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中文摘要： 近年來，耗電量已成為必需正視的課題。產品的趨勢方面，時

脈頻率不斷攀升、功能需求不停添加以及體積更加輕巧；製程

的演進趨勢方面，供應電壓持續下降，直接而有效的降低動態

耗電，但是從這部分所能得到的好處卻趨於緩和，甚至漸漸出

現了負面效應（漏電流的效應成指數型式成長）；兩相加乘的

結果，使得耗電密度（power density，power-per-area）與日俱

增。根據 2006 年更新的 ITRS 所預估：耗電的問題從 2007 年

開始變成不可不解的困擾，到了 2017 年會陷入更深的困境。低

耗電管理的技術的發展，時至今日已有一段時間，就系統層級

（system-level）而言，動態電壓與頻率調節（dynamic voltage 
and frequency scaling，DVFS）與動態電源管理（dynamic 
power management，DPM）為兩種最為廣泛應用的技術。 
動態電壓與頻率調節技術為多重供應電壓的延伸，不僅是空間

軸上（block domain）甚至是時間軸上（time domain）都可以

應用，每個區域因工作模式的不同可以有不同的時序要求。所

以在 critical 的時候／區域使用高電壓、高頻時脈；在 non-
critical 的時候／區域使用低電壓、低頻時脈；而動態電源管理

技術會根據時間軸上目前的工作多寡來調整晶片的工作能力。

當工作多時，晶片會處在高計算能力╱高功耗的狀態，當工作

量少時，晶片會處在低計算能力╱低功耗的狀態，而當無工作

時，晶片將會進入閒置狀態，以此種動態調整來降低處理完一

定工作量之功耗。 
而近來，因對系統的效能要求，多核心處理器（multicore 
proccessor）也日漸受到重視，藉由將數個相同的核心（core）
整合，能在不大幅增加功耗的情況下，達到一定水準的效能。

在多核心處理器的架構下，可以將動態電壓與頻率調節與動態

電源管理來做結合：每個核心擁有自己的電壓島（voltage 
island）及頻率島（frequency island），因此在同一時間點下，

每個核心能處在不同的電壓╱頻率；由每個核心的電壓╱頻

率，可以得到目前處理器的功率狀態（power state）。動態電

源管理將視當下的工作量來決定處理器的功率狀態，而動態電

壓與頻率調節會依目前處理器的功率狀態，來配置每個核心的

工作電壓及頻率。 
動態電源管理的研究雖已行之有年，但是大部份的解決方法都

只對特定的工作行為有效用，但實際上，工作的行為特徵並無

法在事前預知，因此，動態電源管理技術的彈性及其對不 
3 
同工作行為特徵的適應能力為管理技術是否有效的一大重點。

為了使動態電源管理技術達到良好的彈性及適應能力，在本計

畫中，我們採用增強式學習法（reinforcement learning）來做為

控制核心。增強式學習法藉由代理人（agent）與環境



（environment）的互動及衡量，由代理人做出最有益整體的選

擇，換句話說，即使面對相同的問題，代理人每次做的選擇不

一定會相同，但一定是當時環境下最有益的選擇；其優良的彈

性及適應能力，將大大增進動態電源管理的效能。同時，我們

也提出一套將多核心處理器的功率狀態減化並優化功耗的技

術，讓動態電源管理時間及空間的複雜度降低。 
在本計畫中，我們提出了一套動態電源管理的工具，其貢獻如

下： 
1. 在多核心處理器上，整合了動態電源管理與動態電壓與頻率

調節。 
2. 運用增強式學習法的彈性及適應能力來做動態電源管理。 
3. 將多核心處理器的功率狀態減化並優化功耗，讓動態電源管

理的複雜度降低。 
英文摘要： Power consumption has become a critical issue in modern VLSI 

design. Dynamic voltage and frequency scaling (DVFS) and 
dynamic power management (DPM) are two attractive solutions at 
system level. Unlike prior works that adopt offline techniques or are 
restricted to a single core processor, in this work, we combine 
DVFS with DPM together and propose an online DPM 
methodology to multicore processors. Our method is based on 
reinforcement learning and Markov decision process. With state 
reduction, we avoid state explosion and simplify the learning 
mechanism. Experimental results show that the number of states is 
greatly reduced, but the effectiveness of our DPM is still 
maintained. We apply our DPM on a quad core processor； our 
DPM method can achieve 20% power reduction on average without 
delay penalty. 
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一、中文摘要 

