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Abstract

In the order scheduling problem, every job (order) consists of several tasks (product items), each of which will be pro-
cessed on a dedicated machine. The completion time of a job is defined as the time at which all its tasks are finished. Min-
imizing the number of late jobs was known to be strongly NP-hard. In this note, we show that no FPTAS exists for the
two-machine, common due date case, unless P = NP. We design a heuristic algorithm and analyze its performance ratio
for the unweighted case. An LP-based approximation algorithm is presented for the general multicover problem. The algo-
rithm can be applied to the weighted version of the order scheduling problem with a common due date.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Order management is one of the crucial issues in
the manufacturing industry. In this study, we con-
sider order scheduling to minimize the number of late
orders. For consistency with the scheduling literature
we use jobs instead of orders hereafter. Consider a set
of jobs N = {J1,J2, . . . ,Jn} available from time zero
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onwards for processing. Each job Ji 2 N consists of
m operations Oik, 1 6 k 6 m, to be processed on m

independent dedicated machines M1,M2, . . . ,Mm

for which operation Oik,1 6 k 6 m, can be processed
on machine Mk only and has a processing time pik.
The m operations of a job are independent and there-
fore can be processed simultaneously by their specific
machines. At any time, each machine can process at
most one operation. No preemption is allowed. The
completion time of operation Oik on machine Mk is
denoted by Cik. A job is completed only if its opera-
tions are all finished. Therefore, the completion time
of job Ji is defined as Ci = max16k6m{Cik}. Each job
Ji 2 N is associated with a due date di that specifies
the time it is expected to be completed. Binary vari-
able Ui dictates whether job Ji is late or not, i.e.
.
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Ui = 1 if Ci > di; 0, otherwise. In this paper, we want
to schedule the jobs so as to minimize the number of
late jobs. Following the three-field notation used in
Leung et al. (2006), the studied problem is denoted
by PDk

P
Ui.

As indicated by Roemer (2006), the first paper
concerning order scheduling may be due to Ahmadi
and Bagchi (1990). Order scheduling can also be
regarded as a degenerate case of the two-stage
assembly-type flowshop (Lee et al., 1993) by ignor-
ing the second-stage assembly operation. Wagneur
and Sriskandarajah (1993) later studied the order
scheduling problem from a different aspect ‘‘open
shop scheduling with job overlaps’’. They investi-
gated several standard objectives, including make-
span, total completion time, maximum lateness,
total tardiness, and number of late jobs. Roemer
(2006) summarized several different but independent
lines of order scheduling research that have
appeared in the literature. Because this note focuses
on only the objective of number of late jobs

P
Ui,

we do not review the known results on other objec-
tives. The reader is referred to Roemer (2006) for a
thorough classification. To minimize the number of
late jobs, Wagneur and Sriskandarajah (1993)
showed that the problem is NP-hard even if there
are only two machines. Ahmadi and Bagchi (1997)
and Cheng et al. (2006) independently developed a
pseudo-polynomial time algorithm for the weighted
case PDmk

P
wiU i, where m is a fixed number of

machines. Leung et al. (2006) showed that the
PDk

P
Ui problem is strongly NP-hard, even if a

common due date is assumed. They introduced a
Revised Hodgson–Moore (RHM) algorithm to solve
the case with agreeable conditions. Ng et al. (2003)
presented a negative approximability result that
the PDjdi ¼ d; pik 2 f0; 1gj

P
U i problem has no

c Æ lnm-approximation algorithm for some constant
c > 0, unless P = NP. Further, an LP-rounding algo-
rithm with performance ratio d + 1 was designed for
the weighted case PDjdi ¼ d; pik 2 f0; 1gj

P
wiU i.

The rest of this study proceeds as follows. In Sec-
tion 2, we introduce a proof for the non-existence of
fully polynomial time approximation schemes for
the two-machine, common due date case. Section
3 is dedicated to the development of a heuristic algo-
rithm that exhibits a worst-case performance of m.
In Section 4, we design and analyze an LP-based
approximation algorithm for the multicover prob-
lem. The result is applied to the common due date
case of minimizing the weighted number of late
jobs. Section 5 gives some concluding remarks.
2. Non-approximability about FPTAS

In this section, we prove that there is no fully
polynomial time approximation scheme (FPTAS)
unless P = NP for the PDk

P
U i problem even when

there are only two machines and a common due
date.

