
ELSEVIER Physica C 269 (1996) 330-338 

PHYSICA 

The interaction between a single vortex and a columnar defect 
in the superconducting multilayers 

J.L. Chen, T.Y. Tseng * 
Department of Electronics Engineering and Institute of Electronics, National Chiao-Tung University, Hsinchu, Taiwan 

Received 15 May 1996 

Abstract 

The interaction energy per unit length Uint(r) between a single vortex and a columnar defect with radius a in the 
superconducting multilayers is calculated with the help of London theory. We assume that these superconducting layers are 
coupled by the magnetic field and the interlayer Josephson coupling can be neglected. We obtain a general expression of 
Uint(r) for any t, where t is half of the spacing between the layers. For t ~ ~, our theory can be reduced to the result of a 
thin film. But when t becomes smaller, Uint(r) would tend to exhibit the behavior of 3D superconducting bulk. 

PACS: 74.60Ge; 74.80.Dm 
Keywords: London penetration depth; Multilayers; Thin films; Type-II superconductors 

1. Introduct ion 

For technical applications of  superconductors, the enhancement of  the critical current density (Jc)  in high 
magnetic fields is one of  the most important tasks. To obtain a large Jc it is required to introduce strong pinning 
centers into a superconductor and to enhance the magnetic-flux pinning strength. One of  the promising methods 
of  introducing defects inside a superconductor is based on heavy-ion irradiation techniques [1-5]. These 
nonsuperconducting defects which interact with the vortices would induce screening currents and lead to the 
so-called electromagnetic pinning [6]. 

It is necessary to study the structure and interactions of  the vortices with columnar defects in order to 
understand the effect of  columnar defects on enhancing Jc- At first, for understanding the structure of  the 
vortices, some theory has been developed. Clem et al. have calculated the structure of  the vortices in layered 
superconductors [7-9]  and Bulaevskii et al. [10] have calculated the Lawrence-Doniach model [11] in the linear 
approximation. Recently Benkraouda and Clem [12] have shown the instability of  a tilted vortex in the layered 
superconductors. Next, the interaction between a single vortex with a columnar defect in the 3D type-II 
superconducting bulk has been calculated by Mkrtchyan and Shmidt [13], and their theory has been generalized 
to a periodical structure of  columnar defects [14]. On the other hand, for a 2D superconducting thin film, the 
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interaction of a 2D pancake vortex with a circular defect has been studied by Buzdin and Feinberg [15] in the 
short range and generalized by Chen and Tseng [16] to all ranges. But, unfortunately, as far as we know, the 
articles about the interation between vortices and columnar defects in the layered superconductors are still 
deficient. 

In this paper, we generalize the result of the interaction of a single 2D pancake vortex with a circular defect 
in a superconducting thin film [16] to that in superconducting multilayers. We assume that the layered 
superconductors are coupled by the magnetic field and the interlayer Josephson coupling could be neglected. We 
improve the mathematical methods developed in our previous work [16] in order to apply them to layered 
superconductors. For simplicity, we assume the radius of the columnar defect a is a small quantity. This 
assumption is very reasonable because a ~ 100 ,~ [1-5]. Under these conditions, we obtain a general expression 
of the interaction energy per unit length Uint(r) for any layer spacing of 2t  and the whole range r >  a. The 
pinning potential and pinning force per unit length are also obtained. In the limit t ~ ~, our theory can be 
reduced to the result in a thin film [16]. But in the opposite limit, t ~ 0, we obtain the result appropriate for the 
3D superconducting bulk [13]. Therefore our theory can successfully explain how Uint(r) varies from the 2D 
superconducting thin film to the 3D superconducting bulk. 

