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Abstract

We study the generalized eigenvalue problems (GEPs) derived from modeling the surface
acoustic wave in piezoelectric materials with periodic inhomogenuity. The eigenvalues
appear in the reciprocal pairs due to periodic boundary conditions in the modeling. By
transforming the GEP into a T-palindromic quadratic eigenvalue problem (TPQEP), the
reciprocal relationship of the eigenvalues can be maintained. In this paper, we outline four
recently developed structure-preserving algorithms, SA, SDA, TSHIRA and GTSHIRA,
for solving the TPQEP. Numerical comparisons on the accuracy and the computational
costs of these algorithm are presented. The eigenvalues close to unit circle on the complex
plane are of interests in the area of filter and sensor designs. Our numerical results
show that the Arnoldi-type structure-preserving algorithms TSHIRA and GTSHIRA
with ”re-sympletic” and ”re-bi-isotropic”, respectively, are as accurate as the SA and
SDA algorithm, and more efficient in finding these eigenvalues.

1. Introduction

In this paper we consider the generalized eigenvalue problem (GEP) of the form

R B e 1)

where M| = M; € C™" M) = My € C™*™, F and G € C™™ with m < n, and
the supscript “T” denotes the complex transpose. If M; and M, are nonsingular, then
(1) can be reduced as the T-palindromic quadratic eigenvalue problem (TPQEP) of the
form

PNz = (NA] + Mg+ Az =0, (2)
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where

r = Tﬁb ’l/)i = _Ml_l()‘F + Gﬁﬁb
A = F'M'G, Ay=F"M'F+G"M;'G - My; (3)
or
r = wiv ,(/)5 = _A_1M2_1(FT + )‘GT)L/)Z"
A = GM;'FT, Ay=FM;'F" +GM;'G" — M. (4)

By taking the transpose of P(\) in (2) and multiplying it by 1/A? it is easily seen that
the eigenvalues of P(A) appear in the reciprocal pairs (A,1/A) (including 0 and oo).
Since the nullity of A; = GM,'F T in (4) is larger or equal to n —m, P()\) in (2)
with Ag and A; defined in (4) has n — m trivial zero and infinite eigenvalues which are
not interested. We are only interested in finding 2m(< 2n) nontrivial eigenpairs of P ().

The GEP (1) can be solved by traditional methods such as QZ and Arnoldi method.
But it does not guarantee that half of the computed eigenvalues lie inside of the unit circle
and the others are outside [9]. For solving TPQEP (2) with small and dense matrices Ag
and Aj, some pioneering works [7, 13, 14] have been done for preserving the reciprocity
of the eigenvalues basing on a good linearization of (2) which transforms (2) into the
form AZ T + Z. Some structure-preserving methods [7, 18, 19] were proposed for solving
(AZT + Z)u = 0. A structure-preserving doubling algorithm for solving (2) was devel-
oped in [5] via the computation of a solvent of a nonlinear matrix equation associated
with (2). Another structure-preserving algorithm based on (S +S~1)-transform [12] and
Patel’s approach [17] was developed in [8]. For problems with large and sparse matrices
Ag and Aj, a structure-preserving algorithm using (S + S~1)-transform and implicity-
restarted shift-and-invert Arnoldi method was also developed for searching eigenvalues
in a specified region of interests [8].

The GEP (1) typically arises in many application areas including rail vibrations of
fast train, surface acoustic wave (SAW) in filter design and crack modeling, etc [6]. In
these areas, an accurate and efficient eigensolver which preserves the reciprocal relation-
ship of the associated eigenpairs is needed. In this paper, we would like to compare
the accuracy and computational costs of the above mentioned algorithms for computing
reciprocal eigenpairs in a SAW device [22]. The SAW filter plays an important role in
telecommunication filters [4, 16] and sensor technologies [2] etc. These filters are built on
the physical property of piezoelectric materials, that electrical charges induce mechanical
deformations and vice versa. The main component (or cell) of a SAW filter composes
of a piezoelectric substrate and the input and output interdigital transducers (IDT). An
input electrical signal from the input IDT produces a surface acoustic wave, traveling
through periodically arranged electrodes and the output IDT picks up the output elec-
trical signal. Depending on the material properties of the piezoelectric substrate (PZT)
and the metallic electrode, and the gap length between the electrodes, frequencies in a
desired range can be stopped or filtered out. In the filter design, it is important to know
the stop band width and the center frequency f. of the filter where f. = K—S here v and
s are the wave velocity and wave length of the incident wave. The center frequency and
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stop band width can be determined by experiments or computation. In computational
approach, the dispersion diagram needs to be generated in which a GEP of the form (1)
associated with each frequency in the search range has to be solved [9].

This paper is organized as follows. We shall first introduce finite element modelling for
a simple SAW resonator in Section 2. For more finite element simulations of piezoelectric
devices in two dimension (2D) and three dimension (3D), one can refer to the works done
by Allik, Koshiba, Lerch, Buchner and Mohamed etc.,[1, 3, 10, 11]. In Section 3, we
introduce four structure-preserving algorithms developed in [5, 8] to solve the TPQEP (2)
and the GEP (1) resulted from our FEM model. Our numerical experiments in Section 4
compare the efficiency and accuracy of the structure-preserving algorithms for solving
the GEP (1). Finally, we conclude the paper in Section 5.

2. Surface wave propagation

To model the wave propagation in a SAW device, we assume that a large number of
electrodes are placed equally-spaced along a straight line on the PZT substrate. Accord-
ing to the Floquet-Bloch theory, one can reduce the problem to a single cell domain with
one electrode by assuming the wave 9 is quasi-periodic of the form

1/)(1‘1,902) = wp(mlaxQ)e(a-i_zﬁ)xla ’(/}p(xl +p7 $2) = Q/Jp(thQ)?

where z; is the wave propagation direction, p is the length of the unit cell (i.e. the
periodic interval), a and /3 are the attenuation and phase shift along the wave propagation
direction, respectively.

Let Q2 denote the piezoelectric substrate with a single IDT as shown in Figure 1, and
I'y and I',. denote the left and right boundary segments of €2, respectively. For the general
anisotropic PZT substrates, under the assumption of linear piezoelectric coupling, the
elastic and electric fields interact following the general material constitution law below

T=cPS—¢"E,

D=eS+¢e%E, )
where vectors T, S, D and E are the mechanical stress, strain, dielectric displacement and
the electric field, respectively, and the matrices ¢, ¢° and e are the elasticity constant,
dielectric constant and piezoelectric constant matrices measured at constant electric and
constant strain fields at constant temperature. By applying the virtual work principle
to the equation (5), the equilibrium state satisfies the following equation:

/ (69) [¢PS +e" (V)] aV + / (Vog)' [eS —e5 (V)] dV + / (6u) " pitdV
Q Q Q

- / {60+ (60)(D- )] dA (6)

where p is the mass density, u = [u1, up, u3] " is the displacement vector, ¢ is the electric
potential that satisfies Vo = E, § = [24, 681;2, Ous Ouz 4 %‘;j, Qus 4 Jur 081;1 + Q2T
and du, d¢, 05 are virtual displacement, potential and strain vectors, respectively. Let
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E F Boundary conditions on boundary segments ',

C [ | H
D G - - - b e
Open circuit conditionD-n=0on[', = AB,CD,GH
Short circuit condition ¢|. =g, on T, =DE.EF.FG
Q Stress free condition T-n =0 on r, = @, ﬁﬁﬁ@
Rigid boundary condition g, =0 onT, = AB
A B

[,=AC,T,=BH

Figure 1: A 2D single cell domain of a LSAW resonator and boundary conditions

the notation 1 = [u',#]" and the subscript 7, ¢ and 7 refer to nodal point index in the
interior, the left boundary and the right boundary of the domain 2, respectively. Using
the periodic boundary conditions, proposed by Buchner [3],

T, -ny=—~T¢-ng, Dy, n.=—yDy-ng with v =e @+

the finite element discretization to (6) on the domain € [9] can be written in the following
matrix form

C(w)Y = [K —w?M +w (k1 K + ko M)]tp = 0, (7)

where k1, kg > 0 are the viscous damping and mass damping respectively. By ordering
the nodal unknown 1 according the order of subscripts ¢, ¢ and r, the matrices K and
M, and the vector ¥ can be partitioned as following;:

Ko KL 0 My ML 0
K=| Ki Ki K, , M= | My M My |,
0 Kl K. 0 M. M,

where Ky, My; € R™*", Kyg, Kppy Myg, My € R™*™ ) Kig, Ky, Mg, My € R™™ and
=[], 0,07 with ¢; € C*, 9,1, € C™ (m < n). Obviously the matrix C(w) in
(7) can also be partitioned into
Cw Cj, 0
C’(w) =C= Cl Oi' Oir
0o C c,.
4



By setting 1, = Ay, the equation (7) leads to the generalized eigenvalue problem

Ci G 0 Ci Y | _
(Lt S)2ler G ])lul=e ¥

where Cyp := Cpp + Cpyp.

Since the viscosity is small for PZT substrates and metals in SAW devices, the at-
tenuation factor « of surface waves is close to zero. As a result, the propagation factor
A are generally near the unit circle thereafter denoted by U. Furthermore, for frequency
w in the stopping band, the frequency shift parameter 8 shall be close to m when the
periodic interval p (i.e. the domain width here) equals to half of the incident wave length
As. Therefore, we are interesting in finding A close to U, especially for those are near
—1 on the complex plane. Notice that eigenvalues of (2) appear in the reciprocal pairs
(A, 1/X). In the following sections, we aim to discuss the efficiency and accuracy of the
structure-preserving algorithms [5, 8] for solving the eigen-curves A(w) and the associated
eigenvectors of (8).

3. Structure-preserving Algorithms

In this section, we shall introduce four structure-preserving algorithms developed in
[5, 8] to solve the TPQEP (2) and discuss the computation costs of these algorithms in
solving the GEP (1). In the following, we suppose m reciprocal pairs of eigenvalues near
U are desired.

8.1. structure-preserving doubling algorithm

For solving the TPQEP (2) with Ay, A; € C™>*™ defined in (3), a structure-preserving
doubling algorithm (SDA) was developed in [5] via the computation of a solvent of a
nonlinear matrix equation associated with (2). That is P(\) can be factorized as

PN = (A — X)X T(AX — 4) (9)

for some nonsingular X with X = X if and only if X satisfies the following nonlinear
matrix equation (NME):

ATXTTA + X + Ap = 0.

Combining SDA in [5], the GEP (1) can be solved by Algorithm 1. The advantages of
Algorithm 1 are as following: (i) the computed eigenvalues are guaranteed to appear in
reciprocal pair since the eigenvalues of the matrix pencils AA] — X and AX — A;, which
are reciprocal pairs, are the eigenvalues of P()A) in (9) and (ii) the convergence rate of
the SDA is proved to be quadratic [5] if there are no eigenvalues of P()) located on unit
circle.

Next, let’s discuss the computational costs of Algorithm 1. To mimic the computation
cost in the LU factorization of the matrix M; obtained from finite element discretization,
we reorder the nodal indices so that the matrix M; has narrower band structure. Let
My = LU be the LU factorization of M;. Then, computing Ay and A; in Step 3.1 of
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Algorithm 1 GE_SDA
Input: matrices F', G, M5 and M, tolerance n and the number m of desired eigenvalues.
Output: cigenpairs {(v;, (1), ()17, (o7 1) T, 2 Ty of (1).
1: Compute Ag = FTM;'F+GT M 'G — My and A, = FT M, 'G.
2: Set k=0,Y, = A, Xp = —Ap and Z; = 0.
3: repeat
4 Compute Yk+1 = Yk(Xk — Zk)ilyk, Xk+1 =X — YkT(Xk — Zk)ilyk, and
Zipr = Zi + Vi Xy — Zi) 'Y,
Set k=k+1;
until [ Xe — Xi 1| < nll X
Compute the left and right eigenpairs {(A;, 1/)2}]?), (Aj, z/)érj)) Ty of Xy = M s
Choose the eigenpairs which associated eigenvalues are near the unit circle, said
{0, g )Y
9: Solve (A X} — Al)wé? = sz/)zrj) and set v; = )\j_l for j=1,...,m;
10: Compute

vl = Mt (wFul) + Gull)), o) = -t (27 Pl + Gul?))

forj=1,...,m.

Algorithm 1 requires solving ﬁ~z U'L7'Fand G=U ~1L7'@, and matrix multipli-
cations of FTF, GTG and FTG. In Steps 3.1-3.1, one LU factorization (2m?/3 flops),
two forward and back substitutions (4m3 flops) and three matrices multiplications (6m?
flops) are required for each iterate k. Next, computing the left and right eigenpairs in

Step 3.1 and solving zbfj) in Step 3.1 take 100m? flops and 2mm?/3 flops, respectively.

1 ,21m

Finally, it also requires 2m forward and back substitutions to compute {1/@-7 o0 =1 in

Step 3.1. The total cost of Algorithm is summarized in Table 1.
3.2. structure-preserving algorithm

Another structure-preserving algorithm (SA) developed in [8] is based on the (S +
S71)-transform [12] and Patel’s approach [17] for solving the TPQEP (2) with A, A; €
C™*™ defined in (3). The idea is, first, to linearize the TPQEP as the following special
GEP:

(M = \L) { ; } =0, (10)
where A\y = Az, and
A 0 |0 I
M—{_AO —I]’ ﬁ—[AlT 0}. (11)

Obviously, the matrix pencil M — AL is T-symplectic, i.e., it satisfies MIMT = LTLT

where J = [ 0 Im

N 0 } . As aresult, the eigenvalues of (M, L) appear in the reciprocal
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pairs (A, 1/)). Secondly, the (S + S~1)-transform is applied on M — AL and the pencil
is now transformed into a T-skew-Hamiltonian pencil K — N/, ie., (KJ)"T = —KJ,

WNI)T =-NJT:

K—uN [(LTMT + MTLT) —pegL™ 1 T’
Ay AT -A]  [-4 0
Ay — AT A 0 —Al

(12)

The two eigenvalues A and p are then related by the relationship g = A + 1/A. The
relationship between eigenpairs of the TPQEP in (2) and the T-skew-Hamiltonian pair
(K,N) in (12) is stated in the following theorem.

