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Abstract

This paper presents a novel method to combine two major branches of image sharing: VC and PSS. n transparencies are created for a given
gray-valued secret image. If the decoding computer is temporarily not available at (or, not connected to) the decoding scene, we can still
physically stack any t received transparencies (t �n is a threshold value) to get a vague black-and-white view of the secret image immediately.
On the other hand, when the decoding computer is finally available, then we can get a much finer gray-valued view of the secret image using
the information hidden in the transparencies. In summary, each transparency is a two-in-one carrier of the information, and the decoding has
two options.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction and goal

Image sharing can be used in a team when no member
alone should be trusted. Visual cryptography (VC) [1–7] and
polynomial-style sharing (PSS) [8–14] are both well-known
branches to share images. Both can be designed as (t, n)

schemes. (In this paper, we say that a sharing technique is
(t, n) if and only if it shares a secret image S among n shad-
ows so that any t of the n shadows (n� t) can unveil the secret
image S (or a compressed version S(comp) of S), whereas less
than t shadows cannot.) Although both VC and PSS can share
images, they are quite different in many manners. Table 1
below compares VC and PSS.

In Table 1, if we temporarily ignore the final column (which
is for the future comparison use in the experiment section,
we list this column here just to save paper’s space), we can
see that VC is simple and fast, while PSS gives good image
quality. A question arises naturally: “Can VC be combined with
PSS?” To certain extent, the answer is positive, as is shown
here. In this paper, we present a method to combine these two
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techniques and achieve a goal: if the decoding computer is tem-
porarily not available in (or, not connected to) the decoding
scene, we can still physically stack the t received shadows to
get a vague black-and-white view of the secret image imme-
diately; later, when the computer is finally available, we can
get a much finer gray-valued view of the secret image using
the information hidden earlier in the shadows by using PSS.
(Hereinafter, the final output of the proposed method will be
called as “transparencies” rather than “shadows” because, as
mentioned above, one of the two decoding manners is that the
shadows can be stacked physically for viewing, just like ordi-
nary transparencies can be stacked and viewed.)

Below in Section 2 we first review some background knowl-
edge used in this paper, and then in Section 3 we introduce our
method. The experimental results are in Section 4, and the con-
clusions are in Section 5. Section 6 describes an application of
this paper.

2. Background

Some background knowledge is reviewed in this section.
Section 2.1 reviews the basis matrices roughly, which is a
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Table 1
A comparison between VC and PSS

Visual cryptography Polynomial-style Ours
(VC, see [1–7]) sharing (PSS, see [8–14]) (VC + PSS)

Usually, the input secret image S is Black-and-white Gray Gray

Decoding speed (and decoding Instant (by using eyes after Slow (by computation) Instant in Layer 1; slow in Layer 2.
method) stacking shadows)

Is a computer needed in decoding? No Yes “No” in Layer 1;
“yes” in Layer 2.

Recovered image’s perceptual quality Vague Fine Vague in Layer 1;
fine in Layer 2.

Size of each shadow Larger than that of S Can be smaller than that of S Either the length or the width of
a (binary) transparency is larger
than that of S, but the number of
computer-storage bytes needed can
be smaller than S’s.

background knowledge well known in VC field; Section 2.2
reviews the PSS technologies, including Shamir’s [14] and
Thien and Lin’s [8].

2.1. A review of the basis matrices [B0] and [B1] for VC

Below we review the two basis matrices [B0] and [B1] often
mentioned in VC field (e.g. see Ref. [1]). The matrix B0 is
called a “white matrix” because it is useful to produce blocks
whose stacking result will represent white pixels of a black-
and-white (e.g. halftone) image. Matrix [B1] is called a “black
matrix” for analogous reason. Without the loss of generality,
below we only show the case (t, n) = (2, 4), i.e. only two out
of four shares are needed in recovering. For a general pair of
given values (t, n), the readers may either design their own
[B0] and [B1], or use the Appendix to create some pairs of
[B0] and [B1]. In fact, even if the values of t and n are fixed,
the choice of [B0] and [B1] is still not unique. To apply the
proposed VCPSS two-in-one sharing method, people can use
any pair of [B0] and [B1] satisfying the requirements (i)–(iii)
stated in next paragraph (these three requirements also appear
in the Appendix). In summary, the pair [B0] and [B1] is not
necessarily generated from the Appendix; the Appendix is just
to let readers know that there always exists at least one solution
to find out [B0] and [B1].

In the (t, n)= (2, 4) case, one of the several possible choices
for the white matrix [B0] and the black matrix [B1] is to use

[B0] =
⎡
⎢⎣

0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1

⎤
⎥⎦ and [B1] =

⎡
⎢⎣

0 0 1 1
1 1 0 0
0 1 1 0
1 0 0 1

⎤
⎥⎦ .

(1)

Both matrices have n = 4 rows. (In general, no matter how we
assign the two matrices, each matrix must have n rows if n

transparencies are to be created. This is the so-called require-
ment (i).) In both matrices, each 0 means that a white element

is painted there, and each 1 means a black element is painted
there. As we can see, both [B0] and [B1] have two black ele-
ments per row. (In general, the number of 1’s appearing in each
row of [B0] must be identical to that of [B1]. This is the so-
called requirement (ii).) It is also obvious that if we stack any
two (=t) rows of our [B0], the stacking result has two black
elements and two white elements. On the other hand, if we stack
any two (=t) rows of [B1], the stacking result has at least three
black elements. (In general, no matter how we choose [B0] and
[B1], the number of 1’s contained in the result of stacking any
t rows of [B1] must exceed that of stacking any t rows of [B0].
This is the so-called requirement (iii).)

Now, assume that we want to create 4(=n) blocks, each is
2×2 in size, so that stacking any 2(=t) of them will yield a 2×2
so-called “white block” (defined here as a block in which only
two of the four elements are 1’s (i.e. only two black elements)).
All we have to do is to permute the columns of [B0] randomly,
and then distribute the 4(=n) rows of the permuted [B0] to four
customers. After that, each customer uses the first two elements
as the first row of his block, and next two elements as the 2nd

row of his block. As a result, each of the 4(=n) customers has
his own 2 × 2 block, and any two of these four 2 × 2 blocks
can be stacked to yield a 2 × 2 white block (only two of its
2 × 2 = 4 elements are 1’s).

Similarly, if we want that any t (=2) of the n(=4) created
blocks (each is still 2 × 2 in size) can be stacked to yield a
so-called “black block” (defined as a 2 × 2) block in which at
least three of the four elements are 1’s (i.e. at least three black
elements), then we only have to replace the role of [B0] by [B1]
in the above argument and obtain four blocks corresponding to
[B1]. Then distribute these four blocks arbitrarily to the four
customers (one block per customer).

