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一、 前言 

演化計算 (Evolutionary computation) 為人工智慧 (Artificial intelligence) 領域

中，一個相當重要的研究方向，藉由學習和模仿自然界的演化機制，發展出許多可

應用在最佳化、搜尋、設計等問題的演算法。尤其是演化計算具有黑箱最佳化的特

性，演算法極具調整彈性，可以面對各式各樣的最佳化問題 [1, 2]。在本計畫中，

吾人欲持續對演化計算方法進行更加深入的研究，並將此一具高度可客製化的最佳

化工具，應用在通信傳輸技術中的最佳化問題，加以檢驗此最佳化工具之效能並獲

得高品質解。以期能利用演化計算領域中最佳化方法極富彈性之特點，在面對多樣

的最佳化目標時，快速地提供決策選項。於後續章節中，我們將詳述為期兩年之本

計畫之研究動機、相關研究背景與研究目的。 

二、 研究目的 

本實驗室在前一年度國科會計畫 (NSC 98-2221-E-009-072) 中以延伸式精簡

基因演算法 (Extended compact genetic algorithm, ECGA) 為基礎，嘗試提出新的混

合型態參數的最佳化架構。經過一整年的研究，本研究團隊在該目標已獲得了數項

成果。本計畫首先延續相關開發經驗，進一步地研究偵測決策變數間關係之技術，

以期能達成在萃取出變數間關聯性的資訊後，提升最佳化方法效能之目的。除此以

外，吾人亦著重於演化計算方法之基本理論探討，以期強化演化計算方法論之理論

基礎，深入演化計算之核心機制與數學層級之思考範圍，以試圖改變部分研究學者

認為演化計算方法缺乏理論依據之看法。於更加了解最佳化演算法之行為特性後，

再以通信傳輸技術中的 LT 編碼 (LT code) 做為最佳化標的，以所開發之最佳化

方法處理 LT 編碼中採用的編碼密度機率模型 (Degree distribution) 的最佳化問

題，以期除了驗證演算方法的有效性之外，並可提供 LT 編碼之使用者針對不同

之應用情境以將編碼密度機率模型客製化、最佳化之契機。 

三、 文獻探討 

許多現實世界中的問題大多不像純數學問題般單純，可以直接套用公式或經過

固定的計算程序來得到正確解答。這些現實問題最終仍需仰賴最佳化技術與工具的

幫助，方能解決各決策變數 (Decision variable) 或稱參數 (Parameter) 的決定問

題。舉凡工業設計、排程規劃、電路設計、資料壓縮、經濟學、建築學等等眾多領

域，都存在著各式各樣不同的最佳化問題。譬如積體電路配置問題，對於相同的電

路設計該如何配置能夠使用最小的面積，或是建築工程中，相同的建築材料該如何

設計才能獲得最大的支撐力問題。這些問題常常都不難要找到一組可行解 
(Feasible solution)，甚至是多組可行解，但是如果要找到問題的最佳解，通常就不

是那麼地容易。如果我們能客觀地分辨結果的優劣，就能以最佳化技術提升價值與

成本的比值，以期能在各式問題中降低成本或是改善成果。 

其中，最常見的最佳化形式要屬問題的參數調整。對於想要進行最佳化處理的

問題，通常需要定義一個目標函數 (Objective function)，來協助我們使用各種最佳
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化技術。其中一種是使用經驗法則 (heuristic)，在可行解範圍逐步尋求最佳化。此

類演算法包括基因演算法 (Genetic algorithm) [1, 2]、模擬退火演算法 (Simulated 
annealing) [3, 4]、螞蟻族群演算法 (Ant colony algorithm) [5]、粒子群最佳化 
(Particle Swarm Optimization) [6, 7]… 等等。這類方法藉由模擬自然界的運作來達

到最佳化目的。這類方法不再受限於目標函數的數學特性，可以應用於非線性、不

可微分、或是不連續函數。無法用數學函數描述的問題，都可以設計模型，根據模

擬得到的回饋進行最佳化演算。只要兩組解的優勝劣敗能夠被某種方式比較，甚至

連不存在目標函數的問題也能適用，例如：個人化之樂音片段產生 [8]。此類演算

法的可行性與實用性非常高，具有一定的求解能力，在有限時間內通常可以獲得在

品質方面可被接受解，因此漸漸地被廣泛應用於現實世界問題。 

然而，針對演化計算中之基因演算法而言，在過去的文獻中，相關學者已曾指

出，基因演算法在解編碼不適當 (亦即有相依關係的變數未能被安排在一起) 的情

形下，最佳化效能將極其低落 [9]。因此，基因演算法之主要改進方向之一，就在

於鏈結學習 (Linkage learning)，亦即偵測變數間之相依性，並利用該資訊輔以各種

方式，包括動態調整解編碼、設計特殊演算子… 等，來增進基因演算法之最佳化

效能 [10]。此外，自從 No-free-lunch 定理 [11] 提出後，「泛用型」最佳化演算

法的存在即在理論層面遭到質疑；同時，現今對於最佳化演算方法的核心機制在理

論層面的認識不足，亦是目前演化計算領域無法長足發展的主因之一。是故，在本

計畫的第一年度中，吾人對於這幾個問題進行深入的探討與研究。 

在應用層面，本計畫於第二年度內針對 LT 編碼中採用的編碼密度機率模型

進行最佳化研究，並且也提出了 LT 編碼方法的改進方式，創造出能夠針對不同

應用情境客製化的可能性。LT 編碼目前已被以基本元件的形式採用於許多重要的 
rateless 編碼框架中，因此，增進 LT 編碼本身的效能是一件極為重要的事。為了 
LT 編碼的效能，許多研究提出了 LT 編碼部分元件的改進方式。[12, 13] 針對 LT 
編碼中的解碼演算法加以改進，使用不同的機制以還原來源資料。[14] 則將亂數

