FRERFAELR ELEFT P E S5

ekt PRAATIER 3 Ry f i L B -3
P EE I’*Mm-g 9 2 BB H(3/3)

ElE S - |

& % %L 0 NSC 99-2220-E-009-009-

#oFH R - 99#087% 01 px100E 077 31p
o HE D RERUAETIIRE R IALT

T EHEAF AL

;J-%%’/‘Qj»kﬁ : ;]’_Ifrg;:r*al_aq\,;rpémkﬁ :%#ﬁ,é
LTIy 4 -JEe A | e
LTIy 4 -JEp A R R E
i fr/g:rm 4-fiEps@ A F oL imap
A B4 -FiFetm AR ok AT
BAripmy 4 - f o Zean

iAoy 4 -Jlizes@ A g oo ﬁ‘fﬁ] -
Blryipmyd-JiEpmi g ARk

2R F R ATEREENAEEFEMAR 2 EEV AR LN

o= A R O 100# 107 31 p



L 4 3

AT » FEEE TR IERVERE - EmiBEI7mH - B
ARGERAETZE T ~ THEERE KNI DA S B S IER sy 2UFE
WS T - (LEERFRE T - ERAmA I RERE
FEE > HEWEH TSR R alE SR > & 2
HTamENE CRERNVIIEREEREANE) + MR
GHAR o (EFSAEERE (power density » power-per-area) il {H
b o tR4% 2006 45 ETY ITRSArFa G « FEEAYRTENE 2007 4F
BEAGSE R AR Ol R AR RIE - B 7 2017 S A A RN - (&
FEEREHNR TR » RESHEF KM > sAaSRER
(system-level ) 5 @ BHRSEEERELIEAEHET (dynamic voltage
and frequency scaling » DVFS) EAEfREEEJFEHE (dynamic
power management - DPM ) Fy Wi feiay £y )= e FH AV F il <
AR R BRI AR il R 2 B L E R FRAV A (- B 2E R
i E (block domain) & E0FE#h E (timedomain) i u] LA
A SEEEE TR AR E T LB R EIRIRE 25K - By
DATE critical HYBs#iz: RIS (E A = sE B ~ S EEFAR » 7% non-
critical FYRE{E /@I FREE R - (RAHIGAR © mBhREEE R &
Fetre R iERs sl - 5 ey TIESER a5 & R Y T/FRE
& TIEZ0: > SR FRAEETEETSIIFEIREE > & TE
/08 > R R RETERE S RIIFEAVIRES » E T E
BF o SR e AT BEAREE » DU SN RE S Bk (K R i 52—
ETAEE 2 INFE -
MAEAR » R AFAVEEEK » 220 Es (multicore
proccessor ) 7 H sz E & - &5 A EEME IR0 (core)
BS o BEAE AN KNIEMIITHFENE R T » 28— /KEIREE -
EZZ ORI ES Y ZRAE T » O] DURFENRE S R B AR AR e B E R
BEIREHAMGES - SEZOEFE HCERE (voltage
isand) KAHZRE, (frequency island) - (RIPE{E[E—HFREEE T
EHEZ ORERTE AN EER, SRR EE&R OIERFH
2 B DG FH ARV IERRER (power state) - BHRGEE
JREERRE T T/ EEAAE R ESNIIZREE - MENREE
FRELSE ARG H B B 23 I TPRAREE » 2R ECE BHER LY
TAFEERR AR -
RS EHENIHRM AT 2B E BRI IR T EED
HEREEN TAET BAEA - (HEEE L - TAENTT AR E
CEEEERITEAN > Rt > BIREE RS R Ay ss i K R
3
B TAETT BB e RE 11 R B R e A R — K EEL -
R T {FENRE R E R i B R ayE e S EIERE T 0 TEARRT
= B AR R=EEE L (reinforcement learning) ZRAHUEy
PEGIRZC o 3R AR (agent) BFREE



2T 1Y

(environment) B9 B ffir & - ARSI &R tm FERG Y 58
1 ngsEsR c BRI EHERYRE » (NS EEE AR
—EGMHE - (B —ERERRE NrA miVEERE | BB B AY5HE
M SOEIERE S » RN HEENREBERE ERHYRAE - [FIRF - Fff
R — B R 2% LR TR 25 Y D AR AR B (B LD AE L
o FEBhRRERE R ] 5 22 AR A KK -