In the above example, each block has w = 2 white elements
and b = 2 black elements, (or equivalently, each row of [B0] or
[B1] has two white elements and two black elements), and the
permutation of the columns of [B0] or [B1] will not affect the
stacking result’s brightness (i.e. number of black elements of
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the stacking result). Moreover, when we do column permutation
of the matrix [B0] (or [B1]), if we concentrate on the first row,
we can see that the first row can be either [0 0 1 1], or [0 1 0 1],
or [1 0 0 1], or [0 1 1 0], or [1 0 1 0], or [1 1 0 0]. Therefore, all(

2+2
2

)
= 6 types of row vectors can appear. The

(
w+b

b

)
=(

4
2

)
=6 types of blocks represented by these

(
w+b

b

)
=

(
4
2

)
=6

types of row vectors will be called as fundamental blocks. (In
general, if a VC system uses blocks of (w + b) elements each,
and each block of each transparency has w white elements and

b black elements, then there will be
(

w+b
b

)
= (w + b)!/(w!b!)

types of fundamental blocks. For example, if 3 × 3 blocks are
tobe used, and if each block of each transparency has five white
elements and 4 = 3 × 3.5 black elements, then there will be(

5+4
5

)
= 126 types of fundamental blocks. We can call them,

respectively, blocks of type 0, type 1, type 2, . . . ., and type

125 =
(

5+4
5

)
= 126).

As a remark of this subsection and the Appendix, note that
the Appendix is a self-explained appendix derived from Ref. [2]
which is a graceful paper proposed by Ateniese et al. In order
to reduce current paper length and concentrate on our topic, we
did not intend to discuss in our appendix the many materials
mentioned in Ref. [2]. Interested readers should refer to Ref.
[2] for further details. As stated earlier, the Appendix here is
just to show the readers that they can always create two basis
matrices [B0] and [B1] for any pair of given t and n (2� t �n).

2.2. A review of PSS

Below we roughly review Shamir’s secret-value sharing
scheme [14] and Thien and Lin’s secret-image sharing scheme
[8]. Both methods used polynomials to share a secret into n

shadows, and the secret can be revealed by any t out of the n

shadows.

2.2.1. To share a numerical value by Shamir’s sharing
scheme [14]

Below we review Shamir’s sharing scheme [14]. To share
a secret numerical value a0 into n shadows, Shamir defined a
polynomial

p(x) = a0 + a1x + · · · + at−1x
t−1, (2)

in which t was the threshold, the constant term a0 was the se-
cret value, and all other coefficients {ai}i=1,...,t−1 were random
numbers for data-protection use. The n created shadows were
(1, p(1)), (2, p(1)), . . . , (n, p(n)). Later, anyone who got any
t of the n shadows could use Lagrange’s interpolation to evalu-
ate all coefficients, particularly, the coefficient a0, of the poly-
nomial p(x); for passing through t points in two-dimensional
plane uniquely defined the interpolation polynomial of degree
not more than t . However, if a person only got t − 1 or fewer
shadows, he could not unveil {ai}i=0,...,t−1; the secret number
a0 is thus still unknown.

In practice, people can use finite field arithmetic (e.g.
modular arithmetic and Galois field arithmetic) to replace the

arithmetic above. Also note that, if we repeatedly use Shamir’s
secret sharing scheme |S| times to share an image S (share one
pixel value each time), then each shadow i receives a value
p(i) from each pixel. As a result, each shadow is as big as
the image S, for each shadow receives |S| values. This size is
too large if we want to hide each shadow in a transparency
later. In order to get smaller-size shadows, rather than using
Shamir’s scheme, we will use an approach similar to Thien and
Lin’s secret-image sharing scheme [8]. Although the shadow
size is more economic, we will lose Shamir’s data protection
through the use of random numbers in Eq. (2). That is why we
need to encrypt the image before sharing it, as will be seen in
Section 3.2.3.

2.2.2. To share an image by Thien and Lin’s sharing scheme
[8]

In order to reduce the size of shadows, Thien and Lin [8]
let all coefficients in p(x) be data. No random numbers were
used. They partitioned the given image S into |S|/t sectors, and
each sector had t pixels. For each sector, they used the gray-
values of its t pixels as the t coefficients {a0, . . . , at−1} in the
sector-dependent polynomial

p(x) = (a0 + a1x + a2x
2 + · · · + at−1x

t−1) mod 251.

Then, for each sector, shadow si received a value p(i), true for
each i=1, . . . n. As the sectors were processed sequentially, the
data size of each of the n shadows also grew. Finally, when all
|S|/t sectors were processed, there were n shadows. For each
i = 1, . . . , n, shadow si received one value from each of the
|S|/t sectors of image S; so each shadow si has |S|/t values.
Each shadow is therefore t times smaller than the image S.

3. The proposed method

3.1. Main idea

Let image H = HS be a halftone binary version of the image
S. In general, any binary image can be shared using any (t, n)-
threshold VC technology; so n transparencies {r1, r2, . . . , rn}
can be created for the binary image H. In this paper, however,
we wish that the n created VC transparencies can also hide the
gray-value information of S, so that any t of the n created trans-
parencies cannot only be stacked to “view” the superimposed
black-and-white result as in ordinary VC, but also to extract the
information of S hidden in the t received transparencies, and
thus reconstruct the gray-value image S. As a result, the design
of the n transparencies {r1, r2, . . . , rn} needs special treatment.
The above two-in-one goal can be achieved by first using (t, n)-
threshold PSS to share S into n shadows {s1, s2, . . . , sn}, and
then, for each i = 1, 2, . . . , n, hide si in transparency ri .

3.1.1. Hiding shadow si in (region i of) transparency ri
Since S has |S| gray-value pixels, its binary version H also

has |S| binary pixels. As a result, each transparency ri has |S|
blocks, for each pixel of H is mapped to a block of ri . If
we partition the |S| blocks into n equal-size regions, namely,
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regions 1–n, then each region has |S|/n blocks. Notably, the
readers have the freedom to choose their own way to partition
the |S| blocks into n regions, and the blocks in a region are
not necessarily adjacent to each other. An example is to let the
blocks in region i be chosen as blocks {i, i + n, i + 2n, i +
3n, . . .}. Another example is to let the blocks in region i be
chosen as the n consecutive blocks so that region 1 has blocks 1
to |S|/n, and region 2 has blocks {1+ (|S|/n), 2+ (|S|/n), 3+
(|S|/n), . . . , (|S|/n) + |(S|/n)}, and so on. The partition can
be quite free since the only requirement is that each region has
|S|/n blocks.

After the partition, let transparency r1 use the |S|/n blocks
in region 1 to hide the information of the shadow s1, and let
transparency r2 use the |S|/n blocks in region 2 to hide infor-
mation of the shadow s2, etc. Assume that each shadow si has
been transformed to a numerical file using digits in the range{

0, 1, . . . ,
(

w+b
b

)
− 1

}
; in other words, assume each si is a

numerical file of base
(

w+b
b

)
. Also assume that each shadow

si has at most |S|/n digits. Then, for each i = 1, 2, . . . , n, we
can hide the |S|/n digits of shadow si into the |S|/n blocks of
region i of transparency ri . Below we show how. Without the
loss of generality, we show here how to hide the |S|/n digits of
s1 in region 1 of transparency r1. For the j th block in region 1
of transparency r1, where 1�j�|S|/n, we can paint the block
so that its block type is exactly the j th digit of s1. We can do

this because there are
(

w+b
b

)
= (w + b)!/(w!b!) kinds of dig-

its, and there are exactly
(

w+b
b

)
kinds of fundamental blocks.