近年來，耗電量已成為必需正視的課題。產品的趨勢方面，時脈頻率不斷攀升、功能需求

不停添加以及體積更加輕巧；製程的演進趨勢方面，供應電壓持續下降，直接而有效的降低動

態耗電，但是從這部分所能得到的好處卻趨於緩和，甚至漸漸出現了負面效應（漏電流的效應

成指數型式成長）；兩相加乘的結果，使得耗電密度（power density，power-per-area）與日俱

增。根據 2006 年更新的 ITRS 所預估：耗電的問題從 2007 年開始變成不可不解的困擾，到了

2017 年會陷入更深的困境。低耗電管理的技術的發展，時至今日已有一段時間，就系統層級

（system-level）而言，動態電壓與頻率調節（dynamic voltage and frequency scaling，DVFS）

與動態電源管理（dynamic power management，DPM）為兩種最為廣泛應用的技術。 

動態電壓與頻率調節技術為多重供應電壓的延伸，不僅是空間軸上（block domain）甚至

是時間軸上（time domain）都可以應用，每個區域因工作模式的不同可以有不同的時序要求。

所以在 critical 的時候／區域使用高電壓、高頻時脈；在 non-critical 的時候／區域使用低電壓、

低頻時脈；而動態電源管理技術會根據時間軸上目前的工作多寡來調整晶片的工作能力。當工

作多時，晶片會處在高計算能力╱高功耗的狀態，當工作量少時，晶片會處在低計算能力╱低

功耗的狀態，而當無工作時，晶片將會進入閒置狀態，以此種動態調整來降低處理完一定工作

量之功耗。 

而近來，因對系統的效能要求，多核心處理器（multicore proccessor）也日漸受到重視，

藉由將數個相同的核心（core）整合，能在不大幅增加功耗的情況下，達到一定水準的效能。

在多核心處理器的架構下，可以將動態電壓與頻率調節與動態電源管理來做結合：每個核心擁

有自己的電壓島（voltage island）及頻率島（frequency island），因此在同一時間點下，每個核

心能處在不同的電壓╱頻率；由每個核心的電壓╱頻率，可以得到目前處理器的功率狀態

（power state）。動態電源管理將視當下的工作量來決定處理器的功率狀態，而動態電壓與頻率

調節會依目前處理器的功率狀態，來配置每個核心的工作電壓及頻率。 

動態電源管理的研究雖已行之有年，但是大部份的解決方法都只對特定的工作行為有效

用，但實際上，工作的行為特徵並無法在事前預知，因此，動態電源管理技術的彈性及其對不
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同工作行為特徵的適應能力為管理技術是否有效的一大重點。為了使動態電源管理技術達到良

好的彈性及適應能力，在本計畫中，我們採用增強式學習法（reinforcement learning）來做為

控制核心。增強式學習法藉由代理人（agent）與環境（environment）的互動及衡量，由代理

人做出最有益整體的選擇，換句話說，即使面對相同的問題，代理人每次做的選擇不一定會相

同，但一定是當時環境下最有益的選擇；其優良的彈性及適應能力，將大大增進動態電源管理

的效能。同時，我們也提出一套將多核心處理器的功率狀態減化並優化功耗的技術，讓動態電

源管理時間及空間的複雜度降低。 

在本計畫中，我們提出了一套動態電源管理的工具，其貢獻如下： 

1. 在多核心處理器上，整合了動態電源管理與動態電壓與頻率調節。 

2. 運用增強式學習法的彈性及適應能力來做動態電源管理。 

3. 將多核心處理器的功率狀態減化並優化功耗，讓動態電源管理的複雜度降低。 

 

關鍵詞：動態電源管理；動態電壓與頻率調節；多核心處理器；增強式學習 

 

