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Abstract—In this paper, we try to improve the performance
of the particle swarm optimizer by incorporating the linkage
concept, which is an essential mechanism in genetic algorithms,
and design a new linkage identification technique called dynamic
linkage discovery to address the linkage problem in real-parameter
optimization problems. Dynamic linkage discovery is a costless
and effective linkage recognition technique that adapts the linkage
configuration by employing only the selection operator without
extra judging criteria irrelevant to the objective function. More-
over, a recombination operator that utilizes the discovered linkage
configuration to promote the cooperation of particle swarm op-
timizer and dynamic linkage discovery is accordingly developed.
By integrating the particle swarm optimizer, dynamic linkage
discovery, and recombination operator, we propose a new hy-
bridization of optimization methodologies called particle swarm
optimization with recombination and dynamic linkage discovery
(PSO-RDL). In order to study the capability of PSO-RDL, numer-
ical experiments were conducted on a set of benchmark functions
as well as on an important real-world application. The benchmark
functions used in this paper were proposed in the 2005 Institute
of Electrical and Electronics Engineers Congress on Evolutionary
Computation. The experimental results on the benchmark func-
tions indicate that PSO-RDL can provide a level of performance
comparable to that given by other advanced optimization tech-
niques. In addition to the benchmark, PSO-RDL was also used
to solve the economic dispatch (ED) problem for power systems,
which is a real-world problem and highly constrained. The results
indicate that PSO-RDL can successfully solve the ED problem for
the three-unit power system and obtain the currently known best
solution for the 40-unit system.

Index Terms—Building blocks, dynamic linkage discovery,
economic dispatch (ED), genetic algorithms (GAs), genetic link-
age, particle swarm optimization (PSO), recombination operator,
valve-point effect.

I. INTRODUCTION

HE PARTICLE swarm optimizer (PSO), which was in-
troduced by Kennedy and Eberhart in 1995 [1], [2],
emulates the flocking behavior of birds to solve optimization
problems. The PSO algorithm is conceptually simple and can
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be implemented in a few lines of codes. In PSO, each potential
solution is considered as a particle. All particles have their own
fitness values and velocities. These particles fly through the
D-dimensional problem space by learning from the historical
information of all the particles. There are global and local
versions of PSO. Instead of learning from the personal best
and the best position discovered so far by the whole population
as in the global version of PSO, in the local version, each
particle’s velocity is adjusted according to its own best fitness
value and the best position found by other particles within its
neighborhood. Focusing on improving the local version of PSO,
different neighborhood structures were proposed and discussed
in the literature. Moreover, the position and velocity update
rules have been modified to enhance the PSO’s performance
as well.

On the other hand, genetic algorithms (GAs), which
were introduced by Holland [3], are stochastic population-
based search and optimization algorithms loosely modeled
after the paradigm of evolution. GAs guide the search
through the solution space by using natural selection and
genetic operators, such as crossover, mutation, and the like. Fur-
thermore, the GA optimization mechanism has been theorized
by researchers [3]-[5] with building block processing, such
as creating, identifying, and exchanging. Building blocks are
conceptually noninferior subsolutions that are components of
the superior complete solutions. The building block hypothesis
states that the final solutions to a given optimization problem
can be evolved with a continuous process of creating, identi-
fying, and recombining high-quality building blocks. Accord-
ingly, the GA’s search capability can be greatly improved by
identifying building blocks accurately and preventing crossover
operation from destroying them [6], [7]. Hence, linkage identi-
fication, i.e., the procedure to recognize building blocks, plays
an important role in GA optimization.

The two aforementioned optimization techniques are both
population based and have been proven successful in solving
a variety of difficult problems. However, both models have
strengths and weaknesses. Comparisons between GAs and PSO
can be found in the literature [8], [9] and suggest that a hybrid
of these two algorithms may lead to further advances. As a
consequence, a host of studies on the hybridization of GAs and
PSO have been proposed and examined. Most of these research
works try to incorporate genetic operators into PSO [10], [11],
while some try to introduce the concept of linkage into PSO
[12]. According to the similar idea employed by linkage PSO
[12], this paper tries to introduce the recombination mechanism
working on building blocks to enhance the capability of PSO
with the linkage concept.

1083-4419/$25.00 © 2007 IEEE



CHEN et al.: PSO WITH RECOMBINATION AND DYNAMIC LINKAGE DISCOVERY

This paper presents a research project that aims to address the
linkage problem in real-parameter optimization and introduces
the linkage concept to the particle swarm optimizer. Thus, there
are the following three primary objectives.

1) With the hypothesis that linkage also exists in real-
parameter optimization, a linkage identification technique
is needed to address the linkage problem. This paper
provides both the linkage identification mechanism and
observations from numerical experiments to support this
hypothesis.

2) In order to improve the performance of the particle swarm
optimizer, the linkage concept is introduced. An opti-
mization algorithm that incorporates this mechanism is
developed, and numerical experiments are conducted to
evaluate the performance of the proposed methodology.

3) The economic dispatch (ED) problem, which is an essen-
tial topic in power control systems, can be appropriately
handled and optimized.

Focusing on the three objectives, in this paper, we propose a
dynamic linkage discovery technique to dynamically and effec-
tively detect the building blocks of the objective function during
the whole evolutionary optimization process. This technique
differs from those traditional linkage detection techniques in
that the evaluation cost is eliminated. The idea is to dynamically
adapt the linkage configuration according to the search process
and the feedback from the environment. Thus, this technique
is costless and easy to be integrated into existing search
algorithms. Our method introduces the linkage concept and the
recombination operator to the operation of the particle swarm
optimizer. Furthermore, in order to efficiently solve the ED
problem, we incorporate the proposed algorithm with a new
constraint handling technique. We use the three-unit [13] and
40-unit [14] problems with the nonsmooth fuel cost function
considering valve-point effects [13] found in the literature of
power systems as the experiments.

