Computing, MapRe-
duce, Windows Azure, Sparse Bayesian Learning.

I. INTRODUCTION

The concept of cognitive radio (CR) is first introduced by
Joseph Mitola Il in [1]. Since then CR has attracted significant
research attentions either in telecommunications technologies
or their related regulations. In view of the inefficient usages
of the licensed spectrum (less than 25% overall [2]) and the
opportunity of the termination of analog TV broadcasting, the
Federal Communications Commission (FCC) of the U.S has
established the regulation for CR accesses in its TV White
Spaces (TVWS) in 2007 [3] and has recently granted field
tests of the CR network in part of the TVWS. Encouraged by
the acts of FCC, many international organizations have also
started to define CR standards on TVWS, e.g. IEEE 802.22,
1900, 802.16m and ECMA 392, etc.

To ensure the received signal quality of TV sets, the FCC
requires CR operators in TVWS being able to detect the TV
signal even if its strength is 0.8dBm below the noise level (-
106.2dBm). In addition, the CR operators should also provide
databases that maintain the geographical locations of TV base
stations (BS) and their radiation powers, antenna heights and
numbers of channels, etc. To help achieve these goals of
spectrum sensing (SS) in TVWS, the secondary users (SUs)
of the CR network in TVWS are suggested to provide their
sensing data and geographical locations for CR operators to
perform cooperative SS.

Compared to the BSs of regular cellular networks, the
radiation power of a TV base station (BS) typically covers
a much larger area than that covered by the transmit power of
a mobile device. To reconstruct the radiation power profile of
even a TV BS, it requires sensing reports from SUs located in
different positions inside the coverage area of the TV signal.
However, the distribution and population density (sparsity) of
SUs are not uniform in different areas, and vary in different
time of a day. Moreover, the received signal strength of a
SU is likely to be attenuated by the shadowing effects of
wireless channels. Considering these characteristics of sensing
measurements and the strict requirements of SS in TVWS,
we study a cooperative SS algorithm for TVWS in this paper
based on the concept of sparse Bayesian learning (SBL) and
the relevance vector machine (RVM) [4].

As the number of SUs vary with time, the computational
demands to reconstruct the power propagation map (PPM) of a
large area may change significantly over time if sensing reports
inside the area are all used in cooperative SS. To control
the algorithm complexity and in the meantime to maintain
the quality of SS, not only should the number of sensing
measurements be limited inside an area, but the area from
which measurements are collected for the computation of a
RVM should also be adjusted with time. Consequently, the
overall computational quantity to reconstruct the PPM of a
nation or region will scale up and down significantly over
time. This makes the SS in TVWS an ideal application for
Cloud computing.

A similar concept of cognitive wireless Cloud (CWC) has
been introduced by H. Harada et al in [5] where they consider
a heterogeneous network that consists of various types of
wireless networks and propose a Cloud-based algorithm to
optimize the spectrum resource scheduling among the het-
erogeneous networks in CWC. In contrast to their ideas in
heterogeneous networks, we propose herein a more complete
concept of Cognitive Radio Cloud Network (CRCN) that
enables and integrates cooperative SS and resource scheduling
in TVWS. Making use of the scalability and the vast storage
and computing capacity of the Cloud, the database of PPM can
be established, updated and accessed by a large amount of SUs
in an efficient manner. Under this infrastructure of CRCN, we
study and implement a SBL-based cooperative SS algorithm
on Microsoft’s Windows Azure Cloud platform, and propose a
scalable mapping method under a MapReduce-like program-
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ming model to dynamically partition the geographical area
according to the SU density. Utilizing the scalable mapping
method and the dynamic computing resource allocation of the
Cloud, the CRCN can provide a PPM in different precisions
according to the density of SUs. Based on our simulation
studies, a proper programming model and partitioning of the
sensing data play crucial roles to the performance of the SBL-
based cooperative SS on the Cloud.

This paper is organized as follows. Section Il specifies
the system model for CRCN and provides some background
knowledges on Windows Azure. Section 1l reviews the basic
concept of SBL and the MapReduce [6] programming model,
and introduces a SBL-based cooperative SS and a scalable
mapping method on Window’s Cloud platform. Simulation re-
sults are presented in Section IV followed by some conclusions
and discussions made in Section V.

Il. THE INFRASTRUCTURE OF CRCN

The purpose of CR is to utilize the precious radio resources
more intelligently. Fig. 1 illustrates the infrastructure of the
CRCN proposed in this paper. SUs in the CRCN are allowed
to use a spectrum in time and space as long as not seriously
deteriorating the signal qualities of primary users (PUs) in
the same spectrum. To make the most out of the available
spectra, a command and control center (also referred to the
CR Cloud (CRC)) is used to coordinate and manage the entire
radio resources in TVWS. In the CRCN, there are various CR
BSs to collect sensing measurements from distributed SUs.
The sensing results are fed back through CR BSs to the CRC
to estimate the PPM with a SBL algorithm implemented on
Microsoft’s Windows Azure. The resultant PPM of SS contains
the number of PUs and their locations and corresponding radio
power profiles, and are stored in Microsoft’s SQL Azure.

A. The Windows Azure CRC Platform

The CRC is in fact implemented on Microsoft’s Windows
Azure Cloud platform which can support program develop-
ments in JAVA or in Cl and Visual Basic on Visual Studio.
The operating system for Windows Azure is Windows Azure
Guest OS 1.8 which is a virtual machine (VM) version of
Windows Server 2008. Windows Azure supports three types
of data storages which are BLOB for general binary data, Table
for systematic data and Queue for data passing between webs
and programs.

For the programming model in Windows Azure, there are
two different roles which are:

- Web Role: The task of web role is to communicate
between users and background processes. It can be
implemented by dynamic web language, for example,
ASP.NET and PHP, etc.

- Worker Role: It is a background process in Windows
Azure. Worker Roles grab and execute jobs, and then
export the results periodically.

On the other hand, SQL Azure is the Cloud version of SQL

server and is built on Windows Azure. Designed for Cloud,
SQL Azure only supports part of the functions of SQL server.

Cognitive Radio Cloud
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Fig. 1. A conceptual map of the Cognitive Radio Cloud Network,
which illustrates the geographical relationship among the PUs, PU BSs,
CR SUs and CR BSs of the network. As shown in the figure, the
received signal of SU; is blocked by a mountain which makes the SU;
difficult to detect the PU BS by itself. Thus, SU; will interfere with the PU
when it uses the same frequency band to connect to the CR BS. With the
CRCN, this shadowing effect can be easily resolved and the frequency band
will be allocated to SU, to enhance the spectra efficiency.

To reconstruct the PPM on Windows Azure, each SU inside
the CRCN is assumed equipped with a global positioning
system (GPS) device and is able to feed back its location, time
and value of the received signal strength indicator (RSSI) to
the CRC through the Web Role of Windows Azure as shown
in Fig. 2. Each Web Role takes the inputs sent from a CR BS
and stores the sensing reports in the input database of SQL
Azure. The CRC then partitions the sensing measurements in
the input database into blocks according to their associated
positions, and maps the data of each block to a Worker Role of
Windows Azure to parallelizes the SBL algorithm. A Worker
Roles performs the SBL-based SS algorithm with the sensing
measurements of each block and stores the reconstructed PPM
of PUs of each time slot in the output database of SQL Azure.
If a SU wants to access the CRCN, it first sends a request
together with its location to the CRC to ask for permission.
The CRC will allocate the radio resource to the SU according
to the PPM of PUs and the locations of all users both stored
in the input and output databases of SQL Azure.

I1l. THE IMPLEMENTATION OF THE SBL-BASED
COOPERATIVE SS ON CRC

More details about the SBL-based cooperative SS algorithm
and how we implement and parallelize the algorithm on the
CRC are provided in this Section. A scalable mapping function
is also proposed to adjust the block scale of each Worker Role.

A. The SBL-Based Cooperative SS Algorithm
Assume that there are N PUs in an area of N, x

Np, and M, CR BSs to collect these PUs’
sens-ing results t = (ti,ty,---,ty)" and locations
X = [X1, X2, +++, Xn ], With Xj,

[Xj,yj]", and feed back them to the CRC. We select a
basis function ¢j(Xi) =
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Fig. 2. UBREsThe block diagram of the Cognitive Radio Cloud platform. The

platform includes two dynamic web pages and one database of SQL Azure for

SUs and one for PUs. The SBL-based cooperative SS algorithm is
operated in Worker Roles and triggered periodically.

n o
Zéj exp — (Xix — Hjx)? + Kiy— Hj,y)Z/Sj
SBL to solve the regression problem of [7]

and use the

t=0w +n

@)

where cI)N xM = [\Vl(x ): Y2 (X), oYUM (X)], with
wi(X) . (9501), 05 (%2), -+, 0 (xn))T s the basis ma-
trix determined by the number M, the locations u =
(M1, M2, -+, 1m)T, with 5 [Wjx, iyl and the power
decaying rates s = (S1, S, ---,Sm )" of the bases, and
also by the number N and the location vector X of the
SUs. The vector w = (Wy, W,, ---, Wy )T denotes the
weighting coefficients of the basis functions, and each of its
entries wj
is endowed a prior probability N (0, a;l). The n denotes the
shadowing effect, with each entry being a zero-mean Gaussian
random variable (RV) with variance . The SBL iteratively
modifies the RVM and estimates the parameters M, (x;l,
B, uj, and s; to maximize the marginal likelihood function
p(t|X, a, B, 1, s, M) from sparse measurements.

The SBL can also be viewed as an alternative EM algorithm.
In the E-step, the covariance X and mean m of the posterior
distribution of weighting coefficients w are evaluated by

S=P0'd+A) L andm=pZdt 2

where A , diag(a;) isa M x M diagonal matrix. Conse-
quently, we can obtain the estimated weighting coefficients
w = m and then delete those low-weighted bases according
to w. Here we select the bases whose weighting coefficients
are larger than a threshold n and count their number to renew
the M. For the k-th iteration of SBL, we have

Mgy

My = 1(e; =)

@)
j=1

where | is the indicating function. Since there are two M-steps

in SBL and m is mainly adjusted in the first M-step. The bases

deleting criterion is only applied in the first EM in which the
basis parameters |, s and M are assumed known. Therefore,
the variance parameters aj‘l and B~ are estimated as

2 kt — ®mk?
ot="iandpt= T 4)
RS N——=1

where yj =1 —a;Xj;, and Xj; are the diagonal terms of =.
The smaller is the o, the more likely is ¢; a redundant basis.
Besides, the deleting threshold n in (3) should be set based on
the noise variance 1. In the second M-step, w, 1, and
M are assumed known. We infer the basis parameters u and
s that maximize the likelihood function p(t|u, s; X, M, B, o)
by the gradient descent method

oQ
Hj x(K) Hjx(k —1) OHix 15 (k—1)
M.y (K) wiyk —1)  —38 42
Hj, R _
5;(K) sk —1) aq Y
sj sj (k—1)

where k is the iteration index, Q , —Inp(t|y,s; X, M, B, o)
and & > 0 is the step size or referred to as the learning rate.
The details of the iteration process is shown in Table I.

According to the compressive sensing (CS) theorem [8], a
signal can be exactly reconstructed when the measurement rate
(N/sz) is larger than 0.16. Even though the SBL algorithm
does not adopt orthogonal bases and as such does not abide
by the CS theorem, the CS theorem still provides for the SBL
algorithm a useful reference figure on the measurement rate.
In the sequel, we only simulate the cases whose measurement
rates are less than 0.15. The estimation errors do not improve
significantly when the measurement rates are larger than 0.15,
while the complexity will increase dramatically.

TABLE |

The Sparse Bayesian Learning Algrithm

1) Uniformly spread M bases ¢;j in the area of interest.