FEAGTET - P T —EFREREHEN TE - EER
T

1 EZ IR es b B E T BhRE e BB R B B R
SH -

2. FE g s =UE AR sR M RO ERE I A @B R A B -
3. A% LR B as N DA IRAR A LG AR LI#E - SEENREEE R
BEHHEFEEER(K -

Power consumption has become a critical issue in modern VLSI
design. Dynamic voltage and frequency scaling (DVFS) and
dynamic power management (DPM) are two attractive solutions at
system level. Unlike prior works that adopt offline techniques or are
restricted to a single core processor, in this work, we combine
DVES with DPM together and propose an online DPM
methodology to multicore processors. Our method is based on
reinforcement learning and Markov decision process. With state
reduction, we avoid state explosion and simplify the learning
mechanism. Experimental results show that the number of statesis
greatly reduced, but the effectiveness of our DPM is still

maintained. We apply our DPM on a quad core processor ; our

DPM method can achieve 20% power reduction on average without
delay penalty.
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l. INTRODUCTION

As technology advances into nanometer era, power consumption is a crutial issue in VLSI
design. Several well-developed techniques are proposed to alleviate this issue. Among them,
dynamic voltage and frequency scaling (DVFS) and dynamic power management (DPM) are two

popular solutions at system level [1].
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Figure 1. (a) Multicore processor. (b) 4 cores with 4 different DVFS settings {V-F-1, V-F-2, V-F-3, V-F-4}. (c) 4
cores with 3 different DVFS settings.

DVFS is a process to dynamically modify the supply voltage and the operating frequency. We
boost the timing critical part of design with a higher voltage-frequency (V-F) setting to meet the
performance requirement while slow down the non-critical part with a lower V-F setting to reduce
the power consumption (referred to dynamic power in this work). Since power consumption is
directly proportional to the operating frequency and quadratically proportional to the supply voltage,
DVFS achieves a cubic reduction in power consumption.

On the other hand, DPM is a procedure to dynamically adjust the computational ability of a
device according to the workload applied on it. DPM slows down or turns off the device when no
work is (predicted to be) coming. In other words, the computational ability of a device is reduced as
it is idle. As a result, if DPM manages well, the power consumption of the idle period can be saved
while the performance is maintained.

In order to provide high performance with acceptable power consumption, a multicore processor
(a.k.a. chip multiprocessor, CMP) is developed, which integrates numbers of monotonic cores into
one chip. Figure 1(a) depicts a multicore processor with four identical cores. With DVFS, each core
on this multiprocessor can be assigned with a specific V-F setting according to its workload. Four
different V-F settings {V-F-1, V-F-2, V-F-3, V-F-4} are applied on each core in Figure 1(b), while
three V-F settings are applied in Figure 1(c). (V-F-2 is applied on two cores, while V-F-1 and V-F-3 is
applied on one core, respectively.) With different V-F settings, the processor shows different statuses

in computational ability and power consumption. Furthermore, if we consider each circumstance as a
4



state of processor, we can combine DVFS and DPM together. The states are constructed by DVFS,
and the transitions between states are guided by DPM.

In literature, most of prior works proposed DPM and DVFS for a single core or functional unit
[2-9]. Only few works [10-11] can handle multicore processors, but they need offline processing.
Chung et al. proposed a timeout policy that turns off the device when an idle period is long enough in
[2], while Hwang and Wu adopted exponential average to predict the length of idle periods in [3]. A
single policy, e.g., the timeout policy [2] or the exponential predictive policy [3], only performs well
under a certain workload. In [4], Qiu and Pedram regarded the environment as a stochastic model
and found the optimal policy iteratively. However, the stochastic policy like [4] loses its optimality
when workload becomes non-stationary. Dhiman and Rosing combined several policies and designed
an expert to choose the best policy for each period in [5], [6] and [7]. Nevertheless, the performance
of the expert-based policy [5-7] heavily relies on the effectiveness of the pre-defined experts.
Recently, some works modeled this problem as Markov decision process and used machine learning
to perform DPM because it can provide the adaption and the flexibility to different kinds of
workloads [8-10]. Tan et al. constructed a power manager for a hard disk drive by modified
Q-learning in [8], while Wang et al. built it by reinforcement learning in [10]. Jung and Pedram used
supervised learning as DPM for multicore processors [9]. However, supervised learning needs to
extract data and execute training offline, e.g., [9]. Moreover, [8], [9] and [10] adopted the state model
including a service requestor, a service queue and a service provider as well as the probability
distribution. In consequence, the number of states is considerable and the overhead in computation is
high. The possible state explosion problem results in runtime penalty and causes previous machine
learning based DPM hard to be embedded in high performance designs, such as multicore processors.
In addition, Kolpe et al. applied clustered DVFS on multicore processors but found the clusters