This paper is organized as follows. Section II provides a
survey of related work in the literature. Section III describes
the proposed method in detail. The three mechanisms including
the particle swarm optimizer, dynamic linkage discovery tech-
nique, and recombination operator are introduced. The frame-
work consisting of the three components is then presented.
Section IV shows the experimental results that evaluate the
performance of the proposed algorithm in the 2005 Institute of
Electrical and Electronics Engineers Congress on Evolutionary
Computation (IEEE CEC 2005) benchmark. Section V applies
the proposed framework to the ED problem, which is a signifi-
cant topic in power systems. Section VI gives a summary of this
paper. The future work and the main conclusions of this paper
are provided.

II. RELATED WORK

The traditional PSO algorithm, which is described in [1],
consists of a number of particles representing possible solutions
to a numerical problem and moving around in the search space.
In an iteration, the velocity of each particle is updated according
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to the best position encountered by the particle itself and by any
of the particles as

Uf“(j) = wvl(4) + 115 (5) [pf(J) - xf(])]

+ ca2i(j) [P} (5) — 27 ()]

where t is the time index, ¢ is the particle index, and j is the
dimension index. p; is the individual best position. py is the
known global best position. w is the inertia weight described
in [15]. ¢; and co are the acceleration rates of the cognitive and
social parts, respectively. o) and ¢5 are random values different
for each particle ¢ as well as for each dimension j. The velocity
update rule with constriction coefficients is proposed in [16].
The position of each particle is also updated in each iteration
by adding the velocity vector to the position vector, i.e.,

it () = 24 () + vl ()

The particles used in this paper have no neighborhood restric-
tion, which means each particle can affect all other particles.
In the local version of PSO, py is replaced by py, ie., the
best position achieved by a particle within its neighborhood.
Focusing on improving the local version of PSO, different
neighborhood structures have been proposed and discussed
[17]-[19]. Furthermore, studies on modifying the rule of up-
dating position and velocity are also implemented [12], [20],
[21]. Devicharan and Mohan [12] first computed the elements
of the linkage matrix based on observation of the results of
perturbations performed in some randomly generated particles.
These elements of the linkage matrix were used in a modified
PSO algorithm in which only strongly linked particle positions
were simultaneously updated. Liang et al. [20], [21] proposed
learning strategies where each dimension of a particle learned
from just one particle’s historical best information, while each
particle learned from different particles’ historical best infor-
mation for different dimensions.

In order to enhance the performance of PSO by introducing
genetic operators and/or mechanisms, many hybrid GA/PSO
algorithms have been proposed and tested on function mini-
mization problems [10], [11], [22], [23]. Lavbjerg et al. [10]
incorporated a breeding operator into the PSO algorithm, where
breeding occurred inline with the standard velocity and position
update rules. Robinson et al. [22] tested a hybrid that used
the GA algorithm to initialize the PSO population and another
in which the PSO initialized the GA population. Shi et al.
[23] proposed two approaches. The main idea of the proposed
algorithm was to integrate PSO and GA. Settles and Soule [11]
combined the standard velocity and position update rules of
PSO with the concepts of selection, crossover, and mutation
from GAs. They employed an additional parameter, i.e., the
breeding ratio, to determine the proportion of the population
that underwent breeding procedure (selection, crossover, and
mutation) in the current generation.

Moreover, the importance of learning genetic linkage has
long been discussed and recognized in the field of GAs [3], [4],
[6], [7]. Because it is hard, if not impossible, to guarantee the
user-designed chromosome representation that provides tightly
linked building blocks when the problem domain knowledge is
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unavailable, a variety of linkage learning techniques have been
proposed and developed to handle the linkage problem, which
refers to the need of good building block linkage. The issue
of learning problem-specific linkage has been addressed in the
GA literature [24]-[26]. Furthermore, some researchers try to
introduce the linkage concept to PSO and formulate linkage-
sensitive PSO algorithms [12], [20], [21].

III. FRAMEWORK

The proposed algorithm introduces the recombination opera-
tor with the dynamic linkage discovery technique to the particle
swarm optimization (PSO). Dynamic linkage discovery adapts
the linkage configuration by utilizing natural selection without
incorporating extra judging criteria. Furthermore, a specifically
designed recombination operator is employed to work with the
identified building blocks.

A. Dynamic Linkage Discovery

In the literature, most linkage identification techniques were
proposed and tested on trap functions [27]. There are relatively
fewer studies on handling linkage in real-number optimization
problems. From the survey of linkage learning, Tezuka et al.
identified linkage by nonlinearity check on real-coded GA
[25]. Such a technique has also been incorporated with the
particle swarm optimizer [12]. Different from this perturbation-
based linkage identification technique, we propose the dynamic
linkage discovery in this paper.

In PSO, particles are encoded as real-number vectors. Be-
cause of this representation, we use the term “linkage” to
indicate the interrelation among dimensions as in the literature
[12], [21], [28]. At different stages of an optimization process,
the linkage configuration may be different according to the
fitness landscape and the corresponding population distribution.
Hence, in this paper, we make a hypothesis that the relation
between different dimensions is dynamically changed along
with the optimization process from the viewpoint of the popula-
tion. Acting on this hypothesis, the linkage configuration should
be updated accordingly such that the obtained information
regarding the function structure embedded in the population
distribution can be extracted and utilized.