2) Initiate the iterations with aj = 1, p =1 and k =0,
and evaluate the corresponding mean m and covariance .
3) Let k =k + 1. Update o % and p—*
and then evaluate m, = and Q(k).
4) Delete the bases whose corresponding weights wj < n
and then renew the M equal to the number of the surviving bases.
Renew the matrix ® and A.
5) Let k = k + 1. Update pj = [Wj,x, Kj,y] and sj and
and then evaluate m, = and Q(k).
Go to step 6) if (Q(k)— Q(k —1))/Q(k —1) < 0.0001.
Otherwise, repeat this step for L times, then go back to step 3).
6) Output the pj = [Mj,x, Hj,y] and sj.
Letlifp =M and w =m.

B. Area Parallelization with a MapReduce-like method

Because the algorithm complexity of the SBL-based SS
scheme grows in the third order of the number of sensing
measurements, we partition the sensing data of the distributed

(5)



Fig. 3. The flowchart of the parallelized SBL-based cooperative SS algorithm
in the background process of Windows Azure. In this example, there are one
web role and four worker roles, and each role operates on an individual VM.
The web role distributes the sensing data; in contrast, the worker roles execute
programs. The detailed execution steps of the algorithm are listed in Table II.

SUs by their locations into blocks to reduce the processing
time of the SS algorithm. The data of each block are processed
independently by a Worker Role of a VM to execute the SBL-
based SS scheme for the block. When the number, locations
and the RSSI levels of PUs are obtained, each VM reports the
results to a common PUs database.

Under the MapReduce programming model [6], VMs ex-
change data in a format of (key, value) pair. Applying this
concept to our SS problem, we define the time and the location
measurements as the Mapper’s input data key and output data
key, respectively. For the Reducer, both the input data key
and the output data key are location information. The flow
chart is shown in Fig. 3. We note that VMs and SQLs are
not guaranteed to be implemented in the same server, thus
exchanging data between VMs might become the bottleneck
of our implementation. It is a tradeoff between the degree of
parallelism and data exchange. The detailed description of this
MapReduce Programming Model is shown in Table I1.

TABLE 11

MapReduce Programming Model

1) Job tracker distributes SUs’ data to different
Worker Roles according to the chronical order.

2) Worker Role distributes the SUs’ data to different
sub-databases according to the SUs’ locations.
Each worker Role renews its state= 1 in Check SQL
when the distribution is done.

3) Worker Roles check state value in the Check SQL.
If all state values are equal to 1,
then start to run the spectrum sensing algorithm.
Otherwise, check state value periodically.

4) Export the estimation results into PUs’ database.

C. Hierarchical Parallelization

Although area parallelization can reduce the processing
time significantly, the speed improvement is still restricted
by the power coverage areas of the PUs, in particular, for
a PU like a TV broadcasting station. This is because data
processed by a VM should come from an area larger than that
covered by the power of a PU to ensure the correctness of the
reconstructed PPM of a PU. To lift this fundamental limit on
the computational speed of the SS algorithm, one can consider
a traditional parallelization method of multi-threading.

Specifically, we consider a hierarchical parallelization struc-
ture for the computation of the SBL-based SS algorithm.
Measurement data are first partitioned by area into blocks for
the algorithm complexity is of the third order of the number
of measurements. Each block are handled by one VM with
multiple CPU cores. Signal processing within each VM is
further parallelized with multi-threading over multiple cores.

In Microsoft’s dotNet 4.0, a simple multi-thread instruction
of P arallel.F or can be used to parallelize computations This
is an advantage of Windows Azure. Unlike Hadoop, Windows
Azure allows users to define some system-level properties for
the different VMs of Web Roles and Worker Roles. Therefore,
using multi-threading in VMs with multiple cores on Windows
Azure platform can also reduce the communication cost be-
tween VMs when only single-thread instructions are allowed
in each VM as in typical MapReduce programming model.

IV. SIMULATION RESULTS

Before we introduce the simulation results, we first give
some figures about the Windows Azure Platform. Windows
Azure offers different options of VMs whose system parame-
ters are listed in Table I11. These options allow us to do a fairer
comparison between the speeds and accuracies of different
measurement rates.

We consider herein an area of 60 60 with 3 PUs located at
(15, 45), (45, 45) and (15, 45), respectively. A baseline SBL-
based SS algorithm is performed for this area on Windows
Azure using the large instance in Table Ill. To study the per-
formance of parallelization on the Cloud, we test three types of
parallelization methods for the SBL-based SS algorithm. The
Type | performs parallelization for the SS algorithm by simple
multi-threading using four CPU cores of small instance in one
VM of the Worker Role. In comparison, the Type Il (in Host)
partitions the entire area into four blocks. Each area includes
at most one PU located at the same position relative to the
baseline example. Data from each block are processed by one
CPU core of a VM with 4 cores. In contrast, the Type Il (on
Cloud) processes data from each block on a VM of a single
CPU, i.e., each Worker Role processes the measurement data
from an area of 30 x 30. Finally, the Type Il processes data
from each block on a VM with 4 CPU cores. As a results, the
total number of CPU cores for the Worker Role becomes 16.

The simulation results for different measurement rates (spar-
sities) are listed in Table IV to VIII and are also shown in Fig.
4 to Fig. 8. Fig. 4 shows that parallelization by partitioning the
area is most crucial to the computation of the SS algorithm.



TABLE Il
THE COMPUTE INSTANCE SizE oF WINDOWS Az U

RE

Computer CPU RAM Storage 1/0
Instance Size efficiency
Extra Small 1.0GHz 768 MB 20 GB Low
Small 1.6GHz 1.75 GB 225 GB Woderate
Medium 2 x 1.6GHz 3.5 GB 490 GB High
Large x 1.6GHz 7 GB 1, 000 GB High
Extra large 8 x 1.6GHz 14 GB 2,040 GB High
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Fig. 4. The average processing times in the CRC platform versus the
measurement rates. Only 10 runs are executed for each point.

At the measurement rate of 0.1, Type Il (in Host) can improve
the processing speed of Type | by 20 times, while Type Il (on
Cloud) improves the processing speed of Type I around 13
times due to the communication time between the VMs. The
computational advantage of Type Il results from the matrix
inversion involved in the SBL-based SS algorithm since, for
the Gaussian-Jordan method, the time complexity grows with
the third order of the amount of sensing reports.

TABLE IV
THE SPENDING TIMES (SEC) UNDER DIFFERENT MEASUREMENT RAT
ES
Measurement rates || 0.05 | 0.075 0.1 0.125 0.15
original 89.4 | 309.9 | 739.4 | 1788.4 | 22235
Type | 40.0 | 1241 | 293.2 | 588.1 | 1089.0
Type 11 (on Cloud) 6.3 10.2 221 22.9 29.9
Type Il (in Host) 3.8 7.8 14.2 22.1 31.2
Type 1l 6.5 8.9 12.5 14.6 24.5

The hierarchial parallelization algorithm will not effect the
complexity, it only reduces the processing time for each area.
Nevertheless, this feature is particular useful for TVWS due
to the large scale of the power coverage areas of PUs. For the
SBL-based SS algorithm, a VM should process sensing data
at least from a PU, which prevents from partitioning the area
into very small processing blocks.

Table V and VI show the mean squared errors (MSE) of

TABLE V
THE MSES OF LOCATION UNDER DIFFERENT MEASUREMENT RAT
ES
Measurement rates 0.05 0.075 0.1 0.125 0.15
original 0.138 | 0.091 | 0.075 | 0.060 [ 0.050
Type | 0.180 0.09 0.068 | 0.057 | 0.048
Type Il 0.414 | 0.276 | 0.212 | 0.162 | 0.167
Type 1l 0.510 | 0.306 | 0.217 | 0.190 | 0.158

Mean Squared Errors of Locationing for Different Measurement
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Fig. 5. The average mean squared errors of the SBL-based SS
algorithm versus the measurement rates. The result doesn’t include the false
alarms and missing detection cases.

estimation. Table V shows the MSEs in the locationing of the
PUs, and Table VI presents the MSEs of the reconstructed
PPM. If the radiation power of a PU is 5 KW, one scale in
our simulations corresponds to 15km. As a result, the MSE
in locationing is around 1.8 km when measurement rate is at
0.1. More results on MSEs are presented in Fig.5 and 6.
Table VII and VIII show the missing ratios and the false
alarm ratios of the different types of the implementation

Mean Squared Errors of PPM by Different Measurement Rates
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Fig. 6. The average mean squared errors of the SBL-based SS
algorithm versus the measurement rates. The result doesn’t include the false
alarms and missing detection cases.



TABLE VIII
THE FALSE ALARM RATIOS UNDER DIFFERENT MEASUREMENT RAT

TABLE VI
THE MSEs oF PPM UNDER DIFFERENT MEASUREMENT RAT
ES
Measurement rates 0.05 0.075 0.1 0.125 0.15
original 0.020 | 0.017 | 0.015 | 0.014 | 0.012
Type | 0.022 | 0.019 | 0.018 | 0.015 | 0.012
Type Il 0.020 | 0.017 | 0.015 | 0.013 | 0.013
Type 11 0.022 | 0.017 | 0.015 | 0.014 | 0.011
TABLE VII

THE MIsSSING RATIOS UNDER DIFFERENT MEASUREMENT RATE
S

Measurement rates 0.05 0.075 0.1 0.125 | 0.15
original 0.09 0.04 0.04 0.04 | 0.04
Type | 0.108 | 0.02 | 0.011 0 0
Type Il 0.11 0.04 0.02 0 0
Type Il 0.13 0.03 0.01 0 0

methods for the SBL-based SS algorithm. For the Type I,
it appears to have a higher false alarm ratio in an area without
PU. To resolve this problem, we set a threshold for the
estimated power. With this mechanism, we can find for all
of the proposed algorithms that they exhibit consistent results
either in the false alarm ratios or the missing ratios.

V. DISCUSSIONS AND FUTURE WORKS

A CRCN was proposed for cooperative SS in TVWS. Based
on the SBL algorithm, a cooperative SS algorithm was tested
on Microsoft’s Windows Azure Cloud platform. Making use of
the multi-threading features of the Windows Azure platform,
a hierarchial parallelization method was proposed to improve
the processing speed of the SBL-based SS algorithm on the
Cloud. According to our simulation studies, the performance
of the SS algorithm can be greatly improved with the parallel
computing capacity and the MapReduce-like programming
model of the Cloud. Under the framework of CRCN, more

False Alarm Ratios of Different Measurement
Rates
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Fig. 7. The false alarm ratios of the SBL-based SS algorithm versus
the measurement rates. The power of PU is 30 and the noise is zero mean
with variance equal to 2 in this simulation case. Each point runs for 100
times.

ES
Measurement rates 0.05 | 0.075 0.1 0.125 | 0.15
original 0.12 0.04 0.01 0 0
Type | 0.108 | 0.102 | 0.011 | 0.011 0
Type I 0.03 0.03 0.02 0 0.01
Type 11 0.10 0.03 0.02 0.04 0.04
Missing Ratios of Different Measurement
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Fig. 8. The missing ratios of the SBL-based SS algorithm versus the
measurement rates.The power of PU is 30 and the noise is zero mean
with variance equal to 2 in this simulation case. Each point runs for 100
times.

advanced algorithms or ideas on cooperative SS or spectrum
resource scheduling can be tested for CR in TVWS.
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Abstract—One of the most challenging issues in cognitive
radio networks is efficient channel sensing and channel
accessing. In this paper, an analytical queueing model is
used to derive the probability of successful transmission,
channel sensing time, and transmission quota, for each data
channel. Each CR node records the derived statistics in a
channel preference matrix. A CR pair selects a data
channel for sensing and accessing based on the successful
transmission probability. According to the derivations, we
design a media access control protocol, which utilizes the
powerful computation capability of cloud servers to
estimate the behavior of PUs, for infrastructure-based
cognitive radio networks. We validate the analytical model
with simulation

results. Besides, the proposed MAC protocol is compared with
other approaches via simulation. The simulation results
showed that our protocol performs well in both utilization of
channel idle time and the average tries of channel search.