二、計畫的緣由與目的 

I.  INTRODUCTION 

As technology advances into nanometer era, power consumption is a crutial issue in VLSI 

design. Several well-developed techniques are proposed to alleviate this issue. Among them, 

dynamic voltage and frequency scaling (DVFS) and dynamic power management (DPM) are two 

popular solutions at system level [1]. 
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DVFS is a process to dynamically modify the supply voltage and the operating frequency. We 

boost the timing critical part of design with a higher voltage-frequency (V-F) setting to meet the 

performance requirement while slow down the non-critical part with a lower V-F setting to reduce 

the power consumption (referred to dynamic power in this work). Since power consumption is 

directly proportional to the operating frequency and quadratically proportional to the supply voltage, 

DVFS achieves a cubic reduction in power consumption. 

On the other hand, DPM is a procedure to dynamically adjust the computational ability of a 

device according to the workload applied on it. DPM slows down or turns off the device when no 

work is (predicted to be) coming. In other words, the computational ability of a device is reduced as 

it is idle. As a result, if DPM manages well, the power consumption of the idle period can be saved 

while the performance is maintained.  

In order to provide high performance with acceptable power consumption, a multicore processor 

(a.k.a. chip multiprocessor, CMP) is developed, which integrates numbers of monotonic cores into 

one chip. Figure 1(a) depicts a multicore processor with four identical cores. With DVFS, each core 

on this multiprocessor can be assigned with a specific V-F setting according to its workload. Four 

different V-F settings {V-F-1, V-F-2, V-F-3, V-F-4} are applied on each core in Figure 1(b), while 

three V-F settings are applied in Figure 1(c). (V-F-2 is applied on two cores, while V-F-1 and V-F-3 is 

applied on one core, respectively.) With different V-F settings, the processor shows different statuses 

in computational ability and power consumption. Furthermore, if we consider each circumstance as a 

 

V-F-4

V-F-1

V-F-3

V-F-2

 

V-F-2

V-F-1

V-F-3

V-F-2

 

(a) (b) (c) 

Figure 1.  (a) Multicore processor. (b) 4 cores with 4 different DVFS settings {V-F-1, V-F-2, V-F-3, V-F-4}. (c) 4 

cores with 3 different DVFS settings. 
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state of processor, we can combine DVFS and DPM together. The states are constructed by DVFS, 

and the transitions between states are guided by DPM.  

In literature, most of prior works proposed DPM and DVFS for a single core or functional unit 

[2-9]. Only few works [10-11] can handle multicore processors, but they need offline processing. 

Chung et al. proposed a timeout policy that turns off the device when an idle period is long enough in 

[2], while Hwang and Wu adopted exponential average to predict the length of idle periods in [3]. A 

single policy, e.g., the timeout policy [2] or the exponential predictive policy [3], only performs well 

under a certain workload. In [4], Qiu and Pedram regarded the environment as a stochastic model 

and found the optimal policy iteratively. However, the stochastic policy like [4] loses its optimality 

when workload becomes non-stationary. Dhiman and Rosing combined several policies and designed 

an expert to choose the best policy for each period in [5], [6] and [7]. Nevertheless, the performance 

of the expert-based policy [5-7] heavily relies on the effectiveness of the pre-defined experts. 

Recently, some works modeled this problem as Markov decision process and used machine learning 

to perform DPM because it can provide the adaption and the flexibility to different kinds of 

workloads [8-10]. Tan et al. constructed a power manager for a hard disk drive by modified 

Q-learning in [8], while Wang et al. built it by reinforcement learning in [10]. Jung and Pedram used 

supervised learning as DPM for multicore processors [9]. However, supervised learning needs to 

extract data and execute training offline, e.g., [9]. Moreover, [8], [9] and [10] adopted the state model 

including a service requestor, a service queue and a service provider as well as the probability 

distribution. In consequence, the number of states is considerable and the overhead in computation is 

high. The possible state explosion problem results in runtime penalty and causes previous machine 

learning based DPM hard to be embedded in high performance designs, such as multicore processors. 