For most problems, it is difficult to exactly identify the link-
age configuration, especially when the linkage configuration
may change over time. Instead of incorporating extra artificial
criteria for linkage adaptation, we entrust the task to natural
selection. As a consequence, we propose the dynamic linkage
discovery technique, and we call the PSO combined with re-
combination and dynamic linkage discovery as PSO-RDL. The
dynamic linkage discovery technique is costless, effective, and
easy to implement. The idea is to update the linkage configura-
tion according to the fitness feedback. During the evolutionary
optimization process, PSO-RDL assigns a set of random link-
age groups and then adjusts the linkage configuration according
to the objective values. If the average fitness value of the current
population is improved above a specified threshold, the current
linkage configuration is considered appropriate and remains
unchanged. Otherwise, the linkage groups will be reassigned
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1: procedure DYNAMIC-LINKAGE-DISCOVERY(J)
2 /I ¢ is the fitness improvement

3 if § > threshold then

4 Linkage configuration remains unchanged
5 else

6 Call Dynamic-Linkage-Group

7 end if

8. end procedure

9: procedure DYNAMIC-LINKAGE-GROUP

10 Generate a group number G, a random integer uniformly distributed in [1, Dim)]
11: /I Dim is the number of dimension

12: for each dimension do

13: Assign a random integer uniformly distributed in [1, G|

14: end for

15: /I Dimensions assigned the same integer belong to the same building block

16: end procedure

Fig. 1. Pseudocode of dynamic linkage discovery.

at random. Dynamic linkage discovery may seem similar to
the mechanism of “random neighborhood” defined in Stan-
dard PSO 2006 and downloadable at Particle Swarm Central
[29] due to the concept of “if no improvement, redefine the
neighborhoods.” The essential difference is that random neigh-
borhood works on particles while dynamic linkage discovery
works on dimensions. In this sense, the two methodologies are
orthogonal and might cooperate with each other. Finally, the
pseudocode of dynamic linkage discovery is shown in Fig. 1.

B. Recombination Operator

For evolutionary algorithms, the merits of crossover have
been an essential research topic. Instead of the traditional
two-parent recombinatory chromosome reproduction, there has
been considerable discussion of multiparent crossover mech-
anisms [30]-[32]. Work on multiparental recombination tech-
niques (with a fixed number of parents) [31] showed that
n-parental inheritance (with n greater than 2 but less than the
size of the population) can be advantageous. Based on previ-
ous research work, we develop a multiparental recombination
operator for constructing the offspring population.

In this paper, since we have discovered the linkage configu-
ration in order to make good use of the obtained information,
we specifically design a new recombination operator. After
selection, we consider the selected individuals as a building
block pool. In the recombination process, every offspring is
created by choosing and recombining building blocks from the
pool at random. We use this recombination process to generate
the next population. Fig. 2 shows an illustration of how a
new individual is generated. By repeating the process, we can
construct a new population in which each particle is composed
of the building blocks. The pseudocode for constructing a new
population is shown in Fig. 3.

C. Recombination With Dynamic Linkage Discovery in PSO

For the convenience of analysis and development, in this
paper, we use a modified version of PSO [33]. In the proposed
algorithm, we repeat PSO for a certain number of generations,
which is called a PSO epoch. After each PSO epoch, we select
the n best particles to establish the building block pool and
conduct the recombination operation. After the recombination
process, the linkage discovery step is executed if necessary.
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BBs pool

individuali | BB1 | BB2 |/BB3
individual2 | \BBi | BB2 | BB3
individuals | BB1 | BB2 | BBs

individuals | BB1 | BB2

individualn-1

individualn

randomly choose
BB from each
individual

\ v LY LSS S
new individual |\:;BB\1\; | BB2 |-,13j3,3,4

Fig. 2. New particle is generated through the recombination operator.

1: procedure NEW-POPULATION

2 Select n best individuals from the current population

3 Establish a building block pool from the selected individuals
4: i+ 0

5 while ¢ < population size do

6. je—i+1

7 Construct a new particle with recombination

8 end while

9: end procedure

Fig. 3. Constructing a new population by using recombination.
1: procedure PSO-RDL

2 & < a value larger than threshold

3 repeat

4 Call Dynamic-Linkage-Discovery(d)
5: repeat

6 Do PSO on the population

7 until a PSO epoch is due

8 Call New-Population

9 Calculate the fitness improvement &
10: until the maximum iteration is reached
11: Do local search on the best particle

12: end procedure

Fig. 4. Pseudocode of PSO-RDL.

We calculate the average fitness of the current epoch, compare
the average to that calculated during the last epoch, and check
whether the improvement is significant enough. When the
specified threshold is reached, the current linkage configuration
is considered appropriate and remains unchanged for the next
PSO epoch. Otherwise, the linkage discovery process starts.
The pseudocode is shown in Fig. 4.

Similar studies have been done in the literature, such as PSO
with learning strategy [20], [21] and PSO with adaptive linkage
learning [12]. The main difference between PSO-RDL and
these previously proposed methods is the introduction of the
recombination operator specifically designed to work with the
identified building blocks. In addition, a new linkage discov-
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ery technique to dynamically adapt the linkage configuration
during the search process is proposed. Furthermore, since the
local search is utilized in the proposed framework, PSO-RDL
can also be regarded as a memetic algorithm. Interested readers
can refer to the related publications [34]-[37].