Theorem 3.1. [8] Let (K, N) be defined in (12). If zs = |21 ,29 |7 with 21,20 € C™ is
an eigenvector of (K, N') corresponding to eigenvalue p and v satisfies v + % = p, then
%zl — 29 and vz — 25 are eigenvectors of the TPQEP in (2) corresponding to eigenvalues
v and %, respectively.

Finally, based on Patel’s approach [17], the matrix pair (K, A) can further be reduced
to a block triangular structure as following

Kll K12

. T _ Nll N12
}, N:=Q NZ_[O Nﬂ]’ (13)

where K11 € C™*™ is upper Hessenberg, N1; € C™*™ is upper triangular, and @, Z are
unitary satisfying

Q=J7"27.
We then apply the QZ algorithm to (K71, N11) for computing the m eigenpairs {(ux, yx) For ;-

Consequently, {(ug, Z [%k] )}, are the m eigenpairs of (K, ). Combining the above

procedures and the structure-preserving algorithm in [8], the GEP (1) can be solved by
Algorithm 2.

The computational costs in Steps 3.2 and 3.2 of Algorithm 2 are the same that in
Steps 3.1 and 3.1 of Algorithm 1. The SA processes in Steps 3.2-3.2 of Algorithm 2
require approximately 50m? flops [8] to compute the eigenpairs of the TPQEP (2) with
small size matrices Ag and A; in (3). The comparison of the computation costs for
GE_SDA and GE_SA is listed in Table 1.

3.8. T-skew-Hamiltonian implicit-restarted Arnoldi algorithm

In the above mentioned GE_SDA and GE_SA algorithms, the GEP (1) is transformed
into the TPQEP (2) through equations in (3) where M; 'F and M; 'G are solved by
LU factorization on the matrix M;. The computation costs in this step increase in the
amount of 2m times n2. Since the GE_.SDA and GE_SA algorithms are then working on
the TPQEP where the size of matrices is m x m, m < n, the computation cost in solving

7
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Algorithm 2 GE_SA
Input: matrices F', G, Ms and M7, and the number m of desired eigenvalues.
. . 1 1 - 2 2
Output: eigenpairs {(v;. ()7, (g T1T), (5 ()T, E2) Ty of (1).

1: Compute Ag = FTM;'F+GT M 'G — My and A, = FT M, 'G.

2: Form the pair (K, N) as in (12);

3: Reduce (KC, V) to block upper triangular forms in (13) using unitary transformations;

4: Compute eigenpairs {(ug, yx) i, of (K11, N11) defined in (13) by using the QZ
algorithm;

5: Compute eigenvalues vy and V,?l of P(A) by solving v? — pgv + 1 = 0;

6: Choose the eigenvalues which are near the unit circle, said {v,, Ve, 1

7: Compute z; = Z [ygf} = [ ~it } ,j=1,2,...,m;

m .
j:17

bl

252
8: Compute eigenvectors wélj) = fy].*lzjl — zj2 and wfj) = 7251 — %2 corresponding to
eigenvalues v; = v, and l/k_jl, respectively, for j =1,2,..., m;
9: Compute

o) = M (Pul) + Gull)), o = M (7 P + Gul?)

forj: ]_,...,m-
GE_SDA GE_SA
Compute M; = LU : 1
Solve Lz = by 2m o
Solve Uz = b 2m o
Compute AO; Al Compute Fle 2m m
Compute G "dy m -
Solve Lz = by 2m o
1) (2 | Solve Uz = by 2m o
Compute ; 7, 1, Compute Fe; 2m o
Compute Gesg 2m on
Solve dense TPQEP (100 + & + gm)m?® flops | 50m* flops

Table 1: The computational costs of GE_SDA and GE_SA where k denotes the total iterations to obtain
convergent X}, in Lines 3.1-3.1 of GE_SDA.

the TPQEP is relatively small.

In the following, we introduce two Arnoldi-type algorithms in which the GEP (1) is
transformed into the TPQEP (2) through equations in (4). Since the matrix size m of
M> is much smaller, the cost in solving M{lF—r and M;lGT by LU factorization of
My can now be ignored. Following the same idea in Section 3.2, the TPQEP (2) with
Ap, Ay € C™*™ is also transformed into the T-skew-Hamiltonian pencil X — A through



0o I,
-1, 0
we seek the eigenvalues of the matrix pair (I, V) by some implicit-restart Arnoldi algo-
rithms. Although the Arnoldi algorithm is working on the matrices with size 2n x 2n
now, saving on computation costs is expected when fast convergence of the Arnoldi iter-
ations can be achieved. In the following, we sketch the key steps and theorems that are
employed in developing Arnoldi algorithm.

the equations (10) and (12) with J = ] . Instead of taking Patel’s approach,

Let 7 be a shift value and 7 ¢ o(M, L) where o (A, B) denotes the set of all eigenvalues
of any matrix pair (A, B). Then, we have pg = 7+7-! ¢ o(K,N). Define the shift-invert
transformation K — A for K — uN with i = —— and

1= o

~ Al 0

K = —7'./\/27'|: 01 A, ], (14a)
N = —r(K—poN)=M=7L)T (M =rLT) T, (14b)

where K and A are T-skew-Hamiltonian. Furthermore, from the definition of A in (14b),
N can be factorized as N = N N>, where

M=M-7L, No=FM" —7£")T" (15)

are nonsingular and satisfy NjT J = JNi. The GEP Kz = [iNz is then equivalent to the
eigenvalue problem BZ = iz, where

B=NTIKN; (16)

is T-skew-Hamiltonian, i.e., 7BT = BJ, and Z = N52. Now, according to the following
two main theorems proved in [8, 15], the T-skew-Hamiltonian implicity-restarted Arnoldi
(TSHIRA) algorithm as shown in Algorithm 4 can be employed to solve this eigenvalue
problem.

Let’s define the Krylov matrix with respect to u; by
K; = K;[B,u1] = [w1, Buq, ..., BTty 1<j<n.
The two main theorems in [8, 15] are as follows:

Theorem 3.2. [15] Let B € C*"*2" be T-skew-Hamiltonian and K; be a Krylov ma-
triz with rank(K;) = j. Then span(K;) is T-isotropic and if K; = U;R; is a QR-
factorization, then

BUj = UjHj + ’l]j+1€;r7

where H; € CI9*J s unreduced upper Hessenberg, U; € C?"*J 4s orthonormal and T -
isotropic, and ;1 € C*" is a suitable vector such that

UJH’[LJ‘+1 =0 and U;jajﬂ =0.

9



Theorem 3.3. [8, 15] Let B € C*"*2" be T -skew-Hamiltonian. If rank(K,) = n, then
there is a unitary T-symplectic matric U with Ue; = uy such that

UHBZ/{:|:Hn Sn :|7

0 HI
where Hy, = [hi;| is unreduced upper Hessenberg and Sy, is T -skew-symmetric.

Based on Theorem 3.2, the jth step of TSHIRA is given by

J
hjstgujen = Buy — Y hijui, (17)
i=1
where h;; = uffBuj, i = 1,...,j and hjy1; > 0 is chosen so that [Juji1]l2 = 1. In
order to guarantee the T-isotropic property of the space span{u1, ..., u;y1} is preserved

within machine precision, reorthogonalizing v ;41 against JU; is necessary. As a result,
the equation (17) is modified into

J J
hjvrgugen = Bug =Y hijui = Yt T,
i=1 i=1
where t;; = fuiTjBuj, i=1,...,7. The above procedure is stated in Algorithm 3.

Finally, we present TSHIRA with Krylov-Schur restart to solve the eigenvalue prob-
lem BZ = iz in Algorithm 4. Once the eigenpair (i, Z) is obtained, one can recover the

eigenpair (u, z) of (K, ) from the relationship 4 = u—iluo and the solution of the linear

system Noz = Z. The reciprocal eigenpair (), %) and the associated eigenvectors of the
TPQEP (2) are then followed from Theorem 3.1.

Algorithm 3 The jth T-isotropic Arnoldi step
Input: T-skew-Hamiltonian B and U; = [uq,- - -, u;] with U]-HUj =/; and UJ-TJUj =0.
Output: [hl,jy ey, hj+1,j] and Uj41-

1: Compute uj1 = Buy;
2: fori=1,...,j do
H
30 hij = Ui ujpr, Ui = uipn — hijug
4: end for
5. fori=1,...,j do
6 tij =ul T w1, Ujen = i — T
7: end for
8 Set hj+1}j = ||Uj+1||2 and Ujt1 = Uj+1/hj+1)j.

3.4. Generalized T -skew-Hamiltonian implicity-restarted Arnoldi algorithm

Recall that an additional linear system N>z = Z has to be solved for recovering the
eigenpair (u, 2) of (K, N') when TSHIRA is employed to solve the GEP Kz = iN z in (14).
10



Algorithm 4 [8] TSHIRA for solving Bz = iz

Input: T-skew-Hamiltonian matrix B with starting vector u;.
Output: eigenpairs (i;, %), ¢ = 1,..., m of B.
1: Use Algorithm 3 with starting vector u; to generate the mth step of T-isotropic
Arnoldi decomposition:

BUpw = UnHm + hm+1,mum+lel§

2: repeat
Use Algorithm 3 to extend the mth step of T-isotropic Arnoldi decomposition to
the (m + p)th step of T-isotropic Arnoldi factorization:

o

_ T
BUwtp = UntpHmip + hm+p+1,m+pum+p+1em+p~

4:  Use Krylov-Schur restarting scheme [20, 21] to reform a new T-isotropic Arnoldi
decomposition with order m.
5. until wanted m eigenpairs of B are convergent

This may result in losing some accuracy of the eigevector z. In order to eliminate this ex-
tra computational cost and to prevent the inaccuracy, a generalized T-skew-Hamiltonian
implicity-restarted Arnoldi (GTSHIRA) algorithm is proposed in [8]. The idea is to solve

the GEP Kz = iNz in (14) directly through bi-reorthogonalization and bi-T-isotropic
processes. The GTSHIRA algorithm is based on following two theorems.

Theorem 3.4. [8] Let B = N KN, ' with N = NNy be T-skew-Hamiltonian. Let
K; = K;[B,u1] be the Krylov matriz with rank(K;) = j. If

NQ_lKj = ZjRQ,j and NlKj = Y}Rl,j

are QR-factorizations, where Z;,Y; € C?"*J gre orthonormal and Ry ;, Ry ; are nonsin-
gular upper triangular, then we have

KZ; = Y;H; + Gjre; (18)
and
NZ; =Y;R;, (19)

where ﬁj € CI*J is unreduced upper Hessenberg, Iflj € CI*J 4s nonsingular upper trian-
gular, and Y; and Z; are T-bi-isotropic such that

Y1 =0 and Z]JYj41=0,
for a suitable §; 1 € C*".

Theorem 3.5. [8] Let B = N7 KN, ' with N = NiNy be T-skew-Hamiltonian and
K, = K,[B,u1] be the Krylov matriz with rank(K,) = n. Then there are unitary

11



matrices U and V satisfying V = T 'UT, Uey = uy and Ve, = Nyui/|Niuy|e such
that

T/, ﬁn gn TRy En j—\’
viRu=| T g | VAU = il

where ﬁn is unreduced upper Hessenberg, ﬁn 18 nonsingular upper triangular and §n, fn
are T -skew-symmetric.

Based on Theorems 3.4 and assuming that the first (j—1)th step in GTSHIRA follows
the generalized T-isotropic Arnoldi process, i.e.,

NZ;_y =Y, 1R, (20)
by comparing the jth columns of both sides in (19) at the jth step, one has
j—1
NZJ = Zﬂjyi + 7555 (21)
i=1

With (20), (21) can be rewritten as

j—1
~1 r—1 ~
Tjj Zj :N Y — Zrijzi, (22)
=1
where
~ ~ T._ ~1p-11a -~ T
[’I“lj, RN 77nj—1,j} = _rjj ijl[rlj, ce 7Tj—1,j] 5

and 7j; in (22) is chosen so that ||z;]2 = 1. Since ZHZ = [;, the coefficient 7;; in (22)
can be evaluated by

Py =Ny, i=1,,5 - 1
Finally, from (18), the vector y; 1 in the jth step of the generalized T-isotropic Arnoldi
process is given by

]+1 JYi+1 = ICZJ Z hijyi,

where

~

hij = yi' Kz,
and iAzj_HJ > 0 is chosen so that ||y;j+1]2 = 1.

Notice that, in theory, z; and y;41 are orthogonal to J }7] and J Zj, respectively, in ex-
act arithmetic. However, in practice, roundoff errors may cause y;'— JT zj and z;'— J TyjH,
i=1,...,7, to be some nonzero tiny values. Therefore, in order to preserve the T-bi-
isotropic property of Y; and Z;, reorthogonalization of z; against J §7J or y;4+1 against

12



Algorithm 5 [8] The jth generalized T-isotropic Arnoldi step

Input: T-skew-Hamiltonian K and j\Af, upper triangular R(1 : 7 — 1,1 : j — 1),
Y}' = [yl,"' ,yj] and Zj,1 = [21,"' 7Zj71] with }/JHY} = Ij ZjH_le,l = Ij,1
and Y}TJZJ‘,1 =0.

Output: HLLj, s ,hj+1}j], R(l 1j7j>, Yj+1 and Zj-

Solve Nz; = y;;

fori=1,...,7—1do

i =2 25, 2= 2j — iz

end for B

Reorthogonalize z; to JY; as following for-loop in Steps 5-5:

fori=1,...,5 do
I N A . T

sij =Y; J 25, 25 =25 — $i; T Yi

end for

Set. R(j.7) = 121", 2 = R(j.4)z and ]

R(1:j—1,7):=—-R(G, RO :j—1,1:5 =1y, Tj—14]

10: Compute y;+1 = Kzj;

11: fori=1,...,j5 do

122 hy =y, Y = yie1 — by

13: end for -

14: Reorthogonalize y;41 to JZ; as following for-loop in Steps 5-5:

15: fori=1,...,5 do

16: iy =2 T yj41, Yi+1 = Yj+1 — ti; T %

17: end for

18: Set hjr1j o= [[Yj4ll2 and yj1 = i1 /R

Algorithm 6 [8] GTSHIRA for solving Kz = [iNz

Input: T-skew-Hamiltonian matrices IE, N , starting vector y; and shift value 7.
Output: m eigenpairs of (K, N).
1: Use Algorithm 5 with starting vector y; to generate a generalized T-isotropic Arnoldi
decomposition with order m:

KZnw = YoHn+ hm—t—l,mym—klel,
NZny = YuRn.
2: repeat
3:  Use Algorithm 5 to extend the generalized T-isotropic Arnoldi decomposition with

order m to order (m + p):

KZwnip = YmipHnyp + hm+p+1,m+pym+p+le$+pa
NZnip = YuipRuip
4:  Use Krylov-Schur restarting scheme [20, 21] to reform a new generalized T-isotropic

Arnoldi decomposition with order m.
5: until wanted m eigenpairs of (K, ) are convergent

13



Algorithm 7 GE_.GTSHIRA/GE_TSHIRA
Input: matrices F', G, My and My, shift value 7 and the number m of desired eigenvalues.

