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Abstract

We study the generalized eigenvalue problems (GEPs) derived from modeling the surface
acoustic wave in piezoelectric materials with periodic inhomogenuity. The eigenvalues
appear in the reciprocal pairs due to periodic boundary conditions in the modeling. By
transforming the GEP into a T-palindromic quadratic eigenvalue problem (TPQEP), the
reciprocal relationship of the eigenvalues can be maintained. In this paper, we outline four
recently developed structure-preserving algorithms, SA, SDA, TSHIRA and GTSHIRA,
for solving the TPQEP. Numerical comparisons on the accuracy and the computational
costs of these algorithm are presented. The eigenvalues close to unit circle on the complex
plane are of interests in the area of filter and sensor designs. Our numerical results
show that the Arnoldi-type structure-preserving algorithms TSHIRA and GTSHIRA
with ”re-sympletic” and ”re-bi-isotropic”, respectively, are as accurate as the SA and
SDA algorithm, and more efficient in finding these eigenvalues.

1. Introduction

In this paper we consider the generalized eigenvalue problem (GEP) of the form[
M1 G
F⊤ 0

] [
ψi

ψℓ

]
+ λ

[
0 F
G⊤ M2

] [
ψi

ψℓ

]
= 0, (1)

where M⊤
1 = M1 ∈ Cn×n, M⊤

2 = M2 ∈ Cm×m, F and G ∈ Cn×m with m ≪ n, and
the supscript “⊤” denotes the complex transpose. If M1 and M2 are nonsingular, then
(1) can be reduced as the T-palindromic quadratic eigenvalue problem (TPQEP) of the
form

P(λ)x ≡ (λ2A⊤
1 + λA0 +A1)x = 0, (2)
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where

x = ψℓ, ψi = −M−1
1 (λF +G)ψℓ,

A1 = F⊤M−1
1 G, A0 = F⊤M−1

1 F +G⊤M−1
1 G−M2; (3)

or

x = ψi, ψℓ = −λ−1M−1
2 (F⊤ + λG⊤)ψi,

A1 = GM−1
2 F⊤, A0 = FM−1

2 F⊤ +GM−1
2 G⊤ −M1. (4)

By taking the transpose of P(λ) in (2) and multiplying it by 1/λ2 it is easily seen that
the eigenvalues of P(λ) appear in the reciprocal pairs (λ, 1/λ) (including 0 and ∞).
Since the nullity of A1 = GM−1

2 F⊤ in (4) is larger or equal to n − m, P(λ) in (2)
with A0 and A1 defined in (4) has n −m trivial zero and infinite eigenvalues which are
not interested. We are only interested in finding 2m(≪ 2n) nontrivial eigenpairs of P(λ).

The GEP (1) can be solved by traditional methods such as QZ and Arnoldi method.
But it does not guarantee that half of the computed eigenvalues lie inside of the unit circle
and the others are outside [9]. For solving TPQEP (2) with small and dense matrices A0

and A1, some pioneering works [7, 13, 14] have been done for preserving the reciprocity
of the eigenvalues basing on a good linearization of (2) which transforms (2) into the
form λZ⊤ +Z. Some structure-preserving methods [7, 18, 19] were proposed for solving
(λZ⊤ + Z)u = 0. A structure-preserving doubling algorithm for solving (2) was devel-
oped in [5] via the computation of a solvent of a nonlinear matrix equation associated
with (2). Another structure-preserving algorithm based on (S+S−1)-transform [12] and
Patel’s approach [17] was developed in [8]. For problems with large and sparse matrices
A0 and A1, a structure-preserving algorithm using (S + S−1)-transform and implicity-
restarted shift-and-invert Arnoldi method was also developed for searching eigenvalues
in a specified region of interests [8].

The GEP (1) typically arises in many application areas including rail vibrations of
fast train, surface acoustic wave (SAW) in filter design and crack modeling, etc [6]. In
these areas, an accurate and efficient eigensolver which preserves the reciprocal relation-
ship of the associated eigenpairs is needed. In this paper, we would like to compare
the accuracy and computational costs of the above mentioned algorithms for computing
reciprocal eigenpairs in a SAW device [22]. The SAW filter plays an important role in
telecommunication filters [4, 16] and sensor technologies [2] etc. These filters are built on
the physical property of piezoelectric materials, that electrical charges induce mechanical
deformations and vice versa. The main component (or cell) of a SAW filter composes
of a piezoelectric substrate and the input and output interdigital transducers (IDT). An
input electrical signal from the input IDT produces a surface acoustic wave, traveling
through periodically arranged electrodes and the output IDT picks up the output elec-
trical signal. Depending on the material properties of the piezoelectric substrate (PZT)
and the metallic electrode, and the gap length between the electrodes, frequencies in a
desired range can be stopped or filtered out. In the filter design, it is important to know
the stop band width and the center frequency fc of the filter where fc =

vs
λs

here vs and
λs are the wave velocity and wave length of the incident wave. The center frequency and
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stop band width can be determined by experiments or computation. In computational
approach, the dispersion diagram needs to be generated in which a GEP of the form (1)
associated with each frequency in the search range has to be solved [9].

This paper is organized as follows. We shall first introduce finite element modelling for
a simple SAW resonator in Section 2. For more finite element simulations of piezoelectric
devices in two dimension (2D) and three dimension (3D), one can refer to the works done
by Allik, Koshiba, Lerch, Buchner and Mohamed etc.,[1, 3, 10, 11]. In Section 3, we
introduce four structure-preserving algorithms developed in [5, 8] to solve the TPQEP (2)
and the GEP (1) resulted from our FEM model. Our numerical experiments in Section 4
compare the efficiency and accuracy of the structure-preserving algorithms for solving
the GEP (1). Finally, we conclude the paper in Section 5.

2. Surface wave propagation

To model the wave propagation in a SAW device, we assume that a large number of
electrodes are placed equally-spaced along a straight line on the PZT substrate. Accord-
ing to the Floquet-Bloch theory, one can reduce the problem to a single cell domain with
one electrode by assuming the wave ψ is quasi-periodic of the form

ψ(x1, x2) = ψp(x1, x2)e
(α+ıβ)x1 , ψp(x1 + p, x2) = ψp(x1, x2),

where x1 is the wave propagation direction, p is the length of the unit cell (i.e. the
periodic interval), α and β are the attenuation and phase shift along the wave propagation
direction, respectively.

Let Ω denote the piezoelectric substrate with a single IDT as shown in Figure 1, and
Γℓ and Γr denote the left and right boundary segments of Ω, respectively. For the general
anisotropic PZT substrates, under the assumption of linear piezoelectric coupling, the
elastic and electric fields interact following the general material constitution law below

T = cES − e⊤E,

D = eS + εSE,
(5)

where vectors T , S, D and E are the mechanical stress, strain, dielectric displacement and
the electric field, respectively, and the matrices cE , εS and e are the elasticity constant,
dielectric constant and piezoelectric constant matrices measured at constant electric and
constant strain fields at constant temperature. By applying the virtual work principle
to the equation (5), the equilibrium state satisfies the following equation:∫

Ω

(δS)⊤
[
cES + e⊤(∇ϕ)

]
dV +

∫
Ω

(∇δϕ)⊤
[
eS − εS(∇ϕ)

]
dV +

∫
Ω

(δu)⊤ρü dV

=

∫
Γl∪Γr

[
(δu)⊤(T · n⃗) + (δϕ)⊤(D · n⃗)

]
dA, (6)

where ρ is the mass density, u = [u1, u2, u3]
⊤ is the displacement vector, ϕ is the electric

potential that satisfies ∇ϕ = E, S = [∂u1

∂x ,
∂u2

∂y ,
∂u3

∂z ,
∂u2

∂z + ∂u3

∂y ,
∂u3

∂x + ∂u1

∂z ,
∂u1

∂y + ∂u2

∂x ]⊤,
and δu, δϕ, δS are virtual displacement, potential and strain vectors, respectively. Let
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Figure 1: A 2D single cell domain of a LSAW resonator and boundary conditions

the notation ψ = [u⊤, ϕ]⊤ and the subscript i, ℓ and r refer to nodal point index in the
interior, the left boundary and the right boundary of the domain Ω, respectively. Using
the periodic boundary conditions, proposed by Buchner [3],

Tr · nr = −γTℓ · nℓ, Dr · nr = −γDℓ · nℓ with γ = e−(α+ıβ),

the finite element discretization to (6) on the domain Ω [9] can be written in the following
matrix form

C(ω)ψ ≡ [K − ω2M + ıω(κ1K + κ2M)]ψ = 0, (7)

where κ1, κ2 > 0 are the viscous damping and mass damping respectively. By ordering
the nodal unknown ψ according the order of subscripts ℓ, i and r, the matrices K and
M , and the vector ψ can be partitioned as following:

K =

 Kℓℓ K⊤
iℓ 0

Kiℓ Kii Kir

0 K⊤
ir Krr

 , M =

 Mℓℓ M⊤
iℓ 0

Miℓ Mii Mir

0 M⊤
ir Mrr

 ,
where Kii,Mii ∈ Rn×n, Kℓℓ,Krr,Mℓℓ,Mrr ∈ Rm×m, Kiℓ,Kir,Miℓ,Mir ∈ Rn×m, and
ψ = [ψ⊤

ℓ , ψ
⊤
i , ψ

⊤
r ]

⊤ with ψi ∈ Cn, ψℓ, ψr ∈ Cm (m ≪ n). Obviously the matrix C(ω) in
(7) can also be partitioned into

C(ω) ≡ C ≡

 Cℓℓ C⊤
iℓ 0

Ciℓ Cii Cir

0 C⊤
ir Crr
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By setting ψr = λψℓ, the equation (7) leads to the generalized eigenvalue problem([
Cii Ciℓ

C⊤
ir 0

]
− λ

[
0 Cir

C⊤
iℓ Cbb

])[
ψi

ψℓ

]
= 0, (8)

where Cbb := Cℓℓ + Crr.

Since the viscosity is small for PZT substrates and metals in SAW devices, the at-
tenuation factor α of surface waves is close to zero. As a result, the propagation factor
λ are generally near the unit circle thereafter denoted by U. Furthermore, for frequency
ω in the stopping band, the frequency shift parameter β shall be close to π when the
periodic interval p (i.e. the domain width here) equals to half of the incident wave length
λs. Therefore, we are interesting in finding λ close to U, especially for those are near
−1 on the complex plane. Notice that eigenvalues of (2) appear in the reciprocal pairs
(λ, 1/λ). In the following sections, we aim to discuss the efficiency and accuracy of the
structure-preserving algorithms [5, 8] for solving the eigen-curves λ(ω) and the associated
eigenvectors of (8).

3. Structure-preserving Algorithms

In this section, we shall introduce four structure-preserving algorithms developed in
[5, 8] to solve the TPQEP (2) and discuss the computation costs of these algorithms in
solving the GEP (1). In the following, we suppose m reciprocal pairs of eigenvalues near
U are desired.

3.1. structure-preserving doubling algorithm

For solving the TPQEP (2) with A0, A1 ∈ Cm×m defined in (3), a structure-preserving
doubling algorithm (SDA) was developed in [5] via the computation of a solvent of a
nonlinear matrix equation associated with (2). That is P(λ) can be factorized as

P(λ) = (λA⊤
1 −X)X−1(λX −A1) (9)

for some nonsingular X with X⊤ = X if and only if X satisfies the following nonlinear
matrix equation (NME):

A⊤
1 X

−1A1 +X +A0 = 0.

Combining SDA in [5], the GEP (1) can be solved by Algorithm 1. The advantages of
Algorithm 1 are as following: (i) the computed eigenvalues are guaranteed to appear in
reciprocal pair since the eigenvalues of the matrix pencils λA⊤

1 −X and λX −A1, which
are reciprocal pairs, are the eigenvalues of P(λ) in (9) and (ii) the convergence rate of
the SDA is proved to be quadratic [5] if there are no eigenvalues of P(λ) located on unit
circle.

Next, let’s discuss the computational costs of Algorithm 1. To mimic the computation
cost in the LU factorization of the matrixM1 obtained from finite element discretization,
we reorder the nodal indices so that the matrix M1 has narrower band structure. Let
M1 = LU be the LU factorization of M1. Then, computing A0 and A1 in Step 3.1 of

5
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Algorithm 1 GE SDA

Input: matrices F , G,M2 andM1, tolerance η and the number m of desired eigenvalues.

Output: eigenpairs {(γj , [(ψ(1)
i,j )

⊤, (ψ
(1)
ℓ,j )

⊤]⊤), (γ−1
j , [(ψ

(2)
i,j )

⊤, (ψ
(2)
ℓ,j )

⊤]⊤)}mj=1 of (1).

1: Compute A0 = F⊤M−1
1 F +G⊤M−1

1 G−M2 and A1 = F⊤M−1
1 G.

2: Set k = 0, Yk = A1, Xk = −A0 and Zk = 0.
3: repeat
4: Compute Yk+1 = Yk(Xk − Zk)

−1Yk, Xk+1 = Xk − Y ⊤
k (Xk − Zk)

−1Yk, and
Zk+1 = Zk + Yk(Xk − Zk)

−1Y ⊤
k ;

5: Set k = k + 1;
6: until ∥Xk −Xk−1∥ ≤ η∥Xk∥
7: Compute the left and right eigenpairs {(λj , ψ(1)

ℓ,j ), (λj , ψ
(r)
ℓ,j )}mj=1 of Xkψℓ = λA⊤

1 ψℓ;
8: Choose the eigenpairs which associated eigenvalues are near the unit circle, said

{(λj , ψ(1)
ℓ,j ), (λj , ψ

(r)
ℓ,j )}mj=1;

9: Solve (λjXk −A1)ψ
(2)
ℓ,j = Xkψ

(r)
ℓ,j and set γj = λ−1

j for j = 1, . . . ,m;
10: Compute

ψ
(1)
i,j = −M−1

1

(
γjFψ

(1)
ℓ,j +Gψ

(1)
ℓ,j

)
, ψ

(2)
i,j = −M−1

1

(
γ−1
j Fψ

(2)
ℓ,j +Gψ

(2)
ℓ,j

)
for j = 1, . . . ,m.