IV. EXPERIMENTAL RESULTS ON BENCHMARK

Computer simulations were conducted to evaluate the per-
formance of PSO-RDL. The test problems [38] are proposed
in the special session on real-parameter optimization in IEEE
CEC 2005. The reason we use the benchmark to test PSO-RDL
is to understand how well PSO-RDL can do on the artificial test
functions and to observe the runtime dynamics. The method we
adopt in this paper to conduct the comparison is to directly cite
the numerical results published and available in the literature.
In this section, the test problems, parameter settings, and nu-
merical results are presented.

A. Test Functions

The set of test problems proposed in IEEE CEC 2005 in-
cludes in total 25 functions of different characteristics. Five of
them are unimodal problems, and the others are multimodal
problems [38]. However, because some of the 25 functions are
solved by none of the algorithms compared in this paper, we use
only 13 test functions from the benchmark of ten dimensions,
i.e., ten decision variables, in this paper.

¢ Unimodal Functions (5):

1) Fi: Shifted Sphere Function;
2) F5: Shifted Schewefel’s Problem 1.2;
3) F5: Shifted Rotated High Conditioned Elliptic

Function;

4) Fjy: Shifted Schwefel’s Problem 1.2 with Noise in
Fitness;

5) F5: Schwefel’s Problem 2.6 with Global Optimum
on Bounds.

¢ Multimodal Functions (8):

— Basic Functions (7):
1) Fg: Shifted Rosenbrock’s Function,;
2) F7: Shifted Rotated Griewank’s
without Bounds;

Function

3) Fg: Shifted Rotated Ackley’s Function with
Global Optimum on Bounds;
4) Fy: Shifted Rastrigin’s Function;

5) Fjo: Shifted Rotated Rastrigin’s Function;
6) Fii: Shifted Rotated Weierstrass Function;
7) Fis: Schwefels’ Problem 2.13.

Hybrid Composition Function (1):

1) Fi5: Hybrid Composition Function.

Please note that we keep the function number assigned in the
original benchmark for reference. The bias of fitness value for
each function f(x*), the search ranges [Xin, Xmax), and the
initialization range of each function are given in Table 1.
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TABLE 1
GLOBAL OPTIMA, SEARCH RANGES, AND INITIALIZATION
RANGES OF THE ADOPTED TEST FUNCTIONS

[ / | f(z*) | Search Range [ Initialization Range |

f -450 [-100,100] [-100,100]
fe -450 [-100,100] [-100,100]
fa -450 [-100,100] [-100,100]
f1 -450 [-100,100] [-100,100]
f5 -310 [-100,100] [-100,100]
fe 390 [-100,100] [-100,100]
fq -180 [—00, 0] [0,600]
fs -140 [-32,32] [-32,32]
fo -330 [-5,5] [-5,5]
Jio || -330 [-5.5] [-3.5]
S 90 [-0.5,0.5] [-0.5,0.5]
fio -460 [—7, 7] [—7, 7]
fis || 120 [-5,5] [-5.5]
TABLE 1I
PARAMETER SETTINGS IN THE NUMERICAL EXPERIMENTS
| Parameter | Value
Swarm size 20
Inertia weight (w) 0.65
Cognitive acceleration rate (c1) 1.48
Social acceleration rate (cg) 1.48

Maximum velocity 25% of the search range
PSO epoch 50

Selected particles for recombination 5
Improvement threshold 2% of the best fitness

B. Parameter Settings

The parameter settings for PSO-RDL employed in this pa-
per are described as follows: the number of particles is 20,
w = 0.65, c; = 1.48, co = 1.48, and Vjj.« is equal to 25% of
the search range. The PSO epoch is 50 generations. If the PSO
epoch is too long, the whole swarm may have converged, and
no further information exchange is needed. On the other hand,
if the PSO epoch is too short, the linkage discovery mechanism
may not be able to learn from a group of random particles. The
number of particles selected for the recombination is 5. The
threshold that determines whether the linkage configuration
should be changed is set to 2% of the previous best fitness
value. A high fitness improvement threshold may lead to an
ever-changing linkage configuration, while a low threshold may
not be helpful to guide the search and becomes useless. A list
of the parameter settings is shown in Table II.

C. Experimental Results

Table III shows the number of successfully solved problems
for PSO-RDL and other evolutionary algorithms. According
to the criteria specified in the IEEE CEC 2005 benchmark,
PSO-RDL successfully solved problems 1, 2, 4, 5, 6, 7, 12,
and 15. Moreover, comparable results are achieved in solving
problems 3, 8, and 11. Unfortunately, PSO-RDL failed to solve
problems 9 and 10. Figs. 5-8 demonstrate how the dynamic
linkage discovery technique changes the linkage configuration
during the optimization process.
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TABLE III
PROBLEMS SOLVED BY PSO-RDL AND OTHER ADVANCED
EVOLUTIONARY ALGORITHMS. UNIMODAL: UNIMODAL
FUNCTIONS; BASIC: BASIC MULTIMODAL FUNCTIONS;
HYBRID: HYBRID COMPOSITION FUNCTION

[ Method [ Unimodal (5) [ Basic (7) [ Hybrid (1) |
DMS-PSO 1,2,3,5 4) 6,7,9,12 (4) 15 (1)
PSO-RDL 1,245 4) 6,7,12 (3) 15 (1)

PSO 1,245 4) 6,7,12 (3) *
LR-CMA-ES 1,2,3,4,5 (5) 6,7,12 (3) *
SPC-PNX 1,245 4) 6,7,11 (3) *
DE 1,2,3,4,5 (5) 6,9 (2) *
Sa-DE 1,2,4 (3) 9,12 (2) 15 (1)
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Fig. 5. Convergence and linkage dynamics for the Sphere function.
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Fig. 6. Convergence and linkage dynamics for the Shifted Rotated Griewank’s
function.