For example, when w = b = 2, the
(

w+b
b

)
=

(
4
2

)
= 6 types of

fundamental blocks are

[0 0 1 1], [0 1 0 1], [0 1 1 0],
[1 0 0 1], [1 0 1 0] and [1 1 0 0]. (3)

(For easier future reference, we have purposely arranged the
blocks in an increasing order according to their binary values,
i.e. according to the fact that 0 0 1 1 < 0 1 0 1 < 0 1 1 0 < 1 0 0 1
< 1 0 1 0 < 1 1 0 0.) The above six blocks can be called as
blocks of

type 0, type 1, type 2,

type 3, type 4 and type 5, (4)

respectively, if we want to use the simplest naming in which
0 < 1 < 2 < 3 < 4 < 5 is also arranged in an increasing or-
der. Then, to encode a digital string 5-5-2-3-0-4-4 in which
each digit is in the range {0.5}, we can paint the correspond-
ing sequence of blocks as [1 1 0 0]-[1 1 0 0]-[0 1 1 0]-[1 0 0 1]-
[0 0 1 1]-[1 0 1 0]-[1 0 1 0]. Of course, there are many other
ways to call the six types of the fundamental blocks. (For
example, the above (0, 1, 2, 3, 4, 5) naming of the block types
for ([0 0 1 1], [0 1 0 1], [0 1 1 0], [1 0 0 1], [1 0 1 0], [1 1 0 0]) can
be replaced by another naming (3, 4, 0, 1, 5, 2) so that type 3
means [0 0 1 1], type 4 means [0 1 0 1], type 0 means [0 1 1 0],
etc.) In general, there are

(
w+b

b

)
! = [(w + b)!/(w!b!)]! possi-

ble ways of doing naming. The naming can be recorded by a

mapping table L which has
(

w+b
b

)
entries. For instance, in the

above two examples, the corresponding mapping tables are the
strings 012345 and 340152, respectively. The mapping table
L, which is a numerical string, can be either public to all n

participants or shared by n participants using Shamir’s sharing
scheme [14].

When we embed shadow si in transparency ri , some readers
might wonder why a region is only used for a special pair of
si and ri , i.e. why we do not use blocks of the same region to
do the embedding for another pair of shadow and transparency.
The reason is explained below.

Once all blocks in region 1 of transparency r1 have been
painted according to the digits in the first shadow s1 (so that
the digits in s1 can be hidden in these blocks), it is not suitable
to paint again the blocks in region 1 of another transparency r2
according to the digits in the second shadow s2 (so that the digits
in s2 can be hidden in these blocks). Otherwise, the result of
stacking the generated transparencies is not guaranteed to meet
the black/white VC requirement (to look like the halftone image
H) in area corresponding to region 1. For example, assume
w = b = 2, (see Eqs. (3) and (4)) and blocks [1 1 0 0] is type
5. Then, to hide a digit value 5 of the shadow s1 in a block
of transparency r1, we paint that block of transparency r1 as
[1 1 0 0]. Now, if we also want to hide a digit value 5 of the
shadow s2 in the same block position of transparency r2, that
very block of transparency r2 will also be painted as [1 1 0 0].
Now, without the loss of generality, assume (t, n) is (2,4), i.e.
collecting two transparencies is enough to stack and yield the
halftone image H. However, what happens when we stack the
two transparencies r1 and r2 is that: the stacked result is again
[1 1 0 0] on that very block. Since [1 1 0 0] is a white block
according to the definitions given in the two paragraphs below
Eq. (1), this means that the image H must be a white pixel at
the position corresponding to the very block position. Of course
this is a ridicules requirement, for H might be black there.

3.1.2. Painting region i for the remaining (n − 1)
transparencies {rk}k �=i

For each i = 1, 2, . . . , n, after hiding shadow si in region
i of transparency ri , the block type of each block in region i

of ri is already fixed. Below we discuss how to paint region
i for the remaining (n − 1) transparencies {rk}k �=i . Without
the loss of generality, we show how to paint region 1 for the
(n − 1) transparencies {rk}k �=1. Since each region has |S|/n

blocks, for each block position j (1�j � |S|/n) in region 1,
we will use the block type of the (painted) j th block in region
1 of transparency r1 to determine how to paint the j th block in
region 1 of the remaining (n − 1) transparencies {r2, . . . , rn},
as shown below. Recall that, in any VC system, each block of a
transparency corresponds to a pixel of the binary image H; so,
for the j th block in region 1 of transparency r1, we may locate
the corresponding pixel position in the halftone image H. If H
is a white (black) pixel there, we certainly hope that the result of
stacking the n generated transparencies is also a white (black)
block there. Define a matrix [B] which is identical to [B0] if
the desired superimposed result is a white block; otherwise, set
[B] to [B1]. Now, permute the columns of [B] so that the first
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row of [B] is identical to the painted j th block in region 1 of
transparency r1. (This can be done because both the first row
of [B] and that painted block of transparency r1 has w white
elements (0’s) and b black elements (1’s).) Notably, if more
than one permutation can make the first row of [B] identical
to the painted j th block in region 1 of transparency r1, then
we “randomly” select one of those permutations to permute the
matrix [B]. The term “randomly” means “uniformly” here, i.e.
all qualified permutations should have equal chances of being
selected. The randomness of the painted patterns is a commonly
seen technique in VC to avoid the information being easier to
guess by the hackers due to repeatedly used patterns.

After the permutation of columns, use the remaining (n − 1)
rows of the matrix [B] to paint the remaining (n−1) transparen-
cies at the same block position (i.e. the j th block in region 1).
This ensures the stacking result will be a white (black) block
there if the matrix [B] is a white (black) matrix.

3.2. Some other details to keep the main idea working

Having introduced the main idea in Section 3.1, we discuss
the details to implement it.

3.2.1. To share a gray-value image S into n shadows
{s1, s2, . . . , sn}

In Section 3.1, we said that the desired two-in-one goal can
be achieved by first using (t, n)-threshold PSS to share S into
n shadows {s1, s2, . . . , sn}; and then, for each i = 1, 2, . . . , n,
hide si in transparency ri . We also said that each shadow si
should be transformed to a numerical file using digits in the

range
{

0, 1, . . . ,
(

w+b
b

)
− 1

}
before hiding. Below we discuss

how to create shadows {s1, s2, . . . , sn} and how to transform

each file to a numerical file of base
(

w+b
b

)
.