Algorithm 1 requires solving F̃ ≡ U−1L−1F and G̃ ≡ U−1L−1G, and matrix multipli-
cations of F⊤F̃ , G⊤G̃ and F⊤G̃. In Steps 3.1-3.1, one LU factorization (2m3/3 flops),
two forward and back substitutions (4m3 flops) and three matrices multiplications (6m3

flops) are required for each iterate k. Next, computing the left and right eigenpairs in

Step 3.1 and solving ψ
(2)
ℓ,j in Step 3.1 take 100m3 flops and 2mm3/3 flops, respectively.

Finally, it also requires 2m forward and back substitutions to compute {ψ(1)
i,j , ψ

(2)
i,j }mj=1 in

Step 3.1. The total cost of Algorithm is summarized in Table 1.

3.2. structure-preserving algorithm

Another structure-preserving algorithm (SA) developed in [8] is based on the (S +
S−1)-transform [12] and Patel’s approach [17] for solving the TPQEP (2) with A0, A1 ∈
Cm×m defined in (3). The idea is, first, to linearize the TPQEP as the following special
GEP:

(M− λL)
[
x
y

]
= 0, (10)

where λy = A1x, and

M =

[
A1 0
−A0 −I

]
, L =

[
0 I
A⊤

1 0

]
. (11)

Obviously, the matrix pencil M−λL is ⊤-symplectic, i.e., it satisfies MJM⊤ = LJL⊤

where J =

[
0 Im

−Im 0

]
. As a result, the eigenvalues of (M,L) appear in the reciprocal

6
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pairs (λ, 1/λ). Secondly, the (S + S−1)-transform is applied on M− λL and the pencil
is now transformed into a ⊤-skew-Hamiltonian pencil K − µN , i.e., (KJ )⊤ = −KJ ,
(NJ )⊤ = −NJ :

K − µN ≡
[
(LJM⊤ +MJL⊤)− µLJL⊤]J⊤

=

[
A0 A⊤

1 −A1

A1 −A⊤
1 A0

]
− µ

[
−A1 0
0 −A⊤

1

]
. (12)

The two eigenvalues λ and µ are then related by the relationship µ = λ + 1/λ. The
relationship between eigenpairs of the TPQEP in (2) and the ⊤-skew-Hamiltonian pair
(K,N ) in (12) is stated in the following theorem.

Theorem 3.1. [8] Let (K,N ) be defined in (12). If zs = [z⊤1 , z
⊤
2 ]⊤ with z1, z2 ∈ Cm is

an eigenvector of (K,N ) corresponding to eigenvalue µ and ν satisfies ν + 1
ν = µ, then

1
ν z1−z2 and νz1−z2 are eigenvectors of the TPQEP in (2) corresponding to eigenvalues
ν and 1

ν , respectively.

Finally, based on Patel’s approach [17], the matrix pair (K,N ) can further be reduced
to a block triangular structure as following

K := Q⊤KZ =

[
K11 K12

0 K⊤
11

]
, N := Q⊤NZ =

[
N11 N12

0 N⊤
11

]
, (13)

where K11 ∈ Cm×m is upper Hessenberg, N11 ∈ Cm×m is upper triangular, and Q,Z are
unitary satisfying

Q = J⊤ZJ .

We then apply the QZ algorithm to (K11, N11) for computing them eigenpairs {(µk, yk)}mk=1.

Consequently, {(µk, Z

[
yk
0

]
)}mk=1 are the m eigenpairs of (K,N ). Combining the above

procedures and the structure-preserving algorithm in [8], the GEP (1) can be solved by
Algorithm 2.

The computational costs in Steps 3.2 and 3.2 of Algorithm 2 are the same that in
Steps 3.1 and 3.1 of Algorithm 1. The SA processes in Steps 3.2-3.2 of Algorithm 2
require approximately 50m3 flops [8] to compute the eigenpairs of the TPQEP (2) with
small size matrices A0 and A1 in (3). The comparison of the computation costs for
GE SDA and GE SA is listed in Table 1.

3.3. ⊤-skew-Hamiltonian implicit-restarted Arnoldi algorithm

In the above mentioned GE SDA and GE SA algorithms, the GEP (1) is transformed
into the TPQEP (2) through equations in (3) where M−1

1 F and M−1
1 G are solved by

LU factorization on the matrix M1. The computation costs in this step increase in the
amount of 2m times n2. Since the GE SDA and GE SA algorithms are then working on
the TPQEP where the size of matrices is m×m, m≪ n, the computation cost in solving

7
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Algorithm 2 GE SA

Input: matrices F , G, M2 and M1, and the number m of desired eigenvalues.

Output: eigenpairs {(γj , [(ψ(1)
i,j )

⊤, (ψ
(1)
ℓ,j )

⊤]⊤), (γ−1
j , [(ψ

(2)
i,j )

⊤, (ψ
(2)
ℓ,j )

⊤]⊤)}mj=1 of (1).

1: Compute A0 = F⊤M−1
1 F +G⊤M−1

1 G−M2 and A1 = F⊤M−1
1 G.

2: Form the pair (K,N ) as in (12);
3: Reduce (K,N ) to block upper triangular forms in (13) using unitary transformations;
4: Compute eigenpairs {(µk, yk)}mk=1 of (K11, N11) defined in (13) by using the QZ

algorithm;
5: Compute eigenvalues νk and ν−1

k of P(λ) by solving ν2 − µkν + 1 = 0;
6: Choose the eigenvalues which are near the unit circle, said {νkj , ν

−1
kj

}mj=1;

7: Compute zj = Z

[
ykj

0

]
≡

[
zj1
zj2

]
, j = 1, 2, . . . ,m;

8: Compute eigenvectors ψ
(1)
ℓ,j ≡ γ−1

j zj1 − zj2 and ψ
(2)
ℓ,j ≡ γjzj1 − zj2 corresponding to

eigenvalues γj ≡ νkj and ν−1
kj

, respectively, for j = 1, 2, . . . ,m;
9: Compute

ψ
(1)
i,j = −M−1

1

(
γjFψ

(1)
ℓ,j +Gψ

(1)
ℓ,j

)
, ψ

(2)
i,j = −M−1

1

(
γ−1
j Fψ

(2)
ℓ,j +Gψ

(2)
ℓ,j

)
for j = 1, . . . ,m.

GE SDA GE SA
Compute M1 = LU 1 1

Compute A0, A1

Solve Lx = b1 2m 2m
Solve Ux = b2 2m 2m
Compute F⊤d1 2m 2m
Compute G⊤d2 m m

Compute ψ
(1)
i , ψ

(2)
i

Solve Lx = b1 2m 2m
Solve Ux = b2 2m 2m
Compute Fe1 2m 2m
Compute Ge2 2m 2m

Solve dense TPQEP (100 + 32
3 k +

2
3m)m3 flops 50m3 flops

Table 1: The computational costs of GE SDA and GE SA where k denotes the total iterations to obtain
convergent Xk in Lines 3.1-3.1 of GE SDA.

the TPQEP is relatively small.

In the following, we introduce two Arnoldi-type algorithms in which the GEP (1) is
transformed into the TPQEP (2) through equations in (4). Since the matrix size m of
M2 is much smaller, the cost in solving M−1

2 F⊤ and M−1
2 G⊤ by LU factorization of

M2 can now be ignored. Following the same idea in Section 3.2, the TPQEP (2) with
A0, A1 ∈ Cn×n is also transformed into the ⊤-skew-Hamiltonian pencil K− µN through

8



the equations (10) and (12) with J =

[
0 In

−In 0

]
. Instead of taking Patel’s approach,

we seek the eigenvalues of the matrix pair (K,N ) by some implicit-restart Arnoldi algo-
rithms. Although the Arnoldi algorithm is working on the matrices with size 2n × 2n
now, saving on computation costs is expected when fast convergence of the Arnoldi iter-
ations can be achieved. In the following, we sketch the key steps and theorems that are
employed in developing Arnoldi algorithm.

Let τ be a shift value and τ /∈ σ(M,L) where σ(A,B) denotes the set of all eigenvalues
of any matrix pair (A,B). Then, we have µ0 ≡ τ+τ−1 /∈ σ(K,N ). Define the shift-invert

transformation K̂ − µ̂N̂ for K − µN with µ̂ = 1
µ−µ0

and

K̂ ≡ −τN = τ

[
A⊤

1 0
0 A1

]
, (14a)

N̂ ≡ −τ(K − µ0N ) = (M− τL)J
(
M⊤ − τL⊤)J⊤, (14b)

where K̂ and N̂ are ⊤-skew-Hamiltonian. Furthermore, from the definition of N̂ in (14b),

N̂ can be factorized as N̂ = N1N2, where

N1 = M− τL, N2 = J (M⊤ − τL⊤)J⊤ (15)

are nonsingular and satisfy N⊤
2 J = JN1. The GEP K̂z = µ̂N̂ z is then equivalent to the

eigenvalue problem Bz̃ = µ̂z̃, where

B ≡ N−1
1 K̂N−1

2 (16)

is ⊤-skew-Hamiltonian, i.e., JB⊤ = BJ , and z̃ = N2ẑ. Now, according to the following
two main theorems proved in [8, 15], the ⊤-skew-Hamiltonian implicity-restarted Arnoldi
(TSHIRA) algorithm as shown in Algorithm 4 can be employed to solve this eigenvalue
problem.

Let’s define the Krylov matrix with respect to u1 by

Kj ≡ Kj [B, u1] = [u1, Bu1, . . . , Bj−1u1], 1 ≤ j ≤ n.

The two main theorems in [8, 15] are as follows:

Theorem 3.2. [15] Let B ∈ C2n×2n be ⊤-skew-Hamiltonian and Kj be a Krylov ma-
trix with rank(Kj) = j. Then span(Kj) is ⊤-isotropic and if Kj = UjRj is a QR-
factorization, then

BUj = UjHj + ũj+1e
⊤
j ,

where Hj ∈ Cj×j is unreduced upper Hessenberg, Uj ∈ C2n×j is orthonormal and ⊤-
isotropic, and ũj+1 ∈ C2n is a suitable vector such that

UH
j ũj+1 = 0 and U⊤

j J ũj+1 = 0.

9



Theorem 3.3. [8, 15] Let B ∈ C2n×2n be ⊤-skew-Hamiltonian. If rank(Kn) = n, then
there is a unitary ⊤-symplectic matrix U with Ue1 = u1 such that

UHBU =

[
Hn Sn

0 H⊤
n

]
,

where Hn ≡ [hij ] is unreduced upper Hessenberg and Sn is ⊤-skew-symmetric.

Based on Theorem 3.2, the jth step of TSHIRA is given by

hj+1,juj+1 = Buj −
j∑

i=1

hijui, (17)

where hij = uHi Buj , i = 1, . . . , j and hj+1,j > 0 is chosen so that ∥uj+1∥2 = 1. In
order to guarantee the ⊤-isotropic property of the space span{u1, . . . , uj+1} is preserved
within machine precision, reorthogonalizing uj+1 against JUj is necessary. As a result,
the equation (17) is modified into

hj+1,juj+1 = Buj −
j∑

i=1

hijui −
j∑

i=1

tijJ ūi,

where tij = −u⊤i JBuj , i = 1, . . . , j. The above procedure is stated in Algorithm 3.

Finally, we present TSHIRA with Krylov-Schur restart to solve the eigenvalue prob-
lem Bz̃ = µ̂z̃ in Algorithm 4. Once the eigenpair (µ̂, z̃) is obtained, one can recover the
eigenpair (µ, z) of (K,N ) from the relationship û = 1

µ−µ0
and the solution of the linear

system N2z = z̃. The reciprocal eigenpair (λ, 1
λ ) and the associated eigenvectors of the

TPQEP (2) are then followed from Theorem 3.1.

Algorithm 3 The jth ⊤-isotropic Arnoldi step

Input: ⊤-skew-Hamiltonian B and Uj = [u1, · · · , uj ] with UH
j Uj = Ij and U⊤

j JUj = 0.
Output: [h1,j , · · · , hj+1,j ] and uj+1.
1: Compute uj+1 = Buj ;
2: for i = 1, . . . , j do
3: hij = uHi uj+1, uj+1 = uj+1 − hijui
4: end for
5: for i = 1, . . . , j do
6: tij = u⊤i J⊤uj+1, uj+1 = uj+1 − tijJ ūi
7: end for
8: Set hj+1,j := ∥uj+1∥2 and uj+1 := uj+1/hj+1,j .

3.4. Generalized ⊤-skew-Hamiltonian implicity-restarted Arnoldi algorithm

Recall that an additional linear system N2z = z̃ has to be solved for recovering the
eigenpair (µ, z) of (K,N ) when TSHIRA is employed to solve the GEP K̂z = µ̂N̂ z in (14).

10



Algorithm 4 [8] TSHIRA for solving Bz̃ = µ̂z̃

Input: ⊤-skew-Hamiltonian matrix B with starting vector u1.
Output: eigenpairs (µ̂i, z̃i), i = 1, . . . ,m of B.
1: Use Algorithm 3 with starting vector u1 to generate the mth step of ⊤-isotropic

Arnoldi decomposition:

BUm = UmHm + hm+1,mum+1e
⊤
m;

2: repeat
3: Use Algorithm 3 to extend the mth step of ⊤-isotropic Arnoldi decomposition to

the (m+ p)th step of ⊤-isotropic Arnoldi factorization:

BUm+p = Um+pHm+p + hm+p+1,m+pum+p+1e
⊤
m+p.

4: Use Krylov-Schur restarting scheme [20, 21] to reform a new ⊤-isotropic Arnoldi
decomposition with order m.

5: until wanted m eigenpairs of B are convergent

This may result in losing some accuracy of the eigevector z. In order to eliminate this ex-
tra computational cost and to prevent the inaccuracy, a generalized ⊤-skew-Hamiltonian
implicity-restarted Arnoldi (GTSHIRA) algorithm is proposed in [8]. The idea is to solve

the GEP K̂z = µ̂N̂ z in (14) directly through bi-reorthogonalization and bi-⊤-isotropic
processes. The GTSHIRA algorithm is based on following two theorems.