2. A single vortex in the superconducting multilayers 

We first consider that a single vortex lies along the z-axis in an infinite stack of parallel, thin (Josephson 
decoupled) superconducting layers (K >> 1) in the planes z = zm, where zm = (2m + 1)t and m = 0, _ 1, 
+ 2 ,  - - . .  Then the vector potential A 0 satisfies the following equation [17]: 

4~r 2 8 ( Z - Z m ) [ q b o ~ O _ A o ] ,  
VX V X A  o = - j ~ o  ' - -  (1) 

c A 2-rrp 

where the screening length A = 2 A2/d plays the role of an effective penetration depth in the superconducting 
thin film [18-20]. h is the London penetration depth and d is the thickness of the superconducting layers. 
Because the vector potential A 0 has cylindrical symmetry and we have even and periodical functions of z [i.e. 
Ao( p, O, z )=  Ao( P, O, -  z) and Ao( p, O, z + 2 t )=  Ao( p, O, z)], the general solution of Eq. (1) has the 
form [7] 

Ao( p, O, z ) =  ~of ° dkao(k )J l ( kp  ) cosh k( z -  2mt) 

Substituting Eq. (2) into Eq. (1), we then obtain 

~°dkao(k) (Ak  sinh k t +  cosh th° kt) Jl( kp)  
2 ¢rp " 

from which the Hankel transform yields [21] 

~b 0 1 

a°( k) = 2Ir Ak  sinh k t + c o s h  kt" 

From 

for ] z - 2rnt l < t. (2) 

this result we obtain the magnetic field 

qb o fo~ k [ - # p J l (  kp) sinh k( z -  2mt) + ~zJo( kp)  cosh k( z -  2mt)] 
H° = ~ Jo dk Ak  sinh kt + cosh kt 

for [ z--  2mt [ < t. 

where J , ( x )  is the Bessel function. 

(3) 

(4) 

(5) 
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The supercurrent density in each superconducting layer is given by 

Jso( P, 0, z) = ~ -~-  ~ A° = "4~ --'5- Ak tanh kt + 1 (6) 

The self-energy of a single vortex per unit length Uself is obtained by integrating the supercurrent density Jso 
[22] 

t~ 0 f . 2 ¢b~ f l /~ dk tanh kt 
U~lf= ~c JJs° " dtr/2t~-" 167rEtdo Ak tanh k t + l '  (7) 

where ~(T) is the Ginzberg-Landan coherence length and 2t  is the layer spacing. If we substitute tanh x --- x 
for x _< 1 and tanh x -- 1 for x > 1 into Eq. (7), we have 

th 2 1 t 
U~,f ~ - - ~  [ ln(-~ ) +  - ~ l n ( - ~ t t  ) ] . (8) 

Eq. (8) is an approximate expression of U~elf for any t. In the following paragraphs we discuss this equation in 
two limits: 
(1) t >> A; 
(2) t << A. 

2.1. t>> A 

From EqS. (2-7) we have the vector potential 

qb°e° fo~ e-klz-z ' lJ l(kP) for I Z--zml <_t, (9) 
a 0 (  p ,  0, z) = ~ dk Ak  + 1 ' 

the supercurrent density 

Jso(P, 0, z) = qboC6(Z-Z,n)e~o[H,(A)_Y, (A ) 8 ~ A  2 _ 2 ] ,  (10) 

where /4,(x) is the sturve function and Y,(x) is the Neumann function. The self-energy of a single vortex per 
unit length is 

Us, e l f  = 16----572, ln[-- 7 . (11) 

2.2. t << A 

We obtain the vector potential 

A0( p, 0, z ) =  ~b°~° + 
2,rrAi I i Ai I 

for I z - 2mt l < t, 

z --' 2mt) 2 2 

(12) 
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the magnetic field 

n0(  p, 0, z ) =  - 
z-  2mt)$. [ P) 

÷ 

for I z -  2mtl <_t, 

( z - 2rot) 2 p 

2[ 
6A~ K° ~ - ~  1 ~ (13) 

the supercurrent density 

Jso(P,O,z )= qb°ct6(z-zm) { (-~11)+ t--~[ P - ~ K o I P I - K  ( ) ] } P  (14) 
4,rr2A~ eo K1 3AII [ 2All ~ All] 1 ~11 " 

Therefore, the self-energy of a single vortex per unit length is 

U~eif= 1 - ~ In , (15) 

where All --= ~ is the effective penetration depth [7] in the superconducting multilayers for t << A. K,(x)  is 
the modified Bessel function. 