offline in [11].
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Figure 2. State reduction. Consider a duo core processer; each core has 3 possible V-F settings: {high (H), low (L),

sleep (0)}. (a) Without state reduction. Totally 9 states. (b) With state reduction. Totally 6 states. It can be seen that
two or more states can be merged into one, e.g., {L, H} and {H, L} has the same computational ability and power
consumption.
Unlike previous works, we propose an online DPM method to dynamically alter V-F settings of
a multicore processor by adopting reinforcement learning in this work. Our method is based on
Markov decision process while the number of states is greatly reduced. Our DPM does not include
service requestor, service queue and service provider in the state model and thus simplifies the
learning mechanism. In addition, our work guarantees the minimum transitions between states. This
feature allows us to reduce the number of states as well as power consumption. Figure 2 illustrates an
example of state reduction on a duo core processer, in which each has 3 V-F settings: {high (H), low
(L), sleep (0)}. The states in Figure 2(a) are constructed by the permutation of V-F settings. Thus,
there are 9 (=3*3) states: {{0, 0}, {0, L}, {0, H}, {L, 0}, {H, O}, {L, L}, {L, H}, {H, L}, {H, H}}.
As shown in Figure 2(b), with the proposed state reduction, each state is encoded by the number of
cores under each V-F setting. Therefore, as shown in Figure 2(b), we have only 6 states: {{0, 0}, {0,
L.}, {0, H}, {L, L}, {L, H}, {H, H}}. With the proposed state reduction, the number of states can be
greatly reduced from 9 (see Figure 2(a)) to 6 (see Figure 2(b)), and the transitions between states are
also minimized. Please note that, as the number of cores and available V-F settings increases, the
state model like Figure 2(a) will face the state explosion issue. Moreover, our state reduction method

can largely simplify our learning mechanism. Hence, our method is more suitable for multicore
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Il. PRELIMANARIES AND PROBLEM FORMULATION
We first briefly introduce reinforcement learning and Markov decision process and then give the

problem formulation.

A. Reinforcement Learning

Reinforcement learning (RL) is a machine learning technique that depends on interactions between
an agent and the environment (see Figure 3). The agent observes the state of the environment,
evaluates the rewards (costs) it can get if it takes some actions, and chooses the action with the
maximum benefit (minimum penalty) to perform. RL mimics the natural learning process of animals

and humans [12].

Unlike supervised learning, there are no correct answers in RL. In other words, instead of deciding
what is correct and what is incorrect, RL just chooses the side with more benefits. This property
makes RL suitable for the problems in which it is very hard to distinguish what is correct and what is
wrong, e.g., DPM problems. Moreover, supervised learning needs huge amount of training data and
can only be trained offline. The trained supervised learner will not make the best decision once the
characteristics of incoming tasks differ from those in training data. As a result, in this work, we use

RL to learn our DPM policy.



Figure 4. States, action, and transitions of Markov decision process. The summation of the state transition probability of a

given original state through an action will be one.