Output: eigenpairs {(v;, (¥ )T, @E) 1T, (7 LI, @ENTITI, of (1)

where v; + *yj_l for j = 1,...,m are the closest to shift value 7 +771.

1: Compute eigenpairs {(fi;,z; = [ijl, ZL]T) oy of (K,N) by using GTSHIRA or
Compute eigenpairs {(fi;, Z;) }=; of B by using TSHIRA and solve No [z;'—l, Z;B]T = Z;,
forj=1,...,m.

2: Compute eigenvalues «; and 7]71 of TPQEP in (2) by solving
V- )y 1=0;
Compute eigenvectors
1/’5,1]-) =7, 'z — 22, w,(?j) =521 — %52

corresponding to 'yj,'y;17 respectively, for 7 =1,2,...,m.
3: Compute

1 — — 1 1 2 — 2 2
2]? = M;! (% 1FT1/}§,J») " GT%}) : wé,j) = Mt (,ijTwng) n GW{})

forj=1,...,m.

JZ; is needed. Summarizing above processes, we state the jth step of the generalized T-
isotropic Arnoldi process in Algorithm 5. The reorthogonalization steps just mentioned
are Step 5 and Step 14, respectively, in Algorithm 5. Moreover, the GTSHIRA algo-
rithm based on the generalized T-isotropic Arnoldi process is presented in Algorithm 6
for finding eigenpairs of the matrix pair (I, N).

In the above TSHIRA and GTSHIRA algorithms, the main costs arise in computing
w1 = Bu; and solving linear system N'z; = y; at the jth T-isotropic and generalized T-
isotropic Arnoldi steps, respectively. From (14b), (15) and (16), computing these vectors
u;4+1 and z; require to solve the following linear systems

Nivy = by, MNovg = bs. (23)
By the definitions of M and £ in (11), we see that solving (23) is equivalent to solve
(T2A] + 740+ A)vyy = by — b, (24)
vz = —biz — (Ao + TA] Jon,
and
(T2A1 +7Ag+ A Yoy = Doy + (Ag + TA1)bo1, (25)
Va1 = Tv2 — b1,
where v; = [v]],v5] ", va = [vgy,V95] ", b1 = [b]1,b5]" and by = [bg;,bgs] . By the
definitions of Ay and Ay, it holds that
Al +7A0+ Ay = (G+TF)M; Y (FT +7GT) — M, (26)
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and
T2A + 1Ay + A] = (F+7G)My Y (GT +7FT) — rM;. (27)

Let My = LU be the LU factorization of M; and set
Ey=L"1 <iG+F>, By =U"T(F+7Q). (28)
By the Sherman-Morrison-Woodbury formula, (26) and (27) imply that
(FPA] +74g + A1) = f%U* 1+ B (M~ Ef ) ET | L7
and
(P Ay + Ao+ AT) " = —%L‘T [I + By (My— BT By) ™! Eﬂ U,
respectively.

Obviously, from (28), we need m forward substitutions and m backward substitutions
to obtain F; and Ejs, respectively. Furthermore, in addition to the cost in solving small
linear systems (M2 - E;El)fl and (M2 - ElTEg)fl, only two forward substitutions
(L=, U~ ") and two backward substitutions (L~ ", U~!) are required to obtain the so-
lutions of (24) and (25) for generating Krylov subspace at each iterative step. Recall
that, for GE_.SDA and GE_SA, in order to form the matrices Ay and A in (3), one needs
to compute M;'F and M; 'G which require 2m forward and backward substitutions.
Since the shift-and-invert Arnoldi method is known to converge very fast when a proper
shift is known, the overall computational costs of GE_GTSHIRA and GE_TSHIRA, in-
cluding computing F, F5 and solving linear systems in each iterative steps, can be only
about half amount of the computation cost needed in GE_SDA and GE_SA. Our nu-
merical results in Table 5 confirm this observation. Finally, we summarize the process
of applying TSHIRA/GTSHIRA to solve the GEP in (1) in Algorithm 7 and show the
comparison of the computational costs for TSHIRA and GTSHIRA in Table 2.

4. Numerical results

In this section, we tests the above mentioned four types of structure preserving al-
gorithms on computing the dispersion diagram of the frequency that are close to the
stopping frequency of the SAW filter. The piezoelectric substrate of the filter is made of
15° rotated quartz. The configuration of our computational domain is shown in Figure 1
where the domain width AB and height C'D are set to be 107 and 3 x 1079, respectively,
the ratio of the electrode width EF versus the domain width is set to be % and the ratio
of the electrode thickness DE versus the domain height is % In our numerical studies,
the viscous damping coefficient # is set to be 1071* and the mass damping coefficient r
is taken as 1 — k1 to account for the effect from the electrode weight. All computations
are carried out in MATLAB 2010b on a HP workstation with an Intel Quad-Core Xeon
X5570 2.93GHz and 60 GB main memory, using IEEE double-precision floating-point
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TSHIRA  GTSHIRA
M, =LU 1 1
F+¢G 2 2
Compute E7, Fs Solve Lx = by m m
Solve UTy = ¢y m m
Ey By (flops) 2m?n 2m?n
Solve Lz = by, LTy =¢; 1 1
Solve Ux = b, UTy =cy 1 1
T T
jth step Arnoldi | Compute (i ‘f;’pft eczl\élgd% Gle g ‘;
Compute E1dq, Echl, FEsds, E2TCQ 1 1
Saxpy and inner products (flops) 8nj + 15n  16nj + 18n
Schur restarting Matrix product (flops) 2(m+p)?n  4(m+p)n

Table 2: Computational costs for TSHIRA and GTSHIRA.

arithmetic.

Suppose m reciprocal pairs of eigenvalues near U are desired. For TSHIRA and
GTSHIRA, the restart procedure will be activated when the desired eigenpairs don’t
converge before the dimension of the Krylov subspace reaches 5m. This is done by setting
the value of p in Step 4 of Algorithms 4 and 6 to 4m. In the following discussion, we take
m = 5 and the matrix dimensions of C; and C} are n = 63960 and m = 723, respectively.
An example of computed reciprocal eigenpairs near U at frequency w = 1.2757/(27) x 10*°
is shown in Figure 2. The dispersion diagrams of the attenuation constant o and the
propagation constant § associated with the eigenvalue A(w) are shown in Figure 3, for
frequency w around the stopping band, where the eigenpair most close to —1 on the
complex plane is plotted.

4.1. Accuracy of structure-preserving eigensolvers

In this subsection, we compare the accuracy of the eigenpairs, computed by structure-
preserving Algorithms 1, 2 and 7, respectively, for the GEP (8). Recall that the Krylov
subspace U; generated by the T-Hamiltonian matrix B is automatically T-isotropic in
Theorem 3.2, and the subspaces Z; and YV, 11 generated in Theorem 3.4 are automatically
T-bi-isotropic. As mentioned in Subsections 3.3 and 3.4, isotropic re-orthogonalization in
Step 3 of Algorithm 3 and Steps 5 and 5 of Algorithm 5 is important in maintaining the
T-isotropic property. Moreover, Theorem 3.3 and 3.5 both show that the multiplicities
of eigenvalues of (K, ) are all even. In other words, no duplicate eigenpairs need to be
computed theoretically when the T-isotropic property is kept during the computation.
On the other hand, without the isotropic re-orthogonalization process, extra computa-
tion cost can arise in computing the duplicate eigenpairs. We would like to address this
issue by numerical studies shown in the following. We also like to point out that the
accuracy of the computed eigenpairs can be affected by different approaches in isotropic
re-orthogonalization.
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Figure 2: The distribution of the eigenvalues which are close to and inside of U.

First, let us denote the algorithm that applying TSHIRA without the re-symplectic
process as T_NoSymp and the algorithm that applying GTSHIRA without these re-bi-
isotropic processes as GT_NoBilso. In Table 3, the convergent eigenvalues obtained by
T_NoSymp and GT_NoBilso at frequency w = 1.2757/(27) x 1019 are listed. Obviously,
one can see that, in case only two eigenpairs {(A;, A\['), (A2, A\; ')} are needed here, the
algorithms T_NoSymp and GT_NoBilso return four convergent eigenpairs in which two
of them are indeed the duplicated pairs.

T_NoSymp

GT_NoBilso

—0.85175542558 — 0.52335156640¢
—0.85228028786 + 0.52367406214¢

—0.85175542559 — 0.52335156640¢
—0.85228028785 + 0.52367406213¢

—0.85175542557 — 0.52335156639¢
—0.85228028787 + 0.52367406214¢

—0.85175542556 — 0.52335156641+
—0.85228028786 + 0.52367406216¢

—0.98999503056 + 0.004488849992
—1.01008531402 — 0.00457994365¢

—0.98999503056 + 0.004488849992
—1.01008531402 — 0.00457994365¢

—0.98999503056 + 0.00448884999¢
—1.01008531402 — 0.00457994365¢

—0.98999503056 + 0.00448884999¢
—1.01008531402 — 0.00457994365¢

Table 3: Convergent eigenvalues computed by T_NoSymp and GT_NoBilso at w = 1.2757/(27) x 1010,

Next, let’s compare the accuracy of the computed eigenpairs obtained from three
different isotropic re-orthogonalization approaches in GTSHIRA. One or two steps of
re-bi-isotropic process can be performed by the for-loops in Steps 5-5 and 5-5.

To distinguish among various re-bi-isotropic processes, we use notations “Fulllso”,
“zIsoY” and “yIsoZ” defined as follows:

e Fulllso: Algorithm 5 with two for-loops in Steps 5-5 and 5-5.

e zIsoY: Algorithm 5 with one for-loop in Steps 5-5 and omitting for-loop in Steps 5-5.
17
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Figure 3: Dispersion diagrams of a and § near the stopping band.

e yIsoZ: Algorithm 5 with one for-loop in Steps 5-5 and omitting for-loop in Steps 5-5.

To measure the accuracy of computed eigenpairs of (8), we consider the relative
residual of an eigenpair (A, 1)) where 1 = [, ,1,]]T which is defined as following:

Ci CZ[ 0 Ci
L& el @]

Ci Cig Cir
cl oo

0
el | G G

here || * || is the Frobenius matrix norm. The relative residuals of the convergent eigen-
pairs computed by “Fulllso”, “zlsoY” and “ylsoZ” are shown in Figure 4. From the
numerical results in Figure 4, we see that the accuracy of the convergent eigenpairs
computed by “yIsoZ” is higher than those by “Fulllso” and “zIsoY”. This result can
be explained from the accumulation of the errors in the equalities (18) and (19). Let
&k = ||I€Zj - Y]ﬁ] fﬁj+17jyj+1e;||2 and {; N = ||./\7Zj - Yjﬁjﬂg, denote these errors
in the jth iteration. The error &; xy depends on the accuracy of the solution of the linear
systems in (23). If z; is reorthogonalized to J 3_/}, then the error produced by this re-
orthogonization will reduce the accuracy of §; x. Therefore, §; v produced by “Fulllso”
and “zIsoY” are greater than that by “yIsoZ” as shown in Figure 5.(a). On the other
hand, the error {; x only depends on the accuracy of matrix product vector and vector
inner product. Obviously, the amount of &; x is much less than the amount of &; n.
Consequently, even though the accuracy of §; x can reduced by the errors from reorthog-
onalization y;11 to J Zj as shown Figure 5.(b), the reorthogonalization process “yIsoZ”
is much accurate than the “Fulllso” and “zlsoY” reorthogonalization processes.

F

)
¢l
F

Finally, we compare the accuracy of the eigenpairs (A(w), u(w)) obtained from GE_SDA,
GE_SA, GE_TSHIRA and GE_GTSHIRA with "yIsoZ” re-bi-isotropic process. The rel-
ative residuals resulted from these algorithms in computing four reciprocal eigenpairs
(Ni(w),u;(w)), for i = 1,...,4, that are closest to -1 on the complex plane are plotted

18
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Figure 4: The relative residual of the computed eigenpairs produced by different re-bi-isotropic processes
in Algorithm 5 with shift value 7 = —0.99.

in Figure 6 for each frequency w near the stopping band. Obviously, one can see that
the accuracy of the eigenpairs obtained from GE_SDA and GE_SA are higher than those
obtained by GE_TSHIRA and GE_GTSHIRA.

4.2. Comparison with computational costs

In this subsection, we discuss the computational costs of structure-preserving Algo-
rithms 1, 2 and 7 in computing m = 5 desired eigenpairs. Our numerical results show
that the desired eigenpairs are convergent within 5m T-isotropic Arnoldi steps without
restart for GE_TSHIRA and GE_GTSHIRA. On the other hand, it requires total 18
iterations to obtain a convergent Xj in Steps 3.1-3.1 for the SDA algorithm. As we
mentioned in Subsection 3.3, the number of forward and backward substitutions needed
for GE_-TSHIRA and GE_GTSHIRA is only about half the amount of these substitutions
that needed to transform the GEP into TPQEP in GE_SDA and GE_SA. Since only ad-
ditional 25 forward substitutions and backward substitutions are needed in GE_TSHIRA
and GE_GTSHIRA for solving linear systems Lx = b and Uy = ¢, we expect GE_TSHIRA
and GE_GTSHIRA to be more robust than GE_SA and GE_SDA. The following numer-
ical results support this observation.