Keywords — cognitive radio network; channel sensing;
channel access

l. INTRODUCTION

With rapid increase of the wireless applications and
products, unlicensed bands such as Industrial, Scientific and
Medical (ISM) has become over-crowded. Cognitive Radio
(CR) [1], as a promising solution to efficiently utilize the
unused spectrum, has become an attractive research topic
nowadays. The concept of the CR technique is that cognitive
radio nodes (CR nodes) can temporarily borrow unoccupied
channels from primary users (PUs) without interfering with
PUs.

To utilize available spectrum efficiently, a media access
control (MAC) protocol is of great importance to CR nodes.
Existing CR MAC protocols can be classified into two
categories: single rendezvous [2-3] or parallel rendezvous [4-
5]. The former utilizes a common channel for CR nodes to
exchange control messages; in the latter, contrarily, control
messages are delivered on data channels.

The major advantage of single rendezvous protocols is the
avoidance of collision and meaningless channel hops. This
control channel, however, does become a bottleneck.
Therefore, how to design a MAC protocol with a control
channel efficiently is big challenge.

In [2], CR nodes perform negotiations on a common control
channel. Besides, a CR pair can only transmit one packet on
the temporarily occupied data channel (or on the control
channel). In this mechanism, all CR nodes need to achieve

978-1-4244-9920-5/11/$26.00 ©2011 IEEE

Cloud server

Cloud server

Figure 1. A simple network topology of infrastructure-based
cognitive radio networks

global synchronization. However, this global synchronization
significantly decreases the utilization of channel idle time. In
[3], a CR pair can exchange at most "TXQ" frames once they
discover an idle data channel. "TXQ" parameter efficiently
reduces the average channel sensing time. However, how to
properly set "TXQ" parameter is not addressed.

On the other hand, the basic idea of parallel rendezvous
protocols [4-5] is that nodes hop among different data
channels according to their own sequences, and control
messages are exchanged when a CR pair meets each other on a
data channel. However, synchronization problem and hopping
sequence generating function are still opened problems.

In this paper, we propose a cloud server-assisted MAC
protocol for infrastructure-based cognitive radio networks
(CRN), as in [6]. CR nodes cooperatively and periodically
report channel qualities and positions to CR access points
(denoted as AP.g). APgs further deliver collected information
to cloud servers. One characteristic of cloud computing is the
provided powerful computation capability. Cloud servers
derive the distribution of PUs' arrival rate and channel idle
time for each CR node and this information is forwarded by
APgs. This information helps on a CR node to estimate how
much time it should spend on sensing a specific data channel,
how many data frames it can deliver, and what the success
probability is. CR nodes sense channels in decreasing order of
successful probability.

The rest of this paper is organized as follows. Network
model and problem description are presented in Section II.
The designed cloud server-assisted MAC protocol is described
in Section I11. Section IV presents and discusses the
simulation results, while Section V concludes the paper.



Il.  NETWORK MODEL AND PROBLEM DESCRIPTION

A. Network Model

We consider an infrastructure-based CRN which consists
of APgs, and CR nodes, as shown in Fig. 1. Besides, cloud
servers are used to support the computation overhead of PUs'
locations and the distribution of arrival rate and channel idle
time. We assume there are N orthogonal data channels and one
control channel. CR nodes register to an AP, for joining the
CRN. In this paper, we consider single-hop CR flows. That is,
two CR nodes can exchange frames when both are within each
other's transmission range.

Each CR node equips a GPS and has only one transceiver.
CR nodes periodically report their positions and measured
channel qualities to AP . AP further forwards the collected
information to cloud servers. Accordingly, for each data
channel, cloud servers can identify PUs' locations [7]. Upon
knowing positions of PUs" and CR nodes', and taking hidden
terminal problem into consideration, cloud servers provide
each CR node the distribution of PU traffic arrival rate and
idle time for each channel.

Communications between CR nodes and the AP are on
the control channel; while the AP and the cloud server
communicate through a backbone network. The control
channel could be either a dedicated channel or an ISM-band
channel.

B. Problem Description

In this paper, we aim at increasing the successful
transmission probability of a CR pair while avoiding
interfering on PUs. Due to the support of cloud server, each
CR node obtains channel and PUs' statistics without
performing complex computation [7]. Our design concept is,
for a CR node, to use the obtained statistics to estimate the
successful transmission probability of each channel. Among
all data channels, a CR pair exchanges frames on the data
channel which has the highest successful probability. As a
result, the major challenge is how to calculate this probability.

Specifically, frame transmission of a CR node is affected

by both PUs and other CR nodes. Fig. 2(a) is an example to
illustrate how PUs impact on CR transmission. Far data

Rhannel i and CR node j (denoted as CR)), let Z “ and
“Yi.i represent the channel idle time, channel sensing time,
transmission time, respectively. To guarantge CR;'s
successful transmission, Wi.i + Xij < Zi  Therefore the
probability that CR; will successfully deliver frameson
channel i without interfering PUs is 71 = P(Wi; + Xy ; < Z)),
On the other hand, the impact from other CR nodes is
shown in Fig. 2 (b). In Fig. 2 (b), CR, starts to sense channel i
before CR;. Let 7. i be the difference of start-sensing time of
CR;and CR,. If Wi +1r; > Wiy, CR, fails to transmits
frames on channel i. We then consider another case that CR,
starts to sense channel i after CR;. Similarly, if
Wi > Wi+, CR,also fails to deliver frames on channel
i. Therefore, the probability that CR; transmits on channel i

without forestalling by  other CR  nodes is
pa=1-=P(Wi;+tr; > Wix) = P(Wi; > Wi +t;4)
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(b) An example to illustrate the impact of other CR nodes on CR;
Figure 2. An illustration of CR; accessing channel i successfully

The objective of this paper is, for each CR node, to derive
p1 X po Value for all channels.

I11. CLoup SERVER-ASSISTED MAC (CSA-MAC)
ProTOCOL FOR COGNITIVE RADIO NETWORKS

In this section, we describe the designed cloud server-
assisted medium access control protocol, named CSA-MAC,
in detail.

In CSA-MAC, each CR node, say CR;, maintains/updates
a channel preference matrix H; =[P; W; Q] when
periodically receiving channel statistics from the APz. H; is
an Nx3 matrix, as shown in (1). Each row is for a specific data
channel; the three elements of a row are successful and data
transmission probability, sensing time, and transmission quota.
Here pij, Wi, and i ;represent the successful transmission
probability, channel sensing time, and transmission quota, of
CR; on channel i, respectively.

H;=[P; W; Q= )
PN Wi an;

In the following, we explain how to derive column vectors
W; Qj and Pi
A. Derivations of Wiand @i
Based on [8], the sensing time of CR; on channel i,
denoted as W j,is



Wi = —[1.2 4+ 1.2(yi; + 1)) @

Bivi;

where B; and ~; ; are channel capacity (in Hz) and measured
signal-to-noise ratio (SNR) (in dB), respectively. Thus the
sensing tme of CR on eah  channel is

- x " T
Wj = W Waj,..., Wyl -
Next, let ¢, , tand ¢, indicate the transmission quota

of CR; on channel i, frame transmission time, and control
frame transmission time, accordingly. Given the idle time of
channel i being r, i.e., Z; = r, the time duration that CR; can

utilize to transmit frames is (Z; — W;_;) , which can
Zi — Wi —te
accommodate %‘ data frames. Thus the
column matrix Q;is i
Qi = |G qn.j
7:\ - W N,j f(tl

B. Derivation of P;

Both PUs and other CR nodes affect data transmission of
CR; on channel i. Therefore our derivations consist of two

parts: impact from PUs and impact from CR nodes.
(1) Impact from PUs
We assume the idle time of channel i is a random
distribution gnd for a specific period k its distribution is
£z, = 222 @
“  E[Z]

Let 5, i= = W: 55+ X, ;- According to the imbedded Markov
chain [9], we can find the occupancy distribution of a CR node
by applying z-transform on (4),

™ (1_':)(l_/))F‘,;'_,(/\r'_/\(':)
Ko = O Aa)—z =
- (1—p)F%, (s)
1 - pll — FZ, ,(8)]/(sE[Z:5]) !
©)
where is.the arrival rate of CR nodes, is channel service
rate, and P = Ac/IL.
We use M/M/1 as an example to further explain how to
derive Fz (s) Assume [ (s) = A then
1:=
Ry () = —o P 2
8= e+ Act
p(1 = p)
= NS i 6
s+ pu(l—p) ©
The  probability  density  funcion  of S .

is f5, (t) = p(1—p)e #1170 £ >0 Let Ay, bethe PUs'
arrival rate on channel i. The successful transmission
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Figure 3. An example to illustrate the meanings of (G
G .. and residual time G,

probablllty of CR; on channel i without PU interruption is
P(Z;, > S:. )and

P(Zi, > 8:i;) = / P(Z;, 2 7|Si; =
H
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From (7),if 7, =r > S, ;. channel i has available

capacity to serve CR; without interfering PUs. Further, if the
channel idle time is exactly the sum of sensing time and frame
transmission time, i.e., =W, ; + X, ;,i=1.2....N,CR
nodes maximally utilize the channel idle time.
(2) Impact from other CR nodes

Let {G,,.7 > 1} denote a sequence of i.i.d. non-negative
random variables with  P(G,, > 0), V. Here (3, is the time
interval which a CR user enters this channel which is
unoccupied until the time which channel becomes unoccupied.
An example is shown in Fig. 3. CR, starts to sense an idle
channel during (and there are other CR nodes hop to that
channel to perform sensing. While all CR users finish their
transmission or hop to other data channels pending (e call
the period ¢, is finished.

We assume that CR; starts to sense channel during Ga
Since the start-sensing time is randomly distributed within ,¢;,,

we divide ¢, into two parts: before CR;'s start-sensing time

(named aged time G~) and after CRy's start sen§|ng time
(named residual time §7 We know f( 2, = i Therefore,

. II(]
fo.t) = | .f(;,,,(;(,(/)lfv'o=.f/)(1f}‘,~n(.f/)
Jg=p
= L/‘x fa(g)dg
ElGl.J, “HT
_ 1 - Fa(p)
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Again, in Fig. 2 (b), two criteria that CR; can successfully
transmit frames on that channel without forestalling other CR
nodes' transmission are (1) th; < Wi —W;;,and (2)
fig > Wiy — Wi Let x =1, =t ¢=W; —W;, ad
Ui = Wi — Wi, | respectively, then the successful

probability is i
foGsosw) = [ e /; fg (@)
= Fg (¥i) — Fg,(G) ©
The column vector Pj is
P; = [pri pa.i, ---1).\'.1]T
[ (Fo,(h) = Fg, (Q) (e — 2o (emGntumdor)
(Fa,(2) — Fg, ()€™ — s38r- (e Gratumdolr)
T (B ) = Fo (@) — 522 (et
| (Fa, (n) = Fe, () (e . ypi (e Oey timalr) |
(10)

C. CSA-MAC operations

In this paper, we propose two MAC protocols: CSA-MAC
with handshaking and CSA-MAC without handshaking. For a
CR pair, the sender (say CR;) transmits an invitation to its
intended receiver (say CR,) on the control channel. If CR, is
idle and within CR;'s transmission range, it replies its channel
preference matrix H, to CR;. CR; is responsible to determine
the channel preferences. How to determine the channel
preferences is described below.

Upon receiving H,, for this CR flow, CR, calculates the
successful transmission probability of each channel, sensing
time, and transmission quota, as in (11).