As expected, in the limit t >> A, the vector potential A 0 is reduced to the result appropriate for an isolated 
thin film as indicated in Eq. (9), but in the opposite limit, t << A, we obtain the result appropriate for the 3D 
superconducting bulk as shown in Eq. (12) in which All is the effective penetration depth. Moreover, we obtain 
the corrective terms in the order of t /A  = t2/A~l in Eqs. (12-15) for t << A. Therefore Eqs. (4-7) are valid for 
a superconductor with any layer spacing. 

3. A single vortex in the superconducting multilayers with a columnar defect 

We next consider a columnar defect with radius a in an infinite stack of parallel, thin (Josephson decoupled) 
superconducting layers in the planes z = zm, and a single vortex is located at a distance r from the center of the 
defect. Both columnar defects and vortices are aligned along the z-axis (as shown in Fig. 1). For simplicity we 
assume a << min(A, All) in this paper. Then the vector potential A satisfies the equations [16] 

4"rr 2 6 ( z - z , ) [ p o $ ~ A l  for p >  a, Vx  V × A = I j s =  
c A 2~R 

VX V X A = 0  for p <  a, (16) 

where the center of the columnar defect is located at (0, 0, z) which corresponds to the z-axis of the cylindrical 
coordinates ( p, 0, z), and the single vortex is located at (r, 0, z) which corresponds to the z-axis of the other 
cylindrical coordinates (R, ~b, z). In order to solve Eq. (16), we would like to generalize the mathematical 
methods applicable in a thin film [16] to the multilayers. The solution of Eq. (16) includes two parts and can be 
written as A( p, 0, z ) = A  0 +AH, where A 0 is the vector potential of the single vortex and has been solved 
and given in Section 2. A H is the homogeneous solution of Eq. (16), and is caused by the screening current of 
the columnar defect. On the basis of Eqs. (2) and (4) in Section 2, we have 

~b0e ~ f ~  dkJl(kR)cosh k( z - 2rot) 
A0( R, 4,, Z) = 2-----~ Jo Aksinh kt + cosh kt for I z - 2rot [ < t. (17) 
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1 /  

z = ' 3 t /  

II 
Fig. 1. A columnar defect with radius a lies in the Josephson decoupled superconducting multilayers in the planes z = zm = (2m + 1)t, and 
a single vortex is located at a distance r from the center of the defect. 

Now we transform the coordinates from (R,  th, z) to ( p ,  0, z) in Eq. (17). By the summation theorem, the 
Bessel function Jo(kR) can be expanded in the following form [23] 

o¢ 

Jo(kR) =Jo(kp)Jo(kr) + 2  E J.(kp)J.(kr)  cos nO. (18) 
n = l  

Taking the partial derivatives O/Op and 0/O0 on both sides of  Eq. (18), we have 

( p - - r  cos O) 
] -  J l ( k R )  =Jl(kP)Jo(kr) + ~_, [Jn+l(kp) -Jn_l(kP)]J.(kr)  cos nO. (19) 

n = l  

r sin 0 
R Jl(kR) = ~-" [J~+l(kP) +J"-l(kP)]J"(kr) sin nO. (20) 

n = l  

The angular unit vector in (R,  ~b, z), ~6 can be expressed as 

- r  sin O ~ p + ( p - r  sin O)eo 
= R ' ( 2 1 )  

From Eqs. (19-21) ,  we have 
oo 

1 Jl( kR)e6=2Jo( kr)Lo( p,O; k) + ~_. J.( kr)L,( p, O; k), (22) 
n = l  
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where 