To share the gray-value image S by a (t, n)-threshold PSS,
we divide S into |S|/t sectors of t pixels each. Then, for each
sector, use the gray-values of its t pixels as the t coefficients
{a0, . . . , at−1} in the sector-dependent polynomial

p(x) = (a0 + a1x + a2x
2 + · · · + at−1x

t−1) mod 257. (5)

Then, for each sector, shadow si receives a value p(i), true for
each i = 1, . . . , n. As we process the sectors sequentially, the
data size of each of the n shadows also grows. Finally, when
we finish all |S|/t sectors, we obtain n shadows. si receives one
value from each sector, and there are |S|/t sectors in image S;
so each shadow si has |S|/t values. Since each value is in the
range {0, 1, . . . , 256} due to the use of mod 257, each shadow si
can be treated as a digit string of numerical base 257. To avoid
misunderstanding, notice that the temporary output value 256
in the set {0, 1, . . . , 256} is just one of the intermediate values
in our method; it is a numerical value to be hidden later in a
transparency, and this value is not a gray value of any image.

In order to hide each shadow si in transparency ri , we need
to transform si from the digit string using base 257 to a new

digit using base
(

w+b
b

)
; for we use block types to hide digits,

and each transparency only uses
(

w+b
b

)
kinds of fundamental

blocks, as mentioned earlier in the third paragraph of Section

3.1. The base switching from base 257 to base
(

w+b
b

)
is an

obvious job. There are many ways to do it. One of the possible
ways is to switch first from base 257 to binary, and then switch
the binary sequence to the desired base. Another way is to

switch from 257 to
(

w+b
b

)
directly, which is particularly easy if

(w+b)!/(w!b!) > 257; but we will not use this easier and direct
approach because it is not economic in reducing the length of
the final string. In general, no matter how a reader designs his
own way to do base switching, try to keep the length of the final

string (of base
(

w+b
b

)
) as compact as possible; for smaller size

of the final string means hiding the string later will be easier.
If a reader wants to switch first from base 257 to binary, in or-

der to make the length of the binary string short, he may proceed
as follows. If a base 257 digit is in the set {0, 1, 2, . . . , 254},
encode the digit as its traditional 8-bit binary counterpart; for
example, 0 is 0000-0000, and 254 is 1111-1110. However, if
the base 257 digit is 255 (or 256), then encode it as the 9-bit
code 1111-1111-0 (or 1111-1111-1). In other words, later in
the decoding, the decoder takes 8 bits each time. If these 8 bits
are 1111-1111, then take one more bit to determine whether the
number is 255 or 256. However, if these 8 bits are not 1111-
1111, then just decode these 8 bits to a decimal equivalent in
the range {0, 1, 2, . . . , 254} as in the traditional 8-bit decoder.

Notably, in Ref. [8], Thien and Lin used mod 251 rather than
mod 257. This might cause some encoding–decoding trouble
should the input image S owned some input-gray-values ex-
ceeding 250. (To avoid such overflow problem, Ref. [8] had to
split an input pixel of this kind into two pixels. For example,
splited a gray value 253 as {249 and 4}, for 253 = 249 + 4.)
Therefore, in the current paper, we use mod 257 rather than
mod 251. Also note that mod 256 is not suitable, for 256 is not
a prime, and this kind of function requires a prime number be
used in the mod function. However, if a reader insists to use
256, then he will have to use all operations in terms of Galois
field rather than ordinary arithmetic; the detail is omitted to
save the paper length.

3.2.2. Compression of the gray-value image S might be needed
As stated in Section 3.1, for each i = 1, 2, . . . , n, in order

that we can hide the |S|/n digits of si in the |S|/n blocks
in region i of transparency ri , we have assumed that: each
shadow si can be transformed to numerical files using digits

in the range
{

0, 1, . . . ,
(

w+b
b

)
− 1

}
, and each shadow si has

at most |S|/n digits. Unfortunately, if
(

w+b
b

)
is too small,

then each shadow si might have more than |S|/n digits when
si is transformed to a digit–string using digits in the range{

0, 1, . . . ,
(

w+b
b

)
− 1

}
. To make the system still work, it might

be necessary to reduce the length of si , which can be achieved
by compressing the gray-value image S before sharing S into
the n shadows {s1, s2, . . . , sn}.

When the image S is compressed by Jpeg or any other
compression tool, a compact version of S, called S(comp), is
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produced. The value

ratio = number of bits in S

number of bits in S(comp)
�1

will affect the quality of the recovered gray-value image S(comp)

when we collect later any t of the n-produced shadows and
extract S(comp) from the shadows. If the ratio is too large, the
recovered gray-value image quality will be quite poor. On the
other hand, if the ratio is too small, the size of S(comp), and
hence, the size of each shadow si , will be too big, thus making
the hiding of si in transparency ri become impossible. Below
we derive a formula to estimate the suitable value for ratio.

As mentioned in Section 3.1, we use block types to hide

digits. Since the number of possible block types is
(

w+b
b

)
,

the possible digits are
{

0, 1, . . . ,
(

w+b
b

)
− 1

}
. Therefore, each

block can hide about log2

(
w+b

b

)
bits. From Section 3.1, we

know that there are |S|/n blocks in region i of transparency
ri ; therefore, when we use region i of transparency ri to hide
shadow si , the shadow si can have at most |S|/n digits, or, in

terms of binary bits,
(

log2

(
w+b

b

))
× |S|/n bits.

On the other hand, when we compress image S before shar-
ing, the number of bits contained in the compressed version
S(comp) of image S is 8 × |S|/ratio (assuming that each pixel
has 8 bits, and the term ratio denotes the compression ratio).
After sharing the S(comp) by (t, n)-threshold sharing, due to
the fact that we use a sharing similar to Thien and Lin’s shar-
ing, the size of each shadow is t times smaller (see Section
3.2.1 or the final sentence of Section 2.2.2). This means that
each shadow si has about (8 × |S|/ratio)/t bits. As a result,
the value of ratio cannot be too small because we require that(

log2

(
w+b

b

))
× |S|/n�(8 × |S|/ratio)/t ; in other words, we

have the requirement

ratio�(8n)

/(
t × log2

(
w + b

b

))
. (6)

Notably, if the right-hand side of the above equation is less
than 1, which happens when (w + b)!/(w!b!) is large, then
the compression is not necessary, for we can let ratio be 1 to
satisfy Eq. (6), and a compression with ratio = 1 means no
compression at all.

3.2.3. Encryption of S(comp) before sharing
After obtaining the compressed version S(comp) of S, we

should encrypt S(comp) before sharing S(comp). In the special
case when there is no compression, there is no S(comp); in that
case, the encryption before sharing is on S.

Below we explain why encryption is needed. In Shamir’s ap-
proach [14] to sharing a secret number a0, the t −1 coefficients
{ai}i=1,...,t−1 in the polynomial p(x)=a0+a1x+· · ·+at−1x

t−1

are random numbers, i.e. only the coefficient a0 is the data.
However, in our approach dealing with large-size image data,
we let all t coefficients be gray-valued data for economic rea-
son. Therefore, although we get the benefit that our shadow
size is t times smaller than Shamir’s, we no longer have the

protection of using random numbers to protect the data. The
encryption of the data before sharing is thus needed.