D. Discussion

According to the results listed in Table III, it can be con-
sidered that PSO-RDL delivers a similar level of performance
compared to other advanced evolutionary algorithms on the
artificial test functions. For the total number of solved prob-
lems, PSO-RDL can solve eight problems and is ranked top
two. Although slightly inferior to dynamic multi-swarm particle
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1e+00

log(f(x))

| _|_|_|_|-|_|-|_|_|_| _
unchanged - i : : : ; -7

0 5 10 15 20 25 30 35 40
epoch

Fig. 7. Convergence and linkage dynamics for the Shifted Expanded
Griewank’s plus Rosenbrock’s function (a multimodal function).
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Fig. 8. Fitness convergence and linkage dynamics of PSO-RDL for the

Shifted Rastrigin’s function (a multimodal function with many local optima).

swarm optimizer (DMS-PSO), PSO-RDL performs well on the
artificial test functions.

Because the main purpose of using the benchmark is to
understand the behavior of PSO-RDL, observations for fitness
convergence and linkage dynamics are provided in Figs. 5-8.
The gray areas represent the time frames when a proper linkage
configuration is assisting the optimization mechanism. When
the linkage configuration is not appropriate for the current
optimization stage, i.e., the linkage configuration fails to assist
the search, the linkage group composition will start to vibrate
for some iterations until the next proper set of linkage groups
is found, as shown in Figs. 5 and 6. The phenomenon evidently
verifies our assumption that the building block’s composition
is dynamically changed during the search process in the real-
parameter optimization problem. Thus, it is reasonable that
we hand over linkage adaptation to the mechanism of natural
selection. Moreover, Fig. 8 shows the linkage dynamics for
the function that PSO-RDL failed to solve. It can be seen that
the linkage configuration keeps changing all the time. As dis-
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cussed above, this phenomenon indicates that when the function
may have no building block structure or is too difficult for
PSO-RDL, an appropriate linkage configuration cannot be
found, and the optimization task cannot be accomplished.

Focusing on the time ratio of the linkage status (changing
versus unchanged), we can observe that for Figs. 5 and 6,
the linkage configuration remains unchanged for most of the
time. Correspondingly, PSO-RDL provides good results on
these two functions. On the contrary, the linkage configuration
keeps changing in Figs. 7 and 8. Thus, our algorithm does
not work well on these two functions, although PSO-RDL
can obtain numerical results comparable to those obtained
by other algorithms on the shifted expanded Griewank’s plus
Rosenbrock’s function. Hence, we can conclude that when the
linkage configuration changes too often, PSO-RDL may fail to
solve the problem with a high probability. Such a “signal” may
be a performance indicator for PSO-RDL and worth further
investigation.

V. REAL-WORLD APPLICATIONS

In this section, we employ PSO-RDL to handle a real-
world application, i.e., the ED problem, which is an essential
topic in power systems. Thanks to the importance of the ED
problem, researchers have been making a host of attempts to
find better solutions. Among the promising sets of evolutionary
optimization methods for tackling the ED problem are GAs
[13], [39]-[42], evolutionary programming [14], [43]-[45], and
PSO [46]-[49]. In order to observe the performance as well as
to obtain better solutions, we will apply PSO-RDL on the ED
problem. For this purpose, the following topics will be covered
in this section.

* ED problem: A brief introduction to the ED problem.

e PSO-RDL for ED: PSO-RDL used to solve the ED

problem.

* Experimental results: The numerical results for the 3- and

40-unit ED problems. The comparisons of PSO-RDL with
other algorithms are also presented.

A. ED Problem

With the development of modern power systems, the ED
problem has received increasing attention because many as-
pects of power systems are involved. The ED problem consists
of allocating the total generation required among the available
generation units, assuming that a unit commitment is previously
determined. The objective aims to minimize fuel cost subject
to physical and operational constraints. As a result, the ED
problem is to find the optimal output combination of the power
generations that minimizes the total generation cost while satis-
fying the equality and inequality constraints. In order to model
the ED problem, a simplified cost function [50] of each gener-
ator that is represented as a quadratic function can be put as

C=Y Fi(p) (1
jedJ
Fj(Pj) :aij—i-bij—&-cj (2)
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where
C total generation cost;
J set for all generators;
P; electrical output of generator j;
F; cost function for generator j;
aj, bj, c; cost coefficients for generator j.

In the real world, the total generation should be equal to
the total system demand plus the transmission network loss.
However, in a number of studies reported in the literature [13],
[39], [40], [42], the network loss is not considered for simplic-
ity. For the purpose to directly compare the numerical results
obtained by PSO-RDL with those available in the literature, the
transmission network loss is also not considered in this paper.
Hence, the constraints of the problem include two main parts.
The first part is the equality constraint. The sum of the output of
all generators must be equal to the total system demand, which
can be described as

D=>"P 3)

jeJ

where D is the total system demand.

Second, the generation output of each unit has to be within its
minimum and maximum limits. Such a requirement introduces
the inequality constraint. The inequality constraint for generator
7 can be put as

ijin S Pj S ijax (4)

where Pjnin and Pjpax are the minimum and maximum
outputs of generator j, and P; is the desired output.