In addition, Kolpe et al. applied clustered DVFS on multicore processors but found the clusters 

offline in [11].  
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Unlike previous works, we propose an online DPM method to dynamically alter V-F settings of 

a multicore processor by adopting reinforcement learning in this work. Our method is based on 

Markov decision process while the number of states is greatly reduced. Our DPM does not include 

service requestor, service queue and service provider in the state model and thus simplifies the 

learning mechanism. In addition, our work guarantees the minimum transitions between states. This 

feature allows us to reduce the number of states as well as power consumption. Figure 2 illustrates an 

example of state reduction on a duo core processer, in which each has 3 V-F settings: {high (H), low 

(L), sleep (0)}. The states in Figure 2(a) are constructed by the permutation of V-F settings. Thus, 

there are 9 (=3*3) states: {{0, 0}, {0, L}, {0, H}, {L, 0}, {H, 0}, {L, L}, {L, H}, {H, L}, {H, H}}. 

As shown in Figure 2(b), with the proposed state reduction, each state is encoded by the number of 

cores under each V-F setting. Therefore, as shown in Figure 2(b), we have only 6 states: {{0, 0}, {0, 

L,}, {0, H}, {L, L}, {L, H}, {H, H}}. With the proposed state reduction, the number of states can be 

greatly reduced from 9 (see Figure 2(a)) to 6 (see Figure 2(b)), and the transitions between states are 

also minimized. Please note that, as the number of cores and available V-F settings increases, the 

state model like Figure 2(a) will face the state explosion issue. Moreover, our state reduction method 

can largely simplify our learning mechanism. Hence, our method is more suitable for multicore 

6

7

8

0

1

4

3

2

5

……

……… …
…

…

state 6: {L,H}; state 7: {H,L}  

0

1

4

3

2

5

……

………

state 4: {L,H}  

(a) (b) 

Figure 2. State reduction. Consider a duo core processer; each core has 3 possible V-F settings: {high (H), low (L), 

sleep (0)}. (a) Without state reduction. Totally 9 states. (b) With state reduction. Totally 6 states. It can be seen that 

two or more states can be merged into one, e.g., {L, H} and {H, L} has the same computational ability and power 

consumption. 
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processors.  

 

II. PRELIMANARIES AND PROBLEM FORMULATION 

We first briefly introduce reinforcement learning and Markov decision process and then give the 

problem formulation. 

A. Reinforcement Learning 

Reinforcement learning (RL) is a machine learning technique that depends on interactions between 

an agent and the environment (see Figure 3). The agent observes the state of the environment, 

evaluates the rewards (costs) it can get if it takes some actions, and chooses the action with the 

maximum benefit (minimum penalty) to perform. RL mimics the natural learning process of animals 

and humans [12].  

Unlike supervised learning, there are no correct answers in RL. In other words, instead of deciding 

what is correct and what is incorrect, RL just chooses the side with more benefits. This property 

makes RL suitable for the problems in which it is very hard to distinguish what is correct and what is 

wrong, e.g., DPM problems. Moreover, supervised learning needs huge amount of training data and 

can only be trained offline. The trained supervised learner will not make the best decision once the 

characteristics of incoming tasks differ from those in training data. As a result, in this work, we use 

RL to learn our DPM policy. 

Environ-

ment
Agent

State s

Reward r

Action a
 

Figure 3.  Reinforcement learning: interaction of agent and environment. 
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B. Markov Decision Process 

A Markov decision process is a 5-tuple element (S, A, {Psas’}, , R), where S is the set of states, A is 

the set of actions, {Psas’} are the state transition probabilities,  is the discount factor, and R is the 

reward. psas' denotes state sS goes to state s'S by taking action aA. Moreover, the summation of 

the state transition probability of a given original state through an action will be one. For example, in 

Figure 4, we have S = {s0, s1, s2, s3} and A = {a0}. The state transition probability 
100 sasp  gives the 

possibility of s0 transfers to s1 through a0, while 200 sasp , 300 sasp  represents that to s2 and s3, 

respectively, and 132 0000100
 sassassas ppp . 