產生器置換為混沌 (chaos) 數列產生演算法，以提供 LT 編碼做為亂數使用。 

除了這些研究以外，更多的相關研究者則聚焦在設計編碼密度機率模型上，以

期得到比已被證明在來源資料符號數趨向無限大時非常接近最佳解的 Robust 
soliton distribution 能提供 LT 編碼更佳效能的編碼密度機率模型。於是，這類研

究 [15, 16] 專注於處理來源資料符號數較少的情境上，即便這些符號數小於 30 
的情境事實上目前可以使用高斯消除法來處理 [17, 18]。為了要能對需使用較多、

但距離無限大很遠的 LT 編碼情境最佳化，[19] 首先提出了使用經驗法則來進行

編碼密度機率模型的最佳化動作，並測試了符號數為 100 的情況。然而，就實務

層面及需求 (例如，即時多媒體資料傳輸、音訊與視訊串流等) 來看，符號數約在

數面到數萬之間，才是亟需研究的區段。此乃由於這種數量級的符號數仍然距離無

限大很遠，Robust soliton distribution 無法幫得上忙，但卻又多到非常難以尋得可

提供較佳 LT 編碼效能的編碼密度機率模型。包含本實驗室及合作研究者在內，

過去已有數項以演化計算方法來對編碼密度機率模型最佳化的研究 [20-22]，故在

本計畫中，我們在第二年度中更進一步地將前一年度內所得之成果，應用於此重要

的最佳化的問題上，並且亦試圖改進 LT 編碼原設計機制。 
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四、 研究方法 

1. 針對歸納式鏈結學習法之性質探討 

歸納式鏈結學習 (ILI, Inductive linkage learning) 法為本實驗室過去

所提出 [23]，使用機器學習領域之 ID3 方法進行鏈結學習的技術。先前

本實驗室已對此方法進行，建構基石的難度影響 [24, 25]、問題結構的影

響 [26]… 等數項分析。奠基於這些成果，在本計畫的支持下，我們更進

一步探討此方法在處理含有不同大小與型別的建構基石之問題時的表

現，以及其所需之人口數目相對於問題大小的成長關係，如圖所示。 

 

 

2. 解除 No-free-lunch 定理之桎梏 

為了奠定泛用型方法存在之可能性及其範圍，吾人提出一個足夠廣泛

的數學框架，並以理論觀點配合計算實務，來合理地解釋 No-free-lunch 
定理雖然在其所定義的最佳化問題、最佳化方法等範疇內為真。但由於在

實務中，絕大部分被包含在「所有問題」中的問題 (亦即目標函數) 其實

完全毋須考慮，在此情形之下，No-free-lunch 所宣稱之「任何兩個最佳

化方法在所有問題上的平均效能相等」在發展各項於實務中所使用的最佳

化計算方法方面，並不會造成任何影響。 
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3. 建立彌因演算法核心運作機制之數學模型 

彌因演算法 (Memetic algorithm) 與基因演算法的不同之處，在於彌

因演算法強調以「後天學習所獲得之技能」的觀點，來思考區域搜尋 (Local 
search) 運算子在最佳化過程中所扮演的角色。而最佳化方法要達到優良

效能，其必要條件即為所使用之廣域搜尋 (Global search) 運算子與區域

搜尋運算子能合作與平衡。然而，長期以來縱有一些零星的理論探討研

究，大多流於範圍狹窄或模型不實際。因此上述概念的本身雖被大部分相

關學者所認同，但一直停留在觀念階段，無法落實為可進行運算的數學標

的。本實驗室針對此點，建立起具體卻又不失一般性之彌因演算法數學模

型，用以探討廣域搜尋機制與區域搜尋機制的相對性質與平衡之取得，並

得以之做為設計出效能更佳之演算法的指導原則。 

而由我們的研究結果可知，如下圖所示，廣域搜尋機制與區域搜尋機

制的平衡乃奠基於搜尋資源是否平均分配於這兩種搜尋機制。這裡所謂的

「平均分配」並非是以主動且直接的方式，讓廣域搜尋和區域搜尋各佔一

半的搜尋資源，而是要藉由調整其採用的最佳化演算法本身所具有的參數

來達成。若該演算化在某組參數設定下，能恰好在廣域搜尋行為和區域搜

尋行為展現時使用各半的搜尋資源，則應是其最有效率的情境。 

  