To give an overall comparison for GE_SDA, GE_SP, GE_TSHIRA and GE_GTSHIRA,
in Table 4, computational intensive items in these algorithms are listed in the first column
and the sums of the CPU times for each associated item are listed in the other four
columns. From the results in Table 4, the dominant computational costs in GE_TSHIRA
and GE_.GTSHIRA are the costs for computing E;, Es, Fy E; and LU factorization of
C;. For GE_SDA and GE_SA, the cost in computing the matrices Ay and A; of the
TPQEP is the main cost comparing to the other costs. Obviously, the numbers shown in
Table 4 indicate that GE_.TSHIRA and GE_GTSHIRA are more efficient than GE_SDA
and GE_SA. We also plot the overall CPU times for GE_SDA and GE_GTSHIRA with

19


ctw
反白


. 500000°°°

NZ-YR
INZ =Y R,

ooooOOOOOOOOOOOO

. . . .
0 5 10 15 20
j-th step

(a) INZ; - Y; R

10
RRRER
10°
o~ oo
= 000000000000
Fam 0 00000000
- 10°F 900
S
3 % zlsoY
£ 107 Fulliso {
I~ O ylsoZ
e
|
N 107
X
-16
ram——l 10 L AAAAAAAAALLLLAALAALALALY
Fulllso ?
O ylsoZ -
T 10’]3 L L L L
25 0 10 15 20 25

j—th step

(b) IKZj = Y;Hj = hj1,5y41¢] |2
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frequency from 1.274/(2m) x 10 to 1.279/(27) x 10'° in Figure 7. From Figure 7, one
can see that the total CPU times needed in GE_.SDA and GE_SA are 40% more than the
CPU time needed in GE_TSHIRA and GE_GTSHIRA for computing 5 desired eigepairs.

TSHIRA GTSHIRA  SDA SA

Compute C; = LU 191.31 191.31 191.31 191.31
Compute Ey, Es, By Ey 243.75 243.75

Compute Ag, A; 533.94 533.94

Solve dense TPQEP 34.145

Solve Lz = by 4.9850 4.9850 1.9940 1.9940

Solve Ux = by 3.9775 3.9775 1.5910 1.5910
Solve UTy = ¢y 33.597 27.998
Solve LTy = ¢; 36.300 30.250
Compute E1d;, E;CQ 4.9150 4.9150
Compute Echl, FEsds 5.7930 4.8275

Table 4: CPU times (sec.) for GE_.TSHIRA, GE_.GTSHIRA, GE_SDA and GE_SA.

5. Conclusion

In this paper, we have discussed the structure-preserving methods for solving the
generalized eigenvalue problem arising in the surface acoustic wave propagation on a
simple resonator with an interdigital transducer (IDT) where electrodes are arranged
periodically on piezoelectric substrates (PZT) such as 15° rotated Quartz. With given
periodic boundary conditions, the eigenvalues of the GEP appear in the reciprocal pairs

(A, A1),

In order to preserve the reciprocal relationship of the eigenvalues, the GEP

is transformed to two types of T-palindromic quadratic eigenvalue problems, one with
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Figure 6: Relative residuals for GE_SDA, GE_SA, GE_TSHIRA and GE_GTSHIRA with shift value
T = —0.89.

large coeflicient matrices and the other with small coefficient matrices. The structure-
preserving algorithms GE_SDA and GE_SA in Algorithms 1, 2 are employed to solve the
TPQEP (3) with small-size coefficient matrices and GE_-TSHIRA and GE_.GTSHIRA in
Algorithms 7 are employed to solve the TPQEP (4) with large-size coefficient matrices.

In finding the five eigenpairs that are near U and close to -1, we observed duplicate
eigenpairs appear when applying GE_TSHIRA and GE_GTSHIRA without re-symplectic
and re-bi-isotropic processes, respectively. On the other hand, no duplicate eigenpairs are
observed when re-sympletic and re-bi-isotropic processes are integrated in GE_TSHIRA
and GE_GTSHIRA. Three different re-bi-isotropic processes in GE_GTSHIRA has been
tested. We have found that using the re-bi-isotropic processes in Steps 5-5 of Algorithm 5
achieves the best accuracy. Moreover, our numerical results show that the relative resid-
uals of the eigenpairs produced by GE_SDA/GE_SA and GE_TSHIRA/GE_GTSHIRA
can be less than 1077 and 107'5, respectively. Although the accuracy of GE_SDA
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Figure 7: CPU times for GE_.SDA and GE_GTSHIRA.

and GE_SA is marginally higher than that of GE_TSHIRA and GE_.GTSHIRA, we fur-
ther found that the total CPU times required for computing the five desired eigepairs
by GE_SDA and GE_SA are about 40% more than that are required by GE_TSHIRA
and GE_GTSHIRA. Therefore, by transforming the GEP into the TPQEP (4), the
structure-preserving Arnoldi type algorithm GE_TSHIRA or GE_GTSHIRA with one
"re-sympletic” or 7 re-bi-isotropic” processes provide an accurate and efficient way in
finding the reciprocal eigenpairs of the GEP (1).
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Abstract

We study the generalized eigenvalue problems (GEP) arising from modeling
leaky surface waves propagation in a acoustic resonator with infinitely many pe-
riodically arranged interdigital transducers. The constitution equations are dis-
cretized by finite element method with mesh refinement along the electrode in-
terface and corners. The associated GEP is then transformed to a T-palindromic
quadratic eigenvalue problem so that the eigenpairs can be accurately and ef-
ficiently computed by using a structure-preserving algorithm incorporating a
generalized T-skew-Hamiltonian implicity-restarted Arnoldi method. Our nu-
merical results show that the eigenpairs produced by the proposed structure-
preserving method not only preserve the reciprocal property but also possess
high efficiency and accuracy.

Key words: Leaky SAW, structure-preserving, palindromic quadratic
eigenvalue problem, GTSHIRA, mesh refinement

1. Introduction

Waveguide devices have been widely used in controlling and interconnecting
guided electromagnetic waves. Advances in the thin film technology and efficient
transducers further encourage investigations on more sophisticated waveguide
concepts in acoustic system. Acoustic wave guide devices are widely employed
in applications including telecommunication filters [8, 25] and sensor technolo-
gies [2]. One of the basic element in most acoustic wave filters is a resonator
which generally consists of reflectors externally coupled through one or two
interdigital transducers (IDT). The IDT is primarily made by depositing pe-
riodical metallic grating electrodes on a piezoelectric film substrate as shown

*Corresponding author. Tel: 4+886-3-5712121-ext-56424
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in Figure 1(a). Extensive theoretical and experimental works have been done
specially on the Rayleigh surface acoustic wave [4, 9, 24, 25]. Finite element
simulations of piezoelectric devices in two dimension (2D) and three dimension
(3D) have been studied by Allik, Koshiba, Lerch, Buchner, Mohamed and oth-
ers etc., [1, 6, 17, 19]. In the filter design, it is important to know the stop
band width and the center frequency f. of the filter where f. = vs/A; here vy
and \s are the wave velocity and wave length of the incident wave. The center
frequency and stop band width can visually be determined by plotting the dis-
persion diagram in which an eigenvalue problem associated with each frequency
in the search range has to be solved.

Due to slower propagation velocity of the Rayleigh SAW, filters based on
Rayleigh SAW design are usually limited to an operational frequency range less
than 1GHZ. For frequency higher than 1GHZ, more recent attention has been
paid to the so-called leaky surface acoustic wave (LSAW) because of its faster
propagation speed in crystal cuts such as 64° YX-LiNbOj3 and 36° YX-LiTaOs,
and higher electromechanical coupling and minimal propagation loss in crystal
cuts such as 40° ~ 42° YX-LiTaOj [8]. Searching a better crystal cut among
various piezoelectric substrates (PZT) to increase LSAW velocity becomes one
of the major issues in high frequency filter design. For each crystal cut, one has
to solve many eigenvalue problems to plot the dispersion diagram. An efficient
and accurate algorithm for solving eigenvalue problem resulted from mathemat-
ical model of a LSAW resonator is desired.

The eigenvalue problem obtained from the finite element modeling of the
SAW or LSAW resonance can be represented as

BRI R ()

where MlT = M; € C™*™, M2T = My € C™™, F and G € C"*™ with
m < n, and the supscript “T” denotes the complex transpose. The scalar
A € C is called the eigenvalue of (1) and the nonzero vector [ o) ]T is
the associated eigenvector. The generalized eigenvalue problem (GEP) (1) can
be reformulated into a T-palindromic quadratic eigenvalue problem (TPQEP)

of the form
PN = (WWA] + Ao + A1) =0 (2a)
with
Al = FM;'GT, Ay=FM;'F" +GM;'G" — M. (2b)
By taking the transpose of P(\) in (2a) and multiplying it by 1/)\? it is easily

seen that the eigenvalues of P(\) appear in reciprocal pairs (A, 1/A) (including
0 and o0).



The GEP (1) can be solved by traditional methods such as the QZ and
Arnoldi method. However, the reciprocal property of the eigenvalues of (1) can
be destroyed easily and large numerical errors can be generated in computation
[16]. To remedy the drawback, we transform the GEP (1) into the TPQEP (2a)
so that the desired eigenpairs can be computed by structure-preserving meth-
ods [11, 13, 15, 21, 22, 29, 30]. For solving the TPQEP with small and dense
coefficient matrices Ay and Aj, a structure-preserving doubling algorithm for
solving (2a) was developed in [11] via the computation of a solvent of a nonlinear
matrix equation associated with (2a). Another structure-preserving algorithm
based on (S + S™!)-transform [20] and Patel’s approach [27] was developed
in [15]. For problems with large and sparse matrices Ag and Aj, a structure-
preserving algorithm using the (S + S~!)-transform and the implicity-restarted
shift-and-invert Arnoldi method was also developed for searching eigenvalues in
a specified region of interests [15].

In this paper, we apply the generalized T-skew-Hamiltonian implicity-restarted
Arnoldi method developed in [15] to solve the TPQEP (2a). Based on the shift-
and-invert technique, the desired eigenpairs can be easily extracted. For solv-
ing the linear systems, although the coefficient matrices Ag and Ay in (2b) is
large but not sparse, we derive a new formula by using the Sherman-Morrison-
Woodbury formula so that the corresponding linear system can be efficiently
solved. Comparing with the traditional Arnoldi method, our proposed structure-
preserving method not only preserve the reciprocal property but also possess
high efficiency and accuracy.

This paper is organized as follows. We shall first introduce finite element
modeling for a simple resonator in Section 2. In Section 3, we introduce the
efficient structure-preserving algorithm to solve the large and sparse generalized
eigenvalue problems resulted from our FEM model. Our numerical experiments
in Section 4 show that the proposed structure-preserving algorithm for solving
the GEP in (1) is efficient and accurate. Finally, we conclude the paper in
Section 5.

2. Finite Element Model for SAW

In contrast to the well known Rayleigh waves which consists of partial lon-
gitudinal waves and shear waves, the LSAW mainly propagates in the shear
direction on the sagittal plane and is trapped at substrate surface and satis-
fies the stress free boundary condition on the surface. These properties allow
one to reduce the general mode analysis in 3D to a 2D problem as shown in
Figure 1(b) [28]. Furthermore, the boundary conditions for displacement can
naturally be set to be rigid on the bottom boundary and stress-free on the top
surface, and the boundary conditions for the electric potential can be set to be
short-circuited for the electrodes on the top boundary and open-circuited else-
where [10]. As proved in Auld’s book [4], these boundary conditions guarantee
the mode orthogonality and further ensure the mode excitation is determined



Piezoelectric substrate /

(a) A standard configuration of SAW res- (b) A 2D model of a LSAW resonator on the
onators sagittal plane

Figure 1:

by the applied traction force and potential on the free surface. Therefore, on
the sagittal plane, the usual 2D mode analysis can be applied to analyze the
LSAW on the resonators with IDTs. In the following, we only consider the
LSAW resonator on a 2D plane (the sagittal plane associated with crystal cuts).

To model the wave propagation in an infinite domain with periodically ar-
ranged electrodes, thanks to the Floquet-Bloch Theorem, one can reduce the
problem to a single cell domain with one IDT by assuming the wave 1) is quasi-
periodic of the form ¥(z1,z2) = ¥, (1, 22)e( @21 where z; is the wave prop-
agation direction, p is the length of the unit cell (i.e. the periodic interval), «
and [ are the attenuation and phase shifts along the wave propagation direc-
tion, respectively, and v, satisfies ¥,(21 + p,22) = ¥p(21,22). Let € denote
the PZT with a single IDT as shown in Figure 2, and I'; and I',. denote the left
and right boundary segments of §). For the general anisotropic PZT substrates,
under the assumption of linear piezoelectric coupling, the elastic and electric
fields interact following the general material constitutions below

T=cPS—¢'E,

3
D=eS+e%E, 3)

where vectors T, S, D and E are the mechanical stress, strain, dielectric dis-
placement and the electric field, respectively, and the matrices ¢, % and e are
the elasticity constant, dielectric constant and piezoelectric constant matrices
measured at constant electric and constant strain fields at constant temperature.
For various crystal cut of the PZT, the material constant matrices ¢, £° and
e depend on the Euler angle 6 of the cut. By applying the Bond strain trans-
formation matrix Ny [5] and the usual coordinates transformation matrix My
to the strain field and electric field, respectively, the material constant matrices
for the cut angle 6 can be obtained by

= [Ng]"cf [Ng], e:=[My] eo[Ny], and, &% :=[Mjy] e§[My],



E F Boundary conditions on boundary segments T':

c—IL 1 H
B G Open circuit condition D - n=0on L, = E, @, GH
Short circuit condition ¢|1_5 =g, onl, =DE,EF,FG
Q2 Stress free condition T-n =0 on r, = CD,DE, EF,FG, GH
Rigid boundary condition q|l_5 =0onT, = AB
A B

I,=AC,T,=BH
Figure 2: A 2D single cell domain of a LSAW resonator and boundary conditions

here c¢f’, ey, and &5 denote the material constant matrices of the crystal cut at
Euler angle 6 = [0°,0°,0°].