B. Markov Decision Process

A Markov decision process is a 5-tuple element (S, A, {Pss'}, v, R), where S is the set of states, A is
the set of actions, {Ps.s'} are the state transition probabilities, y is the discount factor, and R is the
reward. psas denotes state seS goes to state s'eS by taking action acA. Moreover, the summation of

the state transition probability of a given original state through an action will be one. For example, in

Figure 4, we have S = {so, S1, Sz, 3} and A = {ao}. The state transition probability p, .. gives the
possibility of so transfers to s; through a,, while p,,.,, P, represents that to s, and s,

respectively, and Ps,a05, T Psags2 T Psyages =1

The discount factor, ye[0, 1), is used to discount the future reward R: SxA — R, where R(s, a) is
the reward we can get after taking action a from state s. After n periods (time slots between two

consecutive learning), the expected reward can be write down as:
E[R(s",a") +R(s",a") +...+ y"R(s™,a")]. (1)

A policy 7 maps from states to actions (e.g., 7: S—>A). If action a = z(s) is performed in state s, we
may say that a policy 7 is executed. The value function of a policy V*(s) is the expected sum of

discount rewards of taking policy zin an initial state s:

V7 (s) =E[R(s”) +R(s") +...+ ¥"R(s") | s, =, 7]. ()



If we write down equation (2) as the Bellman equation:

V() = R(8) +7 2 Pszs)sV " (8, 3)

s'eS

V”(s) can be solved efficiently. We define that the optimal value function is the value function of a

policy 7 with the maximum reward as

V'(9)=R(s)+maxy ¥V (), @

s'eS

while the optimal policy as the action that can bring the maximum reward:

7' (s) =argmaxy 3 pggV ' (s). ()

s'eS

Hence, we can find the optimal policy by iterative choosing the action bringing the maximum

future expected reward and updating value function [13].

C. Problem Formulation

Given the number of cores, available V-F settings of a core, computational ability and power
consumption of each V-F setting, and the transition power between V-F settings of a multicore
processor, our target is to find a dynamic power management method which minimizes power

consumption and performance degradation under running all kinds of applications.

S

R R T

I. OUR DPM WITH STATE REDUCTION

We detail our DPM methodology as follows. First, our work guarantees the minimum transitions
between states and reduces the number of states as well as power consumption. Second, since we do
not model the status of queue and the amount of coming tasks, finding the optimal policy in our DPM

is deterministic, not stochastic. Hence, the relatively small runtime penalty makes the proposed DPM



more suitable for multicore processors. Experimental results in Section 1V.B show that the proposed
DPM performs better than the DPMs without state reduction.
A. State Reduction

Unlike previous works, we do not model the service requestor, the service queue and the service
provider into a state. On the contrary, we treat V-F settings of cores as our state to avoid state
explosion. Each state indicates the number of cores under each V-F setting. Different settings which
result in the same computational ability and power consumption are viewed as one state. To validate
our state reduction, the state transition power is desired to be minimized. In consequence, with state
reduction, our work adopts minimum state transition power between states.

Assume that we conduct our DPM on a quad core processor, and each has three possible V-F
settings: high (H), low (L) and sleep (0). Instead of 81 (=3") states, TABLE I lists the 15 states used
for this quad core processor, as well as the V-F settings, computational abilities and power

consumption. In our work, the state transition power between two states is obtained by the following

equations:
P (S,8") = P, tin + P, “toL + Py, ~Toms (6)
where
tyy =min(d,,dy), (7
to, =min(dy,d, —1,), ®)
to = min(dy —to ,dyy —ti4y)- )

The notation p, ~ means the power consumption for a core transferring from L to H, or from H

to L, while p, stands for the power consumption fromOto L or L to O, p,  represents that from 0

to H (H to 0). The number of cores transfer from L to H is denoted as t 4 and the numbers of cores

transferring from 0 to L and 0 to H are ty_ and ton. Notation do, di, dy represents the number difference

10



Figure 5. Example of states, actions, and transitions of the proposed model.

in 0, L, H between two states, respectively. Please note that equations (6)-(9) hold under the

condition p, < Py, < Py, -

Assuming that p, =250, p, =350and p, =5.00, the transition power between state 2 and

state 3 is calculated as follows. First, according to TABLE |, state 2 = {0, 0, 0, H} and state 3={0, O, L,
L}, we know that do= 1, d. = 2, and dy= 1. Then, by equations (7)-(9), ttu= 1, to. = 1, toy= 0 are
obtained. Finally, we get pu(s, s') = 6.0 according to equation (6). Moreover, status {0, 0, L, L} and
status {L, O, 0, L} map to the same state (state 3) in this perspective. Thus, the number of states is
further reduced. In other words, instead of permutation, the combination of V-F settings is enough to
represent the states of a multicore processor.
B. Proposed Model based on Makov Decision Process