Theorem 3.4. [8] Let B ≡ N−1
1 K̂N−1

2 with N̂ = N1N2 be ⊤-skew-Hamiltonian. Let
Kj ≡ Kj [B, u1] be the Krylov matrix with rank(Kj) = j. If

N−1
2 Kj = ZjR2,j and N1Kj = YjR1,j

are QR-factorizations, where Zj , Yj ∈ C2n×j are orthonormal and R2,j , R1,j are nonsin-
gular upper triangular, then we have

K̂Zj = YjĤj + ŷj+1e
⊤
j (18)

and

N̂Zj = YjR̂j , (19)

where Ĥj ∈ Cj×j is unreduced upper Hessenberg, R̂j ∈ Cj×j is nonsingular upper trian-
gular, and Yj and Zj are ⊤-bi-isotropic such that

Y H
j ŷj+1 = 0 and Z⊤

j J ŷj+1 = 0,

for a suitable ŷj+1 ∈ C2n.

Theorem 3.5. [8] Let B = N−1
1 K̂N−1

2 with N̂ = N1N2 be ⊤-skew-Hamiltonian and
Kn ≡ Kn[B, u1] be the Krylov matrix with rank(Kn) = n. Then there are unitary

11



matrices U and V satisfying V = J⊤UJ , Ue1 = u1 and Ve1 = N1u1/∥N1u1∥2 such
that

V⊤K̂U =

[
Ĥn Ŝn

0 Ĥ⊤
n

]
, V⊤N̂U =

[
R̂n T̂n
0 R̂⊤

n

]
,

where Ĥn is unreduced upper Hessenberg, R̂n is nonsingular upper triangular and Ŝn, T̂n
are ⊤-skew-symmetric.

Based on Theorems 3.4 and assuming that the first (j−1)th step in GTSHIRA follows
the generalized ⊤-isotropic Arnoldi process, i.e.,

N̂Zj−1 = Yj−1R̂j−1, (20)

by comparing the jth columns of both sides in (19) at the jth step, one has

N̂ zj =

j−1∑
i=1

r̂ijyi + r̂jjyj . (21)

With (20), (21) can be rewritten as

r̂−1
jj zj = N̂−1yj −

j−1∑
i=1

r̃ijzi, (22)

where

[r̃1j , . . . , r̃j−1,j ]
⊤ := −r̂−1

jj R̂
−1
j−1[r̂1j , . . . , r̂j−1,j ]

⊤,

and r̂jj in (22) is chosen so that ∥zj∥2 = 1. Since ZH
j Zj = Ij , the coefficient r̃ij in (22)

can be evaluated by

r̃ij = zHj N̂−1yj , i = 1, . . . , j − 1.

Finally, from (18), the vector yj+1 in the jth step of the generalized ⊤-isotropic Arnoldi
process is given by

ĥj+1,jyj+1 = K̂zj −
j∑

i=1

ĥijyi,

where

ĥij = yHi K̂zj ,

and ĥj+1,j > 0 is chosen so that ∥yj+1∥2 = 1.

Notice that, in theory, zj and yj+1 are orthogonal to J Ȳj and J Z̄j , respectively, in ex-
act arithmetic. However, in practice, roundoff errors may cause y⊤i J⊤zj and z

⊤
i J⊤yj+1,

i = 1, . . . , j, to be some nonzero tiny values. Therefore, in order to preserve the ⊤-bi-
isotropic property of Yj and Zj , reorthogonalization of zj against J Ȳj or yj+1 against

12



Algorithm 5 [8] The jth generalized ⊤-isotropic Arnoldi step

Input: ⊤-skew-Hamiltonian K̂ and N̂ , upper triangular R(1 : j − 1, 1 : j − 1),
Yj = [y1, · · · , yj ] and Zj−1 = [z1, · · · , zj−1] with Y H

j Yj = Ij , Z
H
j−1Zj−1 = Ij−1

and Y ⊤
j JZj−1 = 0.

Output: [h1,j , · · · , hj+1,j ], R(1 : j, j), yj+1 and zj .

1: Solve N̂ zj = yj ;
2: for i = 1, . . . , j − 1 do
3: r̂ij = zHi zj , zj = zj − r̂ijzi
4: end for
5: Reorthogonalize zj to J Ȳj as following for-loop in Steps 5-5:
6: for i = 1, . . . , j do
7: sij = y⊤i J⊤zj , zj = zj − sijJ ȳi
8: end for
9: Set R(j, j) := ∥zj∥−1

2 , zj := R(j, j)zj and
R(1 : j − 1, j) := −R(j, j)R(1 : j − 1, 1 : j − 1)[r̂1j , · · · , r̂j−1,j ]

⊤;
10: Compute yj+1 = Kzj ;
11: for i = 1, . . . , j do
12: hij = yHi yj+1, yj+1 = yj+1 − hijyi
13: end for
14: Reorthogonalize yj+1 to J Z̄j as following for-loop in Steps 5-5:
15: for i = 1, . . . , j do
16: tij = z⊤i J⊤yj+1, yj+1 = yj+1 − tijJ z̄i
17: end for
18: Set hj+1,j := ∥yj+1∥2 and yj+1 := yj+1/hj+1,j .

Algorithm 6 [8] GTSHIRA for solving K̂z = µ̂N̂ z

Input: ⊤-skew-Hamiltonian matrices K̂, N̂ , starting vector y1 and shift value τ .
Output: m eigenpairs of (K̂, N̂ ).
1: Use Algorithm 5 with starting vector y1 to generate a generalized ⊤-isotropic Arnoldi

decomposition with order m:

K̂Zm = YmHm + hm+1,mym+1e
⊤
m,

N̂Zm = YmRm.

2: repeat
3: Use Algorithm 5 to extend the generalized ⊤-isotropic Arnoldi decomposition with

order m to order (m+ p):

K̂Zm+p = Ym+pHm+p + hm+p+1,m+pym+p+1e
⊤
m+p,

N̂Zm+p = Ym+pRm+p.

4: Use Krylov-Schur restarting scheme [20, 21] to reform a new generalized⊤-isotropic
Arnoldi decomposition with order m.

5: until wanted m eigenpairs of (K̂, N̂ ) are convergent

13



Algorithm 7 GE GTSHIRA/GE TSHIRA

Input: matrices F , G,M2 andM1, shift value τ and the numberm of desired eigenvalues.

Output: eigenpairs {(γj , [(ψ(1)
i,j )

⊤, (ψ
(1)
ℓ,j )

⊤]⊤), (γ−1
j , [(ψ

(2)
i,j )

⊤, (ψ
(2)
ℓ,j )

⊤]⊤)}mj=1 of (1)

where γj + γ−1
j for j = 1, . . . ,m are the closest to shift value τ + τ−1.

1: Compute eigenpairs {(µ̂j , zj ≡ [z⊤j1, z
⊤
j2]

⊤)}mj=1 of (K̂, N̂ ) by using GTSHIRA or

Compute eigenpairs {(µ̂j , z̃j)}mj=1 of B by using TSHIRA and solveN2[z
⊤
j1, z

⊤
j2]

⊤ = z̃j ,
for j = 1, . . . ,m.

2: Compute eigenvalues γj and γ−1
j of TPQEP in (2) by solving

γ2 − (τ + τ−1 + µ̂−1
j )γ + 1 = 0;

Compute eigenvectors

ψ
(1)
i,j ≡ γ−1

j zj1 − zj2, ψ
(2)
i,j ≡ γjzj1 − zj2

corresponding to γj , γ
−1
j , respectively, for j = 1, 2, . . . ,m.

3: Compute

ψ
(1)
ℓ,j = −M−1

2

(
γ−1
j F⊤ψ

(1)
i,j +G⊤ψ

(1)
i,j

)
, ψ

(2)
ℓ,j = −M−1

2

(
γjF

⊤ψ
(2)
i,j +G⊤ψ

(2)
i,j

)
for j = 1, . . . ,m.

J Z̄j is needed. Summarizing above processes, we state the jth step of the generalized ⊤-
isotropic Arnoldi process in Algorithm 5. The reorthogonalization steps just mentioned
are Step 5 and Step 14, respectively, in Algorithm 5. Moreover, the GTSHIRA algo-
rithm based on the generalized ⊤-isotropic Arnoldi process is presented in Algorithm 6
for finding eigenpairs of the matrix pair (K̂, N̂ ).

In the above TSHIRA and GTSHIRA algorithms, the main costs arise in computing
uj+1 = Buj and solving linear system N̂ zj = yj at the jth ⊤-isotropic and generalized ⊤-
isotropic Arnoldi steps, respectively. From (14b), (15) and (16), computing these vectors
uj+1 and zj require to solve the following linear systems

N1v1 = b1, N2v2 = b2. (23)

By the definitions of M and L in (11), we see that solving (23) is equivalent to solve

(τ2A⊤
1 + τA0 +A1)v11 = b11 − τb12, (24)

v12 = −b12 − (A0 + τA⊤
1 )v11,

and

(τ2A1 + τA0 +A⊤
1 )v22 = b22 + (A0 + τA1)b21, (25)

v21 = τv22 − b21,

where v1 = [v⊤11, v
⊤
12]

⊤, v2 = [v⊤21, v
⊤
22]

⊤, b1 = [b⊤11, b
⊤
12]

⊤ and b2 = [b⊤21, b
⊤
22]

⊤. By the
definitions of A0 and A1, it holds that

τ2A⊤
1 + τA0 +A1 = (G+ τF )M−1

2 (F⊤ + τG⊤)− τM1 (26)
14



and

τ2A1 + τA0 +A⊤
1 = (F + τG)M−1

2 (G⊤ + τF⊤)− τM1. (27)

Let M1 = LU be the LU factorization of M1 and set

E1 = L−1

(
1

τ
G+ F

)
, E2 = U−⊤(F + τG). (28)

By the Sherman-Morrison-Woodbury formula, (26) and (27) imply that(
τ2A⊤

1 + τA0 +A1

)−1
= −1

τ
U−1

[
I + E1

(
M2 − E⊤

2 E1

)−1
E⊤

2

]
L−1

and (
τ2A1 + τA0 +A⊤

1

)−1
= −1

τ
L−⊤

[
I + E2

(
M2 − E⊤

1 E2

)−1
E⊤

1

]
U−⊤,

respectively.

Obviously, from (28), we need m forward substitutions and m backward substitutions
to obtain E1 and E2, respectively. Furthermore, in addition to the cost in solving small

linear systems
(
M2 − E⊤

2 E1

)−1
and

(
M2 − E⊤

1 E2

)−1
, only two forward substitutions

(L−1, U−⊤) and two backward substitutions (L−⊤, U−1) are required to obtain the so-
lutions of (24) and (25) for generating Krylov subspace at each iterative step. Recall
that, for GE SDA and GE SA, in order to form the matrices A0 and A1 in (3), one needs
to compute M−1

1 F and M−1
1 G which require 2m forward and backward substitutions.

Since the shift-and-invert Arnoldi method is known to converge very fast when a proper
shift is known, the overall computational costs of GE GTSHIRA and GE TSHIRA, in-
cluding computing E1, E2 and solving linear systems in each iterative steps, can be only
about half amount of the computation cost needed in GE SDA and GE SA. Our nu-
merical results in Table 5 confirm this observation. Finally, we summarize the process
of applying TSHIRA/GTSHIRA to solve the GEP in (1) in Algorithm 7 and show the
comparison of the computational costs for TSHIRA and GTSHIRA in Table 2.

4. Numerical results

In this section, we tests the above mentioned four types of structure preserving al-
gorithms on computing the dispersion diagram of the frequency that are close to the
stopping frequency of the SAW filter. The piezoelectric substrate of the filter is made of
15o rotated quartz. The configuration of our computational domain is shown in Figure 1
where the domain width AB and height CD are set to be 10−6 and 3×10−6, respectively,
the ratio of the electrode width EF versus the domain width is set to be 1

2 and the ratio

of the electrode thickness DE versus the domain height is 1
15 . In our numerical studies,

the viscous damping coefficient κ1 is set to be 10−14 and the mass damping coefficient κ2
is taken as 1− κ1 to account for the effect from the electrode weight. All computations
are carried out in MATLAB 2010b on a HP workstation with an Intel Quad-Core Xeon
X5570 2.93GHz and 60 GB main memory, using IEEE double-precision floating-point
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TSHIRA GTSHIRA

Compute E1, E2

M1 = LU 1 1
F + ξG 2 2

Solve Lx = b1 m m
Solve U⊤y = c2 m m
E⊤

2 E1 (flops) 2m2n 2m2n

jth step Arnoldi

Solve Lx = b1, L
⊤y = c1 1 1

Solve Ux = b2, U
⊤y = c2 1 1

Compute Fd1, F
⊤c1, Gd2, G

⊤c2 3 3
Compute M1b 2 2

Compute E1d1, E
⊤
1 c1, E2d2, E

⊤
2 c2 1 1

Saxpy and inner products (flops) 8nj + 15n 16nj + 18n
Schur restarting Matrix product (flops) 2(m+ p)2n 4(m+ p)2n

Table 2: Computational costs for TSHIRA and GTSHIRA.

arithmetic.

Suppose m reciprocal pairs of eigenvalues near U are desired. For TSHIRA and
GTSHIRA, the restart procedure will be activated when the desired eigenpairs don’t
converge before the dimension of the Krylov subspace reaches 5m. This is done by setting
the value of p in Step 4 of Algorithms 4 and 6 to 4m. In the following discussion, we take
m = 5 and the matrix dimensions of Ci and Cb are n = 63960 and m = 723, respectively.
An example of computed reciprocal eigenpairs near U at frequency ω = 1.2757/(2π)×1010

is shown in Figure 2. The dispersion diagrams of the attenuation constant α and the
propagation constant β associated with the eigenvalue λ(ω) are shown in Figure 3, for
frequency ω around the stopping band, where the eigenpair most close to −1 on the
complex plane is plotted.

4.1. Accuracy of structure-preserving eigensolvers

In this subsection, we compare the accuracy of the eigenpairs, computed by structure-
preserving Algorithms 1, 2 and 7, respectively, for the GEP (8). Recall that the Krylov
subspace Uj generated by the ⊤-Hamiltonian matrix B is automatically ⊤-isotropic in
Theorem 3.2, and the subspaces Zj and Yj+1 generated in Theorem 3.4 are automatically
⊤-bi-isotropic. As mentioned in Subsections 3.3 and 3.4, isotropic re-orthogonalization in
Step 3 of Algorithm 3 and Steps 5 and 5 of Algorithm 5 is important in maintaining the
⊤-isotropic property. Moreover, Theorem 3.3 and 3.5 both show that the multiplicities
of eigenvalues of (K,N ) are all even. In other words, no duplicate eigenpairs need to be
computed theoretically when the ⊤-isotropic property is kept during the computation.
On the other hand, without the isotropic re-orthogonalization process, extra computa-
tion cost can arise in computing the duplicate eigenpairs. We would like to address this
issue by numerical studies shown in the following. We also like to point out that the
accuracy of the computed eigenpairs can be affected by different approaches in isotropic
re-orthogonalization.
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Figure 2: The distribution of the eigenvalues which are close to and inside of U.