In reality, the objective function of the ED problem is
more complicated than (2) due to the valve-point effect and
the change of fuels. Therefore, the nonsmooth cost functions
should be considered instead of (2), which is the most sim-
plified form. The inclusion of the valve-point loading effect
makes the modeling of the incremental fuel cost function of the
generators more practical and increases the nonlinearity as well
as number of local optima. The incremental fuel cost function
of the generating units with valve-point loadings [13] can be
represented as

Fj(P;) = a; P} +b; P+ c; + |ejsin (f; X (Pjmin — P)))|

&)

where e; and f; are the coefficients for generator j to reflect the
valve-point effect.

In this paper, we focus on solving the ED problem with the
valve-point effect, which is modeled as (5). Thus, the combi-
nation of (1) and (5) is the objective function for PSO-RDL
to optimize, and a solution to the ED problem is a set of
generation outputs specified for each generator in question. In
addition, a solution is called a feasible solution if it satisfies the
equality constraint (3) as well as the inequality constraint (4).
Otherwise, it is called an infeasible solution. The regions in the
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search space composed of feasible solutions are called feasible
regions, and the others are called infeasible regions.

B. PSO-RDL for ED

In order to solve the ED problem with PSO-RDL, the equal-
ity and inequality constraints have to be appropriately handled.
To address this issue, we devise a constraint handling technique
based on the concepts of repair and penalty. With the repair
mechanism, infeasible solutions are modified to be feasible
ones. For the ED problem, although the inequality constraints
(4) might need to be handled in traditional mathematical pro-
gramming methods, they can be ignored in this paper because
the control of decision variable ranges is a built-in functionality
of evolutionary algorithms.

As for the equality constraint (3), we repair infeasible so-
lutions with the following procedure. We generate an integer
sequence from one to the number of generators with a uni-
formly random order. Each integer in the sequence represents
one generator that needs processing. The sequence indicates the
order in which the denoted generator is processed. For example,
for four generators, if we randomly generate a sequence 3, 1, 2,
4, the sequence means that we will first process unit 3, then
unit 1, unit 2, and unit 4. In this order, we check the equality
constraint, i.e., the sum of the total generation output must
be equal to the system demand. If the equality constraint is
not satisfied, the output of the generator under processing is
modified according to
P/ = min (UBound(F;),

3

D- Y P;|,LBound(P,) (6)
jeJ,j#i

max

where D is the system power demand, J is the set for all
generators, and LBound(P;) and UBound(P;) are the lower
bound and upper bound of P;.

The aforementioned repair procedure is conducted with a
probability of 0.4 and adjusts the output of the generators one
by one until the solution is feasible. However, if all infeasible
solutions are repaired, the population diversity may be greatly
reduced. Therefore, to preserve the diversity of the population,
only a portion of infeasible solutions is repaired. For the rest of
the infeasible solutions, we use a penalty function to indicate
the infeasibility. The penalty function was designed as

Objective value with penalty = C' + w, | D — Z Pl ()
jeJ

where C is the total generation cost, and the w), = 105 is the
penalty coefficient.

By incorporating the constraint handling technique,
PSO-RDL is capable of solving the ED problem. In order
to verify the feasibility and demonstrate the performance of
PSO-RDL on the ED problem, numerical experiments were
conducted, and the results are given in Section V-C.
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TABLE 1V
PARAMETERS FOR TEST CASE I (THREE-UNIT SYSTEM) WITH
VALVE-POINT LOADING EFFECT. a, b, ¢, e, AND f ARE THE
CosST COEFFICIENTS IN THE FUEL COST FUNCTION:
Fj(Pj) = aijQ + bjP]' + Cj + |ej sin(fj X (P]mln — P]))|
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TABLE V
PARAMETERS FOR TEST CASE II (40-UNIT SYSTEM) WITH
VALVE-POINT LOADING EFFECT. a, b, ¢, e, AND f ARE THE
CosST COEFFICIENTS IN THE FUEL COST FUNCTION:
Fj(Pj) = llj]Dj2 + bjP]' =+ Cj + |e]- sin(fj X (P]mzn — P]))‘