The model used in our work is based on Markov decision process mentioned in Section 11.B. As
mentioned in Section I1I.A, we encode a state by the number of cores under each V-F setting. In
addition, since we cannot control the status of queue and the amount of coming tasks (both
dynamically change according to the application), we embed them in our cost function instead of
model them into states. Thus, the number of states can be reduced, and the control over states
becomes deterministic, not stochastic like previous works. In consequence, the computing complexity
of iteratively finding the optimal policy in our DPM is dramatically reduced. The Markov decision
process model used in our work is detailed as follows.

As mentioned above, we model each state by the number of cores under each V-F setting. The
status of queue and exactly how many tasks coming are embedded in our cost function. Two actions

11



Adjusting

Figure 6. Overflow of the proposed DPM.

manage the transitions between states: leave and stay. The action leave transports the original state to
all the other states, while the action stay remains the next state as the original one. Figure 5 illustrates
an example of our model, where the state s transfers to the state s' through the action a, (leave), while
s remains still when the action a; (stay) is taken. The state transition probability p.. gives the
possibility of s transfers to s' through a.

Our cost function from the state s to the state s' is defined as follows:
C(s,s") =G Va(s'") + Penalty (s,s"), (10)

where G is a factor used to decide how important the historical information of the next state s' is with
respect to the penalty can be received right afterwards (same function as discount factor mentioned in

Section 11.B). The penalty function, Penalty(s, s') is defined as

Penalty (s,s') = Power (s,s') + M - Delay(s"), (11)
Power(s,s') = py(S,s") + power(s'), (12)
Delay(s') =Q, +Q;, —comp(s"). (13)

Power(s, s") contains state transition power pw(s, s') and power consumption power(s') of the next
period (the time slot between two consecutive learning) when next state is s'. Delay(s') represents how
many tasks will remain in queue if the processor is in state s'with computational ability comp(s’)
when queue already has Q, tasks remained and the number of incoming tasks Qj, of next period is the

12



same as the last period. M is the weight between power and delay; it is initially user-specified and
adjusted during learning periods (mentioned in Section I11.C).

In each evaluation, we choose the policy that minimize the expected cost, i.e.,

7(s) =argmin 3" s C(5,)). (14)

€A g'eg

Moreover, we update the value function

V”(S) = Z ps;z(s)s'C(saS‘) (15)

s'eS
as soon as the evaluation is over.
C. DPM - Finding Policy by Iteratively Learning
Figure 6 illustrates the overflow of the proposed DPM, which is also the agent in RL. Our DPM

includes two major parts--learning and adjusting.

Learning: we choose RL as our learning methodology as mentioned in Section I1.A and conduct
it on the model proposed in Section I11.B. Every learning period, DPM takes the action with the
minimum expected cost, and transfers to the state with the minimum cost. DPM basically performs

learning every period.

13



Adjusting: three parameters are adjusted online: the state transition probability (ASTP), the G value
used in equation (6) (AG), and the M in equation (7) (AM). ASTP adjusting the transition

probabilities every T; periods by

_count_s'
count_a’

(16)

sas'

where count_a represents how many times action a is taken in s during T, while count_s' describes
how many times s' is visited when action a taken in s during T;. AG increases G gradually during
learning process. This is because that DPM knows very poor about the interactions with the
environment; the penalty function takes the most responsibility for learning. As increasing of
learning periods, DPM compiles more and more knowledge of the environment, thus we amplify G
and let the experience, i.e., V¥(s'), to guide DPM to choose the next state. In addition, AM balances
the importance between power and delay. AM reduces M by m; if no tasks remains in queue, while

increase it by m, vice versa. AM guides DPM chooses a state with lower power consumption as task