 5

4. 分析粒子群演算法的收歛時間 

粒子群演算法 (Particle swarm optimization, PSO) 由於其容易使用且

效果佳的特性，目前被廣泛使用於許多的工程與科學的最佳化問題上。然

後，就理論層面而言，環顧目前相關文獻，現存對於粒子群最佳化演算法

之理論研究在原始構想上，都是先將粒子群的數量縮減為 1，然後認定這

些 (事實上是「這個」) 粒子的移動方式為動態系統，再引用動態系統領

域中所熟知的推導結果說明粒子群之收斂性。而少數奠基在相同的思維

上，推廣至稍多粒子的研究中，皆假設所有的粒子之間完全獨立。雖然由

於理論探討困難，高度簡化討論標的複雜度無可厚非，但討論「數量為 1」
的群體，而以單一粒子最終靜止的行為說明粒子群收斂的必然性，同時還

捨棄粒子群最佳化演算法中最關鍵的特性—粒子訊息交換行為。如此的理

論研究，對於推進粒子群最佳化演算法的貢獻顯然極其有限。而本實驗室

在這個主題中進行了重要的研究。在我們先前已發表的研究 [27] 中，首

創以統計的方式來詮釋粒子群最佳化方法的運作。在我們所提出的理論框

架中，不但直接考慮了由多個粒子所構成的群體，同時也一併考慮粒子間

的訊息交換的關鍵機制，成為目前所有相關的理論研究中，最為貼近實際

執行之粒子群最佳化演算法的理論模型。在奠基於此一理論架構上，我們

進行了收歛時間的推導，並以實驗的方式獲得了如下圖所示的初步驗證。 
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5. 尋找對 LT 編碼最佳化時所需的替代評估函數 

改進 LT 編碼最直覺的想法就是降低其所需之 overhead，因此評估

函數通常是去計算 LT 編碼搭配某編碼密度機率模型的 overhead。遺憾

的是目前沒有一個 closed form 可以去計算平均所需的 overhead，只能依

靠大量模擬資料。若我們從另一角度來觀察 LT 編解碼行為，當收集到

的 output symbols 越來越多時，LT 編碼有越高的機率可以完全解開 
input symbols。這表示我們可以固定 LT 編碼接收到的 overhead，求出並

最小化 LT 編碼失敗機率。在本計畫中，我們參考了兩種見於文獻的評

估計算方式 [28, 29]，並使用於編碼密度機率模型的最佳化過程，進而獲

得如下表所條列之高效能 LT 編碼編碼密度機率模型。 

 

6. 研究稀疏機率分佈的選擇 

在最佳化架構中為了減輕搜尋負擔，我們採用稀疏機率分佈來取代完

整機率分佈。此方法可以有效地降低搜尋空間的大小，但同時也限制了找

到全域最佳解的可能。在先前的研究中，我們依靠實驗經驗，手動決定適

合的 degree 來組成稀疏機率分佈中的非零項，雖然最佳化後的結果確實

優於 Robust soliton distribution，但我們不曉得這些分佈是否已經逼近全

域最佳解，抑或有其他的 degree 組合能夠找出更佳的稀疏機率分佈。根

據文獻指出，不同 degree 的 output symbols 各自有其解碼作用。為了釐

清不同 degree 對於 LT 解碼率的影響，我們考慮量化各個 degree 上的

機率跟 LT 解碼率間的關係。分析這些數據有助於我們找到最適當的

degree 集合，使其所對應到的子搜尋空間能儘量逼近全域最佳解位置。 
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7. 改進 LT 編碼機制使其得以客製化 

在噴泉碼 (Fountain codes) 的發展過程中，universal property 一直在

理論層面上佔有非常重要的地位，因為它保證了無論 channel erasure rate 
在何種情形下，解碼所須的 overhead 都維持不變。然而，時值今日，在

實務情形中，太高的 channel erasure rate 根本不具考慮價值，因為即便料

接受者確實能夠接獲資料，相較其他使用較佳 channel 的同儕使用者而

言，使用經驗將大打折扣。此外，若是考慮即時多媒體傳輸的場合，只要

使用稍高 erasure rate 的 channel，便可能造成整體問題，故 channel 
erasure rate 便成為一個設計參數，對不同的情境皆有經考慮而確定要支

援的界限。但此一實務需求，以目前的 LT 編碼發展而言，完全沒有被

研究者以學術問題的角度進行考慮。是故，本實驗室針對這項需求，為 LT 
編碼機制引入演化計算領域中常用的 tournament selection 機制，以致 LT 
編碼可依應用情境的不同，而進行客製化及最佳化調整，不必拘泥於維持 
universal property。所得結果如下圖所示，噴泉碼之採用者可以情境之不

同，客製出 CDD1, CDD2, CDD3 等因應不同應用情境狀況之需求。相對

於具有 universal property 特性的編碼方法，如 LT 編碼，就僅能使用此

圖中之水平線的編碼性質，如圖中之紅色水平線即為  Robust soliton 
distribution 配合 LT 編碼所能提供的效能指標。 
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五、 結果與討論 