By applying the virtual work principle to the equation (3), the equilibrium
state under the external body force f, the electrical field g and the above men-
tioned boundary conditions of the LSAW resonator, we have

/ [65]TCE[S)dV + / [65]Te T [Vo]dV + / [Vég) e[S dV
Q Q Q
- / [Vég] %[V dV + / 8q " pidv

Q Q

:/5qdev+/ [Va¢}ngv+/ 6qT(T~ﬁ)dA+/ 5¢" (D - ) dA.
Q Q T,ur, rur,
(4)

Here, p is the mass density, 7 is the boundary normal, ¢ = [u,v,w]" is the
displacement vector, ¢ is the electric potential that satisfies Vo = E, § =
[Qu v dw Dvy dw Dw Ju Juy 9v)T and g, §¢ and 35S are the corresponding

Oz’ 9y’ 0z 9z " Oy’ 0z " 0z’ Oy ' Ox

virtual displacement, potential and strain vectors, respectively. The equation
can then be discretized by finite element method [1, 10]. Following the usual
free mode analysis, we consider f = 0, ¢ = 0 and a time harmonic quasi periodic
solution vector 9, (z,t) = ¥(x)e™t. The spatial function ¢ (z) = [¢(z), #(x)] sat-
isfies the boundary conditions shown in Figure 2 in which the periodic boundary



conditions, proposed by Buchner [6],

Y = Y(x1 +p,x2) = yP(1,72) = YY1, (5)
T.-n, = T(W) np=—T() ng=—~T; ny, (6)
Dr Ny = D(wr) Ny = _’YD('IZJZ) Ny = _’yDl s ny, (7)

are enforced on the left and right boundaries, I'; and T, here n; and n,. are the
normal vector of I'; and I, respectively and v = e~ (@+%) By plugging 1., into
(4), the equation can be rewritten in the following matrix form:

K9 —w?Mu K 1[q) [ F+F, (8)
Ko ke | T+ |
where

K9 = / 8q" BECPBgqdv, M = / 3q"pgdV, and K% = / 3¢ By eBsqdV,
Q Q Q
Kq¢:/5qTB§eTB¢¢dV and K¢q:/6¢TB;€Bsqu7
Q Q

F = / 8¢ Ty dA and F, = / 5q " T, dA,
Fl F'r

Q= | 6¢"DijdA and Q, = / 8¢ " Dyt dA,
Iy T,
) o o 17
z 000 0 g .
and the matrices Bs = | 0 a% g % g 5 and By = [ a% 8% % } i
0 0 £ & £ 0

Mechanical damping effects can also be considered by using the Rayleigh damp-
ing assumption in which the matrix K9 — w?M9% in (8) are modified into
K99 +4w(k1 K99 + ko M) — w?M99. Here k1 and ko are coefficients associated
with the viscous damping and mass damping, respectively.

To obtain the palindromic quadratic eigenvalue problem associated with the
propagation parameter v, following Hofer’s approach [14], the nodal unknowns
are splitted into the inner nodes v¥; = [g;, ¢;], the left boundary nodes v, =
[q:, @] and the right boundary nodes ¥, = [¢;, ¢»]. The matrix equation (8) can
be recasted into the following form:

K Ki K; Vi 0
K; Ky K | = | R |, 9)
Kri Krl Krr w?” RT

here R; and R, are vectors obtained from the discretization of the terms F; 4+ Q;
and F,. + @, respectively. From the periodic boundary conditions (5), (6) and
(7), (9) becomes

Ky Ky K; I 0 " 0
K; K; K 0 I { 1/; } = I R;. (10)
Ky K. K. 0 ~I ! I



Furthermore, by multiplying the matrix
I, 0 0
O ’)/Il Il
to (10), the GEP associated with the propagation parameter 7 is obtained:

Ki K; 0 K; ¥ | _
(Lxs & Tl wlie D)o o

Since the viscosity is small for most crystalline solids, the attenuation factor
« is close to zero. As a result, the propagation factors A near the unit circle,
denoted by U, is desired. Moreover, for the frequency w in the stopping band,
the frequency shift parameter § shall be close to @ when the periodic interval
p (i.e. the domain width here) equals to half of the incident wave length Ag.
Therefore, for the eigenvalue problem (11), we are interesting in finding the
eigenvalues A close to U, especially for those are near —1 on the complex plane.

Notice that the nonzero eigenvalues of (11) appear in the reciprocal pairs
(A, 1/X). The reciprocal relation is very sensitive to numerical errors when they
are close to U. On the other hand, it is well known that the solution of a general
elliptic problem have singularities around corners [12] and, in addition, the solu-
tion may become less regular near the interface between the electrode and PZT
substrate. It is inevitable that the error from discretization may be amplified
in computing the reciprocal pairs. Therefore, it is important to minimize the
accuracy deterioration due to singularities and lower regularity in finite element
solutions. One can resolve the singularity by constructing the singular elements
in which the mesh points are clustered to the singular source according to the
order of the singularity [3]. In our calculation, we simply employee the locally
refined meshes. An additional benefit from using the locally refined meshes is
that we can discretize equation (8) using linear elements instead of using high
order finite element discretization [6]. However, drawbacks include (i) the ma-
trices from the discretization of (8) is large and sparse and (ii) the sparse pattern
of the matrices is unstructured. These make the efficient computation of eigen-
values for large GEP in (11) a challenge. Moreover, for pizoelectric crystals,
the elastic constant matrix c¥ is 1020 greater than the electric constant matrix
e%. To compute the eigenvalues and eigenvectors, proper scaling between the
mechanic field and the electrical field is required. Hence, the eigen solutions ob-
tained from the scaled problem must be accurate enough in order to disregard
the round off error in the re-scaling process. Therefore, for solving the large
sparse eigenvalue problem (11), an efficient algorithm, not only preserves the
reciprocal eigen-structure but is also accurate enough to prevent error amplifi-
cation from rounding and discretization, is desired. In the next section, we shall
introduce an efficient structure-preserving algorithm that ensure the accuracy
of the eigen-curves A\(w) and the associated eigenvectors of (11).



3. Structure-preserving Arnoldi-type Algorithm

To compute the eigenvalues of the GEP in (11) derived from SAW filter,
one can apply traditional eigensolvers such as LAPACK [14]. However, as the
GEP is large and its sparse pattern is unstructured, the traditional eigensolvers
are not efficient and the eigenvalues obtained are not guaranteed to satisfy the
reciprocal relationship. In this paper, since only the eigenvalues closed to U are
of interest, we choose iterative methods to find the eigenparis. Our numerical
results in Section 4 show that the proposed algorithm converges efficiently in
only a few steps and is very accurate in computing the reciprocal eigenpairs.

Observing that the imaginary part of Ky + K, in (11) is symmetric and
positive definite, by Bendixson Theorem, K;; + K, is invertible. The second
equation of (11) gives

1
Y = —;(Ku + Kp) K — (K + Kpn) " K . (12)
Letting

M, =Ky, Mo=Ky+ Ky, F=K;, G=Ky, v =19;, A\=1, (13)

and substituting (12) into the first equation of (11), we obtain the TPQEP in

(2).

To solve (2) in a structure-preserving way, we first transform the TPQEP in
(2a) into a T-skew-Hamiltonian pencil (X, N') through the following procedure:

(i) The TPQEP is linearized into a special GEP [15],

(M= AL) { z } =0, (14)
where A\y = Az, and
A 0 |0 I
we[ A 0] e[ 1] -

The reciprocal eigenpairs (A, 1/)) are kept in the matrix pencil (M, L) be-
cause the matrix pencil M — AL is T-symplectic, i.e., it satisfies MTM T =

T _ 0o I,
LTL wherej—[_l.n 0 |

(ii) Using the (S +S8~!)-transform, the matrix pencil M — AL is further trans-
formed to a T-skew-Hamiltonian pencil X — uN, ie., (KJ)T = —KJ,
(NI)T = —NJ and p is the eigenvalue of the pencil:

K—puN=[(LIM + MILY) —puLgrl"| T". (16)



From the relationship g = A+ 1/X , one can relate the two eigenvalues A
and g and further implies that the multiplicity of the eigenvalue u is even.

(iii) Let 7 be a shift value and 7 ¢ o(M, L) where o(A, B) denotes the set of
all eigenvalues of any matrix pair (A, B). Since pg =7+ 1/7 ¢ (K, N),
one can define the shift-invert transformation K — ﬂ/\A/' for K — pN with
fi = (1~ po)~" where

~ Al 0
=-TN=r [ 01 A } ; (17a)
N=—1(K=poN)=M=7£)J (M =7£") T, (17b)

and K and ./\7 are | -skew-Hamiltonian.

The relationship between eigenpairs of the TPQEP in (2) and the T-skew-
Hamiltonian pencil (K, ) in (17) is stated in the following theorem.

Theorem 3.1. [15] Let (K, N) be defined in (17) and 7 be a shift value with
¢ o(M,L). If z, = [2], 25 )7 with 21,2, € C" is an eigenvector of (K, N)
corresponding to eigenvalue [i and v satisfies T + % + % =v+ %, then z1 + %22
and z1 +vzo are eigenvectors of the TPQEP in (2) corresponding to eigenvalues
v and %, respectively.

Next, from the definition of A in (17b), A can be factorized as N = N7 N5,
where

M=M-7L, No=TFM" —7£NHT" (18)

are nonsingular and satisfy Ny’ J = JN;. Let B = ./\/'1_116./\/'2_1 and u; be an
initial vector. Define the Krylov matrix with respect to u; by

Kn = Kn[B,ul] = [’U,l, Bul, ey, B”flul].

The following Theorem 3.2 guarantees that the Arnoldi process can be exe-
cuted in a way that the T-skew-Hamiltonian structure of the matrix pencil is
preserved. As a result, a generalized T-skew-Hamiltonian implicity-restarted
Arnoldi (GTSHIRA) algorithm proposed in [15] can be employed to solve the

eigenvalue problem Kz = N z.

Theorem 3.2. [15] Let B = Ny ' KN with N' = Ny Ny be T -skew-Hamiltonian
and K, = K,[B,u1] be the Krylov matriz with rank(K,) = n. Then there
are unitary matrices U and V satisfying V = J UT, Ue; = uy and Ve, =
Ny /||Niug||2 such that

PN H, § ~ R, T
VKU = o2 VINU = noon 19
0 HI 0 R (19)




where fI@\ 18 unreduced upper Hessenberg, ﬁn is nonsingular upper triangular
and Sy, T, are T-skew-symmetric.

Finally, the unitary matrices &/ and V in Theorem 3.2 can also be gen-
erated in a structure-preserving way (GTSHIRA) as follows. Recall that the
T-bi-isotropic orthonormal matrices Z\j,?j € C?"*J are computed iteratively
according to the following structure-preserving Arnoldi process:

IEZJ- = }A’JfIJ +ﬁj+1,j§j+1e;‘r (20)

and
NZ,-VR, (21)

with
VHG =0 and  Z] Jg1 =0, (22)

where H. i ﬁj € C/*J are unreduced upper Hessenberg and nonsingular upper
triangular, respectively. By defining U; = [Z—, —j}/}j} and V; = {}/}J, —jZ\j}

where }A/J and Z\j denote the conjugate matrices of EA’] and Z\j, respectively, it is
easily seen that

R, TR,

H, —VERJY;
7 DT
R;

T
0 H;

VIKU; = . VINU; =

which implies that the T-skew-Hamiltonian property is preserved in each itera-
tion step.

Notice that Theorem 3.1 indicates that although the number of the eigen-
vectors associated with the eigenvalue p is even, only half of the eigenvectors are
needed to extract all the eigenvectors corresponding to the eigenvalues v and %
Furthermore, through the above mentioned structure-preserving Arnoldi pro-
cess, the T-skew-Hamiltonian structure of the matrix pencil in Theorem 3.2
is preserved and the even multiplicity of the eigenvalue p is automatically ob-
tained. Therefore, the required halves of the eigenvectors associated with the
eigenvalue p can be easily computed when the desired eigenpairs are conver-
gent. In fact, the desired eigenpairs (ji;, z;) of (K, N') can be computed from the
matrix pair (ﬁj,ﬁj) with ﬁjéi = ﬂiﬁjéi and z; = Ejéi. From Theorem 3.1,
one can compute the desired eigenpairs of (M, L) from (fi;, z;) and preserve the
reciprocal relationship of the eigenvalues of the GEP algebraically.

We summarize the above procedures for computing the reciprocal eigenpairs

of the GEP (11) in Algorithm 1. Notice that, in step 1 of the Algorithm 1, the
linear systems

Nivy = b1, Novy = by, (23)

10



have to be solved in order to obtain Zj from (21). This is indeed the most
time-consuming step in the proposed structure-preserving algorithm. In the
following, we discuss how to solve (23) efficiently.

Algorithm 1 Structure-preserving algorithm for solving GEP (11)

Input: matrices F', G, Ms and My, shift value 7 and the number m of desired
eigenvalues.

Output: eigenpairs {(v;, [(zpflj))T (v IJ)
the GEP in (11) where v; + v, ! for
value 7 + 771

1: Compute eigenpairs {(i;,z; = [z}}, 2] ")}, of (K,N) by using GT-
SHIRA.
2: Compute eigenvalues ; and 'y% of TPQEP in (2) by solving

), (L L@ T @) TIT Y, of
=1

1T
J .,m are the closebt to shift

V- (T 1 =0;

Compute eigenvectors

1 1 2
vy = ;LT F U3 =2 = 2

corresponding to %7 o , respectively, for j =1,2,...,m
3: Compute
1 - - 1 1 2 2 2
forj=1,...,m

By the definitions of M and £ in (15), we have

|:I —71 T2AT+7'A0+A1 0 :|

0 I } (M=7L) = [ CAg—rAT - (242)

and

I —Ay—TA T2A + 1A+ A 0O
|: 0 OI 1 :l (MT—TET) — l: 1 77]0 1 7[ . (24b)

From (18) and (24), we see that solving (23) is equivalent to solve

(T°A] + 740+ A)oir = by — 7hia, (25)
vig = —biz — (Ag + TA] )u11,
and
(T2A1 —+ TA() —+ AI)'UQQ = b22 -+ (AO -+ TAl)bgl, (26)
Va1 = TU22 — bay,

11



where v; = [v]],v15] ", V2 = [Vgy, V9] T, b1 = [b]},b]s] T and by = [bJ;,bs5] T. By
the definitions of Ag and A, it holds that

72A1T+TA0+A1 = (G+TF)M2_1(FT +7'GT) —7M; (27)
and
T2 Ay +7Ag + A = (F+7G)M; (GT +7F") — 7M. (28)

Since the bandwidth of the matrix M; can be greatly reduced by reordering
the unknowns as shown in Figure 3, the LU factorization of M; = LU can be
computed efficiently. Set

1
E,=L" (G + F) , Ey=U"T(F+71G).
T

By the Sherman-Morrison-Woodbury formula, (27) and (28) can be further
factorized as following,

(PPA] +7do+ A) = -l B BT L

T

. .
__yt [I+E1 (Mz — Ej Er) 1E2T] L™, (29)
T
and

_ 1 _
(r2A, +T4Ag + A]) ' = ——L7T [I 4By (My— B By) Eﬂ U-T. (30)
Now, obviously, the solutions of (25) and (26) can be obtained by two forward
substitutions (L~1), two backward substitutions (U~!) and solving small linear
systems (Mg — E;El)fl and (M2 — ElTEg)fl. As a result, Algorithm 1 is very
efficient.