First, let us denote the algorithm that applying TSHIRA without the re-symplectic
process as T NoSymp and the algorithm that applying GTSHIRA without these re-bi-
isotropic processes as GT NoBiIso. In Table 3, the convergent eigenvalues obtained by
T NoSymp and GT NoBiIso at frequency ω = 1.2757/(2π)× 1010 are listed. Obviously,
one can see that, in case only two eigenpairs {(λ1, λ−1

1 ), (λ2, λ
−1
2 )} are needed here, the

algorithms T NoSymp and GT NoBiIso return four convergent eigenpairs in which two
of them are indeed the duplicated pairs.

T NoSymp GT NoBiIso

(λ, 1
λ )

−0.85175542558− 0.52335156640ı −0.85175542559− 0.52335156640ı
−0.85228028786 + 0.52367406214ı −0.85228028785 + 0.52367406213ı
−0.85175542557− 0.52335156639ı −0.85175542556− 0.52335156641ı
−0.85228028787 + 0.52367406214ı −0.85228028786 + 0.52367406216ı
−0.98999503056 + 0.00448884999ı −0.98999503056 + 0.00448884999ı
−1.01008531402− 0.00457994365ı −1.01008531402− 0.00457994365ı
−0.98999503056 + 0.00448884999ı −0.98999503056 + 0.00448884999ı
−1.01008531402− 0.00457994365ı −1.01008531402− 0.00457994365ı

Table 3: Convergent eigenvalues computed by T NoSymp and GT NoBiIso at ω = 1.2757/(2π)× 1010.

Next, let’s compare the accuracy of the computed eigenpairs obtained from three
different isotropic re-orthogonalization approaches in GTSHIRA. One or two steps of
re-bi-isotropic process can be performed by the for-loops in Steps 5-5 and 5-5.

To distinguish among various re-bi-isotropic processes, we use notations “FullIso”,
“zIsoY” and “yIsoZ” defined as follows:

• FullIso: Algorithm 5 with two for-loops in Steps 5-5 and 5-5.

• zIsoY: Algorithm 5 with one for-loop in Steps 5-5 and omitting for-loop in Steps 5-5.
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Figure 3: Dispersion diagrams of α and β near the stopping band.

• yIsoZ: Algorithm 5 with one for-loop in Steps 5-5 and omitting for-loop in Steps 5-5.

To measure the accuracy of computed eigenpairs of (8), we consider the relative
residual of an eigenpair (λ, ψ) where ψ = [ψ⊤

i , ψ
⊤
ℓ ]

⊤ which is defined as following:∥∥∥∥[ Ci Ciℓ

C⊤
ir 0

]
ψ − λ

[
0 Cir

C⊤
iℓ Cb

]
ψ

∥∥∥∥
F∥∥∥∥[ Ci Ciℓ

C⊤
ir 0

]∥∥∥∥
F

∥ψ∥F + |λ|
∥∥∥∥[ 0 Cir

C⊤
iℓ Cb

]∥∥∥∥
F

∥ψ∥F
,

here ∥ ∗ ∥F is the Frobenius matrix norm. The relative residuals of the convergent eigen-
pairs computed by “FullIso”, “zIsoY” and “yIsoZ” are shown in Figure 4. From the
numerical results in Figure 4, we see that the accuracy of the convergent eigenpairs
computed by “yIsoZ” is higher than those by “FullIso” and “zIsoY”. This result can
be explained from the accumulation of the errors in the equalities (18) and (19). Let

ξj,K ≡ ∥K̂Zj − YjĤj − ĥj+1,jyj+1e
⊤
j ∥2 and ξj,N ≡ ∥N̂Zj − YjR̂j∥2, denote these errors

in the jth iteration. The error ξj,N depends on the accuracy of the solution of the linear
systems in (23). If zj is reorthogonalized to J Ȳj , then the error produced by this re-
orthogonization will reduce the accuracy of ξj,N . Therefore, ξj,N produced by “FullIso”
and “zIsoY” are greater than that by “yIsoZ” as shown in Figure 5.(a). On the other
hand, the error ξj,K only depends on the accuracy of matrix product vector and vector
inner product. Obviously, the amount of ξj,K is much less than the amount of ξj,N .
Consequently, even though the accuracy of ξj,K can reduced by the errors from reorthog-
onalization yj+1 to J Z̄j as shown Figure 5.(b), the reorthogonalization process “yIsoZ”
is much accurate than the “FullIso” and “zIsoY” reorthogonalization processes.

Finally, we compare the accuracy of the eigenpairs (λ(ω), u(ω)) obtained from GE SDA,
GE SA, GE TSHIRA and GE GTSHIRA with ”yIsoZ” re-bi-isotropic process. The rel-
ative residuals resulted from these algorithms in computing four reciprocal eigenpairs
(λi(ω), ui(ω)), for i = 1, . . . , 4, that are closest to -1 on the complex plane are plotted
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Figure 4: The relative residual of the computed eigenpairs produced by different re-bi-isotropic processes
in Algorithm 5 with shift value τ = −0.99.

in Figure 6 for each frequency ω near the stopping band. Obviously, one can see that
the accuracy of the eigenpairs obtained from GE SDA and GE SA are higher than those
obtained by GE TSHIRA and GE GTSHIRA.

4.2. Comparison with computational costs

In this subsection, we discuss the computational costs of structure-preserving Algo-
rithms 1, 2 and 7 in computing m = 5 desired eigenpairs. Our numerical results show
that the desired eigenpairs are convergent within 5m ⊤-isotropic Arnoldi steps without
restart for GE TSHIRA and GE GTSHIRA. On the other hand, it requires total 18
iterations to obtain a convergent Xk in Steps 3.1-3.1 for the SDA algorithm. As we
mentioned in Subsection 3.3, the number of forward and backward substitutions needed
for GE TSHIRA and GE GTSHIRA is only about half the amount of these substitutions
that needed to transform the GEP into TPQEP in GE SDA and GE SA. Since only ad-
ditional 25 forward substitutions and backward substitutions are needed in GE TSHIRA
and GE GTSHIRA for solving linear systems Lx = b and Uy = c, we expect GE TSHIRA
and GE GTSHIRA to be more robust than GE SA and GE SDA. The following numer-
ical results support this observation.

To give an overall comparison for GE SDA, GE SP, GE TSHIRA and GE GTSHIRA,
in Table 4, computational intensive items in these algorithms are listed in the first column
and the sums of the CPU times for each associated item are listed in the other four
columns. From the results in Table 4, the dominant computational costs in GE TSHIRA
and GE GTSHIRA are the costs for computing E1, E2, E

⊤
2 E1 and LU factorization of

Ci. For GE SDA and GE SA, the cost in computing the matrices A0 and A1 of the
TPQEP is the main cost comparing to the other costs. Obviously, the numbers shown in
Table 4 indicate that GE TSHIRA and GE GTSHIRA are more efficient than GE SDA
and GE SA. We also plot the overall CPU times for GE SDA and GE GTSHIRA with
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Figure 5: The errors of the equalities in (18) and (19) for “FullIso”, “zIsoY” and “yIsoZ”.

frequency from 1.274/(2π)× 1010 to 1.279/(2π)× 1010 in Figure 7. From Figure 7, one
can see that the total CPU times needed in GE SDA and GE SA are 40% more than the
CPU time needed in GE TSHIRA and GE GTSHIRA for computing 5 desired eigepairs.

TSHIRA GTSHIRA SDA SA
Compute Ci = LU 191.31 191.31 191.31 191.31

Compute E1, E2, E
⊤
2 E1 243.75 243.75

Compute A0, A1 533.94 533.94
Solve dense TPQEP 34.145

Solve Lx = b1 4.9850 4.9850 1.9940 1.9940
Solve Ux = b2 3.9775 3.9775 1.5910 1.5910
Solve U⊤y = c2 33.597 27.998
Solve L⊤y = c1 36.300 30.250

Compute E1d1, E
⊤
2 c2 4.9150 4.9150

Compute E⊤
1 c1, E2d2 5.7930 4.8275

Table 4: CPU times (sec.) for GE TSHIRA, GE GTSHIRA, GE SDA and GE SA.

5. Conclusion

In this paper, we have discussed the structure-preserving methods for solving the
generalized eigenvalue problem arising in the surface acoustic wave propagation on a
simple resonator with an interdigital transducer (IDT) where electrodes are arranged
periodically on piezoelectric substrates (PZT) such as 15o rotated Quartz. With given
periodic boundary conditions, the eigenvalues of the GEP appear in the reciprocal pairs
(λ, λ−1). In order to preserve the reciprocal relationship of the eigenvalues, the GEP
is transformed to two types of T-palindromic quadratic eigenvalue problems, one with
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Figure 6: Relative residuals for GE SDA, GE SA, GE TSHIRA and GE GTSHIRA with shift value
τ = −0.89.

large coefficient matrices and the other with small coefficient matrices. The structure-
preserving algorithms GE SDA and GE SA in Algorithms 1, 2 are employed to solve the
TPQEP (3) with small-size coefficient matrices and GE TSHIRA and GE GTSHIRA in
Algorithms 7 are employed to solve the TPQEP (4) with large-size coefficient matrices.

In finding the five eigenpairs that are near U and close to -1, we observed duplicate
eigenpairs appear when applying GE TSHIRA and GE GTSHIRA without re-symplectic
and re-bi-isotropic processes, respectively. On the other hand, no duplicate eigenpairs are
observed when re-sympletic and re-bi-isotropic processes are integrated in GE TSHIRA
and GE GTSHIRA. Three different re-bi-isotropic processes in GE GTSHIRA has been
tested. We have found that using the re-bi-isotropic processes in Steps 5-5 of Algorithm 5
achieves the best accuracy. Moreover, our numerical results show that the relative resid-
uals of the eigenpairs produced by GE SDA/GE SA and GE TSHIRA/GE GTSHIRA
can be less than 10−17 and 10−15, respectively. Although the accuracy of GE SDA
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Figure 7: CPU times for GE SDA and GE GTSHIRA.

and GE SA is marginally higher than that of GE TSHIRA and GE GTSHIRA, we fur-
ther found that the total CPU times required for computing the five desired eigepairs
by GE SDA and GE SA are about 40% more than that are required by GE TSHIRA
and GE GTSHIRA. Therefore, by transforming the GEP into the TPQEP (4), the
structure-preserving Arnoldi type algorithm GE TSHIRA or GE GTSHIRA with one
”re-sympletic” or ” re-bi-isotropic” processes provide an accurate and efficient way in
finding the reciprocal eigenpairs of the GEP (1).

Acknowledgments

This work is partially supported by the National Science Council and the National
Center for Theoretical Sciences in Taiwan. The author Chin-Tien Wu like to thank the
support from National Science Council under the grant number 99-2115-M-009-001.

References

[1] H. Allik and T. Hughes. Finite element method for piezoelectric vibration. Int. J. Numer. Methods
Eng., 2:151–157, 1970.

[2] M. B. Angel, M. I. Rocha-Gaso, M. I. Carmen, and A.V. Antonio. Surface generated acoustic wave
biosensors for detection of pathogens: A review. Sensors, 9:5740–5769, 2009.

[3] M. Buchner, W. Ruile, A. Dietz, and R. Dill. FEM analysis of the reflection coefficient of SAWS in
an infinite periodic array. In Proc. IEEE Ultrason. Symp., 371-375, 1991.

[4] C. K. Campbell. Surface Acoustic Wave Devices for Mobile and Wireless Communications. Aca-
demic Press, INC., 1998.

[5] E. K.-W. Chu, T.-M. Hwang, W.-W. Lin, and C.-T. Wu. Vibration of fast trains, palindromic eigen-
value problems and structure-preserving doubling algorithms. J. Comput. Appl. Math., 219:237–252,
2008.

[6] W. W. Lin E. K. Chu, T. M. Huang and C. T. Wu. Palindromic eigenvalue problems: a brief survey.
Taiwan J. Math., 14, 3A:743–779, 2010.

22



[7] A Hilliges, C. Mehl, and V. Mehrmann. On the solution of palindramic eigenvalue problems. In Pro-
ceedings 4th European Congress on Computational Methods in Applied Sciences and Engineering
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Abstract

We study the generalized eigenvalue problems (GEP) arising from modeling
leaky surface waves propagation in a acoustic resonator with infinitely many pe-
riodically arranged interdigital transducers. The constitution equations are dis-
cretized by finite element method with mesh refinement along the electrode in-
terface and corners. The associated GEP is then transformed to a T-palindromic
quadratic eigenvalue problem so that the eigenpairs can be accurately and ef-
ficiently computed by using a structure-preserving algorithm incorporating a
generalized T-skew-Hamiltonian implicity-restarted Arnoldi method. Our nu-
merical results show that the eigenpairs produced by the proposed structure-
preserving method not only preserve the reciprocal property but also possess
high efficiency and accuracy.

Key words: Leaky SAW, structure-preserving, palindromic quadratic
eigenvalue problem, GTSHIRA, mesh refinement

1. Introduction

Waveguide devices have been widely used in controlling and interconnecting
guided electromagnetic waves. Advances in the thin film technology and efficient
transducers further encourage investigations on more sophisticated waveguide
concepts in acoustic system. Acoustic wave guide devices are widely employed
in applications including telecommunication filters [8, 25] and sensor technolo-
gies [2]. One of the basic element in most acoustic wave filters is a resonator
which generally consists of reflectors externally coupled through one or two
interdigital transducers (IDT). The IDT is primarily made by depositing pe-
riodical metallic grating electrodes on a piezoelectric film substrate as shown

∗Corresponding author. Tel: +886-3-5712121-ext-56424
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in Figure 1(a). Extensive theoretical and experimental works have been done
specially on the Rayleigh surface acoustic wave [4, 9, 24, 25]. Finite element
simulations of piezoelectric devices in two dimension (2D) and three dimension
(3D) have been studied by Allik, Koshiba, Lerch, Buchner, Mohamed and oth-
ers etc., [1, 6, 17, 19]. In the filter design, it is important to know the stop
band width and the center frequency fc of the filter where fc = vs/λs here vs
and λs are the wave velocity and wave length of the incident wave. The center
frequency and stop band width can visually be determined by plotting the dis-
persion diagram in which an eigenvalue problem associated with each frequency
in the search range has to be solved.