TABLE I. THE V-F SETTINGS, COMPUTATIONAL ABILITY AND POWER CONSUMPTION OF EACH STATE

State V-F settings comp() power( )
0 {0, 0, 0, 0} 0.00 4.00
1 {0, 0, 0, L} 0.60 5.20
2 {0, 0, 0, H} 1.00 8.55
3 {0, 0, L, L} 1.20 6.40
4 {0, 0, L, H} 1.60 9.75
5 {0, 0, H, H} 2.00 13.10
6 {0, L, L, L} 1.80 7.60
7 {0, L, L, H} 2.20 10.95
8 {0, L, H, H} 2.60 14.30
9 {0, H, H, H} 3.00 17.65
10 {L, L, L, L} 2.40 8.80
11 {L, L, L, H} 2.80 12.15
12 {L, L, H, H} 3.20 15.50
13 {L, H, H, H} 3.60 18.85
14 {H, H, H, H} 4.00 22.20

14



TABLE Il. THE NUMBER OF TASKS IN OUR TESTCASES FOR QUAD CORES

Testcase P-1 P-2 P-3 P-4
#tasks 30,970 28,428 37,476 33,700

Testcase P-5 P-6 P-7 P-8
#tasks 36,850 60,398 73,240 50,882

TABLE Ill. THE COMPARISON BETWEEN OURS, PER, AND QUE

DPM #States Power Delay
Ours 6 1.00 1.00
Per 9 1.17 1.01
Que 18 0.96 2.92

Remarks:
1. The results are normalized by power and delay of Ours.
2. States in Per are the full permutation of V-F settings of cores.

3. States in Que include the status of the queue.

coming rate is light, while prefers a state with more computational ability when task coming rate is

heavy. The range of M is from 0.5 to 50. AG and AM performs every T, and T5 periods, respectively.

1. EXPERIMENTAL RESULTS

A. Settings

We implement our DPM as a cycle-based simulator using C++. The performance of our DPM is
evaluated on 8 testcases generated randomly. TABLE Il gives the number of tasks in each testcase on
a quad core processor. These cases should be finished within 20,000 cycles. The task incoming rate
ranges from 1.42 tasks per cycle to 3.66 tasks per cycle. We did two sets of experiments to show the

effectiveness of our method.

B. Effectiveness of State Reduction DPM

In order to show the effectiveness of the state reduction, we conduct experiments on duo core
processor. We compare our model with two models, states constructed by full permutation of V-F

settings of cores (Per) and states included the status of the queue (Que). There are 6 states in our state

15



TABLE IV. POWER AND DELAY UNDER DIFFERENT INITIAL M OF OUR DPM

Initial Testcase P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8
Power 0.82 0.69 0.76 0.71 0.73 0.95 0.98 0.93
M =75
Delay 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Power 0.63 0.71 0.68 0.65 0.86 0.96 0.94 0.85
M =95
Delay 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Power 0.64 0.70 0.74 0.96 0.64 0.96 0.94 0.84
M=11.5 |
Delay 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Remarks:

1. Power ratio and delay overhead are normalized to the results obtained by running at state 14.
2.1 period = 10 cycles. T, = 184, T, = 220, T; = 50 periods.

3. Initially G = 0.1 and increased by 0.1 every 220 periods until G = 1.0.

4. m; =0.5; m, =0.5. M ranges from 0.5 to 50.

model, while 9 in Per and 18 in Que. We categorize the queue into three statuses: low occupancy,
medium occupancy, and high occupancy in Que. Besides the state models used, Per and Que have

basically the same actions and the same cost functions as ours.

TABLE 11l shows the comparisons between ours, Per and Que in power and delay under initial M
= 9.5. The results are averaged over 8 testcases, as well as normalized by power and delay of Ours,
respectively. Since the multicore processor in this experiment has only two cores, we apply half tasks
in each cycle for each testcase. It can be seen that our DPM outperforms Per in both power and delay.
As expected, Per wastes power on unnecessary transitions. Que has lower power consumption than
ours, but degrades performance dramatically. It is because that staying at a wrong state will affect
the evaluation of DPM on environment thus making non-optimal decisions. In conclusion, our state

reduction reduces complexity of learning while maintains good performance.