The discount factor, [0, 1), is used to discount the future reward R: SA  , where R(s, a) is 

the reward we can get after taking action a from state s. After n periods (time slots between two 

consecutive learning), the expected reward can be write down as: 

)].,(...),(),([ 1100 nn ttntttt
asRasRasR   

A policy  maps from states to actions (e.g.,  : SA). If action a = (s) is performed in state s, we 

may say that a policy  is executed. The value function of a policy V

(s) is the expected sum of 

discount rewards of taking policy  in an initial state s:  

 ],|)(...)()([)( 0
10  sssRsRsRsV ntntt

 

s0 s2a0

s1

s3

 

Figure 4.  States, action, and transitions of Markov decision process. The summation of the state transition probability of a 

given original state through an action will be one. 
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If we write down equation (2) as the Bellman equation:  

 



Ss

sss s'VpsRsV
'

')( )()()( 


  

V

(s) can be solved efficiently. We define that the optimal value function is the value function of a 

policy  with the maximum reward as 

 



Ss

sas
Aa

sVpsRsV
'

*
'

* )'(max)()(  

while the optimal policy as the action that can bring the maximum reward: 

 



Ss

sas
Aa

sVps
'

*
'

* )'(maxarg)(  

Hence, we can find the optimal policy by iterative choosing the action bringing the maximum 

future expected reward and updating value function [13].  

C. Problem Formulation 

Given the number of cores, available V-F settings of a core, computational ability and power 

consumption of each V-F setting, and the transition power between V-F settings of a multicore 

processor, our target is to find a dynamic power management method which minimizes power 

consumption and performance degradation under running all kinds of applications. 

三、研究方法及成果 

I. OUR DPM WITH STATE REDUCTION 

We detail our DPM methodology as follows. First, our work guarantees the minimum transitions 

between states and reduces the number of states as well as power consumption. Second, since we do 

not model the status of queue and the amount of coming tasks, finding the optimal policy in our DPM 

is deterministic, not stochastic. Hence, the relatively small runtime penalty makes the proposed DPM 
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more suitable for multicore processors. Experimental results in Section IV.B show that the proposed 

DPM performs better than the DPMs without state reduction. 

A. State Reduction 

Unlike previous works, we do not model the service requestor, the service queue and the service 

provider into a state. On the contrary, we treat V-F settings of cores as our state to avoid state 

explosion. Each state indicates the number of cores under each V-F setting. Different settings which 

result in the same computational ability and power consumption are viewed as one state. To validate 

our state reduction, the state transition power is desired to be minimized. In consequence, with state 

reduction, our work adopts minimum state transition power between states.  

Assume that we conduct our DPM on a quad core processor, and each has three possible V-F 

settings: high (H), low (L) and sleep (0). Instead of 81 (=3
4
) states, TABLE I lists the 15 states used 

for this quad core processor, as well as the V-F settings, computational abilities and power 

consumption. In our work, the state transition power between two states is obtained by the following 

equations: 

,)',( HtxLtxLHtxtx tptptpssp
HLLH 00 00
 

where  

),,min( HLLH ddt  

),,min( LHLL tddt  00 

).,min( LHHLH tdtdt  000 

The notation 
LHtxp  means the power consumption for a core transferring from L to H, or from H 

to L, while 
Ltxp

0
stands for the power consumption from 0 to L or L to 0, 

Htxp
0

represents that from 0 

to H (H to 0). The number of cores transfer from L to H is denoted as tLH and the numbers of cores 

transferring from 0 to L and 0 to H are t0L and t0H. Notation d0, dL, dH represents the number difference 
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in 0, L, H between two states, respectively. Please note that equations (6)-(9) hold under the 

condition
HLLH txtxtx ppp

00
 .  

Assuming that 
LHtxp = 2.50, 

Ltxp
0

= 3.50 and 
Htxp

0
= 5.00, the transition power between state 2 and 

state 3 is calculated as follows. First, according to TABLE I, state 2 = {0, 0, 0, H} and state 3={0, 0, L, 

L}, we know that d0 = 1, dL = 2, and dH = 1. Then, by equations (7)-(9), tLH = 1, t0L = 1, t0H = 0 are 

obtained. Finally, we get ptx(s, s') = 6.0 according to equation (6). Moreover, status {0, 0, L, L} and 

status {L, 0, 0, L} map to the same state (state 3) in this perspective. Thus, the number of states is 

further reduced. In other words, instead of permutation, the combination of V-F settings is enough to 

represent the states of a multicore processor. 