I)j = DPij X l)i'l‘" N
W; = max(W;; , Wig), i=1,2,...M )

qi = min(qij » Gik)s

CR,; then sorts all data channels in decreasing order of p;. This
sorted channel sequence is exact the hopping sequence. CR;
informs CR, the hopping sequence and the corresponding
sensing time and transmission quota. Followed, both CR; and
CR, hop to data channel(s) for channel sensing.

The major difference between CSA-MAC with
handshaking and without handshaking is the exchanges of
RTScr and CTScx on data channels. For CSA-MAC with
handshaking, CR; and CR, will further exchange RTS. and
CTSck When either side senses a data channel being idle; while
CSA-MAC without handshaking does not perform RTS.; and
CTS exchanges.

In the following, we use an example to illustrate CSA-
MAC protocol. We consider two data channels (denoted as
Ch1l and Ch2), and each is with 2MHz capacity with BPSK
modulation scheme. CR, wants to transmit frames to CR, as
shown in Fig. 1. We assume 2048-byte frame size, and the
frame transmission time is 8.4ms. The channel utilization of
PUs of Chl and Ch2 are 0.4 and 0.5 individually.

Table 1. The successful probability of derivation and
simulation results in CRN.

CRuser=1 D.erivati.on result 0.8625

N=1 Simulation result 0.8000
Derivation result 0.9472

CRuser=2 Simulation result 0.8791

Derivation result 0.7350

N=2 CRuser=1 Simulation result 0.7062
Derivation result 0.9058

CRuser=2 Simulation result 0.8136

The SNR values of Chl and Ch2 measured by CR; are
0.0246 dB and 0.0231 dB individually. Thus the sensing times
of Chland Ch2are Wi p=13ms,and W2 p = l.4ms,
Assume that the observation time of Ch1 and Ch2 is 90ms and
86ms. According to (3),  ¢1.5 = [0.6(90 — 1.3)/8.44| = 6,
and ¢2.5 = |0.5(86 — 1.4)/8.44| = 5. Upon obtaining both
transmission quota and sensing time, we can further calculate
r=[1.34+6x8.44,1.4 + 5 x 8.44]7 =[51.94,48.6]7, and
q = [0.4707,0.3316]" . Let G, be in lognormal distribution.
By substituting all results into (9), the successful transmission
probabilities that CR, does not forestall other CR nodes'
transmission on Chl and Ch2 are 0.1524 and 0.1241,
respectively. Considering both impacts from PUs and other
CR nodes, the successful transmission probability of CRy is
Py = [0.07173,0.07173)7 . Finally, H 5 = [8841 Lo

CR( performs similar operations, while the viewed PU
traffic loads and measured channel qualities on Ch1 and Ch2

are (0.3, O.T%%.‘qﬁ)_)anq'(p.48]).0246 dB) individually. Thus

its ¢ = 1907173 1.3 ¢/ Furthermore, the successful

transmission probabilities of Chl and Ch2 are 0.00546 and
0.00295, respectively. Note that in this example, both channels
have the same sensing time (which is 1.4 ms) and transmission
quota (which is 6). As a result, the hopping sequence of this
CR pair is (Chl, Ch2).

D. Model validation

We validate the derivation of successful transmission
probability with simulation results. we assume CR nodes are
always backlogged. In the simulation experiment, the mean and
standard deviation of PUs' traffic load are 0.5 and 0.1,
respectively. The comparison is summarized in Table I. There
exists discrepancy between the derivation and simulation
results, which is due to the setting of standard deviation. In our
derivation, a CR node uses the mean traffic load value of PUs
to estimate the corresponding successful transmission
probability. However, in simulation experiment, channel idle
time maybe cannot accommodate g; frames, i=1, 2. In such a
situation, PUs should wait for transmission completion. Those
events are not counted in the calculation of the successful
transmission probability. Thus the successful probability of
simulation result is smaller than that of derivation. One
significant achievement of our mechanism is that CR nodes
utilize at least 70% of the channel idle time.

1VV. PERFORMANCE EVALUATION

In this section, we develop a simulation program to
compare the performance of the designed CACS mechanism



with OSA-MAC [2], SSA-MAC [3], CH-MAC [4], and DRA-
MAC [5].

In this experiment, there are one control channel, and five
data channel. The PU traffic load on data channel A
i = 1,2,...5, is poisson distribution with rate ),,.. Moreover,
weset \, =\,, =0.4;),, =0.5,and )\, = \,. =0.6.CR
nodes are always backlogged. The bandwidth of a data channel
is 2 Mbps. Frame size is 2048 bytes. The transmission ranges
of PUs, CR nodes, and CR APs are 150 meters, 100 meters,
and 100 meters, respectively. The duration of DIFS and SIFS is
0.05 and 0.01 ms, accordingly. For SSA-MAC, the settings of
TXQ and RTV are 4 and 1, respectively. The simulation time is
100 seconds. The observed performance metrics include
"utilization of channel idle time", and "average tries of channel
search".

We first investigate the utilization of channel idle time of
various mechanisms, and the results are shown in Fig. 4. We
found that CSA-MAC (with handshaking) performs better than
other MAC protocols. The reasons have twofold: setting
transmission quota according to PUs' traffic load; and adapting
channel sensing time based on measured channel quality. As a
result, CR nodes utilize channel idle time as much as possible.
The performance gap between CSA-MAC with handshaking
and without handshaking is caused by different dwell time
when sensing a busy channel. Indeed, the dwell time for CSA-
MAC with handshaking is 1V, + ¢..,,, Whileits 11, + X, for
CSA-MAC without handshaking. The reason of low utilization
for OSA-MAC is that a CR pair only exchanges one data frame
when occupying a data channel. Moreover, the common
drawback of DRA-MAC and CH-MAC is that if being aware
of PU presence on the sensed data channel, CR nodes will stay
at that channel for five slots, thus resulting in low utilization.
SSA-MAC has a mechanism for PUs to interrupt CR
transmission. Thus, SSA-MAC performs worse than CSA-
MAC (with handshaking).

Next, the performance of the average tries of channel
search for various mechanisms is in Fig. 5. It is common for all
mechanisms that, when the number of CR pairs increases, the
average tries of channel search also increases. Besides, CSA-
MAC (with handshaking) outperforms CH-MAC and DRA-
MAC. The reason is, in CH-MAC and DRA-MAC, a CR
sender does not select channels according to PUs' traffic loads,
and thus may frequently sense busy channels. Besides,
comparing with random hopping sequence performed in SSA-
MAC, our estimation of successful transmission probability
makes a great impact when there are more than five CR pairs.
In OSA-MAC, a CR sender only sense once during a fixed
period. Thus, OSA-MAC has the least tries of channel search
among all mechanisms, while its drawback is low utilization of
channel idle time as previously discussed. Note that CSA
(without handshaking) still performs better than most
compared protocols. The reason is that a CR pair has to wait
for 11, 4+ X; when sensing a busy channel, which implies that

CSA-MAC (without handshaking) has relative long sensing
time.
V. CONCLUSIONS
In this paper, we proposed a cloud server-assisted MAC
protocol, named CSA-MAC, for infrastructure-based cognitive
radio networks. In CSA-MAC, each CR nodes maintains a
channel preference matrix, which records the successful
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Figure 4. The utilization of channel idle time v.s. the number of CR pairs.
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Figure 5. The average tries of channel search v.s. the number of CR
pairs

transmission probability, sensing time, and transmission quota,
of each data channel. The three parameters are derived through
an analytical queueing model, and the support of powerful
cloud servers. Two versions of CSA-MAC are presented and
compared in this paper, with handshaking and without
handshaking. The simulation results showed that CSA-MAC
with handshaking performs better in the utilization of channel
idle time, while CSA-MAC without handshaking diminishes
the average tries of channel search. In the future, we will
investigate the impact of different arrival rate of CR users and
extend this work to multi-hop CR flows.
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Abstract—In this paper, we optimize the performance of
a cloud platform to effectively support cooperative spectrum
sensing in a cognitive radio (CR) cloud network. This cloud
uses the Apache Hadoop platform to run a cooperative spectrum
sensing algorithm in parallel over multiple servers in the cloud.
A cooperative spectrum sensing algorithm needs to process a
very large number of spectrum sensing reports per second to
quickly update its database that stores the current activities of
all primary users of the CR network. Because the updates of the
database must be finished as soon as possible to make the CR
approach effective, the cloud platform must be able to run the
algorithm in real time with as little overhead as possible. In this
work, we first measured the execution time of such an algorithm
over our own cloud and the Amazon EC2 public cloud, using the
original Hadoop platform design and implementation. We found
that the original Hadoop platform has too much fixed overhead
and incurs too much delay to the cooperative spectrum sensing
algorithm, which makes it unable to update the primary user
database in just a few seconds. Therefore, we studied the source
code and the design and implementation of the Hadoop platform
to improve its performance. Our experimental results show that
our improvement of the Hadoop platform can significantly reduce
the required time of the cooperative spectrum sensing algorithm
and make it more suitable for large-scale CR networks.

I. INTRODUCTION

Recently, the concept of cognitive radio (CR), which was
first introduced by Joseph Mitola 11l [1], has become more and
more popular and important due to the limitation of wireless
bandwidth. In [2], the authors show that the usage of licensed
spectrum is less than 25%, which is very inefficient. In a CR
network, the secondary/unlicensed users (SUs) are allowed to
use the empty spectra in frequency, time and space under the
constraints of not interfering with the primary/licensed users
(PUs). The CR approach has a great potential to improve the
utilization of licensed spectrum.

The Federal Communication Commission (FCC) of the
U.S. has approved unlicensed radio transmitters to operate
in the broadcast television spectrum at locations where that
spectrum is not being used by licensed services (this unused
TV spectrum is often termed as “white spaces” ) [3] and has
granted field trials of CR networks. With this opportunity,
many international organizations have defined CR standards
on TV white spaces (TVWS), such as IEEE 802.22, IEEE
1900, IEEE 802.16m and ECMA 392.

To avoid a SU from interfering with the signal quality of
TV sets, the FCC requires that CR operators in TVWS be
able to detect the TV signal. In addition, the CR operators

should also provide a database that maintains the geographical
locations of TV base stations (BS) and their radiation powers,
antenna heights, and numbers of channels, etc. To help achieve
these goals of spectrum sensing in TVWS, the SUs of a CR
network in TVWS are suggested to provide their sensing data
and geographical locations for the CR operators to perform
cooperative spectrum sensing. Cooperative spectrum sensing
will reconstruct the power propagation map (PPM) and peri-
odically update the PPM in a database.

A SU may operate either as a Mode | device (which operates
only on the channels identified by either a fixed device or
a Mode Il personal/portable device) or as a Mode Il device
(which relies on geo-location and database access to determine
available channels at its location) [3]. Due to the variation
of time and space, TV sets and wireless microphones may
occasionally be turned on to use the TV spectrum that was
previously unused. If the SUs and database cannot quickly
discover that PUs have become active and are using their al-
located spectrum, a severe interference between PUs and SUs
might occur. FCC requires that a Mode Il personal/portable
device check the database at least one time in 24 hours to
ensure the availability of spectrum. If it cannot reach the
database in a day, it can only operate after the end of the
day. On the other hand, a Mode Il device has to check its
own location every 60 seconds. If it moves across a distance
more than 100 meters from the location where it lastly checked
into the database, a reconfirmation to the database is required.
A Mode | device has to check the availability of spectrum
every 60 seconds through Mode Il devices. The above rules
are set up for avoiding the interference between PUs and SUs.
The information of PUs database plays a very important role
in the TVWS CR network. The reconstruction of PPM and
the update of PUs information in the database must be done
as fast as possible. Real-time updates of the PPM database
based on periodic sensing data from SUs can greatly reduce
the interference between PUs and SUs.