Due to slower propagation velocity of the Rayleigh SAW, filters based on
Rayleigh SAW design are usually limited to an operational frequency range less
than 1GHZ. For frequency higher than 1GHZ, more recent attention has been
paid to the so-called leaky surface acoustic wave (LSAW) because of its faster
propagation speed in crystal cuts such as 64o YX-LiNbO3 and 36o YX-LiTaO3,
and higher electromechanical coupling and minimal propagation loss in crystal
cuts such as 40o ∼ 42o YX-LiTaO3 [8]. Searching a better crystal cut among
various piezoelectric substrates (PZT) to increase LSAW velocity becomes one
of the major issues in high frequency filter design. For each crystal cut, one has
to solve many eigenvalue problems to plot the dispersion diagram. An efficient
and accurate algorithm for solving eigenvalue problem resulted from mathemat-
ical model of a LSAW resonator is desired.

The eigenvalue problem obtained from the finite element modeling of the
SAW or LSAW resonance can be represented as[

M1 G
F⊤ 0

] [
ψi

ψℓ

]
+ λ

[
0 F
G⊤ M2

] [
ψi

ψℓ

]
= 0, (1)

where M⊤
1 = M1 ∈ Cn×n, M⊤

2 = M2 ∈ Cm×m, F and G ∈ Cn×m with
m ≪ n, and the supscript “⊤” denotes the complex transpose. The scalar

λ ∈ C is called the eigenvalue of (1) and the nonzero vector
[
ψ⊤
i ψ⊤

ℓ

]⊤
is

the associated eigenvector. The generalized eigenvalue problem (GEP) (1) can
be reformulated into a T-palindromic quadratic eigenvalue problem (TPQEP)
of the form

P(λ)ψi ≡ (λ2A⊤
1 + λA0 +A1)ψi = 0 (2a)

with

A⊤
1 = FM−1

2 G⊤, A0 = FM−1
2 F⊤ +GM−1

2 G⊤ −M1. (2b)

By taking the transpose of P(λ) in (2a) and multiplying it by 1/λ2 it is easily
seen that the eigenvalues of P(λ) appear in reciprocal pairs (λ, 1/λ) (including
0 and ∞).
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The GEP (1) can be solved by traditional methods such as the QZ and
Arnoldi method. However, the reciprocal property of the eigenvalues of (1) can
be destroyed easily and large numerical errors can be generated in computation
[16]. To remedy the drawback, we transform the GEP (1) into the TPQEP (2a)
so that the desired eigenpairs can be computed by structure-preserving meth-
ods [11, 13, 15, 21, 22, 29, 30]. For solving the TPQEP with small and dense
coefficient matrices A0 and A1, a structure-preserving doubling algorithm for
solving (2a) was developed in [11] via the computation of a solvent of a nonlinear
matrix equation associated with (2a). Another structure-preserving algorithm
based on (S + S−1)-transform [20] and Patel’s approach [27] was developed
in [15]. For problems with large and sparse matrices A0 and A1, a structure-
preserving algorithm using the (S +S−1)-transform and the implicity-restarted
shift-and-invert Arnoldi method was also developed for searching eigenvalues in
a specified region of interests [15].

In this paper, we apply the generalized T-skew-Hamiltonian implicity-restarted
Arnoldi method developed in [15] to solve the TPQEP (2a). Based on the shift-
and-invert technique, the desired eigenpairs can be easily extracted. For solv-
ing the linear systems, although the coefficient matrices A0 and A1 in (2b) is
large but not sparse, we derive a new formula by using the Sherman-Morrison-
Woodbury formula so that the corresponding linear system can be efficiently
solved. Comparing with the traditional Arnoldi method, our proposed structure-
preserving method not only preserve the reciprocal property but also possess
high efficiency and accuracy.

This paper is organized as follows. We shall first introduce finite element
modeling for a simple resonator in Section 2. In Section 3, we introduce the
efficient structure-preserving algorithm to solve the large and sparse generalized
eigenvalue problems resulted from our FEM model. Our numerical experiments
in Section 4 show that the proposed structure-preserving algorithm for solving
the GEP in (1) is efficient and accurate. Finally, we conclude the paper in
Section 5.

2. Finite Element Model for SAW

In contrast to the well known Rayleigh waves which consists of partial lon-
gitudinal waves and shear waves, the LSAW mainly propagates in the shear
direction on the sagittal plane and is trapped at substrate surface and satis-
fies the stress free boundary condition on the surface. These properties allow
one to reduce the general mode analysis in 3D to a 2D problem as shown in
Figure 1(b) [28]. Furthermore, the boundary conditions for displacement can
naturally be set to be rigid on the bottom boundary and stress-free on the top
surface, and the boundary conditions for the electric potential can be set to be
short-circuited for the electrodes on the top boundary and open-circuited else-
where [10]. As proved in Auld’s book [4], these boundary conditions guarantee
the mode orthogonality and further ensure the mode excitation is determined
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(a) A standard configuration of SAW res-
onators

(b) A 2D model of a LSAW resonator on the
sagittal plane

Figure 1:

by the applied traction force and potential on the free surface. Therefore, on
the sagittal plane, the usual 2D mode analysis can be applied to analyze the
LSAW on the resonators with IDTs. In the following, we only consider the
LSAW resonator on a 2D plane (the sagittal plane associated with crystal cuts).

To model the wave propagation in an infinite domain with periodically ar-
ranged electrodes, thanks to the Floquet-Bloch Theorem, one can reduce the
problem to a single cell domain with one IDT by assuming the wave ψ is quasi-
periodic of the form ψ(x1, x2) = ψp(x1, x2)e

(α+iβ)x1 where x1 is the wave prop-
agation direction, p is the length of the unit cell (i.e. the periodic interval), α
and β are the attenuation and phase shifts along the wave propagation direc-
tion, respectively, and ψp satisfies ψp(x1 + p, x2) = ψp(x1, x2). Let Ω denote
the PZT with a single IDT as shown in Figure 2, and Γl and Γr denote the left
and right boundary segments of Ω. For the general anisotropic PZT substrates,
under the assumption of linear piezoelectric coupling, the elastic and electric
fields interact following the general material constitutions below

T = cES − e⊤E,

D = eS + εSE,
(3)

where vectors T , S, D and E are the mechanical stress, strain, dielectric dis-
placement and the electric field, respectively, and the matrices cE , εS and e are
the elasticity constant, dielectric constant and piezoelectric constant matrices
measured at constant electric and constant strain fields at constant temperature.
For various crystal cut of the PZT, the material constant matrices cE , εS and
e depend on the Euler angle θ of the cut. By applying the Bond strain trans-
formation matrix Nθ [5] and the usual coordinates transformation matrix Mθ

to the strain field and electric field, respectively, the material constant matrices
for the cut angle θ can be obtained by

cE := [Nθ]
⊤cE0 [Nθ], e := [Mθ]

⊤e0[Nθ], and, εS := [Mθ]
⊤εS0 [Mθ],
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Figure 2: A 2D single cell domain of a LSAW resonator and boundary conditions

here cE0 , e0, and ε
S
0 denote the material constant matrices of the crystal cut at

Euler angle θ = [0o, 0o, 0o].

By applying the virtual work principle to the equation (3), the equilibrium
state under the external body force f , the electrical field g and the above men-
tioned boundary conditions of the LSAW resonator, we have∫

Ω

[δS]⊤CE [S] dV +

∫
Ω

[δS]⊤e⊤[∇ϕ] dV +

∫
Ω

[∇δϕ]⊤e[S] dV

−
∫
Ω

[∇δϕ]⊤εS [∇ϕ] dV +

∫
Ω

δq⊤ρq̈ dV

=

∫
Ω

δq⊤f dV +

∫
Ω

[∇δϕ]⊤g dV +

∫
Γl∪Γr

δq⊤(T · n⃗) dA+

∫
Γl∪Γr

δϕ⊤(D · n⃗) dA.

(4)

Here, ρ is the mass density, n⃗ is the boundary normal, q = [u, v, w]⊤ is the
displacement vector, ϕ is the electric potential that satisfies ∇ϕ = E, S =
[∂u∂x ,

∂v
∂y ,

∂w
∂z ,

∂v
∂z+

∂w
∂y ,

∂w
∂x+

∂u
∂z ,

∂u
∂y+

∂v
∂x ]

⊤, and δq, δϕ and δS are the corresponding
virtual displacement, potential and strain vectors, respectively. The equation
can then be discretized by finite element method [1, 10]. Following the usual
free mode analysis, we consider f = 0, g = 0 and a time harmonic quasi periodic
solution vector ψω(x, t) = ψ(x)eiωt. The spatial function ψ(x) = [q(x), ϕ(x)] sat-
isfies the boundary conditions shown in Figure 2 in which the periodic boundary
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conditions, proposed by Buchner [6],

ψr = ψ(x1 + p, x2) = γψ(x1, x2) = γψl, (5)

Tr · nr = T (ψr) · nr = −γT (ψl) · nl = −γTl · nl, (6)

Dr · nr = D(ψr) · nr = −γD(ψl) · nl = −γDl · nl, (7)

are enforced on the left and right boundaries, Γl and Γr, here nl and nr are the
normal vector of Γl and Γr respectively and γ = e−(α+iβ). By plugging ψw into
(4), the equation can be rewritten in the following matrix form:[

Kqq − ω2Mqq Kqϕ

Kϕq −Kϕϕ

] [
q
ϕ

]
=

[
Fl + Fr

Ql +Qr

]
, (8)

where

Kqq =

∫
Ω

δq⊤B⊤
S C

EBSq dV, Mqq =

∫
Ω

δq⊤ρq dV, and Kϕϕ =

∫
Ω

δϕ⊤B⊤
ϕ eBSq dV,

Kqϕ =

∫
Ω

δq⊤B⊤
S e

⊤BϕϕdV and Kϕq =

∫
Ω

δϕ⊤B⊤
ϕ eBSq dV,

Fl =

∫
Γl

δq⊤Tln⃗l dA and Fr =

∫
Γr

δq⊤Trn⃗r dA,

Ql =

∫
Γl

δϕ⊤Dln⃗l dA and Qr =

∫
Γr

δϕ⊤Drn⃗r dA,

and the matricesBS =


∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0


⊤

and Bϕ =
[

∂
∂x

∂
∂y

∂
∂z

]⊤
.

Mechanical damping effects can also be considered by using the Rayleigh damp-
ing assumption in which the matrix Kqq − ω2Mqq in (8) are modified into
Kqq + iω(κ1K

qq + κ2M
qq)−ω2Mqq. Here κ1 and κ2 are coefficients associated

with the viscous damping and mass damping, respectively.

To obtain the palindromic quadratic eigenvalue problem associated with the
propagation parameter γ, following Hofer’s approach [14], the nodal unknowns
are splitted into the inner nodes ψi = [qi, ϕi], the left boundary nodes ψl =
[ql, ϕl] and the right boundary nodes ψr = [qr, ϕr]. The matrix equation (8) can
be recasted into the following form: Kii Kil Kir

Kli Kll Klr

Kri Krl Krr

 ψi

ψl

ψr

 =

 0
Rl

Rr

 , (9)

here Rl and Rr are vectors obtained from the discretization of the terms Fl+Ql

and Fr +Qr, respectively. From the periodic boundary conditions (5), (6) and
(7), (9) becomes Kii Kil Kir

Kli Kll Klr

Kri Krl Krr

 Ii 0
0 Il
0 γIl

[
ψi

ψl

]
=

 0
Il

−γIl

Rl. (10)
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Furthermore, by multiplying the matrix[
Ii 0 0
0 γIl Il

]
to (10), the GEP associated with the propagation parameter γ is obtained:([

Kii Kil

K⊤
ir 0

]
+ γ

[
0 Kir

K⊤
il Kll +Krr

])[
ψi

ψl

]
= 0. (11)

Since the viscosity is small for most crystalline solids, the attenuation factor
α is close to zero. As a result, the propagation factors λ near the unit circle,
denoted by U, is desired. Moreover, for the frequency ω in the stopping band,
the frequency shift parameter β shall be close to π when the periodic interval
p (i.e. the domain width here) equals to half of the incident wave length λ0.
Therefore, for the eigenvalue problem (11), we are interesting in finding the
eigenvalues λ close to U, especially for those are near −1 on the complex plane.

Notice that the nonzero eigenvalues of (11) appear in the reciprocal pairs
(λ, 1/λ). The reciprocal relation is very sensitive to numerical errors when they
are close to U. On the other hand, it is well known that the solution of a general
elliptic problem have singularities around corners [12] and, in addition, the solu-
tion may become less regular near the interface between the electrode and PZT
substrate. It is inevitable that the error from discretization may be amplified
in computing the reciprocal pairs. Therefore, it is important to minimize the
accuracy deterioration due to singularities and lower regularity in finite element
solutions. One can resolve the singularity by constructing the singular elements
in which the mesh points are clustered to the singular source according to the
order of the singularity [3]. In our calculation, we simply employee the locally
refined meshes. An additional benefit from using the locally refined meshes is
that we can discretize equation (8) using linear elements instead of using high
order finite element discretization [6]. However, drawbacks include (i) the ma-
trices from the discretization of (8) is large and sparse and (ii) the sparse pattern
of the matrices is unstructured. These make the efficient computation of eigen-
values for large GEP in (11) a challenge. Moreover, for pizoelectric crystals,
the elastic constant matrix cE is 1020 greater than the electric constant matrix
εS . To compute the eigenvalues and eigenvectors, proper scaling between the
mechanic field and the electrical field is required. Hence, the eigen solutions ob-
tained from the scaled problem must be accurate enough in order to disregard
the round off error in the re-scaling process. Therefore, for solving the large
sparse eigenvalue problem (11), an efficient algorithm, not only preserves the
reciprocal eigen-structure but is also accurate enough to prevent error amplifi-
cation from rounding and discretization, is desired. In the next section, we shall
introduce an efficient structure-preserving algorithm that ensure the accuracy
of the eigen-curves λ(ω) and the associated eigenvectors of (11).
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3. Structure-preserving Arnoldi-type Algorithm

To compute the eigenvalues of the GEP in (11) derived from SAW filter,
one can apply traditional eigensolvers such as LAPACK [14]. However, as the
GEP is large and its sparse pattern is unstructured, the traditional eigensolvers
are not efficient and the eigenvalues obtained are not guaranteed to satisfy the
reciprocal relationship. In this paper, since only the eigenvalues closed to U are
of interest, we choose iterative methods to find the eigenparis. Our numerical
results in Section 4 show that the proposed algorithm converges efficiently in
only a few steps and is very accurate in computing the reciprocal eigenpairs.