本計畫於兩年期間，進行偵測決策變數間關係技術之深入研究、探討演化計算

方法之理論根基，並且針對 LT 編碼問題進行研究，包括編碼密度機率模型的最

佳化以及改進 LT 編碼機制等。在這些主題中，已完成之具體工作項目如下： 

 參與人員獲得以下之訓練： 

 培養研究生分工合作之能力； 

 訓練參與人員研究、統合與論文寫作能力； 

 統整研究成果並發表學術論文； 

 強化參與人員之資料分析、演化計算、機械學習、數值分析與最佳化技術

等相關技能。 

 深入探討歸納式鏈結學習法之性質: 包括其對於含有不同大小與型別的建構

基石之問題的表現，以及建立數學模型以顯示並預測歸納式鏈結學習法所需之

人口數目相對於問題大小的成長關係。 

 奠定泛用型方法存在之可能性及其範圍: 提出數學框架以理論觀點配合計算

實務以合理地解釋 No-free-lunch 定理雖然在其定義的範圍內為真，但並不會

對於發展實務計算各項方法造成任何影響。 

 建立演化計算方法之數學模型: 提出數學模型並用以探討最佳化計算法方中

所含有之廣域搜尋機制與區域搜尋機制的相對性質，以及其應如何調配方能取

得平衡，以利設計出效能更佳之演算法。 

 分析粒子群演算法的收歛時間: 奠基於本實驗室之前所提出之粒子群演算法

收歛的數學模型，進行收歛時間的推導，並將實際之粒子群演算法運用於處理

具體的數學函數以獲得可驗證所推導之收歛時間的數值結果。 

 將研究成應用於 LT 編碼中之編碼密度機率模型最佳化: 我們首先尋找對 
LT 編碼最佳化時所需的替代評估函數，再配合研究稀疏機率分佈的選擇以降

低最佳化演算法的負擔，從而成功對編碼密度機率模型進行最佳化。 

 改進 LT 編碼機制使其得以客製化: 將演化計算領域經常使用的 tournament 
selection 概念，應用於改進 LT 編碼機制中，致使 LT 編碼採用者有機會能

針對其不同的應用情境與狀況，將 LT 編碼客製化與最佳化。 

 撰寫報告並投稿相關期刊與重要會議論文以公開發表本計畫各項研究成果。本

實驗室目前基於國科會之研究計畫補助，投稿與發表了以下的學術論文： 

 期刊論文： 

 Chen, C.-M., Chen, Y.-p., Shen, T.-C., & Zao, J. K. A Practical 
Optimization Framework for the Degree Distribution in LT Codes. IET 
Communications. (Submitted) 
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 Lin, J.-Y., & Chen, Y.-p. (2013). Population sizing for inductive linkage 
identification. International Journal of Systems Science. 

doi: 10.1080/00207721.2011.577246. (SCI, EI). (Accepted) 

 Chen, Y.-p., Chuang, C.-Y., & Huang, Y.-W. (2012). Inductive linkage 
identification on building blocks of different sizes and types. 
International Journal of Systems Science, 43(12), 2202–2213. 

doi: 10.1080/00207721.2011.566639. (SCI, EI). 

 Lee, M.-C., Leu, F.-Y., & Chen, Y.-p. (2012). PFRF: An adaptive data 
replication algorithm based on star-topology data grids. Future 
Generation Computer Systems, 28(7), 1045–1057. 

doi: 10.1016/j.future.2011.08.015. (SCI, EI). 

 Chen, C.-H., & Chen, Y.-p. (2011). Convergence time analysis of particle 
swarm optimization based on particle interaction. Advances in Artificial 
Intelligence, 2011(204750), 1–7. 

doi: 10.1155/2011/204750. 

 Lin, J.-Y., & Chen, Y.-p. (2011). Analysis on the collaboration between 
global search and local search in memetic computation. IEEE 
Transactions on Evolutionary Computation, 15(5), 608–623. 

doi: 10.1109/TEVC.2011.2150754. (SCI, EI). 

 Jiang, P., & Chen, Y.-p. (2011). Free lunches on the discrete Lipschitz 
class. Theoretical Computer Science, 412(17), 1614–1628. 

doi: 10.1016/j.tcs.2010.12.028. (SCI, EI). 

 會議論文： 

 Chen, C.-M., & Chen, Y.-p. Connection Choice Codes. The 32nd IEEE 
International Conference on Computer Communications (IEEE 
INFOCOM 2013). (Submitted) 

 Tsai, P.-C., Chen, C.-M., & Chen, Y.-p. (2012). Sparse degrees analysis 
for LT codes optimization. In Proceedings of 2012 IEEE Congress on 
Evolutionary Computation (CEC 2012) (pp. 2463–2468). 

doi: 10.1109/CEC.2012.6252861. (EI). 

 Lin, J.-Y., & Chen, Y.-p. (2012). When and what kind of memetic 
algorithms perform well. In Proceedings of 2012 IEEE Congress on 
Evolutionary Computation (CEC 2012) (pp. 2716–2723). 

doi: 10.1109/CEC.2012.6252894. (EI). 
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The goal of linkage identification is to obtain the dependencies among decision variables. Such information or
knowledge can be applied to design crossover operators and/or the encoding schemes in genetic and evolutionary
methods. Thus, promising sub-solutions to the problem will be disrupted less likely, and successful convergence
may be achieved more likely. To obtain linkage information, a linkage identification technique, called Inductive
Linkage Identification (ILI), was proposed recently. ILI was established upon the mechanism of perturbation and
the idea of decision tree learning. By constructing a decision tree according to decision variables and fitness
difference values, the interdependent variables will be determined by the adopted decision tree learning
algorithm. In this article, we aim to acquire a better understanding on the characteristics of ILI, especially its
behaviour under problems composed of different-sized and different-type building blocks (BBs) which are not
overlapped. Experiments showed that ILI can efficiently handle BBs of different sizes and is insensitive to BB
types. Our experimental observations indicate the flexibility and the applicability of ILI on various elementary
BB types that are commonly adopted in related experiments.