In [4], the authors proposed a Cognitive Radio Cloud
Network (CRCN) architecture to address the needs of a CR
network. Their cloud used the public Windows Azure cloud as
the computing platform to execute the spectrum sensing (SS)
algorithm. They implemented the sparse Bayesian learning
(SBL) [5] algorithm for cooperative SS using a MapReduce-
like method over the SQL Azure and Windows Azure. Since
the computation complexity of the SBL algorithm grows in


mailto:@cs.nctu.edu.tw

the order of 3 by the number of SUs, they implemented a
hierarchical parallelization method with Microsofts dotNet 4.0
using a MapReduce-like programming model to reduce the
execution time.

Despite their efforts, their experimental results show that
when the measurement rate is 0.15 (their definition of mea-
surement rate is the number of SUs divided by the region in
units of K m?), the SBL algorithm still needs 24.5 seconds to
finish over Window Azure, which is far from meeting the real-
time requirement of a CR network. Therefore, in this paper we
focus on reducing the execution time of the SBL algorithm to
only a few seconds to make the CR approach more effective.
To do so, we improved the design and implementation of the
Apache Hadoop platform [6] and had successfully reduced
the execution time of the SBL algorithm to only 5.89 seconds
under the 0.15 measurement rate.

The rest of the paper is organized as follows. In section
I, we briefly introduce Hadoop, the reason why we chose to
use it as the CRCN computing platform, and the problem we
encountered with it. In section 111, we present our study results
about Hadoop and propose solutions to these encountered
problems. Experimental settings are presented in section 1V
and various experimental results are then presented in section
V. Finally, we conclude the paper in section VI.

Il. USING HADOOP FOR CRCN
A. Background

Hadoop is an open source project composed of Hadoop
MapReduce, an implementation of MapReduce designed for
large clusters, and Hadoop Distribution File System (HDFS), a
file system that provides high-throughput access to application
data. It allows users to process a large data set with distributed
processing without fully knowing the knowledge of distributed
computing and without using expensive computing servers.
Hadoop is compatible with Hadoop database (HBase) [7],
which can perform random, real-time read/write accesses to
Big Data. HBase is suitable for the CRCN database, which
needs to store a very large number of sensing data from SUs.

A Hadoop system consists of a single master node and
many worker nodes. The master, called the Job-Tracker, is
responsible for accepting jobs from clients, dividing a job into
tasks, and assigning these tasks to worker nodes to execute
them. Each worker runs a Task-Tracker process that manages
the execution of the tasks currently assigned to that worker
node. Each Task-Tracker has a fixed number of slots for
executing tasks (there are two map slots and two reduce slots
by default).

A Hadoop job consists of two major phases, the map phase
and the reduce phase. Each phase has key-value pairs as input
and output and the types of key-value pairs may be chosen
by the user. The user also specifies the map function and the
reduce function that perform the data processing work defined
by the user.

1) Map: Each map task (mapper) is assigned a portion
of the input file called a split. By default, a split contains
a single HDFS block (64 MB by default). A mapper will read

the task’s split from HDFS, parse it into records (key/value
pairs), process the records by the user-defined map function,
and then generate intermediate data as the input of the reduce
tasks. After all of the input records have been processed by
the user-defined map function, the mapper generates its final
output. The mapper then registers the final output with the
Task-Tracker. Finally, the TaskTracker informs the Job-Tracker
that the map task has been finished.

2) Reduce: The execution of a reduce task (reducer) is
divided into three phases:

I) The shuffle phase: In this phase, a reducer fetches its
input data from the output of all mappers by issuing
HTTP requests to all Task-Trackers. Each reducer is
assigned a partition of the key range produced by the
map step, so the reducer must fetch the content of this
partition from every mapper’s output. When all required
data have been received, the reducer enters into the next
phase.

I1) The sort phase: In this phase, a reducer groups together
the records from each mapper’s output with the same key
to form a list of values headed by the same key.

II1) The reduce phase: In this phase, a reducer applies
the user-defined reduce function to each key and its
corresponding list of values. The output of the reduce
function is written to a temporary location on HDFS.
After the reduce function has been applied to each key in
the reducer’s partition, the reducer’s HDFS output file
is atomically renamed and moved from its temporary
location to its final location.

B. Why Using Hadoop for CRCN

In a CRCN, the execution time of the SS algorithm on the
cloud determines the delay of updates of the PPM database of
PUs. To make the CR approach effective, the execution time
of the SS algorithm must be as small as possible to reflect the
activities of PUs in real time. Table | shows the execution time
of the SS algorithm reported in [4]. The machine that they
used was Windows Azure large instance (See the machine
specification information in Table II). One can see that the
execution time of the SS algorithm under higher measurement
rates is still very large. The measurement rate is defined as
the number of SUs divided by the region in units of km? .
As the measurement rate grows, the correctness of the PPM
database increases. However, one can see that the execution
time grows very fast as the measurement rate grows due to the
O(n®) complexity of the SS algorithm. These execution time
results are only for a small 60 (Km) by 60 (Km) region. For a
real-world large region, the execution time of the SS algorithm
will grow up further and needs a parallel computing platform
to reduce it. To achieve this goal, we decided to use Apache
Hadoop to build our own cognitive radio cloud to reduce the
execution time of the SS algorithm.

We chose Hadoop as the computing platform of CRCN for
the following reasons:

1) Hadoop is a mature and reliable platform. It is widely
used and supported. For example, Amazon EC2 cloud



TABLE |

EXECUTION TIME (SEC) OF THE SS ALGORITHM UNDER DIFFER Janz
ENT MEASUREMENT RATES [4]
Measurement Rates | 0.05 | 0.075 0.1 | 0.125 | 0.15 T‘“ea\ slave
Execution time 6.5 89 | 125 146 | 245 V
Master &
ga
THE COMPUTER INSTANCE SIZE oOF WiNDOWS AzuU
RE Job Queue

Computer instance size CPU RAM Storage 10 T
Extra small 1.0 GHz | 768 MB 20 GB LOW
Small 1.6 GHz | 1.75 GB 225 GB | Moderate

Medium | 2 x16GHz | 3.5 GB 490 GB High Fig. 1. The Heartbeat Design in Hadoop

Large | 4 x 1.6 GHz 7 GB | 1,000 GB High
Extra Large | 8 x 1.6 GHz 14 GB | 2,040 GB High

platform provides the Hadoop platform on which a user
can write a Hadoop program to process a very large
amount of data.

2) Hadoop is designed based on the MapReduce method,
which is very suitable for executing the SS algorithm in
parallel.

3) Hadoop is an open-source project. Thus, one can study
its source code and change its internal design and imple-
mentation to meet one’s special requirements.

With Hadoop MapReduce, one can easily use the region-
division method to run the SS algorithm in parallel. However,
we found that the fixed overhead of Hadoop is always greater
than 20 seconds, which means that no matter how small the
data set is, any program running on Hadoop always needs 20
seconds or more to finish. This is a very serious problem when
one wants to use Hadoop to run a SS algorithm in real time
for CRCN. To overcome this problem, we studied the Hadoop
source code to realize how a job is processed over Hadoop
and successfully found methods to reduce its fixed overhead.
In the following, we describe our discoveries and solutions.

I1l. IMPROVEMENTS MADE TO HADOOP

A. Hadoop Job Execution Flow

To minimize the overhead of Hadoop, one should first
realize the Hadoop Job execution flow. A job can be broken
into four steps after the job client submits the job to the Job-
Tracker.

1) Setup Step: After receiving a new job, the Job-Tracker
will issue a setup-task request to a Task-Tracker that has a free
slot for execution. A setup task will be created to initialize the
environment for the job, which includes creating a temporary
output directory for the job. Once the setup task is completed,
the state of the job is switched to the RUNNING state.

2) Map and Reduce Step: After the setup task is finished,
the Job-Tracker starts assigning tasks to a Task-Tracker. The
Task-Tracker sends a heartbeat message periodically to the
Job-Tracker informing the Job-Tracker that the Task-Tracker
is still alive. A heartbeat message also contains the information
that indicates whether the Task-Tracker is ready to run a new
task or not. If it is ready, the Job-Tracker will use the heartbeat

return message to assign it a new task for execution. Fig. 1
shows the heartbeat design in Hadoop.

3) Cleanup Step: This step is used to clean up the job
environment after a job has completed. For example, the
temporary output directory created during the job execution
should be removed after the job is completed. Job cleanup is
done by a separate task at the end of the job. A job will
be declared SUCCEEDED, FAILED, or KILLED after the
cleanup task completes.

B. Main Sources of Hadoop Fixed Overhead

We found that the major sources of the Hadoop fixed
overhead come from 1) Heartbeat interval, 2) Reduce sleep
time, and 3) Commit sleep time. In the following, we explain
these sources in details.

1) Heartbeat Interval: If we consider a small job that is
processed by only 1 map task and 1 reduce task, the job
execution flow in Hadoop is as follows:

1. The Job-Tracker receives a job submission and issues
a setup-task request within a heartbeat return message to
a Task-Tracker.

2. The Task-Tracker executes and completes a setup task
and then reports to the Job-Tracker in its next heartbeat.

3. The Job-Tracker then asks the Task-Tracker to start a
map task right after the completion of the setup task via
a heartbeat return message.

4. The Task-Tracker completes the map task and reports
to the Job-Tracker in its next heartbeat.

5. The Job-Tracker then asks the Task-Tracker to start a
reduce task right after the completion of the map task via
a heartbeat return message.

6. The Task-Tracker completes the reduce task and reports
to the Job-Tracker in its next heartbeat.

7. The Job-Tracker then asks the the Task-Tracker to start
a cleanup task right after the completion of the reduce
task.

8. The Task-Tracker completes the cleanup task and re-
ports to the Job-Tracker in its next heartbeat.

9. The Job-Tracker receives a completion report from the
cleanup task, which indicates that the job is successfully
done.

As one can see in the above execution flow, the Job-Tracker
can only issues a task request after the Task-Tracker sends it a



heartbeat to inform it that the Task-Tracker has a free slot for
execution. Also, the Task-Tracker reports the completion of a
task to the Job-Tracker only through the periodic heartbeats,
which means that if a task’s execution time (assuming it is 1
second) is smaller than the default heartbeat interval (which is
3 seconds), the Task-Tracker will sit idle in the remaining
time of the current heartbeat period (i.e., 2 seconds) and
the job procedure will be blocked until the heartbeat reports.
Worse yet, there are four heartbeat messages in the job flow.
Therefore, in this example case, one will waste 8 seconds (i.e.,
2 seconds * 4) doing nothing in the heartbeat periods. If one
wants to run a real-time job such as the SS algorithm in CRCN,
the 8-second latency is a very large fixed overhead.