Theorem 1. No FPTAS exists for PD2jdi ¼ dj
P

U i

unless P = NP.

Proof. To prove the theorem, we use the NP-hard
Equal-Size-Partition problem [SP12] (Garey and
Johnson, 1979): The input instance consists of integer
W and 2t positive integers S = {x1, . . . ,x2t} that sum
up to 2W. The problem is to determine if there is a
subset of items S 0 with jS 0j = t and

P
xi2S0xi ¼P

xi 62S0xi ¼ W . Let X = 1 + W. Consider the follow-
ing instance of the PD2jdi ¼ dj

P
Ui problem with

2t jobs: For i = 1, . . . ,2t, job Ji is created with
pi1 = xi + X and pi2 ¼ 2W

t � xi þ xmax, where xmax ¼
maxxi2Sfxig. The common due date is d = W + tX.

Suppose that PD2jdi ¼ dj
P

U i does permit the
existence of an FPTAS. We set � ¼ 1

2t. Assume that
the FPTAS returns a schedule with at most t late
jobs. So we have at least t jobs completed before
time d. Note that for any t + 1 jobs, the sum of their
processing times on machine one is greater than
(t + 1)X > W + tX. It follows that there must be
exactly t non-tardy jobs. Denote the set of non-
tardy jobs by N 0. With this definition, we must haveP

J i2N 0pi1 6 d. It follows that
P

J i2N 0 ðxi þ X Þ 6
W þ tX . Therefore,
X

J i2N 0
xj 6 W : ð1Þ

Also, we have
P

J i2N 0pi2 6 d. It follows thatP
J i2N 0

2W
t � xi þ X

� �
6 W þ tX . Therefore,

W 6
X

J i2N 0
xi: ð2Þ

Inequality (1) and Inequality (2) together imply thatP
J i2N 0xi ¼ W . Consequently, the elements corre-

sponding to the jobs in set N 0 constitute a solution
to Equal-Size-Partition.

Next we assume that the Equal-Size-Partition
problem has a solution S 0 with jS 0j = t andP

i2S0xi ¼ W . We schedule the jobs corresponding
to the elements in S 0 first. Then, we have t jobs that
are early or on-time. By the choice of �, the
approximate objective value reported by the FPTAS
must be at most (1 + �)t < t + 1. Since the objective
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function takes only integer values, the approximate
objective value must be at most t

Therefore, we come up with the fact that the
FPTAS of PD2jdi ¼ dj

P
U i would find in polyno-

mial time a solution with an objective value at most t

if and only if Equal-Size-Partition has a solution. h
3. Approximation algorithm for the unweighted case

In this section, we develop a lower bound and a
heuristic with performance analysis. We start from
the development of a lower bound of the general
problem. An algorithm due to Hodgson and Moore
finds an optimal solution of the single machine
problem 1k

P
Ui in O(n logn) time. We can decom-

pose the m-machine order scheduling problem to m

independent single machine problems. Let Gk be the
number of late jobs in the optimal solution of the
single machine problem on machine Mk. It is clear
that Gk 6 OPT, where OPT stands for the optimal
solution value in the order scheduling problem.
Thus we have the following lower bound by com-
bining all these independent bounds: LB =
maxk=1, . . . , m{Gk} 6 OPT. Note that the lower
bound can be obtained in O(mn logn) time.

To generate a feasible schedule, it is sufficient to
find a set S of jobs which are early or on-time. We will
construct set S by the following steps. Add the jobs to
S one by one in nondecreasing order of due dates. If
job Jj is completed after dj on some machine Mk when
added into S, we call Jj a critical job. A job with the
largest processing time on this machine is marked
to be late and removed from S. Let tk denote the cur-
rent schedule time on machine Mk in the running ses-
sion of the algorithm. The algorithm is outlined as:

Algorithm A
1. Re-index the jobs such that d1 6 d2 6 � � �6 dn.
2. S : = ;; tk: = 0 for all k = 1, . . . ,m.
3. For j : = 1 to n do:
S : = S [ {Jj};
For k : = 1 to m do: tk : = tk + pjk;
For k : = 1 to m do:

If tk > dj then

Find job Ji in S with the largest pik;
S : = Sn{Ji};
For k : = 1 to m do: tk : = tk � pik.