(ot [ Prin [ Praz] @ [ 6 [ e[ e[ 7 | (U0 [ Prin [ Prae|_@ [ 5 [ ¢ [ e [ 7]
1 100 600 | 0.001562 | 7.92 | 561 | 300 | 0.0315 1 36 114 0.0069 | 6.73 | 94.705 | 100 | 0.084
2 100 400 0.00482 | 7.97 | 78 150 | 0.063 2 36 114 0.0069 | 6.73 | 94.705 | 100 | 0.084
3 50 200 0.00194 | 7.85 | 310 | 200 | 0.042 3 60 120 0.2028 | 7.07 | 309.54 | 100 | 0.084
4 80 190 | 0.00942 | 8.18 | 369.03 | 150 | 0.063
5 47 97 0.0114 | 5.35 | 148.89 | 120 | 0.077
C. Experiments 6 68 140 | 0.01142 | 8.05 | 22233 | 100 | 0.084
) . . . 7 110 300 0.00357 | 8.03 | 287.71 | 200 | 0.042
In this section, the test problems will be described followed 3 135 300 | 0.00492 | 6.99 | 391.98 | 200 | 0.042
by the presentation of the numerical results. 9 135 300 | 0.00573 | 6.6 | 455.76 | 200 | 0.042
1) Test Problems: We focus on solving the ED problem with 10 130 | 300 | 0.00605 | 12.9 | 722.82 | 200 | 0.042
th functions considering the valve-point effect. We L o4 375 | 000515 | 129 | 6352 | 200 | 0.042
nonsmoo g p ect. 12 || 94 | 375 | 0.00569 | 12.8 | 654.69 | 200 | 0.042
employed PSO-RDL to solve two ED problems, one with three 13 125 500 | 0.00421 | 125 | 913.4 | 300 | 0.035
generators and the other with 40 generators. The input data 14 125 | 500 | 0.00752 | 8.84 | 1760.4 | 300 | 0.035
for the three-unit system are given in [13], and those for the 15 125 | 500 | 0.00708 | 9.15 | 1728.3 | 300 | 0.035
. : : : : 16 125 500 0.00708 | 9.15 | 1728.3 | 300 | 0.035
40-unit are given in [14]. The detail pf;rgmete?s include each o 530 <00 00051597 T&1755 T 500 [ 0.035
gene.rator .output range, and related coefficients in both systems 13 250 | 500 1 0.00313 | 7.95 | 649.69 | 300 | 0.035
are listed in Tables IV and V. The total demands for the 3- and 19 242 | 550 | 0.00313 | 7.97 | 647.83 | 300 | 0.035
40-unit systems are 850 and 10500 MW, respectively. The 20 242 | 550 | 0.00313 | 7.97 | 647.81 | 300 | 0.035
global optimum solution for the three-unit system is proven to 2 ;gj ggg g'ggggg g'gg ;gz'gg ;88 g‘ggg
be 8234.07 [51]. F(?r the 40-unit system, the glob'al optl'mum ok 551 T 550 1 000084 T 666 179453 T 300 1 0.035
has not been determined. The best known solution in the litera- 7 554 | 550 | 0.00284 | 6.66 | 794.53 | 300 | 0.035
ture is 122 252.265 [48]. The parameter settings for PSO-RDL 25 254 | 550 | 0.00277 | 7.1 | 801.32 | 300 | 0.035
are identical to those listed in Table II. The probability to repair 26 || 254 | 550 | 000277 | 7.1 | 801.32 | 300 | 0.035
infeasible solutions is 0.4. 27 10 150 | 0.52124 | 3.33 | 1055.1 | 120 | 0.077
2) E .u I Results: Th . d d 28 10 150 | 0.52124 | 3.33 | 1055.1 | 120 | 0.077
) xpferzmenta esults.: e experiments were conducte 79 0 150 1 052124 | 333 | 1055.1 | 120 | 0.077
for 100 independent runs to evaluate the performance of 30 47 97 00114 | 535 | 14889 | 120 | 0.077
PSO-RDL on the ED problem. The numerical results for the 31 60 190 | 0.0016 | 6.43 | 222.92 | 150 | 0.063
three-unit system are given in Table VI, and the results are 32 60 | 190 | 00016 | 643 | 22292 | 150 | 0.063
compared to those of GA [13], improved evolutionary pro- 33 60 190 | 00016 | 643 | 22292 | 150 | 0.063
par 1120, imp , y P 34 || 90 | 200 | 0.0001 | 895 | 107.87 | 200 | 0.042
gramming (IEP) [52], evolutionary programming (EP) [44], and 33 90 300 | 0.0001 | 8.62 | 11658 | 200 | 0.042
modified particle swarm optimization (MPSO) [48]. The results 36 90 200 0.0001 | 8.62 | 116.58 | 200 | 0.042
indicate that PSO-RDL has successfully found the reported 37 25 110 | 00161 | 5.88 | 307.45 | 80 | 0.098
global optimum solution [51] as EP and MPSO. For the 40- 38 2 110 | 0.0161 | 588 | 30745 | 80 | 0.098
. h 1 d h btained b 39 25 110 0.0161 | 5.88 | 30745 | 80 | 0.098
unit system, the results are compare to those obtaine by 0 515 T 550 1000313 | 797 | 64783 | 300 | 0.035
other advanced methods described in [14], such as classical
EP (CEP), fast EP (FEP), modified FEP (MFEP), improved
FEP (IFEP), as well as MPSO in [48]. The best solution
TABLE VI

obtained by PSO-RDL is 121 468.820, which is better than the
previously known best solution, i.e., 122252.265 reported in
[48]. The best solutions obtained by each method are shown
in Table VII. In order to statistically compare the results,
we show the numbers of solutions for the 100 independent
runs in each range of cost in Table VIII. Finally, the gen-
eration outputs and the corresponding costs of the best so-
lution obtained by PSO-RDL are provided in Table IX for
verification.

For the ED problem, we also follow the method to conduct
the comparison by directly citing the numerical results pub-
lished and available in the literature. Moreover, as pointed out
in [13], [14], and [39], the test problem instances cannot be
handled by classical LaGrangian techniques due to the lack
of the monotonically increasing nature. As a consequence,
the algorithms performing well on the artificial functions
such as DMS-PSO [28] and local restart covariance matrix

COMPARISON OF THE EXPERIMENTAL RESULTS OBTAINED BY VARIOUS
METHODS ON THE NONSMOOTH COST FUNCTION CONSIDERING
THE VALVE-POINT LOADING EFFECT. FOR THE THREE-UNIT
SYSTEM, IEP, EP, MPSO, AND PSO-RDL WERE ABLE
TO FIND THE GLOBAL OPTIMUM [51]