B. Proposed Model based on Makov Decision Process 

The model used in our work is based on Markov decision process mentioned in Section II.B. As 

mentioned in Section III.A, we encode a state by the number of cores under each V-F setting. In 

addition, since we cannot control the status of queue and the amount of coming tasks (both 

dynamically change according to the application), we embed them in our cost function instead of 

model them into states. Thus, the number of states can be reduced, and the control over states 

becomes deterministic, not stochastic like previous works. In consequence, the computing complexity 

of iteratively finding the optimal policy in our DPM is dramatically reduced. The Markov decision 

process model used in our work is detailed as follows. 

As mentioned above, we model each state by the number of cores under each V-F setting. The 

status of queue and exactly how many tasks coming are embedded in our cost function. Two actions 

s s’a0

a1

 

Figure 5. Example of states, actions, and transitions of the proposed model. 
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manage the transitions between states: leave and stay. The action leave transports the original state to 

all the other states, while the action stay remains the next state as the original one. Figure 5 illustrates 

an example of our model, where the state s transfers to the state s' through the action a0 (leave), while 

s remains still when the action a1 (stay) is taken. The state transition probability 'sasp  gives the 

possibility of s transfers to s' through a. 

Our cost function from the state s to the state s' is defined as follows: 

 ),',()'()',( ssPenaltysVGssC a  

where G is a factor used to decide how important the historical information of the next state s' is with 

respect to the penalty can be received right afterwards (same function as discount factor mentioned in 

Section II.B). The penalty function, Penalty(s, s') is defined as 

 ),'()',()',( sDelayMssPowerssPenalty   

 ),'()',()',( spowersspssPower tx  

 ).'()'( scompQQsDelay inr  

Power(s, s') contains state transition power ptx(s, s') and power consumption power(s') of the next 

period (the time slot between two consecutive learning) when next state is s'. Delay(s') represents how 

many tasks will remain in queue if the processor is in state s'
 
with computational ability comp(s') 

when queue already has Qr tasks remained and the number of incoming tasks Qin of next period is the 

DPM

Learning

Adjusting

ASTP

AG

AM

 

Figure 6.  Overflow of the proposed DPM. 
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same as the last period. M is the weight between power and delay; it is initially user-specified and 

adjusted during learning periods (mentioned in Section III.C).  

In each evaluation, we choose the policy that minimize the expected cost, i.e., 

 



Ss

sas
Aa

ssCps
'

' )',(minarg)( 

Moreover, we update the value function 

 



Ss

sss ssCpsV
'

')( )',()( 
 

as soon as the evaluation is over.  

C. DPM – Finding Policy by Iteratively Learning 

Figure 6 illustrates the overflow of the proposed DPM, which is also the agent in RL. Our DPM 

includes two major parts--learning and adjusting. 

Learning:  we choose RL as our learning methodology as mentioned in Section II.A and conduct 

it on the model proposed in Section III.B. Every learning period, DPM takes the action with the 

minimum expected cost, and transfers to the state with the minimum cost. DPM basically performs 

learning every period.  
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Adjusting: three parameters are adjusted online: the state transition probability (ASTP), the G value 

used in equation (6) (AG), and the M in equation (7) (AM). ASTP adjusting the transition 

probabilities every T1 periods by 

 ,
_

'_
'

acount

scount
psas  

where count_a represents how many times action a is taken in s during T1, while count_s' describes 

how many times s' is visited when action a taken in s during T1. AG increases G gradually during 

learning process. This is because that DPM knows very poor about the interactions with the 

environment; the penalty function takes the most responsibility for learning. As increasing of 

learning periods, DPM compiles more and more knowledge of the environment, thus we amplify G 

and let the experience, i.e., V
a
(s'), to guide DPM to choose the next state. In addition, AM balances 

the importance between power and delay. AM reduces M by m1 if no tasks remains in queue, while 

increase it by m2 vice versa. AM guides DPM chooses a state with lower power consumption as task 