4. Stop.
Denote the number of late jobs in the schedule
constructed by Algorithm A by

P
UiðAÞ.
Theorem 2. For the PDk
P

U i problem, the perfor-

mance ratio

P
UiðAÞ
LB 6 m.
Proof. Let Nk be the set of jobs that were removed
from S when the algorithm encountered due-date
violation on machine Mk. Then

P
U iðAÞ ¼Pm

k¼1jN kj. Consider machine Mk that has the largest
value of jNkj, i.e. jNkj = max1 6 j 6 m{jNjj}. Let
N 0 = S [ Nk. On machine Mk, consider the classical
1k
P

Ui problem on the set of jobs N 0 with process-
ing times pjk of jobs Jj 2 N 0. Let G0k be the optimal
solution value of the set N 0. Since N 0 � N, we know
that G0k 6 Gk, the optimal value of 1k

P
Ui on set N.

But Algorithm A on set N 0 constructs the same
schedule as Hodgson–Moore algorithm, i.e our
algorithm produces an optimal solution to the
1k
P

Ui problem. It follows that
P

U iðAÞ ¼Pm
k¼1jN kj 6 mG0k 6 mGk 6 mLB and that Algo-

rithm A is an m-approximation algorithm for
PDmk

P
Ui. h

To establish the tightness of the performance
ratio m, we consider the following instance of m + 1
jobs. For jobs Ji,1 6 i 6 m, pik = 2 if k = i; 0,
otherwise. Job Jm+1 has pm+1,k = 1 on all k. All
jobs have a common due date d = 2. An optimal
solution to the instance successfully schedules jobs
J1,J2, . . . ,Jm. Algorithm A reports a schedule with
only job Jm+1 scheduled early. Therefore,P

UiðAÞ
LB ¼ m.

The agreeable conditions specify that for any
Ji,Jj 2 N, either pik 6 pjk for all k,1 6 k 6 m or
pik P pjk for all k,1 6 k 6 m. The RHM algorihtm
proposed by Leung et al. (2006) works in the
following way to optimally solve the agreeable case:
If an order is scheduled and the maximum of its
completion time over all m machines is larger than
its due date, then the order in the partial schedule
that has the longest processing time on each one of
the machine is deleted. Although Algorithm A
provides approximate solutions to the general case,
it can solve the agreeable case to optimality.
The RHM however cannot deal with the general
case.
4. Approximation algorithm for the weighted case

In this section, we consider the order scheduling
problem of minimizing the weighted number of late
jobs, PDk

P
wiU i. Now, we assume that job Ji has

weight wi P 0. Let P k ¼
Pn

i¼1pik for k = 1, 2, . . . ,
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m, and Pmax = max1 6 k 6 m{Pk}. As noted in Ng
et al. (2003) the weighted version with common
due date d can be formulated as the following inte-
ger linear program:

ILPPDMinimize
Xn

i¼1

wixi ð3Þ

subject to

Xn

i¼1

pikxi P P k � d; 1 6 k 6 m; ð4Þ

xi 2 f0; 1g; 1 6 i 6 n: ð5Þ

Here, job Ji is late if xi = 1.
Note that ILPPD (3)–(5) is a special case of the

multicover problem (Hochbaum, 1997).

ILPMCMinimize
Xn

i¼1

wixi ð6Þ

subject to

Xn

i¼1

pikxi P bk; 1 6 k 6 m; ð7Þ

xi 2 f0; 1g; 1 6 i 6 n: ð8Þ

For the multicover problem, three approxima-
tion algorithms were proposed: LP-algorithm,
rounding algorithm (Hochbaum, 1997), and dual-
feasible algorithm (Hall and Hochbaum, 1986).
The three approaches are all Pmax-approximate
algorithms, but the heuristic solution value of
the dual-feasible algorithm does not exceed
maxk¼1; ... ;m

P
J i2N late

pik times the value of optimum,
where Nlate is the set of late jobs. For instances with
large due dates, which correspond to small values of
bi, i = 1, . . . ,n, this quantity could be much smaller
than Pmax.