4. Numerical results

In this section, we firstly conduct numerical results to validate the conver-
gence for our finite element model. Secondly, we report the numerical compar-
isons with our structure-preserving method and the traditional Arnoldi method
for solving the GEP (11) to demonstrate the accuracy and efficiency of the pro-
posed eigenvalue solver. All computations are carried out in MATLAB 2010b
on a HP workstation with an Intel Quad-Core Xeon X5570 2.93GHz and 60 GB
main memory, using IEEE double-precision floating-point arithmetic.

To make our numerical computation reliable, first, we scale the displacement
field ¢ and potential field ¢ by 10~° and 10°, respectively, and scale the mass
density p accordingly. The entries of the stiffness matrices K99, K¢, K9 and
K?? and the mass matrix M9 are about the same order (close to O(1)) after
the scaling. Secondly, we reorder the interior nodes so that the matrix M; in
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Figure 3: Sparsity of matrix Mj.

(13) has narrower band structure. As a result, the LU factorization of My can
be computed easily and solutions of the linear systems in (25) and (26) can be
obtained efficiently from (29) and (30). The sparsity patterns of the matrices
M obtained from FEM descritization on a locally refined mesh are shown in
Figure 3.(a) without nodal reordering, and shown in Figure 3.(b) with nodal
reordering. A mesh that are locally refined twice near the interface over an
uniform mesh is shown in Figure 5.

The configuration of our computational domain shown in Figure 2 is as
follows. The domain width AB and height C'D are set to be 1076 and 3 x 1076,
respectively. The ratio of the electrode width EF versus the domain width is set
to be % and the ratio of the electrode thickness DE versus the domain height is
%5. The material constants of LiTaO3 and LiNbO3 are taken from measurements
obtained by Kushibiki, Takanaga and Sannomiya [18]. Also, it has been shown
that the viscous damping coefficient k1 =~ O(1078) in the 10 KHZ operation
range and x; ~ O(1071%) in the MHZ operation range for a family of PZT
materials [23, 26]. In general, k1 depends on the operation frequency w. The
viscous damping coefficient is extrapolated to GHZ operation range according
to the reciprocal rule k1 % [7]. In our numerical studies, the viscous damping
coefficient 1 is set to be 104 and the mass damping coefficient x5 is taken as
1 — k1 to account for the effect from the electrode weight.

4.1. Accuracy and convergence of finite element approximation

Firstly, we show that our finite element model gives accurate results in pre-
dicting the center of stopping band of LSAW on the filters with aluminum elec-
trodes on top of piezoelectric substrates 36° YX-LiTaOg and 64° YX-LiNbOs.
The dispersion diagrams of the attenuation constant « and the propagation
constant  associated with the eigenvalue A(w), that is most close to —1 on

13
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Figure 4: Dispersion diagrams

the complex plane for frequency w around the stopping bands, are shown in
Figure 4(a) and Figure 4(b) for crystals 36° YX-LiTaO3 and 64° YX-LiNbOs,
respectively. A typical shear wave displacement associated with the eigenvector
of the computed eigenvalue is shown in Figure 5.

Figure 5: A shear wave displacement.

In order to measure the convergence of the eigenvalues, tests over three
successively refined meshes with initial mesh size h = % are performed. The
dimensions of matrices M7 and My associated with uniform meshes and locally
refined meshes are list in second and third columns of Table 1, respectively. We
set A[j¢) to be the eigenvalue obtained from meshes with mesh length p/(10 x 7).
Here the index £ = “u” and & = “¢” denote the mesh is uniform without and with
local refinement, respectively. Using A6, as exact value, the convergence of

eigenvalues can be verified from [A[16,u) — Aji,u)| and [Aq16,u) — Ap,g| for i = 2,4, 8.
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Figure 6: Distribution of eigenvalues for 64° YX-LiNbO3 at frequency 2.180 GHZ.

The values of |/\[16,u] — >\[i,u]| and |/\[16,u] — )\[i7g]| (i =2,4,8) for 36° YX-LiTaOg3
and 64° YX-LiNbOj at w, and w, are shown in Table 2 where ws and w, are
the frequencies for which the stopping band starts and ends, respectively. From
Table 2, it can be seen that the accuracy of eigenvalue is increased as the
mesh length being reduced and is improved by using locally refined meshes.
Moreover, it is known that the wave propagation velocity is about 4112m/s
for 36° YX-LiTaO3 and about 4478m/s for 64° YX-LiNbOs. Since the domain
width p = 1 x 1079, clearly, the center of the stopping band is about 2.056 GHZ
and 2.239 GHZ, respectively. We compute the center of the stoping band by
averaging w, and w, on different mesh lengths and show it in Table 3. Obviously,
one can see that the central frequency is monotonically converged to a constant
when the mesh length is reduced. The numerical error from our finite element
simulations is less than 0.2% and 1.2% for 36° YX-LiTaO3 and 64° YX-LiNbOs,
respectively.

4.2. Comparison of Algorithm 1 and traditional Arnoldi method

From Tables 2 and 3, we already show that the accuracy of the computed
eigenvalues and central frequency of stopping band obtained from the locally
refined mesh with mesh length p/80 is almost the same as those obtained from
uniform mesh with mesh length p/160. Therefore, in the following numerical
computations, we only consider the coefficient matrices in the GEP (11) that
are generated by the finite element discretization on the mesh that is locally
refined twice over the uniform mesh with mesh length p/80.

Let the pair (Ak,7,Ak,0), K =1,..., N, denote the reciprocal pairs of eigen-
values of (11) where A ; and Mg o lie inside and outside U, respectively. Fig-
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Uniform Local refine

mesh length M, Ms M, Ms

/20 3554 183 | 4968 183

p/40 14548 363 | 17192 363

p/80 58856 723 | 63960 723
p/160 236752 1443

Table 1: Dimension information of matrices M7 and Ms obtained from FEM discretization

36° YX-LiTaOsg 64° YX-LiNbOj3
w (GHZ) ws =2.028 we =2.075 | ws =2.177 w, = 2.257
N6 — MNawg] | 00222 0.0161 0.0955 0.0797
Miow] — Azl | 0.0178 0.0141 0.0857 0.0751
Mi6] — M| | 0.0076 0.0056 0.0299 0.0458
[A[16,u] — A4, 0.0036 0.0042 0.0166 0.0329
Ao — Asag| | 0.0016 0.0015 0.0060 0.0087
6w — Asgl | 0.0001 0.0006 0.0007 0.0016

Table 2: The values of [A[16, 4

— Ali,¢g)| for different mesh lengths at frequencies ws and we.

mesh length | hy =85 | he =15 | hu =& | v =45 | hu = 155
f LiTaO3 | 2.05246 | 2.05222 | 2.05206 | 2.05191 | 2.05183
¢ | LiNbO3 | 2.21623 | 2.21464 | 2.21385 | 2.21305 | 2.21305

Table 3: Computed center frequency f. (GHZ) of stopping bands of LSAW on various meshes.
Here, h,, and h, denote the mesh length of meshes without and with local refinement, respec-

tively.
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ure 6 displays the eigenvalues {A17,..., 9.1, A1,0,.-.,A5,0} of the LINbO3 at
frequency w = 2.180 GHZ in which reciprocal pairs (Mg 1, Ak,0) for k=1,...,5
close to U may be of interests. The notation Q()\) represents the set of all the
eigenvalues that cluster at the origin of the complex plane. Suppose 2N eigen-
values near U are desired. The Arnoldi process in (20)—(21) for GTSHIRA is set
to restart if the desired eigenpairs are not convergent when the dimension j of
the subspace span{Y;} grows more than 5N. The number of restarting Arnoldi
process is denoted by “#lter” in the following.

A standard iterative approach for solving the GEP (11) is to apply Arnoldi
method on the equation directly. However, the reciprocal property of the eigen-
values is not guaranteed to be preserved in the computation. For Algorithm 1,
based on the (S 4+ S~!)-transform, if A and p are the eigenvalues of (11) and
(16), respectively, then A\ and p satisfy the relation p = A + A~1. As a result,
we can obtain the k-th reciprocal pair (Mg 1, Ak,0 = 1/Ag,1) by solving the al-
gebraic equation pp = g1 + )\,;11 after the k-th eigenvalue pp of Kz = uNz
is computed. Hence, the reciprocity is automatically preserved. Two numer-
ical comparisons on preserving reciprocal property, between Algorithm 1 and
traditional Arnoldi method, are listed in the following where eigenvalues of 64°
YX-LiNbO3 at frequency w = 2.180 GHZ are computed.

e Traditional Arnoldi method does not guarantee that half of the computed
eigenvalues lie inside of the unit circle and the others are outside. For
example, when we use Arnoldi method to compute four eigenvalues (i.e.,
2N = 4) of (11) which are near —1, the four convergent eigenvalues are
A1,1,A1,0, A2,7 and Az ;. Clearly, the reciprocal property of eigenvalues is
lost.

e Suppose one wants to compute the five reciprocal pairs (Mg 1, Ax,0) for
k =1,...,5. As shown in Figure 6, no matter what shift value 7 is
chosen, there exists some k* € {1,...,5} such that the eigenvalues in
O() are closer to 7 than the eigenvalue g+ ; or A\g» 0. As a result, the
eigenvalue Ag« r or Agx o would not be discovered by the Arnoldi method.
For example, if we take a shift value 7 = —2.89, then the desired reciprocal
pair (As,7, As5,0) near U can not be discovered by the Arnoldi method. On
the contrary, in Algorithm 1, according to the relationship = A 4+ A71,
the eigenvalue p of Kz = pN z is far away from the shift value 7+1/7 when
A is closed to the origin. Naturally, Algorithm 1 will not converge to those
unwanted eigenvalues in O(X). As a result, all the desired eigenvalues can
be discovered more easily by Algorithm 1 than the traditional Arnoldi
method. Our numerical results in Table 4 show that not only all the
desired eigenvalues are found by Algorithm 1, even when the number of
desired eigenvalues is set to 2N = 18, it also converges much faster than
the traditional Arnoldi method. In fact, it only takes two restarting steps
for Algorithm 1 to converge for all cases shown in Table 4. In addition,
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from the rightmost column of Table 4, one can see that all the computed
eigenvalues indeed preserve the reciprocal property. On the contrary, the
reciprocity of the convergent eigenvalues obtained by Arnoldi method are
diminished about 3 significant digits.

From the above comparison, Algorithm 1 preserves the reciprocal property
of the eigenvalues of the GEP (11) effectively. For measuring the accuracy of
Algorithm 1, let us define the relative residual of an eigenpair (A,u) of (11),
where u = [, 4], as following:

MGl [0 F
FT oo |“ a7 M, | ¥

M, G 0 F
H[FT 0] F||uF+|A|H[GT Mz]

where || % ||p is the Frobenius matrix norm. The maximal relative residuals of
the ten desired eigepairs for 64° YX-LiNbOj3 with various frequency are shown
in Figure 7. From these numerical results, one can see that the eigenpairs pro-
duced by Algorithm 1 possess high accuracy in terms of relative residual error.

F

b

lullm

F

Next, let’s compare the efficiency of Algorithm 1 and traditional Arnoldi
method. The CPU times in computing ten desired eigenpairs (i.e., 2N = 10)
for 64° YX-LiNbOg with various frequencies by using Algorithm 1 and tradi-
tional Arnoldi method are shown in Figure 8. On average, Algorithm 1 only
takes 476 seconds of CPU time to compute the desired eigen pairs for all fre-
quency w in the search range. Obviously, the proposed Algorithm 1 is more
efficient compared to the traditional Arnoldi method which takes 527 seconds
of CPU time to get all the desired eigenpairs.

Method 2N Computed eigenvalues #Iter | max{| i 1 .0 — 1|}
8 {(er, Ak,0) e 2 17x10 13
Arnoldi 10 | {1 Ako)bimrs {Adier | 5 1.7 x 10713
12 | {(Mkr, Me0) iy {Aediey 4 1.7 %1013
8 {15 Ak,0) s 2 I1x 1010
10 {1, Ak0) e 2 1.1 x 1016
Algorithm 1 | 12 {()\k,17,\k70)}2:1 ) 1.1 x 10-16
18 {1, Ar,0) Yoes 2 2.2 x 10716

Table 4: Convergent reciprocal pairs and the associated errors of reciprocity for 64° YX-
LiNbOg at frequency 2.180 GHZ versus different eigensolvers with various “2N” which denotes
the number of interested eigenvalues. Here, A, € O(\) for k =1,...,4.
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5. Conclusions

In this paper, we have modeled the leaky surface acoustic wave propaga-
tion on a simple resonator with an interdigital transducer (IDT) where elec-
trodes are arranged periodically on piezoelectric substrates (PZT) such as 64°
YX-LiNbO3 and 36° YX-LiTaO3. The energy conservation equation (4) is dis-
cretized by finite element method (FEM) on a single cell domain with proper
periodic boundary conditions as shown in Figure 2. Equation (4) is discretized
on locally refined meshes in order to increase the accuracy of our numerical
solutions. Our FEM simulation for predicting the center frequency of the stop-
ping bands of the resonator is convergent and accurate within an error about
1% compared to experimental data as shown in Tables 2 and 3. For computing
the dispersion diagram near the center of stopping band of the resonator, we
transform the GEP (11) into the TPQEP (2) to reveal the important reciprocal
relationship of the eigenvalues in which the eigenvalues appear in reciprocal pairs
(A, 1/X). The TPQEP (2) is then solved by GTSHIRA so that the reciprocal
relationship of the eigenvalues can be automatically preserved. Our numerical
results show that the traditional Arnoldi method converges slowly and fails to
preserve the reciprocal property of the eigenvalues near the unit circle. On the
other hand, the proposed structure-preserving method in Algorithm 1 not only
converges to those eigenpairs faster than that of the traditional Arnoldi method
but also possesses high accuracy in terms of relative residual error. Furthermore,
the reciprocal property of the eigenpairs are kept nicely under machine precision.