Keywords: inductive linkage identification; ILI; linkage learning; BBs; genetic algorithms; evolutionary
computation

1. Introduction

Previous studies (Goldberg, Korb, and Deb 1989;
Harik 1997) on genetic algorithms (GAs), which are
widely utilised to handle control and engineering
problems (Wang 2009; Li and Li 2010; Gladwin,
Stewart, and Stewart 2011), have shown that the
encoding scheme of solutions is one of the key factors
to the success of GAs by demonstrating that simple
GAs fail to handle problems of which the solutions are
represented with loose encodings while genetic algo-
rithms capable of learning linkage succeed. If strongly
related variables, which are usually referred to as
building blocks (BBs), are arranged loosely with the
adopted representation, they are likely to be disrupted
by crossover operations. Such a condition contributes
to the divergence of population, instead of the
convergence towards optimal solutions. Although
encoding strongly related variables tightly or making
crossover operators aware of such relationships could
mitigate the problem and improve the GA perfor-
mance (Stonedahl, Rand, and Wilensky 2008), both
measures require the foreknowledge of the target
problem, which is often not the case in which evolu-
tionary algorithms are adopted.

In order to overcome the BB disruption problem,
a variety of techniques have been proposed and
developed in the past two decades and can be roughly

classified into three categories (Munetomo and
Goldberg 1998; Chen, Yu, Sastry, and Goldberg 2007):

(1) Evolving representations or operators;
(2) Probabilistic modelling for promising

solutions;
(3) Perturbation methods.

The objective of the techniques in the first class is to

make individual promising sub-solutions separated

and less likely to be disrupted by crossover via

manipulating the representation of solutions during

optimisation. Various reordering and mapping opera-

tors have been proposed in the literature, such as self-

crossover (Pal, Nandi, and Kundu 1998), which is

proven able to generate any arbitrary permutation of

the symbols, the messy GA (mGA) (Goldberg et al.

1989), and the fast mGA (fmGA) (Kargupta 1995),

which is the more efficient descendant of mGA. The

difficulty faced by these methods is that the reordering

operator usually reacts too slow and loses the race

against selection. Therefore, premature convergence at

local optima occurs. Another technique, the linkage

learning GA (LLGA) proposed by Harik (1997), uses

circular structures as the representation with two-point

crossover such that the tight linkage might be more

likely preserved. LLGA works well while the shares of

BBs are exponentially apportioned in the total fitness,
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which are usually referred to as exponentially scaled
problems. However, it is inefficient when applied to
uniformly scaled problems.

The methods in the second category are often
referred to as the estimation of distribution algorithms
(EDAs) (Mühlenbein and Paaß 1996; Larrañaga and
Lozano 2001; Pelikan, Goldberg, and Lobo 2002).
These approaches describe the dependencies among
variables in a probabilistic manner by constructing a
probabilistic model from selected solutions and then
sample the built model to generate new solutions. Early
EDAs began with assuming no interactions among
variables, such as the population-based incremental
learning (PBIL) (Baluja 1994) and the compact GA
(cGA) (Harik, Lobo, and Goldberg 1999). Subsequent
studies started to model pairwise interactions, e.g. the
mutual-information input clustering (MIMIC) (de
Bonet, Isbell, and Viola 1997), Baluja’s dependency
tree approach (Baluja and Davies 1997), and the
bivariate marginal distribution algorithm (BMDA)
(Pelikan and Mühlenbein 1999). Multivariate depen-
dencies were then exploited, and more general interac-
tions were modelled. Example methods include the
extended compact GA (ECGA) (Harik 1999), the
Bayesian optimisation algorithm (BOA) (Pelikan,
Goldberg, and Cantú-Paz 1999), the factorised distri-
bution algorithm (FDA) (Mühlenbein and Mahnig
1999) and the learning version of FDA (LFDA)
(Mühlenbein andHöns 2005). Since model constructing
in these methods requires no additional fitness evalu-
ations, EDAs are usually considered efficient in the
traditional viewpoints of evolutionary computation,
especially when fitness evaluations involve time-
consuming simulations. However, the model construct-
ing mechanism itself is sometimes computationally
expensive with a large population size, which usually
occurs in evolutionary methods. The difficulty which
EDAs often face is that the BBs contributing less to the
total fitness are likely ignored rather than recognised.

Approaches in the third category observe the
fitness differences caused by perturbing variables to
detect dependencies. In the literature, the gene expres-
sion messy GA (GEMGA) (Kargupta 1996) models
the sets of tightly linked variables as weights assigned
to solutions and employs a perturbation method to
detect them. GEMGA observes the fitness changes
caused by perturbations on every variable for strings in
the population and detects interactions among vari-
ables according to how likely the variables compose
optimal solutions. Assuming that nonlinearity exists
within a BB, the linkage identification by nonlinearity
check (LINC) (Munetomo and Goldberg 1998) per-
turbs a pair of variables and observes the presence of
nonlinearities to identify linkages. If the sum of fitness
differences of perspective perturbations on two

variables is equal to the fitness difference caused by
simultaneously perturbing the two variables, linearity
is confirmed, and thus, these two variables are consid-
ered independent. Instead of non-linearity, the descen-
dant of LINC, linkage identification by non-
monotonicity detection (LIMD) (Munetomo and
Goldberg 1999), adopts non-monotonicity to detect
interactions among variables. Compared to EDAs, the
low salience BBs are unlikely ignored in these
approaches. However, since obtaining fitness differ-
ences requires extra function evaluations, perturbation
methods are usually considered demanding more
computational efforts to detect linkages. In addition
to empirical studies Heckendorn and Wright (2004)
generalised these methods through Walsh analysis to
obtain theoretical resource requirements. Zhou, Sun,
and Heckendorn (2007) and Zhou, Heckendorn, and
Sun (2008) later extended this study from the binary
domain to high-cardinality domains.