To encrypt S(comp) or S to get an encrypted bit stream, we
may use a security key, or use some very simple functions. For
example, we may just use XOR function in a bit-by-bit manner
on the two available bit streams: the bit stream representing
S(comp), and the bit stream of the binary halftone image H. (Re-
read the image H several times if the size of S(comp) is larger
than that of H.) This kind of encryption uses no key, and the
binary halftone image H needed in decryption can be extracted
when the decoder stacks t of the n transparencies (see Step 1
of Section 3.4); so there is no problem such as “who keeps
the key?” However, if people want to use a security key rather
than this approach of using XOR and H, then the key can be
kept by all participants, or be shared in a (t, n) manner by all
n participants using Shamir’s scheme [14], or, just be kept by
the company boss or the team organizer who insists that the
decoding meeting must have his attendance, even though he
may keep none of the n transparencies.

3.3. A flowchart to summarize the idea of encoding

Fig. 1 is a flowchart that summarizes the ideas in Sections
3.1 and 3.2 for encoding.

3.4. Decoding

Once we collect any t of the n transparencies {r1, r2, . . . , rn},
we may stack them to view immediately an enlarged version of
the halftone image H without any computation. Then, accord-
ing to the following decoding algorithm, we may obtain pre-
cisely the original-size halftone image H using Step 1. Besides
that, we may use the remaining steps of the decoding algorithm
to extract the information hidden in the t transparencies, and
thus reconstruct a gray-value image S(comp), which is the Jpeg-
compressed version of S. The flowchart showing the compo-
nents of the decoding is in Fig. 2. The decoding algorithm is
also given below.

Computer-aided decoding algorithm.
Input: (I1). Any t of the n transparencies {r1, r2, . . . , rn}.
(I2). The one-to-one and onto mapping table L that maps the(

w+b
b

)
possible block types to the set

{
0, 1, . . . ,

(
w+b

b

)
− 1

}
.

(The pair of Eqs. (3) and (4) gives an example of such mapping,
which is so simple that it might not even need be stored or
shared due to plainness.)

(I3). The security key used in the encryption process of Sec-
tion 3.2.3. (No such key exists if Section 3.2.3 used a key-less
XOR encryption.)

Output: The halftone image H , and a gray-value image
S(comp) which is a compressed version of the gray-value
image S.

Steps: 1. Stack all t collected transparencies. Then, for each
block of the stacked image, counting the black (white) elements
in the block, this can determine whether the stacked block is a
black block or a white block. If the block is black (white), then
the pixel at the corresponding position of the halftone image H
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Fig. 1. The flowchart to summarize the idea of encoding.

Fig. 2. The flowchart of the decoding algorithm.

is black (white). Therefore, all pixels of the halftone image H
can be reconstructed one by one. This recovers H without any
loss.

2. For each of the t collected transparencies, extract the |S|/n

digits of si hidden in region i of the transparency ri . This can
be done by inspecting the block type (it is a value in the range{

0, 1, . . . ,
(

w+b
b

)
− 1

}
) for each of the |S|/n blocks in region

i of the transparency ri .
3. Each si is now a digit string of |S|/n digits, and each digit

is in the range
{

0, 1, . . . ,
(

w+b
b

)
− 1

}
. Switch each digit string

from base
(

w+b
b

)
back to base 257. Each base 257 string is a

shadow now.
4. Recover (the encrypted) S(comp) from the t shadows

{si} by using the inverse processing of the PSS (the inverse

processing of Eq. (5) to recover the t coefficients {a0, . . . , at−1}
of a sector k from the t values {p(i)}, which are formed of the

kth digit of the t shadows {si}). Notably, the inverse processing
of the PSS (Eq. (5)) can be done by an interpolation method
using linear combination of Lagrange polynomials, which is
a very common method in numerical analysis field for find-
ing the interpolation polynomial p(x) passing through the t

received points {(i, p(i))}. Interested readers can refer to Ref.
[12, Eq. (3)].

5. Decrypt S(comp).
6. Now, the decrypted S(comp) is the desired output. As

a remark, the output is just a compressed version of S. In
general, unless the compression in the encoding phase was
a lossless compression, we cannot recover S in an error-free
manner.
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4. Experiments and comparisons

In our first experiment, the secret image is the image 512 ×
512 Lena shown in Fig. 3(a). Its JPEG-compressed version,
the so-called image S(comp) in Section 3.2.2, is the 512 × 512
Lena(comp) shown in Fig. 3(b), and the PSNR of Lena(comp) is
39.31 dB (the compression ratio is 6.9). The 512×512 halftone
image H of Lena is shown in Fig. 4. Assume (t, n) = (2, 4).
In other words, the target is that any two of the four generated
transparencies can be used for image reconstruction. The basis
matrices are the same as in Eq. (1). According to formula (6),
the compression ratio must satisfy

ratio�(8n)

/(
t × log2

(
w + b

b

))

= (8 × 4)/(2 × log2[4!/(2! × 2!)]) = 6.2,

and our compression ratio 6.9 in Fig. 3(b) of course meets this
requirement. Then, using Figs. 3(b) and 4, the n=4 transparen-
cies are created, as shown in Fig. 5. Each 1024 × 1024 trans-
parency is 2×2 times bigger than each 512×512 image in Figs.
3 and 4, for each fundamental block used to expand a pixel (see
Section 2) is 2×2 in this experiment. Now, if we stack any two
of the four generated 1024×1024 black-and-white transparen-
cies, we get the 1024 × 1024 black-and-white image shown in
Fig. 6, which looks like a 2 × 2-times enlarged version of the
halftone image H shown in Fig. 4. This 1024 × 1024 enlarged
version can be utilized to recover the 512×512 halftone image
H, by using Step 1 of the computer-aided decoding algorithm
in Section 3.4. On the other hand, if we use the two received
transparencies to extract the information hidden in them, we
can recover exactly the 512 × 512 gray-value compressed im-
age Lena(comp) shown in Fig. 3(b), as shown in Fig. 7.

In the second experiment, the secret image is the 512 × 512
image “Jet” shown in Fig. 8(a). Assume (t, n)= (3, 4). In other
words, the goal is that any three of the four generated trans-
parencies can be used for image reconstruction. The corre-
sponding experimental results are shown in the remaining parts

Fig. 3. A gray-value 512 × 512 image Lena (shown in (a)), and its JPEG-compressed version Lena(comp) whose PSNR is 39.31 dB (shown in (b)). The
compression ratio between (a) and (b) is ratio = 6.9.

Fig. 4. The halftone version (i.e. the binary image H ) of Fig. 3(a).

of Fig. 8. By formula (6), the compression ratio must satisfy

ratio�(8n)

/(
t × log2

(
w + b

b

))

= (8 × 4)/(3 × log2[6!/(3! × 3!)]) = 2.5,

and our compression ratio 2.5 in Fig. 8(b) of course meets this
requirement. Note that Fig. 8(e) is 2 × 3 times larger than the
halftone image H because we use 2×3 blocks to expand pixels
of the halftone image H there. Also note that any two trans-
parencies together (2 < 3 = t) cannot reveal the JPEG version
Jet(comp) or the halftone version H .