Another approach is considered by Ng et al.
(2003) for the case of common due date and 0–1
processing times, PDjdi ¼ d; pik 2 f0; 1gj

P
wiUi.

They presented a d + 1-approximate algorithm
where d is the common due date. In the following,
we show that a similar algorithm can be used for
the multicover problem and thereby for the problem
PDjdi ¼ dj

P
wiUi. Let LP be a linear program

obtained from ILP (6)–(8) by relaxing the integer
constraints (8), i.e. 0 6 xik 6 1 for i = 1, . . . ,n.
Denote the value of optimal solution of LP by
LBLP. It is obvious that LBLP is a lower bound
of the multicover problem. Let dk = Pk � bk,
1 6 k 6 m and dmax = maxk=1, . . . ,m{dk}. The follow-
ing LP-based algorithm can provide new approxi-
mation results for the multicover problem.
Algorithm LP:

1. Solve the LP and obtain an optimal solution
x� ¼ ðx�1; x�2; :::; x�nÞ.

2. Output a subset fijx�i P 1=ðdmax þ 1Þg.
Theorem 3. For the multicover problem, Algorithm

LP has a performance ratio

P
wiUiðLPÞ
LBLP

6 dmax þ 1.

Proof. It is clear that after the rounding step,
P

wixi

is no greater than (dmax + 1)LBLP. So we have to
prove that the derived solution is feasible for ILP
(6)–(8). Let constraints (7) fail for some k, i.e.P

ijx�i P
1

dmaxþ1f gpik 6 P k � dk � 1. It follows that
X

ijx�i <
1

dmaxþ1f g
pik P dk þ 1: ð9Þ

Then, we have

Xn

k¼1

pikx�i ¼
X

ijx�i P
1

dmaxþ1f g
pikx�i þ

X

ijx�i <
1

dmaxþ1f g
pikx�i

<
X

ijx�i P
1

dmaxþ1f g
pik þ

1

dmax þ 1

X

ijx�i <
1

dmaxþ1f g
pik

¼ P k �
dmax

dmax þ 1

X

ijx�i <
1

dmaxþ1f g
pik:

Inequality (9) further implies

Xn

i¼1

pikx�i < P k �
dmaxðdk þ 1Þ

dmax þ 1
6 P k � dk:

The last inequality follows from dk 6 dmax. There-
fore, we come to a contradiction to the assumptionPn

i¼1pikx�i P P k � dk. h

Assume dk = d for all 1 6 k 6 m. The following
corollary readily follows.

Corrollary 1. For the PDjdi ¼ dj
P

wiUi problem,

Algorithm LP has a performance ratio

P
wiUiðLPÞ
LBLP

6

d þ 1.

The performance ratio is the same as that given
in Ng et al. (2003) for PDjdi ¼ d; pik 2
f0; 1gj

P
wiUi. However, our result is given for a

more general case PDjdi ¼ dj
P

wiU i, in which no
constraint is assumed for processing times. Note
that in contrast to the dual-feasible algorithm, Algo-
rithm LP will produce good approximate solutions
for the case with small due dates.
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5. Conclusion

This study has investigated the order scheduling
problem of minimizing the (weighted) number of late
jobs. A reduction from Equal-Size-Partition was con-
ducted to establish the fact that there cannot exist a
fully polynomial time approximation scheme unless
P = NP. A heuristic algorithm with performance
ratio m was designed. We have also examined the gen-
eral multicover problem and proposed a new approx-
imation algorithm. The results in the mean time lead
to a (d + 1)-approximation algorithm for the order
scheduling problem with a common due date.

As aforementioned, order scheduling problems
are not yet extensively studied. There is considerable
room for further research involving such constraints
as release dates or precedence relationships.
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