Ln( p, O; k ) =  -R6[ Jn+ ,( kp) + Jn_,( kp)]sin nO + eo[ Jn+,( kp) - Jn_,( kp)]cos nO, 

n = 0 ,  1 ,2  . . . .  (23) 

Substituting Eq. (22) into Eq. (17), we have 

q~o ( ~  cosh k( z -  2mt) [1 ~ ] 
A0( p. 0, z) = ~'~ "o dkAksinh kt+cosh kt -~Jo(kr)Lo( p, O; k) + E Jn(kr)L.( p, O; k) 

.=1 
for I z -  2mt l < t. (24) 

From Eq. (24) we find that A '= dPo~c,/2"rrR-A o can be expanded in a series of the orthogonal functions 
Un( p, O, Z; r), where Un( p, O, z; r) is the solution of the equation V× VU n = -26 ( z )Un /A  and can be 
written as 

= ~b 0 / - ~ [  cosh k ( z -  2mt) ] 
v.( p,  0, r )  z ;  

~-~-w Jo [ 1 -  Aksinh k t + c o s h  kt Jn( kr)Ln( p, O; k). (25) 
.i 

In Eq. (25) r is regarded as a parameter. Then we can construct the homogeneous solution of Eq. (16), A H, in 
the region of interest p > a with the expansions of Un( p, 0, z; a) in a series as follows: 

~o(r) 
A n ( p ,  O, z) = 2 V°( p' O, z; a) + E an(r)Vn( p, O, z; a) 

n = l  
for p > a and [ z - 2rnt [ <_ t. 

(26) 

The supercurrent density Js is given by 

is( o. 0, z) = c ~ ( z -  zm) 4,03, A 
27rqrA 2-rrR 

qboC~( Z -  Zm) fo~ ktanh kt ( 1  j 
= 4--~ ~ dkAktanh k t + l  "2[ °(kr) - a ° ( r ) J ° ( k a ) ] L ° (  p' O; k) 

+ E [Jn(kr) - °G(r )Jn(ka)]Ln(P ,  O; k) f o r p > a ,  (27) 
n = l  

where an(r) ,  can be determined by boundary conditions. 
Because the radial component of Js vanishes at p = a ÷ =  a + ~(T), an(r) (n v~ 0) can be determined as 

Jn( ka)J,( kr)tanh kt f 
Jo dk ~ ~--t-t-~i 

an(r) = ~o Jn(ka)Jn(ka+)tanh kt ' n = 1, 2, 3 , - - -  for r >  a; (28) 

fo Aktanh kt + 1 
dk 

ct0(r) can be determined by the condition that the total magnetic flux trapped in the superconducting multilayers 
(including the defect) is equal to ~b o. The z component of the magnetic field Hz( p < a, z = z,,) is distributed 
uniformly and the radial and angular components of H(  p < a, z = z,,) vanish because V× H -- 4~rjJc  = 0 for 
p < a and z = z,,. By integrating Eq. (16) along the circular contour of the defect in z = Zm just as was done in 
Ref. [13], we have 

~p A .  dl='rra2Hz(p<a,  z=z , , ) .  (29) 
=a 
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Substituting Eqs. (24) and (26) into Eq. (29), we obtain 

f o  dk AktanhaJ°( kr)kt + 1 [lkaJ°( ka) - Jl( ka)] 
ao(r ) = ~ aJo(ka+) for r >  a. (30) 

fo dk Aktanh kt + 1 [½kaJ°( ka) - Jl( ka)] + 1 

The free energy U(r) per unit length is given by 

6o fJs" d o ' =  Use,f+ Uint(r) ,  U(r) = (31) 

where the self-energy of a single vortex per unit length U~elf is given in Eq. (7), and the interaction energy per 
unit length Uint(r) between single vortex and columnar defect in the superconducting multilayers is given as 