An interesting approach combining the ideas of
EDAs and perturbation methods, called the depen-
dency detection for distribution derived from fitness
differences (D5), was developed by Tsuji, Munetomo,
and Akama (2006). D5 detects the dependencies of
variables by estimating the distributions of strings
clustered according to fitness differences. For each
variable, D5 calculates fitness differences by perturba-
tions on that variable in the entire population and
clusters the strings into sub-populations according to
the obtained fitness differences. The sub-populations
are examined to find k variables with the lowest
entropies, where k is an algorithmic parameter for
problem complexity, i.e. the number of variables in a
linkage set. The determined k variables are considered
forming a linkage set. D5 can detect dependencies for a
class of functions that are difficult for EDAs, e.g.
functions containing low salience BBs, and requires
less computational cost than other perturbation
methods do. However, its major constraint is that it
relies on parameter k, which may not be available due
to the limited information of the problem structure. As
a side-effect to parameter k, D5 might be fragile in the
situation where the problem is composed of subprob-
lems of different sizes. Moreover, Ting, Zeng, and Lin
(2010) recently utilised another data mining technique,
Apriori Algorithm, to learn potential association rules
between decision variables for linkage discovery. They
reported that their proposal can improve D5 in terms
of solution quality and efficiency.

In our previous work, we proposed inductive
linkage identification (ILI) based on perturbations
and the integration with the Interative Dichotomiser
(ID3) (Quinlan 1986) algorithm, which is widely used
in machine learning. ILI is an unsupervised method
without any parameter for the complexity of BBs.
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Its scalability and efficiency against the increasing
problem sizes have been demonstrated (Chuang and
Chen 2007, 2008; Huang and Chen 2009, 2010).
Compared to the conventional perturbation methods,
such as LINC and LIMD, ILI utilises a data mining
technique to analyse objective functions. Compared to
D5, which uses clustering, and the method proposed by
Ting et al. (2010), which uses Apriori algorithm, ILI
adopts the ID3 algorithm and behaves quite differ-
ently. In this article, we aim to address more detailed
characteristics of ILI in order to gain deeper insights
and better understandings of linkage learning. In
particular, problems constructed by non-overlapped
BBs of different sizes and sub-functions are studied
and experimented upon. Our experimental results
indicate that ILI holds the properties of robustness
and efficiency when facing various configurations
of BBs.

The remainder of this article is organised as
follows. In Section 2, the background of linkage
leaning in GA and decomposability of problems is
briefly introduced. Section 3 gives an introduction to
ILI, including a review of the ID3 decision tree
learning algorithm, an example illustrating the pro-
posed approach, and an algorithmic description of ILI.
Section 4 presents the experiments conducted in this
study and the results revealing the behaviour of ILI.
Finally, Section 5 summaries and concludes this article.

2. Linkage and BBs

In this section, we briefly review the definitions and
terminologies which will be used through out this
article. As stated by de Jong, Watson, and Thierens
(2005), ‘two variables in a problem are interdependent
if the fitness contribution or optimal setting for one
variable depends on the setting of the other variable’,
and such relationship between variables is often
referred to as linkage in the GA literature. In order
to obtain the full linkage information of a pair of
variables, the fitness contribution or optimal setting of
these two variables will be examined on all possible
settings of the other variables.

Although obtaining the full linkage information is
computationally expensive, linkage should be esti-
mated using a reasonable amount of efforts if the
target problem is decomposable. According to the
Schema theorem (Holland 1992), short, low-order and
highly fit substrings increase their share to be com-
bined. Also stated in the BB hypothesis, GAs implicitly
decompose a problem into sub-problems by processing
BBs. It is considered that combining small parts is
important for GAs and is consistent with human
innovation (Goldberg 2002). These lead to a problem

model called the additively decomposable function
(ADF), which can be written as a sum of low-order
sub-functions.

Let a string s of length ‘ be described as a series of
variables, s¼ s1s2 � � � s‘. We assume that s¼ s1s2 � � � s‘ is
a permutation of the decision variables x¼ x1x2 � � � x‘
to represent the encoding scheme adopted by GA
users. The fitness of string s is then defined as

f ðsÞ ¼
Xm
i¼1

fiðsviÞ, ð1Þ

where m is the number of sub-functions, fi is the i-th
sub-function and svi is the substring to fi. Each vi is a
vector specifying the substring svi . For example, if
vi¼ (1, 2, 4, 8), svi ¼ s1s2s4s8. If fi is also a sum of other
sub-functions, it can be replaced by those sub-
functions. Thus, each fi can be considered as a
nonlinear function.

By eliminating the ordering property of vi, we can
obtain a set Vi containing the elements of vi. The
variables belonging to the same set of Vi is regarded as
interdependent because fi is nonlinear. Thus, we refer
to the set Vi as a linkage set. A related term, BBs,
is referred to as the candidate solutions to sub-function
fi. In this article, only a subclass of the ADFs is
considered. We concentrate on non-overlapping sub-
functions. That is, Vi\Vj¼; if i 6¼ j. In addition, the
strings are assumed to be composed of binary variables.

3. Inductive linkage learning

In this section, the ideas behind ILI will be presented.
Then, the ID3 algorithm, which is proposed and widely
utilised in the field of machine learning, will be briefly
introduced. An example is given to illustratively
explain the mechanism of ILI, followed by the
pseudo code.