Notably, if we prefer a lossless recovery, then some loss-
less image compression algorithms, such as PNG (portable
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Fig. 5. The n = 4 transparencies T0–T3 generated from the pair (Figs. 3(b), 4) in our (t = 2, n = 4) threshold scheme.

network graphics, see http://www.libpng.org/pub/png/),
or lossless JPEG2000, or Maniccam and Bourbakis’s
method [19], should be applied to obtain a lossless S(comp).
Then use our method to share the compressed file (while
Ref. [15] was to hide the compressed file in a cover
image).

Table 2 lists a comparison between our approach and some
other hiding methods reported in recent years (2004–2007). In
2004, Maniccam and Bourbakis [15] introduced an elegant hid-
ing method, which used a SCAN-based image compression and
encryption algorithm. The main algorithm consists of two major
parts: the compression part and hiding part. In the compression
part, the secret image was compressed by using a SCAN-based
lossless image compression technology, which will generate a
sequence of bit stream. In the hiding part, a matrix called “com-
plexity matrix” was generated; its main purpose is to evaluate
the capacity of each pixel (i.e. the number of LSB) of the cover
image, then, the compressed file (obtained by the compression
part) was embedded in the cover image by looking up the “com-
plexity matrix”. Besides this, a SCAN-based encryption algo-
rithm was also utilized to rearrange the cover image and the

“complex matrix”, in order to enhance the security of the hiding
algorithm.

Besides [15], we also compare in Table 2 some other image
hiding methods [16–18] reported in 2005–2007. We bypass the
detail introduction of [16–18] to save the paper length. In Tests
1 and 2, since Ref. [16] is the only one of which the secret
image is as large as the cover image (both 512 × 512), we
particularly do Tests 1′ and 2′ in order to compare with Ref.
[16]. Note that our Test 2′ is in fact the experiment described
in Figs. 3–7. In Test 2′, we need t =2 shadows to recover Lena
(or Jet), and each shadow is a (512 × 2) × (512 × 2) “binary”
file. As a result, the t = 2 shadows together use (512 × 2 ×
512 × 2) × 2

8 = 512 × 512 bytes, just identical to the storage
space needed for each 512 × 512 “stego” gray-level image in
each test of Refs. [15–18]. Note particularly, in Test 2 of Ref.
[16], whose secret image Lena is also 512 × 512 (as large as
secret image), they obtain 35.73 dB when the 512 × 512 secret
Lena is recovered, while ours is 39.3 dB. Notably, Test 1′ is
identical to Test 2′, except that we replace the 512×512 secret
Lena in Figs. 3–7 by the 512×512 secret Jet. Since we still use
(t, n)=(2, 4) and 1024×1024 binary shadows (transparencies),
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Fig. 6. Stacking “any” two transparencies (e.g. 1st and 3rd transparencies
here) yields an enlarged binary image of Lena.

Fig. 7. The gray-value image Lena(comp) (identical to Fig. 3(b)) reconstructed
using the information embedded in any two transparencies (the 1st and 3rd
transparencies here).

the t = 2 shadows needed to recover secret still use together
(512 × 2 × 512 × 2) × 2

8 = 512 × 512 bytes, and the re-
covered 512 × 512 secret Jet is 39.5 dB, still better than the
38.14 dB of Ref. [16]. Of course, some readers might say
that, when we compared, why we used t shadows, rather

than n shadows, to evaluate the space needed. There are two
reasons. The first reason is that we only need t shadows to
recover the secret. The second reason is that other methods
using a single stego image do not have missing–allowable
property (once the only stego image is gone, the secret is gone,
but we allow up to n − t shadows to disappear). If we also
turn off (do not care) the missing–allowable property, then we
can store only the first t (out of the n generated) shadows in
t distinct channels and destroy the remaining n − t shadows.
Later, just using these t shadows still can obtain both the bi-
nary stacking result and recover the gray-level image. Based
on these two reasons, we only count the space of t shadows for
comparison.

In Table 2, we also do a test called Test 3′ using a smaller
size 256 × 256 secret image Barb (and a 256 × 256 Lena); the
(t, n) is (4, 4), and each binary shadow is (256×4)×(256×2).
Then, the recovered 256 × 256 secret image is lossless, as in
Tests 1 and 2 of Ref. [15], and as in Test 2 of Ref. [18]. The four
shadows needed in recovery together use (256 × 4) × (256 ×
2) × 4

8 = 512 × 512 bytes, as in the cover image’s 512 × 512
bytes of Refs. [15,18]. Finally, when the secret is a middle size
512 × 256 Jet, our Test 4′ in Table 2 uses (t, n) = (2, 2), the
recovered secret is again lossless, and the two binary shadows,
each is 512 × (256 × 7) in size, together use 512 × 256 ×
(1 × 7) × 2

8 = (512)2 × 0.875 bytes for Jet’s shadows. The
needed space is (512)2 ×0.875 bytes, which of course can still
compete with the (512)2 bytes used in Tests 1 and 2 of Ref.
[17] for stego image.

From the above analysis, it can be seen that we can
compete with these hiding methods, namely, using similar
space to obtain competitive recovery quality. Of course, if
we let n > t , and store more than t shadows, for example,
store t + 1 shadows, then we might waste space (the total
space becomes 1/t times larger in this example), but we
can get the missing–allowable advantage. (For those cover-
image-based hiding methods, the space will be doubled if
they store the stego image twice followed by storing these
two copies in two distinct places, in order to be missing–
allowable.)

Another property that we have is the stacking-and-see ability
if we receive t shadows. Of course, this stacking-and-see func-
tion can be turned-off for security reason, if the designers in
some applications do not allow the t participants to use “stack-
and-see” decoding option. To turn off this option, the design-
ers only have to permute the order of the image pixels before
generating transparencies (also see the scan-based encryption
introduced in Refs. [15,19]).

The final property is that our security is based on shar-
ing: to obtain the secret, at least t of the n channels (each
channel has one transparency) have to be intercepted. To
the contrast, the cover-image-based hiding methods’ fun-
damental defence is to use a cover image as a trick to
avoid curious attack from hackers. Of course, to increase
the security level, additional encryption techniques, such as
security key, XOR, or scan-based encryption [19], might
be used in both ours and others, as shown in the bottom
of Table 2.
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Fig. 8. The second experiment with (t, n)= (3, 4), and the experiment uses 2×3 blocks. (a) is the gray-value 512×512 image Jet; (b) is the JPEG-compressed
version Jet(comp) whose PSNR is 47.6 dB (the compression ratio is ratio = 2.5); (c) is the halftone version H of (a); (d) shows the basis matrices be-
ing used in the second experiment; (e) is the stacking result using “any three” of the four generated transparencies (here, 1st, 2nd, and 4th transparen-
cies); and (f) is the 47.6 dB Jet(comp) (identical to Fig. (b)) reconstructed using the information embedded earlier in the three transparencies mentioned
in (e).