Uint( r ) = 

t k/ [ 1 62 fo dk Oto(r)Jo(ka)Jo(kr ) + 2  • ot,(r)S,(ka)Jn(kr ) . (32) 
16~2t Aktanh kt + 1 

Because we assumed a << min(A, All) previously, the first term in the right-hand side of Eq. (32) is much 
smaller than the second term, and therefore it can be neglected. We consequently get the general expression of 
Uint(r) for any t: 

fo ~ dkJ,(  ka) J,( kr )tanh kt (33) 
Ui,t(r) = 62 ~, a , (r )  Aktanh kt + 1 ' 8'rr2t n= 1 

where a,(r) is given in Eq. (28). We can examine Eq. (33) in the two limits t--+ ~ and t--+ 0. In the limit 
t ~ ~, Eq. (33) reduces to the results of the superconducting thin film which we had been obtained in Ref. [16]. 
In the opposite limit t ~ 0, Eq. (33) then approaches the results of Mkrtchyan and Shmidt [13] appropriate for 
the 3D superconducting bulk with effective penetration depth All = q-~'. Since the high-T c superconductor 
possesses a multilayer structure, and the spacing between the CuO 2 layers is very short (N 10 .~), we are 
interested in the limit of this small layer spacing. Taking the limit t << A, we can calculate Eq. (33) up to the 
order of t /A  (t=/A~) as in the following: 

6 g  ( a / 2 a , , )  K" ~ 1 - + - -  
Uint(r) 4~2A~ n-- ~1  n.---~(n: 1").~ 

for a << All and t << A, 

t2r K._,(r/All ) ] 

3A~ K.(r/Atl ) ] 

(34) 

where the first term of the right-hand side in Eq. (34) is equal to the result of Mkrtchyan and Shmidt [13], and 
the other terms in Eq. (34) are the correction up to the order of t2/A~l. 

Taking the two limits r << All and r >> All, Eq. (34) can be rewritten as 

1-  ln(1- for a<r<<A,,, 
Uint(r) = ~ ~ 4"rrAII ] ~ 3All ] ~ -~" ' 

! 6202 F t 2 ,2. l (35) 
/ ~ e - 2 " / a , , | l  - -----v + 

' ' /  
32"rr~h~r [ 3A~ 3A~ ] for a << All << r. 



J.L. Chen, T.Y. Tseng / Physica C 269 (1996)330-338 337 

The pinning potential per unit length for the single vortex, Upin(a), is defined by 

Upin(a ) = Uint(r-- a +) 

= -- 1 -- In for a << All and t << A. 

The pinning force per unit length is 

f p =  -- V Uint( r) l r=a+ 

= - -  1--  ~ fora<<All  and t < < A .  

(36) 

(37) 

4. Conclusions 

In this paper we generalize the mathematical methods which we had developed to apply in the superconduct- 
ing thin film [16] to the Josephson decoupled superconducting multilayers. The interaction energy per unit 
length, Uin t ( r ) ,  between a single vortex and a columnar defect is consequently derived for the whole range 
r > a, where a is the radius of the columnar defect and we assume a is small for simplicity. 

It is interesting that our theory cannot only reduce to the results of an isolated thin film which we had derived 
in Ref. [16] in the limit t ---> o% but also our theory corresponds to the result of  Mkrtchyan and Shmidt [13] in the 
limit t ~ 0, where t is half of the spacing between the layers. For r >> A the interaction energy per unit length 
Uint(r) exhibits 2D behavior. B u t  Uint(r) more likely exhibits the behavior of the 3D superconducting bulk for 
smaller t. Therefore our theory can be applied to superconducting multilayers with any layer spacing. 

Finally we calculate Uint(r) up to the order of  t / A  in the limit t < < A  (the condition of high-T~ 
superconductors). Under this condition we also calculate the pinning potential and pinning force per unit length 
in our system and we believe that this work is useful to realize the pinning mechanism of high-T~ 
superconductors. 
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