In ILI, linkage learning is regarded as the issue of
decision tree learning. As an illustration, the fitness
difference can be derived in the following equation
within the ADF model:

f ðs1s2 � � � s8Þ ¼ f1ðs1s2s3s4s5Þ þ f2ðs6s7s8Þ

df1ðsÞ ¼ f ðs1s2 � � � s8Þ � f ðs1s2 � � � s8Þ

¼ ð f1ðs1s2s3s4s5Þ þ f2ðs6s7s8ÞÞ

� ð f1ðs1s2s3s4s5Þ þ f2ðs6s7s8ÞÞ

¼ f1ðs1s2s3s4s5Þ � f1ðs1s2s3s4s5Þ: ð2Þ

Equation (2) indicates that the fitness difference df1
should be affected only by the bits belonging to the
same sub-functions as the perturbed bits s1, which
are s1s2 � � � s5. Since certain fitness difference values are
respectively caused by particular bits arranged in some
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permutation of the sub-function where the perturbed
variable belongs, we can consider the task as finding
which values of variables will result in the correspond-
ing fitness differences.

We found that this kind of tasks is similar to
decision making in machine learning: given a condition
composed of attributes, an agent (algorithm) should
learn to make a decision with the given training
instances. When the decision-making method is
adopted for conducting linkage learning, decision
variables are regarded as attributes and the fitness
difference values stand for class labels. With this simple
and direct mapping, linkage learning in GAs can
potentially be handled with certain well-developed
methods in machine learning.

3.1. Decision tree learning: ID3

The ID3 algorithm was proposed by Quinlan (1986)
for the purpose of constructing a decision tree on a set
of training instances. In its basic form, ID3 constructs
a decision tree in a top–down manner without back-
tracking. When a decision tree is being constructed,
each attribute is evaluated using a statistical property,
called the information gain, to measure how well the
attribute alone classifies the training instances. The
best attribute, which leads to the highest information
gain, is accordingly selected and used as the root node
of the tree. A descendant node of the root is created for
each possible value of the selected attribute, and the
training instances are split into appropriate descendant
branches. The entire process is repeated on the training
instances associated with each descendant node.

The statistical property, information gain, of each
attribute is simply the expected reduction in the
impurity of instances after classifying the instances
with the selected attribute. The impurity of an
arbitrary collection of instances is called entropy in
the information theory. Given a collection D, contain-
ing instances of c different target values, the entropy of
D relative to this c-wise classification is defined as

EntropyðDÞ �
Xc
i¼1

�pi log2 pi, ð3Þ

where pi is the proportion of D belonging to class i. For
simplicity, in all the calculations involving entropy,
we define 0log20 to be 0. In terms of entropy, the
information gain, Gain(D,A), of an attribute A relative
to a collection of instances D, is defined as

GainðD,AÞ � EntropyðDÞ �
X

v2Val ðAÞ

jDvj

jDj
EntropyðDvÞ,

ð4Þ

where Val(A) is the set of all possible values for
attribute A and Dv is the subset of D of which attribute
A has value v. In summary, ID3 can be described as the
pseudo code given in Algorithm 1.

Algorithm 1: Pseudo code of ID3

procedure ID3(D)
Stop if no further classification is need
for each attribute A do

Calculate Gain(D, A)
end for

Select the attribute with the highest information
gain as a tree node
for each possible value v of the selected attribute
do

Create a branch for Dv, the subset of D of
which the selected attribute has value v
Call ID3(Dv) to construct this subtree

end for

end procedure

In the proposal of ILI (Chuang and Chen 2007),
the ID3 algorithm is adopted as a classification and
relationship extraction mechanism. Linkage learning is
then achieved by a sequence of decision tree construc-
tions. In a classification problem, a training instance is
composed of a list of attributes describing the instance
and a target value which the decision tree is supposed
to predict after training. For the purpose of linkage
identification, the list of attributes is the solution
string, and the target value is the fitness difference
caused by perturbations.

3.2. Exemplary illustration

This section illustrates the idea that linkage learning
is considered as decision learning with an example.
We consider a trap function of size k defined as the
following:

ftrapkðs1s2 � � � skÞ ¼ trapk u ¼
Xk
i¼1

si

 !

¼
k, if u ¼ k;

k� 1� u, otherwise,

�
ð5Þ

where u is the number of ones in the string s1s2� � �sk.
Suppose that we are dealing with an eight-bit problem

f ðs1s2 � � � s8Þ ¼ ftrap5ðs1s2s3s4s5Þ þ ftrap3ðs6s7s8Þ, ð6Þ

where s1s2 � � � s8 is a solution string. In the black-box
optimisation scenario, the structural decomposition of
the objective function is unknown. Our goal here is to
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identify the two linkage sets V1¼ {1, 2, 3, 4, 5} and
V2¼ {6, 7, 8}, which correspond to the problem struc-
tural decomposition.

In the beginning, a population of strings is
randomly generated as listed in Table 1. The first
column lists the solution strings, and the second
column lists the fitness values of the corresponding
strings. After initializing the population, we perturb
the first variable s1 (0! 1 or 1! 0) for all strings in
the population in order to detect the variables
interdependent on s1. Note that the choice of first
operating on s1 in this example is not mandatory. Any
un-grouped decision variable in the encoding may be
chosen as the root node. The third column of Table 1
records the fitness differences, df1, caused by pertur-
bations at variable s1.