Finally, we add the final column to Table 1, in order to
briefly summarize our method when it is compared with two
major branches of sharing: the VC approaches [1–7] and PSS
approaches [8–14]. We can see from this column that, as
expected in our goal and design, the two-layer property is
obvious in the proposed VCPSS method. This column also
shows that: we can have a much faster decoding (using Layer
1) that the PSS approaches (for example, Refs. [8–14]) do
not have; on the other hand, we can also get a better-quality
recovered image (obtained in Layer 2) that the VC approaches
(for example, Refs. [8–14]) do not have. As for the final row
called “size of each shadow”, we write that either the length
or the width of each “binary” shadow is larger than that of
S, because each binary shadow is in fact a transparency cre-
ated using VC on the halftone version H of image S. Hence,
as in ordinary VC, either the length or the width increases.
However, when the binary pixel of a transparency is stored in
a computer, only 1 bit (rather than 1 byte) is needed, that is
why the number of computer bytes needed can be smaller than
that of S, because each pixel of the gray-value image S needs
8 bits.

5. Concluding discussions

In this paper, we have proposed a new method which com-
bines two major branches of image sharing: Visual Cryptogra-
phy (VC) and polynomial-style sharing (PSS). In the decoding
issue, this new method is more flexible than applying VC or
PSS independently, since our method provides a “two-options”
decoding.

In Figs. 3(b) and 7, the PSNR of Lena(comp) is 39.31 dB. If
the readers would like to have an image Lena(comp) of better
PSNR, then they should use larger blocks (say, 2 × 3 or 3 × 3
blocks) to replace the 2 × 2 blocks here for each transparency.

To explain why using large blocks usually implies a better
PSNR, we may analyze the relation between the image com-
pression ratio and the size of the block. In general, the com-
pressed image S(comp) will have a better PSNR if the image
compression ratio (a value not less than 1) is smaller (closer
to 1). On the other hand, the compression ratio in this paper

is constrained by Eq. (6), i.e. ratio�(8n)/
(
t × log2

(
w+b

b

))
.

Therefore, in order to get a better PSNR, which means a smaller
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Table 2
A comparison between ours and some image hiding technologies

Our method Ref. [15] Ref. [16] Ref. [17] Ref. [18]

Purpose To share the secret To hide the secret in a cover image

Cover image (In-
put)

No cover image Test 1: use 512 × 512 Lena as the cover

Test 2: use 512 × 512 Baboon as the cover

Secret image (In-
put)

Test 1′: to share 512×512
Jet

Test 1: hide 256×
256

Test 1: hide 512×
512

Test 1: hide 512×
256

Test 1: hide 256×
512

Barb Jet Jet Jet
Test 2′: to share 512×512
Lena

Test 2: hide 256×
256

Test 2: hide 512×
512

Test 2: hide 512×
256

Test 2: hide 256×
256

Barb Lena Jet Lena
Test 3′: to share 256×256
Barb (or 256 × 256 Lena)
Test 4′: to share 512×256
Jet

Output Several noisy transparen-
cies

A gray value stego image, which looks just like the cover image

Total space
needed in order to
recover the secret

Test 1′ (with (t, n) =
(2, 4)): (512)2×(2×2)×
2/8 = (512)2 bytes for
Jet’s shadows

512 × 512 bytes, i.e. the size of the output stego image, which is identical to
the size of the input cover image

Test 2′ (Fig. 5): (512)2 ×
(2×2)× 2

8 =(512)2 bytes
for Lena’s shadows
Test 3′ (with (t, n) =
(4, 4)): (256)2×(4×2)×
4
8 = (512)2 bytes for
Barb’s shadows. So is
Lena’s
Test 4′ (with (t, n) =
(2, 2)): 512 × 256 × (7 ×
1) × 2

8 = (512)2 × 0.875
bytes for Jet’s shadows

Stego image’s
PSNR

No PSNR value for the
t noisy transparencies be-
cause no cover image

Test 1: Test 1: Test 1: Test 1:

43.47 dB 44.14 dB 41.20 dB 31.05 dB
Test 2: Test 2: Test 2: Test 2:
39.12 dB 44.16 dB 39.62 dB 44.07 dB

Recovered gray-
value secret image
quality

Test 1′: 39.5 dB 512×512
Jet

Test 1: Test 1: Test 1: Test 1:
lossless 256 × 256 38.14 dB 512 × 512 lossless 512 × 256 lossless 256 × 512
Barb Jet Jet Jet

Test 2′ (Fig. 7): 39.3 dB
512 × 512 Lena

Test 2: Test 2: Test 2: Test 2:
lossless 256 × 256 35.73 dB 512 × 512 lossless 512 × 256 lossless 256 × 256
Barb. Lena Jet Lena

Test 3′: lossless (either
256 × 256 Barb or 256 ×
256 Lena)
Test 4′: lossless 512×256
Jet

Also has stacking-
to-see ability?

Yes No

Allow the missing
of stego image or
some shadows?

Yes, if store more than t of
the n generated shadows
(total pace is then at least
1/t times larger)

Yes, if duplicate the stego image (Total space is then at least two times larger)

The manners to
achieve security

Each channel holds only
one shadow. Need t shad-
ows to recover

Hide the secret in
the cover image

Hide the secret in
a cover image

Hide the secret in
a cover image

Hide the secret in
a cover image
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Table 2 (Continued).

Our method Ref. [15] Ref. [16] Ref. [17] Ref. [18]

A key or XOR or other
simple functions to en-
crypt S (comp)

Use a SCAN-
based encryption
algorithm [19]

Use a security key
to select the hiding
place in the cover
image

Use a security
key to encrypt the
header file

Use data en-
cryption standard
(DES)

Use security key
and XOR

Use a security key
to select hiding
place in cover

value of ratio is needed, we should try to make the value of the

lower-bound term (8n)/
(
t × log2

(
w+b

b

))
as small as possi-

ble. Without the loss of generality, take a look the experiment
in Fig. 8, in which (t, n) = (3, 4), and the basis matrices of the
experiment were

[B0] =
⎡
⎢⎣

0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0

⎤
⎥⎦ and

[B1] =
⎡
⎢⎣

1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1

⎤
⎥⎦ .

Therefore, the compression ratio was constrained by

ratio�(8n)

/(
t × log2

(
w + b

b

))

= (8 × 4)

/(
3 × log2

(
3 + 3

3

))
= 2.4680. (7)

That was why the compression ratio was taken as 2.5 in the
experiment in Fig. 8.

Now, if we try to redo this (t, n)=(3, 4) experiment by using
larger blocks; for instance, by using 4×3 blocks to replace the
2 × 3 blocks in Fig. 8, then each block has 12 elements instead
of six elements. As a result, the basis matrices should have 12
columns, rather than six columns. (As for the number of rows,
it is still of n = 4 rows, for we did not change the value of n.)
Let the two new basis matrices be

[B(new)
0 ] =

⎡
⎢⎣

0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0

∣∣∣∣∣∣∣

0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0

⎤
⎥⎦

and

[B(new)
1 ] =

⎡
⎢⎣

1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1

∣∣∣∣∣∣∣

1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1

⎤
⎥⎦ .