TABLE I. THE V-F SETTINGS, COMPUTATIONAL ABILITY AND POWER CONSUMPTION OF EACH STATE 

State V-F settings comp( ) power( ) 

0 {0, 0, 0, 0} 0.00 4.00 

1 {0, 0, 0, L} 0.60 5.20 

2 {0, 0, 0, H} 1.00 8.55 

3 {0, 0, L, L} 1.20 6.40 

4 {0, 0, L, H} 1.60 9.75 

5 {0, 0, H, H} 2.00 13.10 

6 {0, L, L, L} 1.80 7.60 

7 {0, L, L, H} 2.20 10.95 

8 {0, L, H, H} 2.60 14.30 

9 {0, H, H, H} 3.00 17.65 

10 {L, L, L, L} 2.40 8.80 

11 {L, L, L, H} 2.80 12.15 

12 {L, L, H, H} 3.20 15.50 

13 {L, H, H, H} 3.60 18.85 

14 {H, H, H, H} 4.00 22.20 
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coming rate is light, while prefers a state with more computational ability when task coming rate is 

heavy. The range of M is from 0.5 to 50. AG and AM performs every T2 and T3 periods, respectively. 

 

II. EXPERIMENTAL RESULTS 

A. Settings 

We implement our DPM as a cycle-based simulator using C++. The performance of our DPM is 

evaluated on 8 testcases generated randomly. TABLE II gives the number of tasks in each testcase on 

a quad core processor. These cases should be finished within 20,000 cycles. The task incoming rate 

ranges from 1.42 tasks per cycle to 3.66 tasks per cycle. We did two sets of experiments to show the 

effectiveness of our method. 

B. Effectiveness of State Reduction DPM 

In order to show the effectiveness of the state reduction, we conduct experiments on duo core 

processor. We compare our model with two models, states constructed by full permutation of V-F 

settings of cores (Per) and states included the status of the queue (Que). There are 6 states in our state 

TABLE II. THE NUMBER OF TASKS IN OUR TESTCASES FOR QUAD CORES 

Testcase P-1 P-2 P-3 P-4 

#tasks 30,970 28,428 37,476 33,700 

Testcase P-5 P-6 P-7 P-8 

#tasks 36,850 60,398 73,240 50,882 

TABLE III. THE COMPARISON BETWEEN OURS, PER, AND QUE 

DPM #States Power Delay 

Ours 6 1.00 1.00 

Per 9 1.17 1.01 

Que 18 0.96 2.92 

Remarks: 

1. The results are normalized by power and delay of Ours. 

2. States in Per are the full permutation of V-F settings of cores. 

3. States in Que include the status of the queue. 
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model, while 9 in Per and 18 in Que. We categorize the queue into three statuses: low occupancy, 

medium occupancy, and high occupancy in Que. Besides the state models used, Per and Que have 

basically the same actions and the same cost functions as ours. 

TABLE III shows the comparisons between ours, Per and Que in power and delay under initial M 

= 9.5. The results are averaged over 8 testcases, as well as normalized by power and delay of Ours, 

respectively. Since the multicore processor in this experiment has only two cores, we apply half tasks 

in each cycle for each testcase. It can be seen that our DPM outperforms Per in both power and delay. 

As expected, Per wastes power on unnecessary transitions. Que has lower power consumption than 

ours, but degrades performance dramatically.  It is because that staying at a wrong state will affect 

the evaluation of DPM on environment thus making non-optimal decisions. In conclusion, our state 

reduction reduces complexity of learning while maintains good performance. 