Observing that the imaginary part of Kll + Krr in (11) is symmetric and
positive definite, by Bendixson Theorem, Kll + Krr is invertible. The second
equation of (11) gives

ψl = − 1

γ
(Kll +Krr)

−1K⊤
irψi − (Kll +Krr)

−1K⊤
il ψi. (12)

Letting

M1 = Kii, M2 = Kll +Krr, F = Kir, G = Kil, x = ψi, λ = γ, (13)

and substituting (12) into the first equation of (11), we obtain the TPQEP in
(2).

To solve (2) in a structure-preserving way, we first transform the TPQEP in

(2a) into a ⊤-skew-Hamiltonian pencil (K̂, N̂ ) through the following procedure:

(i) The TPQEP is linearized into a special GEP [15],

(M− λL)
[
x
y

]
= 0, (14)

where λy = A1x, and

M =

[
A1 0
−A0 −I

]
, L =

[
0 I
A⊤

1 0

]
. (15)

The reciprocal eigenpairs (λ, 1/λ) are kept in the matrix pencil (M,L) be-
cause the matrix pencil M−λL is ⊤-symplectic, i.e., it satisfies MJM⊤ =

LJL⊤ where J =

[
0 In

−In 0

]
.

(ii) Using the (S +S−1)-transform, the matrix pencil M−λL is further trans-
formed to a ⊤-skew-Hamiltonian pencil K − µN , i.e., (KJ )⊤ = −KJ ,
(NJ )⊤ = −NJ and µ is the eigenvalue of the pencil:

K − µN ≡
[
(LJM⊤ +MJL⊤)− µLJL⊤]J⊤. (16)
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From the relationship µ = λ + 1/λ , one can relate the two eigenvalues λ
and µ and further implies that the multiplicity of the eigenvalue µ is even.

(iii) Let τ be a shift value and τ /∈ σ(M,L) where σ(A,B) denotes the set of
all eigenvalues of any matrix pair (A,B). Since µ0 ≡ τ + 1/τ /∈ σ(K,N ),

one can define the shift-invert transformation K̂ − µ̂N̂ for K − µN with
µ̂ = (µ− µ0)

−1 where

K̂ ≡ −τN = τ

[
A⊤

1 0
0 A1

]
, (17a)

N̂ ≡ −τ(K − µ0N ) = (M− τL)J
(
M⊤ − τL⊤)J⊤, (17b)

and K̂ and N̂ are ⊤-skew-Hamiltonian.

The relationship between eigenpairs of the TPQEP in (2) and the ⊤-skew-

Hamiltonian pencil (K̂, N̂ ) in (17) is stated in the following theorem.

Theorem 3.1. [15] Let (K̂, N̂ ) be defined in (17) and τ be a shift value with

τ /∈ σ(M,L). If zs = [z⊤1 , z
⊤
2 ]⊤ with z1, z2 ∈ Cn is an eigenvector of (K̂, N̂ )

corresponding to eigenvalue µ̂ and ν satisfies τ + 1
τ + 1

µ̂ = ν + 1
ν , then z1 +

1
ν z2

and z1+νz2 are eigenvectors of the TPQEP in (2) corresponding to eigenvalues
ν and 1

ν , respectively.

Next, from the definition of N̂ in (17b), N̂ can be factorized as N̂ = N1N2,
where

N1 = M− τL, N2 = J (M⊤ − τL⊤)J⊤ (18)

are nonsingular and satisfy N⊤
2 J = JN1. Let B ≡ N−1

1 K̂N−1
2 and u1 be an

initial vector. Define the Krylov matrix with respect to u1 by

Kn ≡ Kn[B, u1] = [u1, Bu1, · · · , Bn−1u1].

The following Theorem 3.2 guarantees that the Arnoldi process can be exe-
cuted in a way that the ⊤-skew-Hamiltonian structure of the matrix pencil is
preserved. As a result, a generalized ⊤-skew-Hamiltonian implicity-restarted
Arnoldi (GTSHIRA) algorithm proposed in [15] can be employed to solve the

eigenvalue problem K̂z = µ̂N̂ z.

Theorem 3.2. [15] Let B = N−1
1 K̂N−1

2 with N̂ = N1N2 be ⊤-skew-Hamiltonian
and Kn ≡ Kn[B, u1] be the Krylov matrix with rank(Kn) = n. Then there
are unitary matrices U and V satisfying V = J⊤UJ , Ue1 = u1 and Ve1 =
N1u1/∥N1u1∥2 such that

V⊤K̂U =

[
Ĥn Ŝn

0 Ĥ⊤
n

]
, V⊤N̂U =

[
R̂n T̂n
0 R̂⊤

n

]
, (19)
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where Ĥn is unreduced upper Hessenberg, R̂n is nonsingular upper triangular
and Ŝn, T̂n are ⊤-skew-symmetric.

Finally, the unitary matrices U and V in Theorem 3.2 can also be gen-
erated in a structure-preserving way (GTSHIRA) as follows. Recall that the

⊤-bi-isotropic orthonormal matrices Ẑj , Ŷj ∈ C2n×j are computed iteratively
according to the following structure-preserving Arnoldi process:

K̂Ẑj = ŶjĤj + ĥj+1,j ŷj+1e
⊤
j (20)

and

N̂ Ẑj = ŶjR̂j (21)

with

Ŷ H
j ŷj+1 = 0 and Ẑ⊤

j J ŷj+1 = 0, (22)

where Ĥj , R̂j ∈ Cj×j are unreduced upper Hessenberg and nonsingular upper

triangular, respectively. By defining Uj ≡
[
Ẑj , −J ¯̂

Yj

]
and Vj ≡

[
Ŷj , −J ¯̂

Zj

]
where

¯̂
Yj and

¯̂
Zj denote the conjugate matrices of Ŷj and Ẑj , respectively, it is

easily seen that

VH
j K̂Uj =

[
Ĥj −Ŷ H

j K̂J ¯̂
Yj

0 Ĥ⊤
j

]
, VH

j N̂Uj =

[
R̂j −Ŷ H

j N̂J ¯̂
Yj

0 R̂⊤
j

]
which implies that the ⊤-skew-Hamiltonian property is preserved in each itera-
tion step.

Notice that Theorem 3.1 indicates that although the number of the eigen-
vectors associated with the eigenvalue µ is even, only half of the eigenvectors are
needed to extract all the eigenvectors corresponding to the eigenvalues ν and 1

ν .
Furthermore, through the above mentioned structure-preserving Arnoldi pro-
cess, the ⊤-skew-Hamiltonian structure of the matrix pencil in Theorem 3.2
is preserved and the even multiplicity of the eigenvalue µ is automatically ob-
tained. Therefore, the required halves of the eigenvectors associated with the
eigenvalue µ can be easily computed when the desired eigenpairs are conver-
gent. In fact, the desired eigenpairs (µ̂i, zi) of (K̂, N̂ ) can be computed from the

matrix pair (Ĥj , R̂j) with Ĥj ŝi = µ̂iR̂j ŝi and zi = Ẑj ŝi. From Theorem 3.1,
one can compute the desired eigenpairs of (M,L) from (µ̂i, zi) and preserve the
reciprocal relationship of the eigenvalues of the GEP algebraically.

We summarize the above procedures for computing the reciprocal eigenpairs
of the GEP (11) in Algorithm 1. Notice that, in step 1 of the Algorithm 1, the
linear systems

N1v1 = b1, N2v2 = b2, (23)
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have to be solved in order to obtain Ẑj from (21). This is indeed the most
time-consuming step in the proposed structure-preserving algorithm. In the
following, we discuss how to solve (23) efficiently.

Algorithm 1 Structure-preserving algorithm for solving GEP (11)

Input: matrices F , G, M2 and M1, shift value τ and the number m of desired
eigenvalues.

Output: eigenpairs {(γj , [(ψ(1)
i,j )

⊤, (ψ
(1)
l,j )

⊤]⊤), (γ−1
j , [(ψ

(2)
i,j )

⊤, (ψ
(2)
l,j )

⊤]⊤)}mj=1 of

the GEP in (11) where γj + γ−1
j for j = 1, . . . ,m are the closest to shift

value τ + τ−1.
1: Compute eigenpairs {(µ̂j , zj ≡ [z⊤j1, z

⊤
j2]

⊤)}mj=1 of (K̂, N̂ ) by using GT-
SHIRA.

2: Compute eigenvalues γj and 1
γj

of TPQEP in (2) by solving

γ2 − (τ + τ−1 + µ̂−1
j )γ + 1 = 0;

Compute eigenvectors

ψ
(1)
i,j ≡ 1

γj
zj1 − zj2, ψ

(2)
i,j ≡ γjzj1 − zj2

corresponding to γj ,
1
γj
, respectively, for j = 1, 2, . . . ,m.

3: Compute

ψ
(1)
l,j = −M−1

2

(
γ−1
j F⊤ψ

(1)
i,j +G⊤ψ

(1)
i,j

)
, ψ

(2)
l,j = −M−1

2

(
γjF

⊤ψ
(2)
i,j +G⊤ψ

(2)
i,j

)
for j = 1, . . . ,m.

By the definitions of M and L in (15), we have[
I −τI
0 I

]
(M− τL) =

[
τ2A⊤

1 + τA0 +A1 0
−A0 − τA⊤

1 −I

]
(24a)

and [
I −A0 − τA1

0 I

] (
M⊤ − τL⊤) = [

τ2A1 + τA0 +A⊤
1 0

−τI −I

]
. (24b)

From (18) and (24), we see that solving (23) is equivalent to solve

(τ2A⊤
1 + τA0 +A1)v11 = b11 − τb12, (25)

v12 = −b12 − (A0 + τA⊤
1 )v11,

and

(τ2A1 + τA0 +A⊤
1 )v22 = b22 + (A0 + τA1)b21, (26)

v21 = τv22 − b21,
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where v1 = [v⊤11, v
⊤
12]

⊤, v2 = [v⊤21, v
⊤
22]

⊤, b1 = [b⊤11, b
⊤
12]

⊤ and b2 = [b⊤21, b
⊤
22]

⊤. By
the definitions of A0 and A1, it holds that

τ2A⊤
1 + τA0 +A1 = (G+ τF )M−1

2 (F⊤ + τG⊤)− τM1 (27)

and

τ2A1 + τA0 +A⊤
1 = (F + τG)M−1

2 (G⊤ + τF⊤)− τM1. (28)

Since the bandwidth of the matrix M1 can be greatly reduced by reordering
the unknowns as shown in Figure 3, the LU factorization of M1 = LU can be
computed efficiently. Set

E1 = L−1

(
1

τ
G+ F

)
, E2 = U−⊤(F + τG).

By the Sherman-Morrison-Woodbury formula, (27) and (28) can be further
factorized as following,(

τ2A⊤
1 + τA0 +A1

)−1
= −1

τ
U−1

[
I − E1M

−1
2 E⊤

2

]−1
L−1

= −1

τ
U−1

[
I + E1

(
M2 − E⊤

2 E1

)−1
E⊤

2

]
L−1, (29)

and(
τ2A1 + τA0 +A⊤

1

)−1
= −1

τ
L−⊤

[
I + E2

(
M2 − E⊤

1 E2

)−1
E⊤

1

]
U−⊤. (30)

Now, obviously, the solutions of (25) and (26) can be obtained by two forward
substitutions (L−1), two backward substitutions (U−1) and solving small linear

systems
(
M2 − E⊤

2 E1

)−1
and

(
M2 − E⊤

1 E2

)−1
. As a result, Algorithm 1 is very

efficient.

4. Numerical results

In this section, we firstly conduct numerical results to validate the conver-
gence for our finite element model. Secondly, we report the numerical compar-
isons with our structure-preserving method and the traditional Arnoldi method
for solving the GEP (11) to demonstrate the accuracy and efficiency of the pro-
posed eigenvalue solver. All computations are carried out in MATLAB 2010b
on a HP workstation with an Intel Quad-Core Xeon X5570 2.93GHz and 60 GB
main memory, using IEEE double-precision floating-point arithmetic.

To make our numerical computation reliable, first, we scale the displacement
field q and potential field ϕ by 10−5 and 105, respectively, and scale the mass
density ρ accordingly. The entries of the stiffness matrices Kqq, Kqϕ, Kϕq and
Kϕϕ, and the mass matrix Mqq are about the same order (close to O(1)) after
the scaling. Secondly, we reorder the interior nodes so that the matrix M1 in

12



(a) Sparse pattern of matrix M1 without
permutation from locally refined meshes
with mesh length p/80.

(b) Sparse pattern of the permuted matrix
M1 from locally refined meshes with mesh
length p/80.

Figure 3: Sparsity of matrix M1.

(13) has narrower band structure. As a result, the LU factorization of M1 can
be computed easily and solutions of the linear systems in (25) and (26) can be
obtained efficiently from (29) and (30). The sparsity patterns of the matrices
M1 obtained from FEM descritization on a locally refined mesh are shown in
Figure 3.(a) without nodal reordering, and shown in Figure 3.(b) with nodal
reordering. A mesh that are locally refined twice near the interface over an
uniform mesh is shown in Figure 5.