C. Performance Evaluation of Proposed DPM Methedology

In the second experiment, we apply our DPM on a quad core processor, €.g., QX9000 series of
Intel®. We assume that each core has 3 V-F settings including turn-off, i.e., 3.00GHz-1.36V (high
performance, H), 1.66GHz-1.13V (low performance, L), and 0GHZ-0.85V (sleep, 0). TABLE I lists
the processor states constructed by these four cores and three V-F settings, as well as the

computational ability and power consumption of each state. The computational ability comp() is
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normalized by the size of a task, while the power power() is normalized by the power of a core as it
sleeps. There are two actions, leave and stay, as mentioned in Section III.B. Since our DPM

guarantees the minimum transition power between states, the transition power py(s, S') can be

obtained by equations (6)-(9) in Section Ill.A. In our work, we set p, =250, p, =3.50and p, =

5.00. In addition, we set one learning period as 10 cycles and perform ASTP, AG, AM every 184 (T,),
220 (Ty), 50 (T3) periods, respectively. We initialize G = 0.1 and increase G by 0.1 every 220 periods
until G = 1.0. AM reduces M by 0.5 (my) if no tasks remains in queue, while increase it by 0.5 (m,)

every 50 periods. The range of M is from 0.5 to 50.

The results of power ratio (Power) and delay overhead (Delay) under different initial M values are
detailed in TABLE IV. The results in TABLE 1V are normalized to the power and delay obtained if
the multicore processor runs in the state with the highest computational ability, i.e., the state 14 with
V-F setting = {H, H, H, H}. Figure 7 illustrates the distribution of states under different initial M
values of each testcase. The x-axis shows each testcase, the y-axis shows the number that each state is
applied on multicore processor, and the bars with different colors represent the states. On average, our
DPM saves 18% power consumption under initial M = 7.5, while 22% under M = 9.5, and 20% under
M = 11.5. In general, a higher initial value of M causes DPM to prefer the state with more
computational ability resulting in higher power consumption. However, some testcases show different

results with this phenomenon.

17



20000

18000 = 0={0,0,0,0}
H1={0,0,0,l}
16000 = 2={0,0,0,H}
14000 =3={0,0,L,L}
= 4={0,0,L,H}
12000 M 5={0,0,H,H}
10000 H6={0,L,LL}
B 7={0,L,LH}
8000 8={0,L,H,H}
6000 — 9={0,H,H,H}
4000 - = 10={L,LLL}
11={L,L,LH}
2000 T m12={LLHH}
0 T I - al_ r L e 13={L,H,H,H}
14={H,H,H,H}
P-1 p-2 P-3 P-4 P-5 P-6 p-7 P-8
(a)
20000
18000 = 0={0,0,0,0}
H1={0,0,0,L}
16000 = 2={0,0,0,H}
14000 =3={0,0,L,L}
= 4={0,0,L,H}
12000 ® 5={0,0,H,H}
10000 H6={0,L,LL}
B 7={0,L,L,H}
8000 8={0,L,H,H}
6000 9={0,H,H,H}
4000 = 10={L,LLL}
11={L,L,LH}
2000 " I W 12={LLHH)
0 SV T 71 P T P ‘ LS I3={LHHH)
14={H,H,H,H}
P-1 p-2 P-3 P-4 P-5 P-6 p-7 P-8
(b)
20000
18000 = 0={0,0,0,0}
H1={0,0,0,L}
16000 ™ 2={0,0,0,H}
14000 m3={0,0,L,L}
= 4={0,0,LH}
12000 M 5={0,0,H,H}
10000 - Ee={O,LLL}
 E7={0,LLH}
8000 8={0,LHH)
6000 - W9={0,H,H,H}
4000 = 10={L,LLL}
11={L,L,LH}
2000 i —r F W 12={LLHH}
0 - 13={L,H,H,H}
14={H,H,H,H}

Pl P2

P-3

P-4 P-5 P-6 P-7 P-8

Figure 7. The state distribution of our DPM under (a) M = 7.5, (b) M = 9.5 and (c) M = 11.5. The x-axis shows each

testcase, the y-axis shows the number that each state is applied on multicore processor, and the bars with different

colors represent the states.
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In this work, an online DPM based on reinforcement learning and the Markov decision process
with state reduction is proposed. The proposed DPM is implemented on a quad core processor. Our
state reduction method can largely simplify our learning mechanism. Experimental results also show
that our DPM method can achieve 26% power reduction with acceptable delay. In other words, our

DPM with state reduction can effectively guide the DVFS of multicore processors.
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