The width of the new basis matrices is two times larger than
that of the original basis matrices. Moreover, in the old pair of
basis matrices, each row has w = 3 zeros and b = 3 ones. In
the new pair of basis matrices, each row has w = 6 zeros and

b = 6 ones. Therefore, with these two new basis matrices, the
new compression ratio is constrained by

ratio�(8n)

/(
t × log2

(
w + b

b

))

= (8 × 4)

/(
3 × log2

(
6 + 6

6

))
= 1.0827. (8)

This lower bound for the compression ratio is so low that we
can take ratio as 1.09 and make the new compressed image
S(comp) identical to the original image S, for a compression
ratio so close to 1 means the compression can be lossless.

From the above analysis, we can see that the key factor to
get a high-quality compressed image S(comp) before sharing is

to make the value of the term log2

(
w+b

b

)
in the denominator

as large as possible. To achieve this, there are two things we
should know. First, for a given value of the sum (w + b), the

value of
(

w+b
b

)
is larger if we let w and b be equal (or, almost

equal, if (w + b) is an odd number). Second, if we let w = b

(without the loss of generality, we only discuss the case when

w+b is an even value), then
(

w+b
b

)
=

(
b+b
b

)
=(2b)!/(b!)(b!)=

(b + b)(b + b − 1) . . . (b + 1)/(b)(b − 1) . . . (1), which is an
increasing function of b (the larger the value of b, the larger the

value of
(

2b
b

)
). Therefore, if we can use larger blocks, then the

sum value (w+b) is larger because (w+b) is the total number
of elements contained in a block. As a result, if we let w and b

be (almost) equal, then using larger blocks means larger value

of
(

w+b
b

)
, which in turn means smaller value of the term ratio,

because the term log2

(
w+b

b

)
is in the denominators of Eqs.

(6)–(8). And finally, as stated earlier, smaller values of ratio
means better image quality of the compressed version S(comp)

of S.

6. An application

Our two-layer decoding system can also be used in business
in the following way that balances between convenience and
security: (i) any t of the n lower-rank employees can gather
together to unveil a vague black-and-white version of the image;
while (ii) the manager of these employees can unveil further a
fine gray-value version of the image using the encryption key
that only he knows. In the above, (i) is for the convenience of
the daily meeting between the employees (the meeting does not
need the attendance of the manager, although a meeting with
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less than t employees cannot reveal anything). Meanwhile, (ii)
is for the company owner to prevent a high-quality image from
being sold in a black market (neither the t lower-rank employees
(each of them holds a shadow) nor the manager alone (who
holds the encryption key rather than a shadow) can obtain the
high-quality version, unless the two sides cooperate).
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Appendix

A possible way to generate a pair of basis matrices [B0]
and [B1] for an (t, n) threshold system. (This self-explained
appendix is a modified part derived from Ref. [2].)

Input: An integer threshold t , and an integer n indicating the
number of produced transparencies (t �n).

Output: A pair of basis matrices [B0] and [B1] (both ma-
trices are formed of 0’s and 1’s) satisfying the following
requirements:

(i) Each matrix has n rows.
(ii) Stacking any k (k < t) of the n rows of the matrix [B0]

(or [B1], respectively) gets a row vector called the White-
Row-Vector (the Black-Row-Vector, respectively). For a
given k < t , the number of 1’s in any Black-Row-Vector is
identical to that in any White-Row-Vector.

(iii) Stacking any t of the n rows of the matrix [B0] (or [B1],
respectively) gets a row vector called the White-Row-
Vector (the Black-Row-Vector, respectively). Any Black-
Row-Vector contains more 1’s than any White-Row-Vector
does.

Steps: 1. Arbitrarily choose (n − t) integers {hj |0�j �
n − t − 1} and an integer hn−t > 0.

2. Compute the integers {ai |0� i�n} by the formula.

ai =
min{i,n−t}∑

j=0

(−1)i+j hj

(i + j)!
(i!)(j !) . (A.1)

3. Create {G0, . . . , Gn}. Here, each Gi is a matrix having
n rows and

(
n
i

)
columns; no two columns of Gi are identical,

and each of these
(

n
i

)
columns is exactly one of the

(
n
i

)
per-

mutations of the n elements of the first column of Gi . (The
first column of Gi is formed of i consecutive 1’s followed by
(n − i) consecutive 0’s.)

4. Initially, set both [B0] and [B1] to empty set; also set
ai = a0. Then,

(i) If (ai = 0), then do nothing for this ai , just go to (iv).
(ii) If (ai > 0), then repeatedly append Gi into [B0] (repeat

|ai | times).

(iii) If (ai < 0), then repeatedly append Gi into [B1] (repeat
|ai | times).

(iv) If i = n, go to Step 5, else, increment i by 1 and go to (i).

5. [B0] and [B1] are now the desired output.

Example 1. In the (t = 2, n = 4) case, if a reader uses
{h0, h1, h2}={3, 3, 2} as his arbitrary setting for the {h0, h1, h2}
in Step 1 above, then he will proceed as follows:

Step 1: Let {h0, h1, h2} = {3, 3, 2}.
Step 2: By formula (A.1), compute and obtain {a0, a1, a2,

a3, a4} = {3, 0, −1, 0, 3}.
Step 3: G0, . . . , G4 are, respectively,

G0 =
⎡
⎢⎣

0
0
0
0

⎤
⎥⎦ , G1 =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ ,

G2 =
⎡
⎢⎣

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

⎤
⎥⎦ ,

G3 =
⎡
⎢⎣

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

⎤
⎥⎦ , G4 =

⎡
⎢⎣

1
1
1
1

⎤
⎥⎦ .

Step 4: Since {a0, a1, a2, a3, a4}={3, 0, −1, 0, 3}; from those
positive ai , we get

[B0] = (G0 repeats three times

(for a0 = 3), followed by repeating

G4 three times (for a4 = 3)), i.e.

[B0] =
⎡
⎢⎣

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

⎤
⎥⎦ ,

similarly, from those negative ai , we get

[B1] = (G2 appears |a2| = | − 1| = 1 time), i.e.

[B1] = G2 =
⎡
⎢⎣

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

⎤
⎥⎦ .

Step 5: [B0] and [B1] are now the desired output.

Remark. In Example 1 above, stacking any two rows of [B0]
yields a row having three 1’s, while stacking any two rows of
[B1] yields a row having five 1’s (and hence, “darker” than
stacking any two rows of [B0]). Also note that each row of each
matrix has six elements; therefore, each block is 2×3 (or 3×2)
rather than the 2 × 2 used in Section 2 and in the experiment

for Lena (Figs. 3–7). Now, since
(

b+w
b

)
=

(
6
3

)
=20 > 6=

(
4
2

)
,

the JPEG compression ratio mentioned in Section 3.2.2 is thus
smaller (less strict) now, and the quality of the JPEG image
Lena(comp) in Figs. 3(b) and 7 will thus becomes better (has
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higher PSNR value). The price of getting this better-quality
gray-value image Lena(comp) is that the stacked black-and-white
image in Figs. 6 will become larger in width (just like Fig. 8(e)
does) because of the use of 2 × 3 blocks.
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