Searching a good crystal cut of various PZTs for high frequency filter de-
sign based on LSAW is important. Our numerical studies here show that the
dispersion diagram of a resonator with a prescribed crystal cut on its PZT
substrate can be computed accurately and efficiently by discretizing the model
equation on locally refined meshes and solving the resulted GEP by the proposed
structure-preserving method in Algorithm 1. As a result, the computation time
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in searching effective crystal cuts can be shorten and the computed dispersion
diagrams can be more accurate and reliable.
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Free-form surface International Optical

de Sign problem Design Conference
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The 10DC illumination
design problem:

Rays from a square
Lambertian source
must be directed
toward this cross-
shaped target located
in the far-field, with
parameters as shown.

.

t

n=1.33 d=4.3844 mm
n=1.34

y at Z-16.6

10 mm ~7.3mm

n=1.5

Question: How do we construct an optical system to do this
such that the energy loss is minimized?
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Some applications in industry
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Energy Conservation

//U{Q]L(X,y)dxdy :ffi_lf(uw) d()

L(x,y) illumination
/ Intensity distribution
() solid angles
v (Q))  the aperture region.
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Stereographic Coordinate

(u,v) plane

m} g

Unit sphere

/x,v} plane
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Change variables

X(u,v)= 1 (u,v,l—lwzj
1+ZW2 4

where w? = u® +v* , we have

1 —2
dQ) = |x, x X, | dudv = (1 + 4W2) dudv  (2)

Substituting (2) into (1), then

1 —2
[ (x, ddz//l , <1+— 2) dud
//v(m (. ) dxy Q) (1) 3" e

(3)
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Free-form surface of Reflector type

Consider a perfect reflecting surface
A= p(u,v)%(u,v),where p is the distance
from light source to the reflector A

Let N = A x A be the surface normal vector. |

Law of reflection

A  A-X 2(A-N)N
AT Ta=xT~

A TA=X] (AN /




y |= X = A+ |X = Al =2(K-N)NJINJ| o

where N = A, x A, :(pu)?+p)?u)x(pv)?+p)?v)
From the equation (4.3), one can obtain | X — A|.
Plug this result into (4.1) and (4.2), we have

X=uG+2pp,F
y=vG+2pp,F

(4.1)
4.2

4.3

where G =G(u,v,p,p,,p,) and F =F (u,v, p, p,, p,)



1 ~1
G = ]()<1—|—1W2) +F | —

—1
+05, 0, —p (o u+p,v) (1 + %Wz) ]

P 1+p(l }: )(l+ *w)1
(1= 3u?) [ (1+50?) ™ =22 — g2 + 20 (puu + pu2) (1+ fu?) ™

J. S. Schruben, Formulation of a reflector-design problem for a
light fixture. J. Optical Society America, 62, 1972.

2011/10/29 12



The equation (3) can now be rewritten as

ijL(u,v,p,pu,pv) D dudv=gl (u,v) (1%""2)-2 o

where, considering x and y as functions of variables
u,v, p, p,, o, the Jacobian D can be represented
as following:

X I.L:-” p Xv + Jﬂrx‘+

D — o LH.I';{F-’“ T 0 v F‘.r ]ﬂ““xp“ ¥ F]w xﬂ
_}fﬂ.l _I_Iﬂu.]’;ﬁ]_l_ yV _l_I[}p.}ff-ﬁ_'_
P LH.I'-FF-JH s 5 1‘11:vy+’L. lﬂw.'-y.l]u T I{]m-yi‘v

2011/10/29 13



Monge-Ampere equation

L(u,v,p,0,,0,)D=1(u,v) (1+%W2j

where
D=3 (Pu =P )+ (I + P ) Pus +
(JpverJupu +,oqupu +,0VJpr)puv+
(Jupv —I—pqupv)pW+.Jpvpu +Jdu,0 4y

and

—"Ire'Lf- -— *:{:'I.yﬁ = ‘I'I{II'."-_}"HIT ﬁjr (, ||!I-:1|I £ {”1 F'F}' Iﬂ.l_.r'lnl.-'}



A simplified expression by
Oliker and Newman, 1993
1 det[Zpﬁijp—(pz _/injeij )eij _4,0in]
A%
(P* +p0e") det ¢ |
where g; Is Jacobian associated with the first fundemental form

D=

of the unite sphere S, e’ = (e, )_1 and V; is the second

covariant derivatives in the metric e on S.

In this formulation, the domain Q2 and the aperture
region v(<2)are on the unit sphere S and the
coordinate system is simply the spherical coordinate.



The Monge-Ampere equation

Adet| © * |+Bu, +Cu, +Du,+E=0

where the coefficients A, B, C, D, E are functions
depend on X, Y,U,u,,u,



The equation appears in various fields

Differential geometry

* L. A. Caffarelliand X. Cabre, "Fully nonlinear elliptic equations," Vol. 43, AMS, 1995.

¢ S.Y.ChenandS. T. Yau, On the regularity of the Monge-Ampere equation, Comm. Pure
Appl. Math., 30, pp.41-68, 1977.

Optimal control and mass transportation

e L. A. Caffarelliand M. Milman, Monge Ampere Equation: Applications to Geometry and
Optimization. Contemporary Mathematics, AMS, 1999.

Meteorology and Geostrophic fluid

* R.J. McCann and A. M. Oberman. Exact semi-geostrophicflowsin an elliptical ocean
basin. Nonlinearity, 17(5), pp.1891-1922, 2004

Optical Design

e P, Benitezand J. C. Minano, The Future of ILLUMINATION DESIGN. OPN 2007

e Pengfei Guan and Xu-Jia Wang, On a Monge-Ampere equation arising in geometric
optics, J. Diff. Geometry, Vol. 48, pp 205-223, 1998.

» V. Oliker and E. Newman, The energy conservation equationin the reflector ma ppinlg
problem. Appl. Math. Lett. Vol. 6, pp. 91-95, 1993.


簡報者
簡報註解
The wide range of applications that benefits from optical design draw our attentions to the monge-ampere equation. In particular, we are interesting in the freeform surface design problem.


Some results and review

Boundary conditions: 2: Ay, Py should be given on 6Q
to ensure the map 0Q — oV (Q) is deffeomorphism.

Existence and uniqueness are obtained by Mader
(1981), Caffarelli and Oliker (1993, 2008).

Regularity is estimated by Chen-Yau (1976), and
recently by Pengfei Guan and Xu-Jia Wang (1998).

In Guan and Wang's result, U eCl’l(Q) if provided
L, I eC*(Q) and I is non-negative.
Numerics are carried out recently by Oberman etc.

(2008), Dean and Glowinski (2003) and Feng and
Neilan (2007) for simple Monge-Ampere equations.



Flat Form Assumption

Assume the free-form is flat corresponding to
a small aperture region, i.e. W, p , p, << 1

The Jacobian can be further simplified as following:

2\’ 2
D= (2 +—j det{puu 'OUV} —EZ +—jAu +1
p pVU pVV p

In our numerical studies, we only consider the simplest

Pu Pu
Pw Pw i

version: det

= f (u,v).



Benamou, Froese and Oberman
Finite Difference Scheme

First method:

2

2 2 2 2 _ .
(.th. “-‘i.") (D_l,f_v “-".f') o ('Dx_l.*u’...f'} o f” {_'U
where
5 1
Dictij = 75 (Ui + Ui-1,j — 2ui )
1 (5)
b
D;_u,-“f'.." TR (Uij+1 + Uij—1 — 2u5)
. 1 '
Dx_f“r‘_a' — e (tig1 41 + Ui=1j=1 — Ui=1j+1— Uif1,j-1)

J. D. Benamou, B. D. Froese and A. D. Oberman, .Two Numerical Method for the
Hlliptid Monge-Ampere Equation.,Preprint, 2009 20



Rewrite the scheme of Monge-Ampere as a quadratic equation for u; ;

1 1 1
ujj = 5 (a1 +a) — \/("5"1 —a)’ + 4 (a3 — as)” + h*f; (6)

2 2
where
a1 = (Uiy1;+ui—1j)/2
a = (ujj41+uij-1)/2 (7)
as = (Uip1j+1+Ui—1j-1)/2
as — (Uj—1js1+Uip1j1

2011/10/29 21



Second method:
fixed point iteration for solving u = T (u) where

T (u)=A"" (\/(Au)z +2(f — det(Dzu))) (3)

the consists of iterating u"*! = T (u") by solving

ﬂ—|—1 _ \/ un un _I_ 2 ( ) _|_ 2f (9)

2011/10/29 22



Feng and Neilan
vanishing moment method

Feng and Neilan appling —e/A?u€ to the Monge-Ampere equation and
adding a boundary condition Auf = € on d(2, find u€ such that

—eN*uf +det (D°uf) = f, inQ
u® = g ondQ) (10)
Au® = € on d()

the h — € relation, € can be small about h*. h is mesh size.
Then Feng separate (10) into couple partial difference equations system

O.E_DQUE —

—eAtr(0°) +det(c®) = f (11)

they use mixed finite element.

Xiaobing Feng and Michael Neilan. Mixed finite element methods for the fully noniinear
Monge-Ampere equation based on the vanishing moment method.. SIAM J. Numer.
‘Rrtal”47(2):1226{1250, 2009. 2



Our Approach

mmm Following Feng and Neilan approach (1())

* Solve the regularized problem directly instead of decoupling the
equation into low order system equations.

memed  Using BCIZ element

e State variables are the nodal values and derivatives.
* The solution of BCIZ element is continuous
* Represent constant curvature

===e NoONlineariteration

e Newton’siteration

2011/10/29
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BCIZ Element
S T e

1

e Has been extensively tested for oy = =l (yiaks + ials) — 5 (12 + 1) GGG
biharmonic problems. ]
e = (2 (1ol Tral” s C .
e BClIZis C°on uniform meshes that 3 G1 (#1263 + 13Gg) + 5 (712 + 713) G1G2G

satisfies necessary condition of the
regularity result obtained by John
1

Urbas, 1988 (Math. Z. vol. 197). ps = =G (s +ymCy) — 5 (vas +ym) C16aGs

Demerits e = C2(aasCat amCy) + - (w35 + 791) C1CaCa
2

e The BCIZ elementis sensitive to

s = C3(3—2(y) +2¢,(oCs

L.y o - o e e
gird structure vr = (3(3—2¢3) +2¢16263
Yg = —‘;3 (y31(>1 + y32%2) - Z (931 + 3«'32) L15263
2 . : 1 ..
Yo = (7 (1‘-3151 +i‘-32"~_,2) "‘5(1‘-31 +I32)%1‘52%3

C. A. Felippa and B. Haugen, From the Individual Element Test to Finite Element Templates:
Evolution the Patch test., Int. J. Numer. Methods Engr., Vol. 38, 199-229 (1995) 25



[LiInearization

Linearization det (D2 u)

0y det(D*u) = (Dyyu) (Dsx) + (Dsctt) (Dyy) = 2(Dxyu) (Dsy) (12)

Newton step:

—e/A\? (6u™) + div ({ Dyyu” - =D ur” ] \Y ((511”)) = (13)

n n

f —det(D?u™) +eA?u"

2011/10/29 26



Weak Formulation

The variational problem is:
Find u¢ € H?> (Q)), u® = g, Auf = € on 9Q) such that

e | Au¢Avdx + fQ (cof (D2 u®) Du) - Dv dx + /Q fvdx = 0

()
UE e
where cof (D?uf) = [ A e ]
_uxy Uy

Error estimations from Feng and Neilan

& & - hl & - - & 2 | - & H
u”—uy| , <C(¢)e {ﬁ u|l ,+eh™*us| | ifu® has H* regularity
us—u’ . SC(g)g_z[h"1+g_5’2h2('_2)]( o’ Lt u‘ H')

2011/10/29 27



Error check for Laplace

u = sin (27tx) sin (27ty) P
f — —872sin (27x) sin (271y) 2 0.001228 0.000803 0.043738

solution Uy, : 2% 0.000167 7.54B-05 0.004195
2°  1.32B-05 7.24E-06 0.000532

2°  8.83E-07 7.85E-07 0.000118

The convergence rate of L2-norm
is third order and Hl-norm is
05 second order

2011/10/29 28



Error check for Biharnomic
equation

The analytical solution ----

7-2

= (COS(Z?TX) B 1) (yg B 2y3 +y4) 0.01172 0.004154 0.645238
£F—0 2 0.004269 0.001568 0.307797
solution uy, : 2% 0.001169 0.000445 0.150572
2 0.000302 0.000117 0.074556
20 7.67E-05 2.98E-05 0.037112

27 1.93E-05 7.51E-06 0.018516

. The convergence rate of L2-norm
“ww jssecond order and H2-norm is

14 0.4

o 0z 04 o 02 ﬁrSt Order

2011/10/29 29



Test case 1.

The analytical solution

vt 4y ----m
£ Dax2 0.305  0.161 5.319208
mesh size=1/256 22 0230 0.121 4.673278 10
24 0.113 0.0571 3.634048 10
2® 0.0428 0.0190 271177 8
2%  0.0145 5.67e-03 1.98896 8
2% 450e-03 1.60e-03 1.437771 8

212 1.29e-03 4.33e-04 1.029425 9

solution UE :

2% 3.49e-04 0.000113 0.732763 10

2011/10/29 30



&
2-1
2-2
2-3
2-4
2-6
2-9

2-11

2011/10/29

&

0.145332
0.120509
0.088363
0.057111
0.019037
0.003027

0.000836

L2

&
0.5
0.25
0.1
0.05
0.0125
0.0025
0.0005

us—u,
0.082589

0.074746
0.051429
0.033436
0.011590
0.002939
0.000679

L2

L| -~
“u uh

L

L B
||1'.{ uh g2
1_

\J"Ilf

0.160842924

5.319207667

0.482036757

6.609013597

0.913779845

7.268095576

1.218354047

7.670044224

4)—5

1.450567862

7.955838131

éLJD

1.637202829

8.133261803

-')—IE

1.772707203

8.235401948

2—44

1.85193153

8.290262971

Table 6. Change of ||u® — uf || wrt. e (h = 279)
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Test case 2.

