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HfLaON n-MOSFETs Using a Low Work
Function HfSix Gate
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and Albert Chin, Senior Member

Abstract—At a 1.2-nm equivalent oxide thickness, HfSix/
Hf0.7La0.3ON n-MOSFETs showed an effective work function of
4.33 eV, a low threshold voltage of 0.18 V, and a peak electron
mobility of 215 cm2/(V · s). These self-aligned and gate-first
HfSix/Hf0.7La0.3ON n-MOSFETs were processed using stan-
dard ion implantation and 1000-◦C rapid thermal annealing, mak-
ing them fully compatible with current very large scale integration
fabrication lines.

Index Terms—HfLaON, HfSi, n-MOSFETs.

I. INTRODUCTION

M ETAL GATES and high-κ gate dielectrics are necessary
for complementary MOSFETs at the 45-nm nodes and

beyond [1]–[15] to reduce the dc power consumption from
the gate current and continue the very large scale integration
(VLSI) scaling. This poses a difficult technological challenge
in that the large threshold voltage Vt that results from Fermi-
level pinning is opposite to the trend needed for device scaling.
To avoid this, it requires appropriate choices of the metal-gate
work function and high-κ dielectric—to reduce the pinning to
achieve the required low Vt. Previously, we have shown that
Fermi-level pinning can be reduced, even after surface plasma
nitridation, by adding La2O3 to HfO2 to produce the gate
dielectric Hf0.5La0.5ON at 1.6-nm equivalent oxide thickness
(EOT). Thus, a relatively low Vt can be achieved with a con-
ventional TaN gate [15]. Here, we report the use of a low work
function fully silicided (FUSI) HfSix gate for Hf0.7La0.3ON
n-MOSFETs at a scaled EOT of 1.2 nm and reduced La
composition of 30%. This gate yields a more negative flatband
voltage Vfb than does a TaN gate. The resulting MOSFETs
show a Vt of 0.18 V, a low leakage current of 9.2 × 10−4 A/cm2

at 1 V above Vfb, and 1.2-nm EOT, with an electron mobility
of 215 cm2/(V · s). These devices can endure a rapid thermal
annealing (RTA) temperature of 1000 ◦C, which is common in
current poly-Si gate technology.
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II. EXPERIMENTAL PROCEDURE

We used the 4-in p-type Si wafers in these experiments.
After a standard RCA clean, the Hf0.7La0.3O was deposited
on Si wafers by physical vapor deposition (PVD). Then, the
Hf0.7La0.3O surface was exposed to a nitrogen plasma to
form the Hf0.7La0.3ON gate dielectric. Amorphous Si of 5-nm
thickness was deposited on Hf0.7La0.3ON followed by a PVD
of 20-nm-thick Hf. To prevent Hf oxidation, a 30-nm-thick
Mo was subsequently deposited above the Hf/Si/Hf0.7La0.3ON
to form n-MOS capacitors. For n-MOSFETs, an additional
150-nm-thick amorphous Si was deposited to avoid ion implan-
tation damage through the gate. The n+ source–drain regions
were formed by using a 35-keV phosphorus ion implantation
(at a 5 × 1015 cm−2 dose) followed by RTA activation at
1000 ◦C for 5 s. (Note that the FUSI HfSix gate was formed at
a high RTA temperature, similar to Ir3Si [14], which is different
from a conventional low-temperature salicide process.) For
comparison, TaN gates were also deposited on Hf0.7La0.3ON
to form the n-MOS capacitors. The fabricated devices were
characterized by C–V and I–V measurements using an
HP4284A precision inductance–capacitance–resistance meter
and HP4156 semiconductor parameter analyzer, respectively.

III. RESULTS AND DISCUSSION

In Fig. 1(a) and (b), we show the C–V and J–V character-
istics of HfSix/Hf0.7La0.3ON and control TaN/Hf0.7La0.3ON
capacitors, respectively. For comparison, the characteristics
of a capacitor with a TaN gate on Hf0.7La0.3ON are in-
cluded. The FUSI HfSix gate without poly-Si depletion—as
formed by Hf deposition on thin 5-nm amorphous Si at
1000-◦C RTA—produces devices with a high capacitance den-
sity close to those using a TaN gate. However, the Vfb of
the HfSix gate is more negative than for the TaN gate, which
is needed for low Vt operation. An EOT of 1.2 nm was
found using a quantum–mechanical C–V simulation. A low
φm-eff of 4.33 eV was obtained from a Vfb−EOT plot for
the HfSix/Hf0.7La0.3ON devices, making them suitable for
n-MOS applications. The leakage current of 9.2 × 10−4 A/cm2

(at 1 V beyond Vfb) is about five orders-of-magnitude lower
than that of SiO2 at a 1.2-nm EOT. This low leakage current
is due to the high-κ Hf0.7La0.3ON, highlighting the good ther-
mal stability of the HfSix/Hf0.7La0.3ON gate structure after a
1000-◦C RTA. The higher leakage current at low voltages using
TaN gate than that of HfSix may be due to the sputter-induced
damage to the Hf0.7La0.3ON gate dielectric. Thus, low φm-eff
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Fig. 1. (a) C–V and (b) J–V characteristics of the HfSix/Hf0.7La0.3ON
n-MOS capacitors, after a 1000-◦C RTA. The inserted figure is a Vfb−EOT
plot.

and low gate dielectric leakage current can be achieved in
HfSix/Hf0.7La0.3ON MOS capacitors.

Fig. 2(a) and (b) shows the Id–Vd and Id–Vg transis-
tor characteristics of the 1.2-nm EOT HfSix/Hf0.7La0.3ON
n-MOSFETs. A small Vt of only 0.18 V was measured from
the linear Id–Vg plot—this is due to the low φm-eff of 4.33 eV
found from the C–V measurements.

The electron mobility as a function of effective electric field
for the HfSix/Hf0.7La0.3ON n-MOSFETs is shown in Fig. 3,
where the data were derived from measured Id–Vg curves. High
peak electron mobility of 215 cm2/(V · s) is obtained at a
small EOT of 1.2 nm. In Table I, we summarize and compare
the important transistor characteristics for various metal-gate/
high-κ n-MOSFETs. The merits of the HfSix/Hf0.7La0.3ON
n-MOSFETs are the small EOT of 1.2 nm, a low Vt of 0.18 V,
a good peak mobility of 215 cm2/(V · s), and simple high-
temperature FUSI processing.

IV. CONCLUSION

We have found good performance in terms of Vt and mobility
for Hf0.7La0.3ON n-MOSFETs at 1.2-nm EOT using a low
work-function and high-temperature-stable HfSix gate. The
self-aligned and gate-first HfSix/HfLaON n-MOSFETs have
the advantages of simple high-temperature FUSI processing
and compatibility with current VLSI lines.

Fig. 2. (a) Id–Vd and (b) Id–Vg characteristics of the HfSix/Hf0.7La0.3ON
n-MOSFETs.

Fig. 3. Electron mobility versus effective electric field for the HfSix/
Hf0.7La0.3ON n-MOSFETs.

TABLE I
COMPARISON OF DEVICE PARAMETERS FOR METAL-GATE/HIGH-κ

N-MOSFETS
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