The configuration of our computational domain shown in Figure 2 is as
follows. The domain width AB and height CD are set to be 10−6 and 3×10−6,
respectively. The ratio of the electrode width EF versus the domain width is set
to be 1

2 and the ratio of the electrode thickness DE versus the domain height is
1
15 . The material constants of LiTaO3 and LiNbO3 are taken from measurements
obtained by Kushibiki, Takanaga and Sannomiya [18]. Also, it has been shown
that the viscous damping coefficient κ1 ≈ O(10−8) in the 10 KHZ operation
range and κ1 ≈ O(10−10) in the MHZ operation range for a family of PZT
materials [23, 26]. In general, κ1 depends on the operation frequency ω. The
viscous damping coefficient is extrapolated to GHZ operation range according
to the reciprocal rule κ1 ∝ 1

ω [7]. In our numerical studies, the viscous damping
coefficient κ1 is set to be 10−14 and the mass damping coefficient κ2 is taken as
1− κ1 to account for the effect from the electrode weight.

4.1. Accuracy and convergence of finite element approximation

Firstly, we show that our finite element model gives accurate results in pre-
dicting the center of stopping band of LSAW on the filters with aluminum elec-
trodes on top of piezoelectric substrates 36o YX-LiTaO3 and 64o YX-LiNbO3.
The dispersion diagrams of the attenuation constant α and the propagation
constant β associated with the eigenvalue λ(ω), that is most close to −1 on

13
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Figure 4: Dispersion diagrams

the complex plane for frequency ω around the stopping bands, are shown in
Figure 4(a) and Figure 4(b) for crystals 36o YX-LiTaO3 and 64o YX-LiNbO3,
respectively. A typical shear wave displacement associated with the eigenvector
of the computed eigenvalue is shown in Figure 5.

Figure 5: A shear wave displacement.

In order to measure the convergence of the eigenvalues, tests over three
successively refined meshes with initial mesh size h = p

20 are performed. The
dimensions of matrices M1 and M2 associated with uniform meshes and locally
refined meshes are list in second and third columns of Table 1, respectively. We
set λ[i,ξ] to be the eigenvalue obtained from meshes with mesh length p/(10× i).
Here the index ξ = “u” and ξ = “ℓ” denote the mesh is uniform without and with
local refinement, respectively. Using λ[16,u] as exact value, the convergence of
eigenvalues can be verified from |λ[16,u]−λ[i,u]| and |λ[16,u]−λ[i,ℓ]| for i = 2, 4, 8.

14



−1.5 −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real part of eigenvalue

Im
ag

in
ar

y 
pa

rt
 o

f e
ig

en
va

lu
e

λ
3,I

λ
3,O

λ
4,I

λ
4,O

λ
1,Iλ

1,O

λ
2,I

λ
2,O

λ
5,I

λ
5,O

λ
6,I

λ
7,I

λ
8,I

λ
9,I

 

 
Inside
Outside

Figure 6: Distribution of eigenvalues for 64o YX-LiNbO3 at frequency 2.180 GHZ.

The values of |λ[16,u]−λ[i,u]| and |λ[16,u]−λ[i,ℓ]| (i = 2, 4, 8) for 36o YX-LiTaO3

and 64o YX-LiNbO3 at ωs and ωe are shown in Table 2 where ωs and ωe are
the frequencies for which the stopping band starts and ends, respectively. From
Table 2, it can be seen that the accuracy of eigenvalue is increased as the
mesh length being reduced and is improved by using locally refined meshes.
Moreover, it is known that the wave propagation velocity is about 4112m/s
for 36o YX-LiTaO3 and about 4478m/s for 64o YX-LiNbO3. Since the domain
width p = 1×10−6, clearly, the center of the stopping band is about 2.056 GHZ
and 2.239 GHZ, respectively. We compute the center of the stoping band by
averaging ωs and ωe on different mesh lengths and show it in Table 3. Obviously,
one can see that the central frequency is monotonically converged to a constant
when the mesh length is reduced. The numerical error from our finite element
simulations is less than 0.2% and 1.2% for 36o YX-LiTaO3 and 64o YX-LiNbO3,
respectively.

4.2. Comparison of Algorithm 1 and traditional Arnoldi method

From Tables 2 and 3, we already show that the accuracy of the computed
eigenvalues and central frequency of stopping band obtained from the locally
refined mesh with mesh length p/80 is almost the same as those obtained from
uniform mesh with mesh length p/160. Therefore, in the following numerical
computations, we only consider the coefficient matrices in the GEP (11) that
are generated by the finite element discretization on the mesh that is locally
refined twice over the uniform mesh with mesh length p/80.

Let the pair (λk,I , λk,O), k = 1, . . . , N , denote the reciprocal pairs of eigen-
values of (11) where λk,I and λk,O lie inside and outside U, respectively. Fig-
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Uniform Local refine
mesh length M1 M2 M1 M2

p/20 3554 183 4968 183
p/40 14548 363 17192 363
p/80 58856 723 63960 723
p/160 236752 1443

Table 1: Dimension information of matrices M1 and M2 obtained from FEM discretization

36o YX-LiTaO3 64o YX-LiNbO3

ω (GHZ) ωs = 2.028 ωe = 2.075 ωs = 2.177 ωe = 2.257
|λ[16,u] − λ[2,u]| 0.0222 0.0161 0.0955 0.0797
|λ[16,u] − λ[2,ℓ]| 0.0178 0.0141 0.0857 0.0751
|λ[16,u] − λ[4,u]| 0.0076 0.0056 0.0299 0.0458
|λ[16,u] − λ[4,ℓ]| 0.0036 0.0042 0.0166 0.0329
|λ[16,u] − λ[8,u]| 0.0016 0.0015 0.0060 0.0087
|λ[16,u] − λ[8,ℓ]| 0.0001 0.0006 0.0007 0.0016

Table 2: The values of |λ[16,u] − λ[i,ξ]| for different mesh lengths at frequencies ωs and ωe.

mesh length hu = p
40 hℓ =

p
40 hu = p

80 hℓ =
p
80 hu = p

160

fc
LiTaO3 2.05246 2.05222 2.05206 2.05191 2.05183
LiNbO3 2.21623 2.21464 2.21385 2.21305 2.21305

Table 3: Computed center frequency fc (GHZ) of stopping bands of LSAW on various meshes.
Here, hu and hℓ denote the mesh length of meshes without and with local refinement, respec-
tively.
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ure 6 displays the eigenvalues {λ1,I , . . . , λ9,I , λ1,O, . . . , λ5,O} of the LiNbO3 at
frequency ω = 2.180 GHZ in which reciprocal pairs (λk,I , λk,O) for k = 1, . . . , 5
close to U may be of interests. The notation O(λ) represents the set of all the
eigenvalues that cluster at the origin of the complex plane. Suppose 2N eigen-
values near U are desired. The Arnoldi process in (20)–(21) for GTSHIRA is set
to restart if the desired eigenpairs are not convergent when the dimension j of
the subspace span{Ŷj} grows more than 5N . The number of restarting Arnoldi
process is denoted by “#Iter” in the following.

A standard iterative approach for solving the GEP (11) is to apply Arnoldi
method on the equation directly. However, the reciprocal property of the eigen-
values is not guaranteed to be preserved in the computation. For Algorithm 1,
based on the (S + S−1)-transform, if λ and µ are the eigenvalues of (11) and
(16), respectively, then λ and µ satisfy the relation µ = λ + λ−1. As a result,
we can obtain the k-th reciprocal pair (λk,I , λk,O ≡ 1/λk,I) by solving the al-
gebraic equation µk = λk,I + λ−1

k,I after the k-th eigenvalue µk of Kz = µN z
is computed. Hence, the reciprocity is automatically preserved. Two numer-
ical comparisons on preserving reciprocal property, between Algorithm 1 and
traditional Arnoldi method, are listed in the following where eigenvalues of 64o

YX-LiNbO3 at frequency ω = 2.180 GHZ are computed.

• Traditional Arnoldi method does not guarantee that half of the computed
eigenvalues lie inside of the unit circle and the others are outside. For
example, when we use Arnoldi method to compute four eigenvalues (i.e.,
2N = 4) of (11) which are near −1, the four convergent eigenvalues are
λ1,I , λ1,O, λ2,I and λ3,I . Clearly, the reciprocal property of eigenvalues is
lost.

• Suppose one wants to compute the five reciprocal pairs (λk,I , λk,O) for
k = 1, . . . , 5. As shown in Figure 6, no matter what shift value τ is
chosen, there exists some k⋆ ∈ {1, . . . , 5} such that the eigenvalues in
O(λ) are closer to τ than the eigenvalue λk⋆,I or λk⋆,O. As a result, the
eigenvalue λk⋆,I or λk⋆,O would not be discovered by the Arnoldi method.
For example, if we take a shift value τ = −2.89, then the desired reciprocal
pair (λ5,I , λ5,O) near U can not be discovered by the Arnoldi method. On
the contrary, in Algorithm 1, according to the relationship µ = λ + λ−1,
the eigenvalue µ of Kz = µN z is far away from the shift value τ+1/τ when
λ is closed to the origin. Naturally, Algorithm 1 will not converge to those
unwanted eigenvalues in O(λ). As a result, all the desired eigenvalues can
be discovered more easily by Algorithm 1 than the traditional Arnoldi
method. Our numerical results in Table 4 show that not only all the
desired eigenvalues are found by Algorithm 1, even when the number of
desired eigenvalues is set to 2N = 18, it also converges much faster than
the traditional Arnoldi method. In fact, it only takes two restarting steps
for Algorithm 1 to converge for all cases shown in Table 4. In addition,
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from the rightmost column of Table 4, one can see that all the computed
eigenvalues indeed preserve the reciprocal property. On the contrary, the
reciprocity of the convergent eigenvalues obtained by Arnoldi method are
diminished about 3 significant digits.

From the above comparison, Algorithm 1 preserves the reciprocal property
of the eigenvalues of the GEP (11) effectively. For measuring the accuracy of
Algorithm 1, let us define the relative residual of an eigenpair (λ, u) of (11),
where u = [ψi, ψl]

⊤, as following:∥∥∥∥[ M1 G
F⊤ 0

]
u− λ

[
0 F
G⊤ M2

]
u

∥∥∥∥
F∥∥∥∥[ M1 G

F⊤ 0

]∥∥∥∥
F

∥u∥F + |λ|
∥∥∥∥[ 0 F

G⊤ M2

]∥∥∥∥
F

∥u∥F
,

where ∥ ∗ ∥F is the Frobenius matrix norm. The maximal relative residuals of
the ten desired eigepairs for 64o YX-LiNbO3 with various frequency are shown
in Figure 7. From these numerical results, one can see that the eigenpairs pro-
duced by Algorithm 1 possess high accuracy in terms of relative residual error.

Next, let’s compare the efficiency of Algorithm 1 and traditional Arnoldi
method. The CPU times in computing ten desired eigenpairs (i.e., 2N = 10)
for 64o YX-LiNbO3 with various frequencies by using Algorithm 1 and tradi-
tional Arnoldi method are shown in Figure 8. On average, Algorithm 1 only
takes 476 seconds of CPU time to compute the desired eigen pairs for all fre-
quency ω in the search range. Obviously, the proposed Algorithm 1 is more
efficient compared to the traditional Arnoldi method which takes 527 seconds
of CPU time to get all the desired eigenpairs.

Method 2N Computed eigenvalues #Iter max{|λk,Iλk,O − 1|}

Arnoldi

8 {(λk,I , λk,O)}4k=1 2 1.7× 10−13

10 {(λk,I , λk,O)}4k=1, {λ̃k}2k=1 5 1.7× 10−13

12 {(λk,I , λk,O)}4k=1, {λ̃k}4k=1 4 1.7× 10−13

Algorithm 1

8 {(λk,I , λk,O)}4k=1 2 1.1× 10−16

10 {(λk,I , λk,O)}5k=1 2 1.1× 10−16

12 {(λk,I , λk,O)}6k=1 2 1.1× 10−16

18 {(λk,I , λk,O)}9k=1 2 2.2× 10−16

Table 4: Convergent reciprocal pairs and the associated errors of reciprocity for 64o YX-
LiNbO3 at frequency 2.180 GHZ versus different eigensolvers with various “2N” which denotes
the number of interested eigenvalues. Here, λ̃k ∈ O(λ) for k = 1, . . . , 4.
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Figure 8: CPU times for computing
ten desired eigenpairs by the tradi-
tional Arnoldi method and Algorithm
1.

5. Conclusions

In this paper, we have modeled the leaky surface acoustic wave propaga-
tion on a simple resonator with an interdigital transducer (IDT) where elec-
trodes are arranged periodically on piezoelectric substrates (PZT) such as 64o

YX-LiNbO3 and 36o YX-LiTaO3. The energy conservation equation (4) is dis-
cretized by finite element method (FEM) on a single cell domain with proper
periodic boundary conditions as shown in Figure 2. Equation (4) is discretized
on locally refined meshes in order to increase the accuracy of our numerical
solutions. Our FEM simulation for predicting the center frequency of the stop-
ping bands of the resonator is convergent and accurate within an error about
1% compared to experimental data as shown in Tables 2 and 3. For computing
the dispersion diagram near the center of stopping band of the resonator, we
transform the GEP (11) into the TPQEP (2) to reveal the important reciprocal
relationship of the eigenvalues in which the eigenvalues appear in reciprocal pairs
(λ, 1/λ). The TPQEP (2) is then solved by GTSHIRA so that the reciprocal
relationship of the eigenvalues can be automatically preserved. Our numerical
results show that the traditional Arnoldi method converges slowly and fails to
preserve the reciprocal property of the eigenvalues near the unit circle. On the
other hand, the proposed structure-preserving method in Algorithm 1 not only
converges to those eigenpairs faster than that of the traditional Arnoldi method
but also possesses high accuracy in terms of relative residual error. Furthermore,
the reciprocal property of the eigenpairs are kept nicely under machine precision.