The analytical solution

xE +_}-’2

u—e 2

F=(1+x2+y2) e+

2

solution UE :

mesh size=1/256

N iter N M1 M2
128 69 81 14621 59

B Il-ll

1 0.1776024 0.100518 3.026106

22 0.1413431 0.081722 2.715974 48
2% 0.0713641 0.044524 2.129656 38

2% 0.0226147 0.01562 1.567714
2% 0.0063037 0.004523 1.12653
2% 0.001811 0.001218 0.800411

0O 00 0 O

220.0004998 0.000316 0.566837

214 0.0001327 8.00E-05 0.401068 9
32



||uu—?.£5

U__ £
[l —ug,

€ h L2 VF H2
€ ‘U Uy € U =U| - 1 | 0.100518486 | 3.026105949
71 0.0936 05 0.0387 2=2 | 032688765 | 3.840967403
2% | 0.71238757 | 4.259311736
22 0.0817 0.25 0.0410 26 17099970787 | 4.434163657
73 0.0644 0.1 0.0322 27% | 1.157804247 | 4.506118399
' =10 [ 124700059 | 4.527808719
24 0.0445 0.05 0.0223 2121 1294427725 | 4.534697517
56 - 0.0125 7.82-03 2—-14 11309904805 | 4.53757113
27 2.36e-03 0.0025 1.86e-03  Table 10. Change of ||u — uf|| wrt. € (h =
2-11 6.23e-04 0.0005  4.04e-04
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Test case 3.

The analytical solution

3
2 2\ 4
g — Zﬁ(x;y )
fo L
1;’}(2_'_},—2

mesh size=1/256

solution UE :

1 0.1413141 0.078907 2.164988

22 0.122805 0.069333 2.010561 19
2% 0.075892 0.04483  1.63768 9
2% 0.0278187 0.018061 1.217238 10
2% 0.0080091 0.005569 0.894614 8
2% 0.0021189 0.001546 0.650581 8
212 0.0005573 0.000408 0.468459 9

2% 0.0001439 0.000104 0.333575 11

N iter N M1 M2
128 79 101 23849 59

34



Test case 4.

w [ V4
The analytical solution Oberman’s result
u = \/x2 -+ y2 m Oberman’s
< 107 \\‘E
]
= A
. = 10"
mesh size=1 / 256 127 62 121 39396 10486
' E_‘ . -8
solution up : 10°L ;
1 10 10
Number of points
Linear Least Squares
Enter data here
0.111 0.0909652% Y 0.1
0.0588 0.038572521 ®
0.0303 0.01936114 0.08]
0.0154 0.01176726
0.00775 0.00189
0,06
Error from our 0.041 >
Simulation: 0.02
0 T T T T .
0 0.02 0.04 0.06 0.08 0.1 012
i %
S|Ope=0.84 S data pairs slope = 0.838 + 0.17
Enter data as x,y pairs intercept = -0.0049 + 0.0097
with one pair per line. (Uncertainties are 95% confidence intervals.)
>eparate x and y by residual standard deviation = 0.00437
Update Plot and Fit correlation coefficient squared, R* = 0.989

2011/10/29 Licensed to Dartmouth College. © 2001 BPReid v1.e.04



Reconstruction of 1-D Surface

o e

Free-form surface

— Given Intensity 1(6)

LA

Light Source

— Given lllumination L(X)

Target domain




Previous Works
(1) Methods based on optimization and ray

tracing. (Neubauer 94, Halstead 96, and Patow and Pueyo 03)

Given target illumination density, control points

n_ = n
{Ci }i =C {Ci}.
Optimization: find C that

minimize

|LCO - L)

Tracing

L(c)




Previous Works
(2)Oliker’s approximation

Kochengin and Oliker (2003): Rﬁﬁ
Rk

Construct a parametric parabola such that

k
Y (Gi(R)—fi) <e.
h |

Gi(R) = j I(m)do(m) , fi=_[5|:-3“’)'if‘:r[-3"’j
r

Vivi)

(3)Methods based on solving Monge-Ampere
equation

fk f1

Benitez, etc. (2004) :

-
- T T o
. LY A AN Yol L,
4% Y - */ ]
. a
b L TR Ra "-n/l"
" He - R
..."%. s B be - R ° ?
v 1 b -a R,
2] - i
Ry *p -,
L - ity
'L"‘--.

T Fig. 4 SMS skinning. The SMS surfaces are generated from a seed
Fig. 3 SMS ribs generated from the seed rib Ryp. patch (the blue patch X, in this example) hanging on two SMS ribs
: (R3 and Ry, in this example).

2011/10/29 38



(3)SMS method

21.25 mm

From a point light source
to a uniform line target.

SMS2D lens:
LED length : 1.95 mm
divergence angle : £2.5 deg

*P. Benitez, J. C. Minano et. al., "Simultaneous multiple surface optical
design method in three dimensions", Opt. Eng. 43 1489-1502 (2004)

ww ¢9°S¢



Modeling in global domain ()

Reflection Law/[1]:

N
—~ L | > : S
|C'A CA—CX CA|[NJ2
C
X
I

[1]J. S. Scheruben, Formulation of a Reflector-Design Problem for a Lighting Fixture



Modeling in global domain (lIl)

* Global power conservation:

jL(x) dx:jl(ﬁ)d

. Partition of Unity | B :??;SIW
_[L du _[ — du
s dx 4 dog , ©
= > | L(u)=—-du=> | I(u)=—-du ?
ils{ du ili du Illumination
e Local power conservation: L(X)

dx do

J'L( )—du_j' (u)—-du

du 5 du



Modeling of local problem(l)

() Initialization: Set ¢c=(0,-1) and define
Initial coordinate system according to the
tangent plane of the reflector at starting
point.

1st coordinate

(i) Normalization: set the distance A=(u, f(u))
between the light source C and the

target plane equals to 1. C=(0-1)

. CB| =1

(li) Represent the reflector surface in H H X = (x,Y)
local coordinate and derive the Monge- ® ’
Ampere equation from flat-form and B

local power conservation assumption.

Monge-Ampere equation in 1-D:

[LI(F)=[A(u, f, )1F"W)+[B(u, f, £ )]F ')+[C(u, f)]f (U)+[D(u)]



Modeling of Local Problem(lI)

i-th coordinate (u,0) / (u,.0)

sl foc]-

%

C — IOO (—Sln ¢O 1_COS ¢0)i—th

63 = (sin(«90 _¢o)’ —COS(@O _¢o))i—th

%

OX—CB-OC
=(X—SIN(@) —¢h) +SINgh, y+C0S(Q) —¢h) +COS ), 4,
Monge-Ampere equation in local coordinate: [L]i+1 — [L]iTiirl’

where T.'. is the transformation matrix from (i+1) th coordinate to the ith coordinate.

i+1



Modeling of local problem (lIl)

(1) Boundary Condition: the red line
is the possible region for f(u)
(uof / (v,.0) based on the law of the reflection
and convex assumption of the
solution.

i U

we choose the middle point to be
the right boundary condition.

(2) We solve the local problem by
finite element method (using
Hermite element).



Numerical Tests

To verify our reconstruction algorithm:

1. We assume an ideal point light source and no energy loss
on reflector surface.

2. The target illumination densities are obtained from ray
tracing of reflectors of parabolic type and elliptic type.

3. We measure the errors between the given curves and the
reconstructed curves.



Numerical tests

The curves to be reconstructed are as following:

e Parabola Equation:

(y—a+1) __1y
4a

where a is the distance from top to focus
* Ellipse Equation:
x> (y+1.5)°
T
where a is the major axis, b is the minor axis, and c is
the distance from center to focus.

=1, c*=a’-b’



Error Measurement

Parameters for error measurement:

(1) J-th level of refinement: the number of
sub-partition of each partition is 2!

(2) Compress Ratio [<2]/|]:

the ratio between the range of the outgoing
light angle and the range of the target
illumination segment.




Error Measurement (Parabola)

(1) Surface error = e, : The max-norm error between

the given curves and reconstructed curves.

(2) Illumination error = e, : The relative error for each
partition,

Num _ Refl _T (i) = number of reflected ray from
given curves at ith partition
Num _Refl _R(i)= number of reflected ray from
reconstructed curves at ith partition
. |Num_Refl _T (i)— Num _Refl _R(i)|
e (i)= Num_Refl _T (i)




Error Measurement (Ellipse)

(1) Surface error = e_: The max-norm error between
the given curves and reconstructed curves.

(2) Illumination error = e, : The relative error for each
partition,

Num _ Refl _T (i)= number of reflected ray from
given curves at ith partition
Num _ Refl _R(i)= number of reflected ray from

reconstructed curves at ith partition

> |Num _Refl _T (i)—Num _Refl _R(i)
Cin = i

2 Num_Refl _T (i)



Numerical Results

Reconstructed parabolic curves:

case 1. a=3: case 2. a=0.3:
f(u) f(u)
Z\ T ‘ T T T T .0'6
15} . osl _ |
' ——Level of Refinement =
1l | ——Level of Refinement=5
Ak i
——Level of Refinement = 1()
O.5F - 120 |
Or | ——Level of Refinement = 1 \ ] 141 i
——Level of Refinement= 5§
05- |——Level of Refinement = 10 | o 16 i
_1 | | | | L | | | | |
o 1 2 3 4 5 6 U -8

6

u



Case (1)

0.005

Errors

0
€ S
-0.008-

-0.01-

-0.015-

-0.02-

-0.025-

——Level of Refinement = 1
——Level of Refinement=§

——Level of Refinement = 1()

-0.0:

an b bl
hAY

0

1 2 3

5

s U

08

eyl

06-
05
04-
03
02-

0.1-

——Level of Refinement = 1
——Level of Refinement= 5§

——Level of Refinement = 1)

0

1 2 3

X

Level of Level of Level of Level of
Refinement =1 | Refinement=5 | Refinement =10 | Refinement =50

Max Surface 0.026

Error

Avg. lllumination 0.0843

Error

2.7513%e-4

0.0103

8.0356*e-5

0.0046 0.00149

6.8706*e-5



Case (2)
2 10 012 1
eS e Lews |fR1"e|1'|t:L—'1
: — ||| ——Level of Refine
iR ——Level of Refinement = " 01- Level of Refinement = 10
——Level g nemen
——Level of Refinement= 5§
19 ——Level of Refinement = 1) 008-
1+ 0.06-
05 004
002 '
/ \ /
09 ! 1 ! 1 ! 1 )’ "* ' ' ‘ “’
0 0z 04 [ols] 0g 1 12 14

Level of Level of Level of Level of
Refinement =1 | Refinement=5 | Refinement =10 | Refinement =50
Max Surface 0.0024 9.7213e-5 2.3461e-5 1.6704e-6
Error
Avg. lllumination 0.0520 0.0103 0.0056 0.001538

Error



Numerical Results

Reconstructed elliptic curves:

case 1. c=0.5, b=0.5 case 2. c=0.5, b=5
f(u) f(u)

0
4_
-0.5r
2 L
1}
O,
1.5} ] :
— Level of Refinement = 1 -2¢ ——Level of Refinement = 1
oL |—Level of Refinement=5 _ ——Level of Refinement=§
. 4}
—Level of Refinement = 10 ——Level of Refinement = 1()
-2.5¢
-6
u




Errors
Case (1)

(i) Level of Refinement=5;

—Level of Refinement = "

——Level of Refinement=5

Compress Compress Compress

005 | ——Level of Refinement = ()
Ratio =100 | Ratio = Ratio = acs)
1000 10000 0oal

Max |
Surface 0.0868 0.0275 0.0097 =
Error Qoz | | ‘ |

u

(i) Compress ratio = 1000;

Level of Level of Level of Level of
Refinement =1 Refinement =5 | Refinement =10 | Refinement = 30

0.8047 0.3155 0.1605 0.0729

s



Errors

Case (2)

(i) Level of Refinement=5; Ss

—Level of Refinement = 1

Compress | Compress | Compress —Level of Refinement = 5

0.015-

Ratio = 100 | Ratio = Ratio = —Level of Refinement = 10
1000 10000

001~

Max
Surface 0.0214 0.002 1.2685e-4 o=
Error

(i) Compress ratio = 1000;

Level of Level of Level of Level of Level of Level of

Refinemen | Refineme | Refineme | Refinement | Refinemen | Refinement
t=5 nt=10 nt =30 =100 t =500 = 1000

0.9368 0.9199 0.8171 0.5305 0.1707 0.1248




Conclusions

Monge-Ampere can be solved accurately and
efficiently by Fang-Neilan’s approach using BCIZ
element.

Reconstruction algorithm based on flat form and
local energy conservation assumptions can be
employed to reconstruct 1D free-form effectively.

Two dimensional free-form reconstruction using BCIZ
element is under investigation.

Convergence of the numerical solutions and error
estimations are also under investigation.
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How do the eyes see the color?

Cone cell: Cones are responsible for
color vision. There are three types of
cones, sensitive to red, green, and blue
light respectively.

Rods: Rods cannot detect color but are
responsible for black and white vision.



簡報者
簡報註解
On the retina there are two kinds of cells that change light into nerve impulses. Rod cells do not see color but are best for night viewing

because they react to very low light levels. Cone cells are for color viewing. They work best in good light and are found mostly in the center of the retina area called the macula, which provides the sharpest vision. Within each eye is a small blind spot with no rods or cones, where the optic nerve is attached to the eyeball. The optic nerve collects the nerve impulses and carries them to the brain, which interprets them as an image.


CIE 1931 color space

e Tristimulus Values:

X =] 1(A)x(2)dA
Y= 1(4)7(4)d2

@ 0O

z=["1(A)(4)d

* 1(4): spectral power distribution

CIE (1932). Commission internationale de I'Eclairage proceedings, 1931. Cambridge University Press, Cambridge.

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours”, Transactions of the Optical Society 30 (4) ,141-164 (1928)
J. Guild, “The colorimetric properties of the spectrum”, Phil. Trans. R. Soc. Lond. A January 1, 230 149-187 30 (1932)



CIE 1931 color space

20 —

 Color Matching Functions: S

1.5 — Z(A)

%(1).9(2).7(2)

400 500 600 700

e Spectral sensitivity curves of three linear light
detector



CIE 1931 color space

e CIE xy Chromaticity Diagram
— Color space specified by x, y, and Y

X
X =
| X+Y+Z
y. H y_ Y
= X+Y+Z

— Y is brightness or luminance of a
color

05 06 07 08

X



Intensity design

These are two per-defined
distribution

Uniform

Normalize intensity
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Uniformity: 79%

Structure:

—
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簡報註解
Uniform:

 Uniformity: min/max

Linear: the line(least square fitting) 


Color coded

The color of target plane is linear Structure:
change from green to blue.

Py,
()
(7))
c
=

Color chromaticity diagram
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