To clearly see the effect of the heartbeat interval on the

fixed overhead of Hadoop, we ran the PiEstimator [8] on the
Hadoop platform. The PiEstimator (Pi) is a Hadoop built-in
example. It uses the Quasi-Monte Carlo method to estimate
the Pi value. A Pi job needs many map tasks to perform the
Quasi-Monte Carlo method and a reduce task to calculate the
estimated result. There are two parameters of a Pi job. The first
one specifies the number of map tasks while the second one
specifies how many sample points a map task should generate.
Because the Pi job is a very small job needing very little
computing time, we ran it to measure the fixed overhead of
Hadoop. Table Il and Fig. 2(a) show that, after we reduce the
heartbeat interval from the default 3 seconds to 0.05 second,
the execution time of a small job can be reduced by 11 seconds
on average. The specification of the machine used for this Pi
experiment is listed in Table VII under the “Our own machine”

TABLE IV
ExecuTioN TIME OF PI UNDER DIFFERENT REDUCE TASK SLEEP

TIME
Default sleep time =5 sec | Modified sleep time = 0.05 sec
Pi 1 100 22.362 16.716
Pi 4 100 22.430 19.731
Pi 8 100 22.433 20.084
Pi 16 100 22.738 19.409
Pi 32 100 26.841 21.428

educe task sleep time = ——

»

ce _task sleep time =

10 16
Pi 1 pi Pi16 100 Pi32100 Pi 1 Pi 4 Pi 8
100 100 100 100 100 100

(a) Effect of Heartbeat Interval (b) Effect of Reduce Task Sleep
Time

Pi 16100 Pi 32100

Fig. 2. Effects of Heartbeat Interval and Reduce Task Sleep Time

3) The Sleep Time of Task Commit Function: We also
discovered that when a job calls a done function, it will enter
into a commit step to wait for the commitment from the Job-
Tracker. In the done function, there is a 1-second sleep time
between polling the arrival of the commitment. If we set it
to a small value such as 0.05 second, the fixed overhead of
Hadoop can be further reduced by about 1 second. Table V and
Fig.3(a) show the execution time of the Pi job under different
settings of this parameter.

column. TABLE V
ExecuTioN TiIME OF PI UNDER DIFFERENT COMMIT SLEEP
TABLE IlI TIME

ExecuTioN TIME OF PI UNDER DIFFERENT HEARTBEAT INTE Default commit sleep time = 1 sec | Modified commit sleep time = 0.05 sec

RVALS Pi 1 100 10.365 9.355

Default Interval = 3 sec | Modified Interval = 0.05 sec Pi 4 100 10.393 9.362

_ Pi 8 100 10.721 9.412

Pi 1 100 22.362 10.365 Pi 16 100 11.396 10.395

Pi 4 100 22.430 10.393 Pi 32 100 11.398 10.401
Pi 8 100 22.433 10.721
Pi 16 100 22.738 11.396

Pi 32 100 26.841 11.398 Table VI and Flg.3(b) show the execution time of Pi under

2) The Sleep Time of A Reduce Task: In addition to the
heartbeat interval, we also found that when a reduce task starts
up, it polls the intermediate results generated by the map tasks
that have completed. If a reduce task finds that there is no
result to collect, it will sleep 5 seconds and then try the polling
again. Using 5 seconds as the default sleep time is for saving
the number of polling in a large job. This is because in such
a job a map task may take tens of minutes or even hours to
finish and it is reasonable that a reduce task uses a large sleep
time between polling the output of map tasks. However, when
a job can be effectively parallelized to make the computing
time of a map task small, the default 5 seconds sleep time
becomes a large fixed overhead for real-time applications. To
see the effectiveness of the sleep time of a reduce task, we
changed the default 5 seconds to 0.05 second. Table IV and
Fig. 2(b) show that our modification of this parameter value
can reduce the fixed overhead by almost five seconds.

the default parameter settings and under all of the three
modified settings. One can see that the fixed overhead of
Hadoop is reduced by about 18 seconds, which is important
to help CRCN achieve high spectrum utilization.

TABLE VI
ExEcuTioN TIME OF PI UNDER THE DEFAULT AND ALL MODI
FIED SETTINGS (SEC)

Default settings | All modified settings
Pi 1 100 22.362 4.361
Pi 4 100 22.430 4.354
Pi 8 100 22.433 4.346
Pi 16 100 22.738 5.382
Pi 32 100 26.841 6.393

1V. EXPERIMENT CONFIGURATIONS

The Hadoop fixed overhead results presented in the previous
section were measured when the simple Pi job was executed.
To estimate the fixed overhead of the Hadoop platform when
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Fig. 3. Effects of Commit Sleep Time and All Changes

the SS algorithm is executed to support CRCN, we used a
small region with three PUs and some SUs. The size of the
region is 60 (Km) by 60 (Km) with 3 PUs located at (15,
45), (45, 15) and (45, 45), respectively. We randomly selected
some coordinate points and denoted them as the locations of
SUs. The number of SUs used in an experiment is determined
by the used measurement rate, which has been defined before
in the paper.

We computed the RSSI (received signal strength indication)
of each coordinate point where a SU resides and randomly
added a Gaussian noise to it to represent the effect of signal
noise in the real world. These sensing data represent the signal
power sensed and reported by SUs in CRCN. The sensing
data are saved in a file in the format of (x-position, y-position,
RSSI) and the file is stored on the HDFS. We wrote a Hadoop
MapReduce program to estimate the positions of PUs and their
transmit powers using the SS algorithm. The map step of this
SS algorithm first separated the SUs sensing data into 4 groups
by their locations in order to run the SS algorithm in parallel.
After the map step is finished, a total of 4 reduce tasks were
then launched to process these data.

We ran the SS algorithm case under different measurement
rates, which are 0.05, 0.075, 0.1, 0.125, and 0.15, respectively.
As defined before in the paper, the measurement rate is defined
as the number of SUs divided by the region in units of K m?.
Since in the experiment the region is 60*60 = 3,600 K m?,
the corresponding numbers of SUs in these experiments are
180, 270, 360, 450, and 540, respectively. Under a specific
measurement rate, we ran the experiment three times and
reported the average execution time of the three runs. The
execution time of a job is determined by the job’s start time
and finish time logged in the Job Tracker’s log file.

We used three different machine platforms to show the
effectiveness of our modifications on the execution time of
the SS algorithm. The first one is our own machine platform,
composing of one i7 machine acting as the Hadoop master and
two i7 machines acting as the Hadoop workers. The second
one is composed of 3 Amazon EC2 [9] “large instances,” with
one playing the role as the Hadoop master while the others
playing the role as the Hadoop workers. The third one is
composed of 3 Amazon EC2 “extra large instances,” with one
being the Hadoop master while the others being the Hadoop
workers. Table VIl shows the detailed information about these
three hardware platforms.

TABLE VII

HARDWARE PLATFORM INFORMATIO

N

Our Own | EC2 Large Instance EC2 Extra Large In-
Machine stance
Worker 2 2 2
number
CPU 17 2600 4 EC2 Compute Units | 8 EC2 Compute Units
(2 virtual cores with | (4 virtual cores with
2 EC2 Compute Units | 2 EC2 Compute Units
each) each)
Memory 16 GB 7.5 GB 15 GB
Disk 1TB 850 GB 1,690 GB
Space
Mapper 8 8 8
Reducer
max num.

V. EXPERIMENTAL RESULTS

Table VIII and Fig.4(a) show that our modifications to
the original Hadoop platform can successfully reduce the
execution time of the SS algorithm by 23 seconds on our own
machine platform. This improvement is very important to a
large-scale cognitive radio network as now the SS algorithm
can be finished in only a few seconds, which makes the
cognitive radio approach much more effective.

TABLE VIII
EXECUTION TIME (SEC) OF THE SSALGORITHM ON OUR OWN MAC
HINE
Measurement Rates | Hadoop Original | Hadoop Modified
0.05 26.777 3.35
0.075 26.918 3.25
0.1 26.924 3.82
0.125 27.986 4.29
0.15 28.619 5.89

Table IX and Fig.4(b) show the execution time of the SS
algorithm on the EC2 public cloud using its large instances.
The EC2 cloud already provides the original Hadoop platform
for its users to run their Map/Reduce programs on it without
any modification. To see the effectiveness of our modifications
to the original Hadoop platform, we installed and used our
modified Hadoop platform on the EC2 instances that we used
for doing experiments. The results show that on average our
modifications to the Hadoop platform can reduce the execution
time of the SS algorithm by about 16 seconds over EC2 large
instances. In contrast, Table X and Fig.5(a) show the execution
time of the SS algorithm on the EC2 public cloud using its
extra large instances. The results show that on average our
madifications to the Hadoop platform can reduce the execution
time of the SS algorithm by about 19 seconds over EC2 extra
large instances.

Comparing Table IX and Table X with Table VIII, one can
see that the execution time of the SS algorithm over the EC2
public cloud platform, whether its large or extra large instances
are used, are still much larger than the execution of the SS
algorithm over our own machine platform. These results may
indicate that the instances (virtual machines) provided by the
EC2 public cloud are equipped with slower CPUs than the
PCs used in our own machine platform.



TABLE IX
EXECUTION TIME (SEC) OF THE SSALGORITHM ON EC2 LA
RGE INSTANCES

Measurement Rates | Hadoop Original | Hadoop Modified
0.05 25.689 9.75
0.075 25.684 9.99
0.1 27.280 10.89
0.125 27.447 11.64
0.15 32.554 17.05

Hadoop original ——
Hadoop modified

L~

Execution time (secs)

[ 5
004 005 006 007 008 009 01 011 012 013 004 005 006 007 008 009 01 011 012 013
014 015 014 015

Measurement rate Measurement rate

(a) Execution time of the SS algo- (b) Execution time of the SS algo-
rithm on our own machine rithm on EC2 large instances

Fig. 4. Execution time of the SS algorithm on our own machine and on EC2
large instances

To test the scalability of our design and implementation,
we built and ran a larger test case with a 300 (Km) by 300
(Km) region and 80 PUs. The map function first separated
the SUs sensing data into 100 30 (Km) by 30 (Km) regions.
The data associated with a region are assigned to a reduce
task to calculate the SS result in that region. The machine
platform that we used for running this case is composed of 14
EC2 extra large instances, among which one instance acts as
the master and the other instances act as the 13 workers. The
machine information and configuration is the same as those
listed in Table VII. Table Xl and Fig.5(b) show that for a
specific measurement rate, the execution time of the 300 x
300 region case is about 6 seconds to 10 seconds larger than
that of the 60 x 60 region case, even though in both cases
an instance is responsible for the same 30 x 30 region. Our
preliminary study showed that this execution time increase is
caused by the bottleneck in the reduce shuffle phase of Hadoop
and we will explore this issue further in our future work.

V1. CONCLUSION

In this paper, we optimize the cloud platform performance
for supporting large-scale cognitive radio networks. In such a
network, a cloud platform is used as the computing platform
to run the SS algorithm in real time. The goal is to make
the PU database as accurate as possible at any given time.

TABLE X
EXECUTION TIME (SEC) OF THE SS ALGORITHM ON EC2 EXTRA L
ARGE INSTANCES

Measurement Rates Hadoop Original | Hadoop Modified
0.05 24.436 5.52
0.075 24.327 5.56
0.1 26.463 7.11
0.125 27.780 7.66
0.15 30.342 11.30

TABLE XI
EXECUTION TIME (SEC) OF THE SS ALGORITHM ON EC2 EXTRA LA
RGE
INSTANCES USING OUR MODIFIED HADOOP FOR THE 60 x 60 AND
300 x
300 REGION CASES
Measurement Rates | 60 x 60 region | 300 x 300 region
0.05 5.52 11.21
0.075 5.62 12.54
0.1 7.11 13.84
0.125 7.66 16.93
0.15 11.30 21.55
* e e . B
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(a) Execution time of the SS algo- (b) Execution time of the 60 x 60
rithm on EC2 extra large instances and 300 x 300 region cases

Fig. 5. Execution time of the SS algorithm on EC2 extra large
instances under the 60 x 60 and 300 x 300 region settings

Due to its maturity and popular supports over public clouds
such as the Amazon EC2 public cloud, the Hadoop platform
is very suitable for running the SS algorithm in parallel on
the cloud. However, we found that the original design and
implementation of the Hadoop platform cause a significant
fixed overhead for any job running on it, including the SS
algorithm. To overcome this problem, we studied the source
code of the Hadoop platform to understand how it processes
a job in a distributed manner.