C. Performance Evaluation of Proposed DPM Methedology 

In the second experiment, we apply our DPM on a quad core processor, e.g., QX9000 series of 

Intel


. We assume that each core has 3 V-F settings including turn-off, i.e., 3.00GHz-1.36V (high 

performance, H), 1.66GHz-1.13V (low performance, L), and 0GHZ-0.85V (sleep, 0). TABLE I lists 

the processor states constructed by these four cores and three V-F settings, as well as the 

computational ability and power consumption of each state. The computational ability comp() is 

TABLE IV. POWER AND DELAY UNDER DIFFERENT INITIAL M OF OUR DPM 

Initial  Testcase P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 

M =7.5 

Power 0.82  0.69  0.76  0.71  0.73  0.95  0.98  0.93  

Delay 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

M =9.5 

Power 0.63  0.71  0.68  0.65  0.86  0.96  0.94  0.85  

Delay 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

M=11.5 

Power 0.64  0.70  0.74  0.96  0.64  0.96  0.94  0.84  

Delay 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

Remarks: 

1. Power ratio and delay overhead are normalized to the results obtained by running at state 14. 

2. 1 period = 10 cycles. T1 = 184, T2 = 220, T3 = 50 periods. 

3. Initially G = 0.1 and increased by 0.1 every 220 periods until G = 1.0. 

4. m1 = 0.5; m2 = 0.5. M ranges from 0.5 to 50. 



17 

 

normalized by the size of a task, while the power power() is normalized by the power of a core as it 

sleeps. There are two actions, leave and stay, as mentioned in Section III.B.  Since our DPM 

guarantees the minimum transition power between states, the transition power ptx(s, s') can be 

obtained by equations (6)-(9) in Section III.A. In our work, we set 
LHtxp = 2.50, 

Ltxp
0

= 3.50 and 
Htxp

0

= 

5.00. In addition, we set one learning period as 10 cycles and perform ASTP, AG, AM every 184 (T1), 

220 (T2), 50 (T3) periods, respectively. We initialize G = 0.1 and increase G by 0.1 every 220 periods 

until G = 1.0. AM reduces M by 0.5 (m1) if no tasks remains in queue, while increase it by 0.5 (m2) 

every 50 periods. The range of M is from 0.5 to 50. 

The results of power ratio (Power) and delay overhead (Delay) under different initial M values are 

detailed in TABLE IV. The results in TABLE IV are normalized to the power and delay obtained if 

the multicore processor runs in the state with the highest computational ability, i.e., the state 14 with 

V-F setting = {H, H, H, H}. Figure 7 illustrates the distribution of states under different initial M 

values of each testcase. The x-axis shows each testcase, the y-axis shows the number that each state is 

applied on multicore processor, and the bars with different colors represent the states. On average, our 

DPM saves 18% power consumption under initial M = 7.5, while 22% under M = 9.5, and 20% under 

M = 11.5. In general, a higher initial value of M causes DPM to prefer the state with more 

computational ability resulting in higher power consumption. However, some testcases show different 

results with this phenomenon.  
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Figure 7. The state distribution of our DPM under (a) M = 7.5, (b) M = 9.5 and (c) M = 11.5. The x-axis shows each 

testcase, the y-axis shows the number that each state is applied on multicore processor, and the bars with different 

colors represent the states. 
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四、結論與討論 

In this work, an online DPM based on reinforcement learning and the Markov decision process 

with state reduction is proposed. The proposed DPM is implemented on a quad core processor. Our 

state reduction method can largely simplify our learning mechanism. Experimental results also show 

that our DPM method can achieve 26% power reduction with acceptable delay. In other words, our 

DPM with state reduction can effectively guide the DVFS of multicore processors. 
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的互動及衡量，由代理人做出最有益整體的選擇，換句話說，即使面對相同的問題，代理

人每次做的選擇不一定會相同，但一定是當時環境下最有益的選擇；其優良的彈性及適應

能力，將大大增進動態電源管理的效能。同時，我們也提出一套將多核心處理器的功率狀

態減化並優化功耗的技術，讓動態電源管理時間及空間的複雜度降低。 

在本計畫中，我們提出了一套動態電源管理的工具，其貢獻如下： 

1. 在多核心處理器上，整合了動態電源管理與動態電壓與頻率調節。 

2. 運用增強式學習法的彈性及適應能力來做動態電源管理。 

3. 將多核心處理器的功率狀態減化並優化功耗，讓動態電源管理的複雜度降低。 

4. 此研究成果可廣泛應用於多核心系統。 

 

 