Searching a good crystal cut of various PZTs for high frequency filter de-
sign based on LSAW is important. Our numerical studies here show that the
dispersion diagram of a resonator with a prescribed crystal cut on its PZT
substrate can be computed accurately and efficiently by discretizing the model
equation on locally refined meshes and solving the resulted GEP by the proposed
structure-preserving method in Algorithm 1. As a result, the computation time
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in searching effective crystal cuts can be shorten and the computed dispersion
diagrams can be more accurate and reliable.
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Free-form surface of Reflector type
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From the equation 4.3 , one can obtain  .
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J. S. Schruben, Formulation of a reflector-design problem for a 
light fixture. J. Optical Society America, 62, 1972.
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Some results and review
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• Numerics
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Elliptic Monge‐Ampere Equation.,Preprint, 2009

First method:
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Feng
 

and Neilan
 vanishing moment method
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Xiaobing
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and Michael Neilan. Mixed finite element methods for the fully nonlinear 
Monge‐Ampere equation based on the vanishing moment method.. SIAM J. Numer. 
Anal.,47(2):1226{1250, 2009.
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Weak Formulation
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Error estimations from Feng
 

and Neilan

 2

22 2 2 4 4  if  has H  regularityl l

l
l

h L H H

hu u C u h u u      


   
   

 

     1

2 22 1 5/ 2
l l

ll
h H H H

u u C h h u             



Error check for Laplace
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Mash size

2-3 0.001228 0.000803 0.043738

2-4 0.000167 7.54E-05 0.004195

2-5 1.32E-05 7.24E-06 0.000532

2-6 8.83E-07 7.85E-07 0.000118

The convergence rate of L2‐norm 
 is third order and H1‐norm is 

 second order

hu u


 2h L
u u 1h H

u u



Error check for Biharnomic
 equation
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Mash size

2-2 0.01172 0.004154 0.645238

2-3 0.004269 0.001568 0.307797

2-4 0.001169 0.000445 0.150572

2-5 0.000302 0.000117 0.074556

2-6 7.67E-05 2.98E-05 0.037112

2-7 1.93E-05 7.51E-06 0.018516

hu u


 2h L
u u 2h H

u u

The convergence rate of L2‐norm 
 is second order and H2‐norm is 

 first order



Test case 1.
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ε Iter

1 0.305 0.161 5.319208 6

2‐2 0.230 0.121 4.673278 10

2‐4 0.113 0.0571 3.634048 10

2‐6 0.0428 0.0190 2.71177 8

2‐8 0.0145 5.67e‐03 1.98896 8

2‐10 4.50e‐03 1.60e‐03 1.437771 8

2‐12 1.29e‐03 4.33e‐04 1.029425 9

2‐14 3.49e‐04 0.000113 0.732763 10

hu u




2h L
u u  2h H

u u 
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Ours Feng’s

ε ε

2‐1 0.145332 0.5 0.082589

2‐2 0.120509 0.25 0.074746

2‐3 0.088363 0.1 0.051429

2‐4 0.057111 0.05 0.033436

2‐6 0.019037 0.0125 0.011590

2‐9 0.003027 0.0025 0.002939

2‐11 0.000836 0.0005 0.000679

2h L
u u  2h L

u u 



Test case 2.
Ours Oberman’s

N iter N M1 M2

128 69 81 14621 59

32

ε Iter

1 0.1776024 0.100518 3.026106 29

2‐2 0.1413431 0.081722 2.715974 48

2‐4 0.0713641 0.044524 2.129656 38

2‐6 0.0226147 0.01562 1.567714 9

2‐8 0.0063037 0.004523 1.12653 8

2‐10 0.001811 0.001218 0.800411 8

2‐12 0.0004998 0.000316 0.566837 8

2‐14 0.0001327 8.00E‐05 0.401068 9

hu u
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Ours Feng’s

ε ε

2‐1 0.0936 0.5 0.0387

2‐2 0.0817 0.25 0.0410

2‐3 0.0644 0.1 0.0322

2‐4 0.0445 0.05 0.0223

2‐6 0.0156 0.0125 7.82e‐03

2‐9 2.36e‐03 0.0025 1.86e‐03

2‐11 6.23e‐04 0.0005 4.04e‐04

2h L
u u 

2 h L
u u 



Test case 3.
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ε Iter

1 0.1413141 0.078907 2.164988 5

2‐2 0.122805 0.069333 2.010561 19

2‐4 0.075892 0.04483 1.63768 9

2‐6 0.0278187 0.018061 1.217238 10

2‐8 0.0080091 0.005569 0.894614 8

2‐10 0.0021189 0.001546 0.650581 8

2‐12 0.0005573 0.000408 0.468459 9

2‐14 0.0001439 0.000104 0.333575 11

hu u




2h L
u u  2h H

u u 

Ours Oberman’s

N iter N M1 M2

128 79 101 23849 59



Test case 4.
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Ours Oberman’s

N iter N M1 M2

127 62 121 39396 10486

Number of points

Oberman’s result

Error from our
Simulation:

Slope=0.84



Reconstruction of 1‐D Surface

Given Intensity  I(θ)

Light Source

Target domain

Given Illumination L(x)

Free‐form surface



Previous Works
(1) Methods based on optimization and ray   

tracing. (Neubauer 94, Halstead 96,  and Patow and Pueyo 03)

Given target illumination density, control points

Optimization: find      that 
minimize 

  cc n
ii


c

( ) ( )L x L c

 n
i i

c

( )L x
( )L c

Ray Tracing



Previous Works
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Kochengin and Oliker (2003):  

Construct a parametric parabola such that

R1

Rk

f1fk

Benitez, etc. (2004) : 

(2)Oliker’s approximation

(3)Methods based on solving Monge‐Ampere  
equation
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SMS2D lens:
LED length : 1.95 mm
divergence angle : 2.5 deg

*P. Benítez , J. C. Miñano et. al., "Simultaneous multiple surface optical 
 design method in three dimensions", Opt. Eng. 43

 
1489‐1502 (2004)

From a point light source
to  a uniform line target.

21.15 m
m

35.62 m
m
 

21.25 mm
(3)SMS method



Modeling in global domain (I)

Reflection Law[1]:

  ufuA ,

N


C

X

[1]J. S. Scheruben, Formulation of a Reflector-Design Problem for a Lighting Fixture



• Global power conservation:

• Partition of Unity:

• Local power conservation:

   

   
1 1

L u

i i

n n

i i

dx ddu I u du
du du

dx dL u du I u du
du du




 

  

  

   

 

  

C

B

Illumination 
 L(x)

Intensity 
 I(θ)

     L x dx I d  

   
i i

dx dL u du I u du
du du



 

   

Modeling in global domain (II)



Modeling of local problem(I)
(i) Initialization: Set c=(0,-1) and define 
initial coordinate system according to the 
tangent plane of the reflector at starting 
point.

(ii) Normalization: set the distance 
between the light source C and the 
target plane equals to 1.

       "[ ]( ) [ , , ' ] ( ) [ , , ' ] '( ) [ , ] ( ) [ ]L f A u f f f u B u f f f u C u f f u D u   

Monge-Ampere equation in 1-D:

(iii) Represent the reflector surface in 
local coordinate and derive the Monge- 
Ampere equation from flat-form and 
local power conservation assumption.



 0,u
 0,nu

B

y)(x,X 

  ufuA ,

N


)1,0( C

1st coordinate

1CB 



Modeling of Local Problem(II)

0

0

0



C

 0,u  0,nu

B

y)(x,X 

  ufuA ,

N


i‐th  coordinate
iO

i+1‐th  coordinate

1CB 


0OC 


0 0 0 0(sin( ), cos( ))i thCB        


thiC 



 )cos,sin( 000 

0 0 0 0 0 0( sin( ) sin , cos( ) cos )i th

OX CB OC
x y     

  



 
      

1 1[ ] [ ] ,  i
i i iL L T Monge-Ampere equation in local coordinate:

 1where  is the transformation matrix from i+1 th coordinate to the ith coordinate.i
iT 



Modeling of local problem (III)

(1)  Boundary  Condition: the red line 
 is the possible region for f(u) 

 based on the law of the reflection 
 and convex assumption of the 

 solution. 

we choose the middle point
 

to be 
 the right boundary condition.

(2)   We solve the local problem by 
 finite element method (using 

 Hermite element).

0

0

0



C

  ufu,

 0,u  0,nu

B

y)(x,X 



Numerical Tests

1. We assume an ideal point light source and no energy loss  
on reflector surface.

2. The target illumination densities are obtained from ray 
 tracing of reflectors of parabolic type and elliptic type. 

3. We measure the errors between the given curves and the 
 reconstructed curves.

To verify our reconstruction algorithm:



• Parabola Equation:

where a is the distance from top to focus
• Ellipse Equation:

where a is the major axis, b is the minor axis, and c is 
 the distance from center to focus.

Numerical tests

2

4
1)1( x
a

ay 

2 2
2 2 2

2 2

( 1.5) 1,  x y c a b
b a


   

The curves to be reconstructed are as following:



Error Measurement

(1)  J‐th level of refinement: the number of  
sub‐partition of each partition is 

(2)  Compress Ratio               : 
the ratio between the range of the outgoing 

 light angle and the range of the target 
 illumination segment.

2 j

x 

Parameters for error measurement:



Error Measurement (Parabola)

(1)
 

Surface error = es
 

: The max‐norm error between  
the given curves and reconstructed curves.

(2)   Illumination error = eill
 

: The relative error for each 
 partition, 

 _ _  number of reflected ray from 
                                 given curves at ith partition
Num Refl T i 

 _ _  number of reflected ray from 
                                 reconstructed curves at ith partition
Num Refl R i 

     
 ill

_ _ _ _
e

_ _
Num Refl T i Num Refl R i

i
Num Refl T i






Error Measurement (Ellipse)

(1)
 

Surface error = es
 

: The max‐norm error between  
the given curves and reconstructed curves.

(2)   Illumination error = eill
 

: The relative error for each 
 partition, 

 _ _  number of reflected ray from 
                                 given curves at ith partition
Num Refl T i 

 _ _  number of reflected ray from 
                                 reconstructed curves at ith partition
Num Refl R i 

   

 ill

_ _ _ _
e

_ _
i

i

Num Refl T i Num Refl R i

Num Refl T i









Numerical Results

case 1. a= 3:                                          case 2. a=0.3:

0 1 2 3 4 5 6
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Reconstructed parabolic curves: 
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Errors
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definition ratio = 1
definition ratio = 5
definition ratio = 10

x

eill

Case (1) 

Level of 
 Refinement = 1
Level of 

 Refinement = 5
Level of 

 Refinement = 10
Level of 

 Refinement = 50

Max Surface 
 Error

0.026 2.7513*e‐4 8.0356*e‐5 6.8706*e‐5

Avg. Illumination 
 Error

0.0843 0.0103 0.0046 0.00149

u



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.02

0.04

0.06

0.08

0.1

0.12

Errors

x

eill

Case (2) 

u

es

Level of 
 Refinement = 1
Level of 

 Refinement = 5
Level of 

 Refinement = 10
Level of 

 Refinement = 50

Max Surface 
 Error

0.0024 9.7213e‐5 2.3461e‐5 1.6704e‐6

Avg. Illumination 
 Error

0.0520 0.0103 0.0056 0.001538



Numerical Results

case 1. c=0.5, b=0.5                   case 2. c=0.5, b=5

u

f(u)

Reconstructed elliptic curves: 

u

f(u)



Errors

Compress 
 Ratio = 100

Compress 
 Ratio = 

 1000

Compress 
 Ratio = 

 10000

Max 
 Surface 

 Error
0.0868 0.0275 0.0097

Level of 
 Refinement = 1
Level of 

 Refinement = 5
Level of 

 Refinement = 10
Level of 

 Refinement = 30

0.8047 0.3155 0.1605 0.0729

es(i) Level of Refinement=5;
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(ii) Compress ratio = 1000;
u

Case (1) 

es



Level of 
 Refinemen

 t = 5

Level of 
 Refineme

 nt = 10

Level of 
 Refineme

 nt = 30

Level of 
 Refinement 

 =100

Level of 
 Refinemen

 t =500

Level of 
 Refinement 

 = 1000

0.9368 0.9199 0.8171 0.5305 0.1707 0.1248

0 1 2 3 4 5 6
0

0.005

0.01

0.015

0.02

0.025

Errors
es(i) Level of Refinement=5;

(ii) Compress ratio = 1000;
u

Case (2) 

es

Compress 
 Ratio = 100

Compress 
 Ratio = 

 1000

Compress 
 Ratio = 

 10000

Max 
 Surface 

 Error
0.0214 0.002 1.2685e‐4



Conclusions

• Monge‐Ampere can be solved accurately and 
 efficiently by Fang‐Neilan’s

 
approach using BCIZ 

 element.
• Reconstruction algorithm based on flat form and 

 local energy conservation assumptions  can be 
 employed to reconstruct 1D free‐form effectively.

• Two dimensional free‐form reconstruction using BCIZ 
 element is under investigation.

• Convergence of the numerical solutions and error 
 estimations are  also under investigation.
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How do the eyes see the color?

Cone cell: Cones are responsible for 
 color vision. There are three types of 

 cones, sensitive to red, green, and blue 
 light respectively.

Rods: Rods cannot detect color but are 
 responsible for black and white vision.

簡報者
簡報註解
On the retina there are two kinds of cells that change light into nerve impulses. Rod cells do not see color but are best for night viewing
because they react to very low light levels. Cone cells are for color viewing. They work best in good light and are found mostly in the center of the retina area called the macula, which provides the sharpest vision. Within each eye is a small blind spot with no rods or cones, where the optic nerve is attached to the eyeball. The optic nerve collects the nerve impulses and carries them to the brain, which interprets them as an image.



CIE 1931 color space

• Tristimulus
 

Values:

   
0

X I x d  


 
   

0
Y I y d  


 

   
0

Z I z d  


 

• :  spectral power distribution I 

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours”, Transactions of the Optical Society 30 (4) ,141–164 (1928)

J. Guild, “The colorimetric properties of the spectrum”, Phil. Trans. R. Soc. Lond. A January 1, 230 149-187 30 (1932)

CIE (1932). Commission internationale de l'Eclairage proceedings, 1931. Cambridge University Press, Cambridge.



CIE 1931 color space

• Color Matching Functions:

     , ,x y z  

• Spectral sensitivity curves of three linear light 
 detector



CIE 1931 color space

• CIE
 

xy
 

Chromaticity Diagram
– Color space specified by x, y, and Y

– Y is brightness or
 

luminance
 

of a 
 color

Xx
X Y Z


 

Yy
X Y Z


 



Intensity design

Uniform

Structure:

N
or

m
al

iz
e 

in
te

ns
ity

Linear

Uniformity: 79%

These are two per-defined 
distribution

簡報者
簡報註解
Uniform:
 Uniformity: min/max
Linear: the line(least square fitting) 



Color coded
Structure:

Color chromaticity diagram : Result:

The color of target plane is linear 
change from green to blue.
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