Our detailed study identified three main sources of the fixed
overhead in the original Hadoop platform. Our modifications
to the Hadoop platform can successfully reduce the fixed
overhead by about 20 seconds on our own machine platform
and make the resulting execution time less than only a few
seconds. In summary, the improvements that we made to the
original Hadoop platform make the PU database more accurate
at any given time, which in turn makes the cognitive radio
approach much more effective.
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Abstract—A Cognitive Radio Cloud Network (CRCN) model
is proposed for wireless communications in TV White Spaces
(TVWS). Making use of the flexible and vast computing capacity
of the Cloud, a database and a sparse Bayesian learning (SBL)
algorithm are developed for cooperative spectrum sensing (CSS)
and implemented on Microsoft’s Windows Azure Cloud platform.
A medium access control (MAC) scheme is also prototyped for
this CRCN model to collect sensing reports and access channels
with Rice University’s wireless access research platform (WARP).
Through this CRCN prototype, important network parameters
such as the mean squared errors in CSS, the time to detect the
presence and/or the absence of primary users, and the channel
vacating delay are measured and analyzed for the design and
deployment of the future CRCN.

Index Terms—Cognitive Radio, Cloud Computing, CR-MAC,
Cooperative Spectrum Sensing and Sparse Bayesian Learning.

I. INTRODUCTION

The concept of cognitive radio (CR) is first introduced
by Joseph Mitola III in [1]. Under the framework of CR,
unlicensed Secondary Users (SUs) can access the spectrum
for licensed Primary Users (PUs) under the condition that
the service quality of PUs can be effectively preserved or
guaranteed. In view of the inefficient usages of some legacy
spectrum holders (less than 25% overall according to [2]), CR
is expected to resolve part of the spectrum shortage issues in
wireless metropolitan and local area networks (MAN/LAN).

The termination of analog TV broadcasting allows the
Federal Communications Commission (FCC) of the U.S to
take an initiative to test the CR concept [3]. CR networks are
later granted for field trials in part of it’s TV White Spaces
(TVWS). Encouraged by FCC’s policy on CR, international
organizations have also started to define CR standards in
TVWS, e.g. IEEE 802.22, 802.11af and ECMA 392, etc.

To ensure the received signal quality of TV sets, the FCC
requires CR operators able to access databases that can provide
the power propagation map (PPM) of TV signals with a
sensitivity of 0.8dBm below the noise level (-106.2dBm). In
addition, a database also needs to provide the geographical
locations of TV base stations (BS) and their radiation powers,
antenna heights and channel numbers, etc. SUs use the data-
bases to determine their access rights in TVWS. To achieve
these multiple purposes of CR databases in TVWS, some
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Fig. 1. A conceptual Cognitive Radio Cloud network (CRCN) model in TV
White Space. It illustrates the infrastructure of CRCN and the power coverage
ranges of the TV BS (PU BS), CR SUs and CR APs inside the CRCN.

research units have started to develop databases that make use
of location-based cooperative spectrum sensing (CSS).
Compared to the BSs of regular cellular networks, the
radiation power of a TV BS typically covers a much larger area
which is beyond the reach of the transmit power of a mobile
device. This makes the operation of a CR network in TVWS
different from that of a LAN or a MAN. The reasons are at
least two-fold: First, to reconstruct the PPM of even a TV BS,
it requires sensing reports from devices located in different
positions inside the TV signal’s coverage range. Considering
the much weaker transmit power of a sensing device (SD),
it requires many CR access points (APs) in the same area to
collect the sensing reports from distributed SDs. The CR APs
further send the sensing reports through backhaul to a fusion
center to reconstruct the PPM of the TV signal. Second, even
if the channel accesses of SUs are established through their
associated CR APs, the wireless links’ activities and power
strengthes should still be coordinated by a center in order
to facilitate resource sharing among the multiple CR APs or
operators in the huge spectrum of TVWS. These two important
features of CR in TVWS have attracted significant research
attentions either in CSS or spectrum resource sharing (SRS).
To exploit the vast spectrum resources in TVWS, we propose
a CR network model powered by Cloud (CRC) computing.
The CRC not only can harmonize the functions of CSS,
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channel access (CA) and SRS in TVWS, but also facilitates
and materializes the establishment of a CRC network (CRCN)
whose operation can be more delicate and complex than a
LAN, while its infrastructure is much simpler than a MAN. A
conceptual operation model of CRCN is illustrated in Fig. 1.

A similar concept of cognitive wireless Cloud (CWC) has
been introduced by H. Harada et al in [4] where a Cloud-based
algorithm is proposed to coordinate SRS among heterogeneous
networks. In contrast to their ideas in heterogeneous networks,
th CRCN model proposed herein integrates the functions of
CR spectrum sensing (SS), management, CA and SRS under
a uniform Cloud framework. Making use of the readings of
positions and radio signal strength indicators (RSSI) collected
from SDs or SUs, a CSS algorithm is proposed to estimate the
PPM, positions and the number of PUs based on the concept
of sparse Bayesian learning (SBL) [5]. Considering that the
positions and the population densities of CR SUs are supposed
to be random and may vary in different times and areas,
the SBL-based CSS algorithm is developed on Microsoft’s
Windows Azure Cloud platform. Exploiting the scalability of
Cloud computing, the proposed CSS architecture is in principle
able to do SS over a huge area with sparse sensing reports.

In addition to CSS, we also design a multiple access control
(MAC) protocol for cognitive channel accesses in TVWS.
Based on Rice University’s wireless access research platform
(WARP) and Texas Instruments (TI) radio transceivers, the
CR-MAC protocol is implemented for SS and frequency-
division and time-division multiple accesses (FD-TDMA)
among SDs and SUs. Together with the spectrum database of
PUs built with the SQL Azure of Microsoft’s Cloud platform,
the proposed CRCN model is prototyped in an architecture
illustrated in Fig. 2. Through this prototype, important CRCN
parameters such as the time for and the mean squared error
(MSE) of PPM reconstructions, the channel vacating delay of
SUs in the presence of PUs can be assessed for future designs
of CRCN in TVWS.

The paper is organized as follows. Section II introduces
the infrastructure of CRCN. The CSS algorithm is specified
in Section III followed by the CR-MAC protocol in Section
IV. The experimental results are presented and discussed in
Section V. Concluding remarks are provided in Section VI.

II. THE INFRASTRUCTURE OF THE CRCN

We first introduce Microsoft’s Windows Azure Cloud plat-
form on which the CRCN is prototyped. The Cloud platform
supports program developments in JAVA or in C* and Visual
Basic. The programming models in Windows Azure include:

¢ Web Role: to communicate between users and back-

ground processes. It can be implemented by dynamic web
languages, for example, ASPNET and PHP, etc.

« Worker Role: to execute tasks with background processes

in Windows Azure and export the results periodically.

The operating system (OS) for Windows Azure is Windows
Azure Guest OS 1.9 which is a virtual machine (VM) version
of Windows Server 2008 SP2. Windows Azure also supports
three types of data storages which are BLOB for general binary

l
1 Location
2 Detected RSSI

{(Wircless Nework B i

fooo@
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Fig. 2. The block diagram of the proposed CRCN model. The CRC consists
of SS agents and SM agents through which SS data are stored and retrieved,
respectively, from the databases of SQL Azure. Each agent is implemented
on a VM in the Worker Role of Windows Azure. The SBL-based CSS agent
partitions the CSS task into parallel procedures running on different VMs.

data, Table for systematic data and Queue for data passing
between webs and programs. Moreover, built on Windows
Azure, SQL Azure is the Cloud version of the SQL server,
though, it only supports part of the functions of the SQL server.

To reconstruct the PPM on Windows Azure, CR APs,
SDs or SUs inside the CRCN are assumed equipped with
the global positioning system (GPS) devices. The CR APs
collect and report the locations, times and RSSI readings of
their associated SDs or SUs to an SS agent (VM) in the
CRC of Fig. 2, through which the data are stored in an SS
database built with SQL Azure. The database are processed
by the CSS engines to do the SBL-based CSS whose details
will be introduced in Section III. Because the CSS algorithm
complexity grows in the third order of the number of sensing
measurements, the sensing data are partitioned by a CSS
agent into blocks according to their geographical locations
and population densities. Data of each block are processed
independently by a CSS engine to parallelize the CSS task.
The reconstructed PPM of the PUs of each time slot are stored
into a spectrum database of SQL Azure, which contains the
estimated number and positions of the PUs as well.

‘When an SU wants to access PUs’ licensed channels, it first
sends a CA request to its associated CR AP through which
the aggregated spectrum requests are issued to an spectrum
management (SM) agent (VM) in the CRC. The agent checks
the spectrum database and informs the CR-AP of its granted
wireless channels and corresponding transmit power. The SUs
then access the channel according to the CR-MAC which is
going to be introduced in Section III. An illustration that
depicts the infrastructure of CRCN is provided in Fig. 2.

III. THE SBL-BASED COOPERATIVE SS ALGORITHM

Assume that there are N SDs or SUs in an area of IV, X IV,
in which exist M, active PUs. The RSSI readings of ¢t =
[t1,t2,--- ,tn]T collected from SDs and/or SUs at locations
of X = [x1, 22, ,xy] in the area, with x; 2 [z;,,]T, are
fed back by their associated CR APs to the CRC. The RSSI ¢

in decibel (dB) are modeled in a linear regression form of [6]

t=%w+n D
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where Py m

$;(X) £ [¢;(21),9

.)A

[wl(X)a¢2(X)7 n
i(z2),- -+, ¢j(zn)]T further defined by

D) 2 3 exp {— /e — 1) + iy~ 13g)?/s }
for j = ..M. Supposed there are M basis functions
¢;j(x;) that model the transmit power of PUs located at
A T . A
K= [, o, pum]”, with py = [pja, ). The power
decaying rates of ¢;(x;) are s = [sy,s2, -+ ,sn]7. The
RSSI vector t is a linear combination of ¢;(x;) whose
weighting coefficients are w [wy,wa, -+ ,wp]?. Each
entry w; is endowed a prior probability N (O,aj_l). The
logarithms of the shadowing effects, , in ¢ are modeled
as zero-mean Gaussian random variables whose variances are
B~1. The SBL-based CSS algorithm iteratively estimates the
parameters o = [ai,...,anm]T, B, u, s and M to maximize
p(t| X, e, B, b, s, M) from sparse measurements of ¢ and X.
The CSS algorithm can be viewed as an alternative EM
algorithm. In the E-step, the covariance ¥ and the mean m
of the posterior distribution of w are evaluated to be

Y= (®T®+ A, and m = Xt

,¥m(X)], with

@)

where A £ diag{a;} is an M x M diagonal matrix. We can
thus assign the estimated weighting coefficients to be w = m
and delete those ¢;(x;) whose weighting w are less than a
threshold 7. The number of survival ¢;(;) then becomes

3)

where I is an indicating function. Becasue there are two
M-steps in the alternative EM algorithm, and m is mainly
adjusted in the first M-step, the bases deleting criterion is only
applied in the first EM in which p, s and M are given. The
remaining two parameters aj_1 and 3! are estimated to be

mj t — &m)|2
aj—l — _"]’ and ﬂ—l — || ]Ln” (4)
Vi N - Zj:l i

where v; = 1 — o;X;;, and X;; are the diagonal terms of
3. The smaller is the aj_l, the more likely is ¢; a redundant
basis. Besides, the deleting threshold 7 in (3) should be set
according to the noise variance B~1 of n.

In the second M-step, ;*, 3=, and M are given. We thus
infer the parameters u and s that maximize the likelihood
function p(t|u, s; X, M, 8, ) by the gradient descent method

0Q
o . . _
iz (k) Wik —1) ;Q w0 (k=1)
piy(k) | = | Hiy(k=1) | =6 iy |y, (k—1) )
5;(K) sj(k —1) oo
9s; Sj(k—l)

where k is the iteration index, Q £ —Inp(t|u, s; X, M, 3, cx)
and 6 > 0 is the step size or referred to as the learning rate.
The details of the iteration process is shown in Table 1.
Under the infrastructure of CRCN in Fig. 2, the SBL-based
CSS algorithm is implemented on Windows Azure following
a MapReduce-like programming model [7]. The input SS
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Fig. 3. The block diagram of the SBL-based CSS algorithm implemented
on Microsoft’s Windows Azure. In this example, there are 4 SS agents to
process the input SS data. Data in each table of the SS database is processed
by a CSS engine. The results are output to the spectrum database.