Unit GA IEP EP MPSO | PSO-RDL
(pop=20) (par=20) | (par=20)
1 300 300.23 300.26 | 300.27 300.267
2 400 400 400 400 400
3 150 149.77 14974 | 149.73 149.733
TP 850 850 850 850 850
TC || 8237.6 | 8234.09 | 8234.07 | 8234.07 | 8234.07

adaptation evolution strategy (LR-CMA-ES) [53] as well as
the classical LaGrangian techniques are not included in the
comparison.
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TABLE VII
COMPARISON OF THE EXPERIMENTAL RESULTS OBTAINED BY VARIOUS METHODS ON THE NONSMOOTH COST FUNCTION CONSIDERING
THE VALVE-POINT LOADING EFFECT. FOR THE 40-UNIT SYSTEM, PSO-RDL WAS ABLE TO FIND THE BEST SOLUTION

l

CEP | FEP |

MFEP | IFEP | MPSO | PSO-RDL |

[ Minimum cost || 123488.3 | 122679.7 | 122647.6 | 122624.35 | 1222523 | 121468.82 ]

OUTPUTS AND CORRESPONDING COSTS OF THE
BEST SOLUTION OBTAINED BY PSO-RDL

[ Unit || Prin | Praz | Output | Cost |
1 36 114 112.2886 | 949.880767
2 36 114 111.0704 | 929.604348
3 60 120 97.49443 | 1192.38418
4 80 190 179.7531 | 2143.97098
5 47 97 88.89745 | 724.712068
6 68 140 140 1596.46432
7 110 300 300 3216.42404
8 135 300 284.7229 | 2782.07788
9 135 300 284.777 2801.46883
10 130 300 130 2502.065
11 94 375 94.00612 | 1893.44177
12 94 375 94.03925 | 1909.04089
13 125 500 214.77 3792.32437
14 125 500 394.2823 | 6414.93466
15 125 500 304.5313 | 5171.47843
16 125 500 394.2847 | 6436.72027
17 220 500 489.2827 | 5296.78245
18 220 500 489.3102 | 5289.42926
19 242 550 511.2908 | 5541.17665

20 242 550 511.2941 | 5541.22862
21 254 550 523.2818 | 5071.33798
22 254 550 523.398 | 5073.69255
23 254 550 523.3437 | 5058.51899
24 254 550 523.3715 | 5059.07705
25 254 550 523.2815 | 5275.13221
26 254 550 523.28 5275.10232
27 10 150 10.00005 | 1140.52506
28 10 150 10.00442 | 1140.62574
29 10 150 10.01797 | 1140.93732
30 47 97 92.60281 | 785.447407
31 60 190 190 1643.99125
32 60 190 190 1643.99125
33 60 190 190 1643.99125
34 90 200 200 2101.01703
35 90 200 200 2043.72703
36 90 200 200 2043.72703
37 25 110 110 1220.16612
38 25 110 110 1220.16612
39 25 110 110 1220.16612
40 242 550 511.3228 | 5541.87129
[ Total Generation & Total Cost | 10500 | 121468.82 |

TABLE VIII
COMPARISON OF METHODS ON FREQUENCY OF CONVERGENCE IN THE RANGES OF COST
Range of Cost
127.0 | 126.5 | 126.0 | 125.5 | 125.0 | 124.5 | 124.0 | 123.5 | 123.0 | 122.5 | 122.0 | 121.5
Method - - - - - - - - - - - -
126.5 | 126.0 | 125.5 | 125.0 | 124.5 | 124.0 | 123.5 | 123.0 | 122.5 | 122.0 | 121.5 | 121.0
CEP 10 4 - 16 22 42 4 2 - - - -
FEP 6 - 4 2 10 20 26 24 6 - - -
MFEP - - - - - 14 26 50 10 - - -
IFEP - - 2 - 4 4 18 50 22 - - -
MPSO - - - - - - - 53 47 - -
PSO-RDL - - - - - - - 6 8 36 49 1
TABLE IX

From the experimental results, it can be observed that
PSO-RDL performs quite well on the two ED problems. In
particular, for the 40-unit system, we improve the known best
solution to 121 468.82. According to Table VIII, PSO-RDL can
be considered outperforming MPSO [48] on the 40-unit system.
Based on the results of this real-world application, we can
know that for constrained optimization problems, PSO-RDL
can perform well and deliver good solutions.

VI. SUMMARY AND CONCLUSION

In this paper, we have studied the PSO and the linkage
problem. After conducting a survey on the hybridization of
particle swarm optimizers and GAs, we introduced the linkage
concept, which is an important topic in GAs, to the particle
swarm optimizer. In order to address the linkage problem in
real-parameter optimization problems, we developed the dy-
namic linkage discovery technique. Furthermore, to make good
use of the obtained information, we designed a recombination
operator. By combining these mechanisms, we proposed a
new evolutionary algorithm, which is called PSO-RDL, and
conducted experiments on test functions. Finally, we applied
PSO-RDL on the ED problem, which is an essential problem
in power systems, and successfully obtained the currently best
known result for the 40-unit system.

The work on PSO-RDL gives us two observations. First,
in the literature, it is rarely discussed on the building blocks
in real-parameter optimization problems. This paper may shed
some light on the existence of building blocks in real-parameter
optimization problems. Second, if building blocks do exist, why
are these building blocks not detected by the linkage detection
techniques previously proposed in the literature? According
to the information obtained in this paper, perhaps in real-
parameter optimization problems, at least on some of them,
the configuration of building blocks dynamically changes along
with the search stage. Thus, those traditional static linkage de-
tection techniques may fail to accomplish the task of detecting
linkage.



CHEN et al.: PSO WITH RECOMBINATION AND DYNAMIC LINKAGE DISCOVERY

In this paper, we have introduced recombination with dy-
namic linkage discovery to PSO and considered integration as
a promising research direction. By combining the strengths of
different optimization models, we have created PSO-RDL with
intriguing features and properties. We will continue to work on
understanding and analyzing the properties and characteristics
of real-number optimization problems in order to design better
evolutionary algorithms.
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