TABLE 1

The Sparse Bayesian Learning Algrithm

1) Uniformly spread M bases ¢; in the area of interest.
2) Initiate the iterations with a;j =1, 3=1and k =0,
and evaluate the corresponding mean m and covariance 3.
3) Let k = k + 1. Update a—! and g1
and then evaluate m, 3 and Q(k).
4) Delete the bases whose corresponding weighting w; < 7
and then renew the M equal to the number of the survival bases.
Renew the matrix @ and A.
5) Let k = k + 1. Update p; = [ptj,z, ftj,y] and s; and
and then evaluate m, X and Q(k).
Go to step 6) if (Q(k) — Q(k —1))/Q(k —1) < 0.0001.
Otherwise, repeat this step for L times, then go back to step 3).
6) Output the p; = [t 2, ft5,y] and s;.
Letﬁp:MandzT):m.

data from CR APs are first processed by SS agents and
stored in different tables of the SS database according to their
locations. The CSS engines are managed by a CSS agent and
are activated periodically to estimate the PPM, namely the
parameters o, 3, u, s and M from the sparse measurements
t and X in the tables. The reconstructed PPM, ®w = &m,
and the estimated number M, and locations fi of the PUs are
stored in the spectrum database to be used by the SM agents.
A block diagram that depicts this processing flow is in Fig. 3.

IV. CR MAC PROTOCOL FOR CHANNEL ACCESS IN TVWS

We design and implement a FD-TDMA based CR MAC
protocol in this CRCN prototype. This CR MAC protocol is
specifically designed for an infrastructure-based CR network,
which consists of CR APs, SDs, and SUs. Channel sensing
and reporting are mandatory to SDs and APs, while they
are optional to SUs. Besides, a SU must be associated with
a CR AP for data channel accesses. TVWS spectrums are
channelized and partitioned into control channels and data
channels. A CR AP uses one control channel and manages
a number of data channels. The control channels are for CR
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Fig. 4. The frame format of the CR-MAC for CRCN.

APs to coordinate data channel accesses and collect sensing
reports; data channels are assigned to SUs for data deliveries.
Multiple SUs can be assigned to different data channels or
share the same channel in a TDMA manner. SDs and SUs
are synchronized with their CR APs, and always listen to the
control channel unless they are requested to perform channel
sensing or permitted to deliver data on data channels.

In the CR-MAC, time is framed, and several frames are
grouped into a superframe, as shown in Fig. 4 (a). For
simplicity, we only show one data channel. Each frame
on control channels starts with a beacon, followed by an
association period (ASP), a collection period (CP), and a
reservation period (RP). ASP and RP are for SUs to send
joining/leaving messages and channel requests to their CR
APs, respectively, while CP is for CR APs to collect channel
sensing reports. Both ASP and RP are divided into time slots,
and adopt a contention-based multiple access scheme. CR
APs periodically broadcast beacon messages on the control
channels to announce their existence, and management channel
activities. To achieve this, a beacon consists of three fields:
CR AP addresses (Addryp), associated SUs’ IDs, and data
channel assignments, as shown in Fig. 4(b). Data transmissions
are classified into downlink (DL) and uplink (UL) deliveries.
We elaborate the operations of channel access and report
collection in details in the following.

A. Channel Access

When receiving a beacon, a new joining SU sends a joining
request to the CR AP in a randomly selected time slot of the
ASP. The association process is successful if the SU’s ID is
listed in the associated SUs’ IDs of the next frame. Otherwise,
the SU keeps sending joining request in the following frames.
Similar operations are performed for SUs’ leaving.

When an associated SU wants to initiate a data delivery,
it first sends a channel request in a randomly selected time
slot of the RP to the CR AP. Each channel request is with a
timer. The CR AP further forwards the received requests in a
specific frame to the SM agent through the backhaul. Based
on these requests, SUs’ locations, and PUs’ information, the
SM agent performs channel assignment and informs the CR

CRC on Microsoft’ s Windows Azure

SSAgent  CSS Engine  SM Agent

SD

Fig. 5. The experimental setting for a CRCN prototype.

AP of the results. The CR AP then broadcasts the channel
assignments to managed SUs in the following beacon. If a
SU does not get channel grant after timeout, it will re-issue a
channel request. Upon getting a channel access grant, the SU
hops to the designated data channel to do data deliveries. It
vacates the channel when either finishing data transmissions
or PUs are detected. For the latter, the CR AP will assign
another available data channel to the SU for the remaining
data transmissions.

B. Sensing Report Collection

To guarantee the sensing quality and increase the precision
of PPM estimation, CR APs and SDs synchronously sense the
data channels for a time duration, which is named Quiet Period
(QP). In this QP, associated SUs are forbidden to transmit data
on data channels, while new SUs are allowed to send joining
requests on the control channel. Therefore, in our design, the
time duration of QP equals to that of the ASP.

Following the QP, the SDs hop back to the control channel
to report their sensing results in the CP. Instead of using
contention-based channel accesses, the CR AP actively polls
the managed SDs for sensing reports. Since SDs are designated
for SS and reporting only, a polling mechanism is more
efficient for SDs to avoid collisions in transmissions.

The format of a RSSI sensing report is shown in Fig. 4(c).
The CR AP and SDs report not only the measured RSSI
readings of data channels, but also their IDs, coordinates, and
the timestamps.

V. EXPERIMENTAL RESULTS

We present some experimental results on a CRCN prototype
developed in this project. In the CRCN, the SUs use TI’s
transceiver modules numbered CC1111, and the SDs use the
HM-TR transceiver modules of HOPERF [8]. There are 10
SDs, 2 SUs, 4 CR-APs, 2 control channels and 2 data channels
used in the CRCN. The CR APs that collect sensing reports
from SDs are implemented with WARPs [9], while the SUs
and the CR APs that manage cognitive channel accesses
are implemented with laptop computers and CC1111s. The
experimental setting is illustrated in Fig. 5. A CR-AP for SS
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Fig. 6. The MSE of the PU position estimation and the missing ratio in the
PU detection versus the number of SDs in the CRCN prototype.

is associated with 5 SDs which share the same control channel.
To avoid interfering with TV signals, the frequency channels
used in experiments are set in the ISM bands right above the
UHF TV band. The 2 control channels are set at the 866 and
868 MHz bands, and the data channels are set at the 870 and
872 MHz bands whose bandwidth is 128kHz for each channel.

TABLE II
THE RSSI LEVELS OF THE HM-TR TRANSCEIVER MODULES

RSSI Readings 1 2 3 4 5
dBm Values —96.2 | —87.1 | —78.6 | -71.2 | -61

A. SBL-Based Cooperative Spectrum Sensing in CRCN

In the experiments, the subnetworks formed with the four
CR APs overlap with each other in an area that exists one PU
BS only. The PU’s frequency is set at 870 MHz, and SS are
done by the SDs only, whose RSSI readings are sent back to
the CRC through their associated CR APs. The RSSI readings
of the HM-TRs consist of 5 strength levels whose values are
shown in Table II. To conduct experiments in a constrained
lab space, the transmission power of the PU BS is set to the
same order of the CR AP such that the PPM of a PU BS can
be reconstructed with the sensing reports of the 10 SDs. This
setting not only simplifies the complexity of experiments, but
also helps assess the robustness of the proposed SBL-based
CSS algorithm as there are now only 10 SDs whose RSSI
readings are partitioned into only 5 levels in a wide range of
signal strengthes from -96 to -61 dBm. The experiments thus
help examine the effects of RSSI’s precision on the quality of
the reconstructed PPM.

The MSE of the estimated PU location versus the number
of SDs in PPM reconstruction is shown in the upper subplot
of Fig. 6. The missing ratio in PU detection is shown in the
lower subplot. The missing ratio is less than 0.1 when the
number of SDs is greater than 4. Both results show that the
proposed SBL-based CSS algorithm is quite robust even with
limited number of imprecise sensing measurements.

B. Response Time of Channel Vacating in CRCN

In this experiment, a superframe is set consisting of 5
frames according to the CR-MAC format in Fig. 4. Each frame
duration is set to 400 ms. SDs perform channel sensing once
per superframe and only in the QP of the first frame. A QP
(ASP) lasts for 50 ms, and is preceded by a BP of 10ms and
followed by a CP of 160ms for sensing reports. To compensate
the synchronization errors, fields in and between frames are
separated by a guard interval of 10ms as well. Further, each
SD takes 30 ms to complete its reporting. Therefore, a CR AP
can manage reports of 25 SDs at most. In the experiments, the
SDs associated with the two different APs start reporting at
different frames in a supperframe, one group at the first CP
(90ms), the other at the second CP (490ms) of a superframe.

On the other hand, to meet the FCC requirement, upon
maintaining a database of PU information, of a maximum
query interval of 60 sec, CR APs query the SM agent about
channel availability once per superframe (i.e., 2 sec query
interval). Specifically, the query time is at the beginning of
the last frame in each superframe, i.e., at time 1.6 second,
3.6 second, etc. The performance metric we investigate here
is channel vacating time, which is the time from the presence
of a PU to the time the PU channel is released. The testing
results of 360 runs are presented in Fig. 7.

We observed that the minimum, average, and maximum
channel vacating times are 1.723 sec, 3.7757 sec, and 5.985
sec, accordingly. Several factors affect the measured channel
vacating time, such as the time to read/write databases, the
execution time of the PPM estimation algorithm, and network
communication time. Based on the implemented FD/TDMA-
based MAC protocol, we then analyze the reasonableness of
those testing results. First, the best-case performance would be
the situation that the PU appears before SDs start their sensing,
processing is finished and PU information is available before
the CR AP querys the SM agent in the same frame. In such a
case, the estimated channel vacating time is the timestamp of
CR AP issuing a query plus communication time from the SM
agent to the CR AP and from the CR AP to the SU. Through
observing those testing results, the communication time is
roughly 0.2 sec, and thus the minimum channel vacating time
is approximately 1.6 sec + 0.2 sec = 1.8 sec.

On the other hand, when the PU appears after the first QP
of a superframe, it will be detected in the next superframe.
As a result, the 10 SDs will finish reporting at the end of the
second CP, which is 490ms + 160ms = 650ms after the start
of the second superframe. Plus the typical 1.36 sec for PPM
estimation in the CSS engine, the PU’s presence cannot be
made available when CR APs query the SM agent at 1.6 sec
in the same superframe. Therefore, CR APs can only know the
PU’s presence in the third superframe, which ends up with the
worst-case response time of approximately 4 + 1.6 + 0.2 =5.8
sec. The testing results match the estimated values.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we introduced the concept of a CRCN, and
pointed out the importance and the necessity of CSS in a
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Fig. 7. The probability density function versus the channel vacating time of
SUs in the CRCN prototype.

CRCN. In addition, we prototyped a CRCN with Microsofts
Windows Azure Cloud platform. Through implementing the
SBL-based CSS algorithm and the FD/TDMA-based MAC
protocol on the CRCN platform, we evaluated the MSE
and the channel vacating time in the presence of PUs. The
results showed that the proposed SBL-based CSS algorithm
performs well even with limited number of imprecise sens-
ing measurements. Moreover, we analyzed and discussed the
reasonableness of the CRCN response time in PU detection.
More advanced design issues such as asynchronous CSS, VM
scaling up and out, and real-time MAC programming will be
examined and verified in our future work.
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