Then, we construct an ID3 decision tree by using
the perturbed population of strings as the training
instances and the perturbed variable s1 as the tree root.
Variables in s1s2 � � � s8 are regarded as attributes of the
instances, and the fitness differences df1 are the target
values/class labels. Corresponding to Table 1, an ID3
decision tree shown in Figure 1 is constructed. By
gathering all the decision variables on the non-leaf
nodes, we can identify a group of s1, s2, s3, s4 and s5. As
a consequence, linkage set V1 is correctly identified.

For the remainder of this example, since s1, s2, s3, s4
and s5 are already identified as linkage set V1, we
proceed at s6. The fitness differences after perturbing
variable s6 are shown in Table 2. Conducting the same
procedure, an ID3 decision tree presented in Figure 2 is
obtained. By gathering all the decision variables used
in the decision tree, we obtain variables s6, s7 and s8,
which form linkage set V2. Because all the decision

variables are classified into their respective linkage sets,
the linkage detecting task is accomplished. ILI finally
reports two linkage sets, V1¼ {s1, s2, s3, s4, s5} and
V2¼ {s6, s7, s8}.

As illustrated in the example, the mechanism of ILI
can detect size-varied BBs without assumptions. Such
an ability implies that ILI should be capable of finding
all relations among these variables as long as the

Table 2. Population perturbed at s6.

s1s2 � � � s8 f df6 s1s2 � � � s8 f df6

11100 000 1 0 10101 100 1 0
10011 000 1 0 01101 100 1 0
11011 001 0 0 00100 100 3 0
01111 001 0 0 10010 101 2 0
00100 001 3 0 10110 101 1 0
11111 010 5 0 11110 101 0 0
10101 010 1 0 01101 101 1 0
11100 010 1 0 01110 110 1 0
10001 010 2 0 01111 110 0 0
11011 010 0 0 01110 110 1 0
10000 010 3 0 10101 110 1 0
01101 010 1 0 01111 110 0 0
00001 011 3 �3 10010 110 2 0
00001 011 3 �3 00011 111 5 3
11010 011 1 �3 00011 111 5 3
11001 011 1 �3 01000 111 6 3
11111 011 5 �3 00101 111 5 3
11100 011 1 �3 11001 111 4 3
01010 011 2 �3 00110 111 5 3
10111 100 0 0 01111 111 3 3

Figure 1. ID3 decision tree constructed according to Table 1.

Table 1. Population perturbed at s1.

s1s2 � � � s8 f df1 s1s2 � � � s8 f df1

00001 011 3 1 10010 110 2 �1
00011 111 5 1 10011 000 1 �1
00100 001 3 1 10101 010 1 �1
00100 100 3 1 10101 100 1 �1
00101 111 5 1 10101 110 1 �1
00110 111 5 1 10110 101 1 �1
01000 111 6 1 10111 100 0 �1
01010 011 2 1 11001 011 1 �1
01101 010 1 1 11001 111 4 �1
01101 100 1 1 11010 011 1 �1
01101 101 1 1 11011 001 0 �1
01110 110 1 1 11011 010 0 �1
01111 001 0 �5 11100 000 1 �1
01111 110 0 �5 11100 010 1 �1
01111 111 3 �5 11100 011 1 �1
10000 010 3 �1 11110 101 0 �1
10001 010 2 �1 11111 010 5 5
10010 101 2 �1 11111 011 5 5
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population size is sufficiently large to provide signif-
icant statistics.

3.3. Inductive linkage identification

In this section, the idea demonstrated in the previous
section is formalized as an algorithm, which is called
ILI. The pseudo code of ILI is presented in
Algorithm 2. Conceptually, ILI includes the following
three main steps:

(1) Calculate fitness differences by perturbations;
(2) Construct an ID3 decision tree;
(3) Consider the tree nodes as a linkage set.

The three steps repeat until all the variables of the
objective function are classified into their correspond-
ing linkage sets.

ILI starts with initializing a population of strings.
After initialization, ILI identifies one linkage set at a
time using the following procedure: (1) a variable is
randomly selected to be perturbed; (2) an ID3 decision
tree is constructed according to the fitness differences
caused by perturbations; (3) the variables used in the
tree are gathered and considered as a linkage set.

Algorithm 2: Inductive linkage identification

procedure IDENTIFYLINKAGE( f, ‘)
Initialise a population P with n string of length ‘.
Evaluate the fitness of strings in P using f.
V {1, . . . , ‘}
m 0
while V 6¼ ; do

m mþ 1
Select v in V at random.

Vm {v}
V V� {v}
for each string si ¼ si1s

i
2 � � � s

i
‘ in P do

Perturb siv.
df i fitness difference caused by
perturbation.

end for

Construct an ID3 decision tree using (P, df ).
for each decision variable sj in tree do

Vm Vm[ { j}
V V� { j}

end for

end while

return linkage sets V1,V2, . . . ,Vm

end procedure

As clearly shown in Algorithm 2, there is no
parameter needed for indicating the complexity of sub-
functions. That is, ILI does not rely on any assumption
on the size of BBs while other existing perturbation
methods usually require the maximum size of BBs to
be specified. This property distinguishes ILI from other
existing methods. The only factor effecting the cor-
rectness of ILI is whether or not the solution strings in
the population can provide sufficient information for
the decision tree construction.

From our previous studies (Chuang and Chen
2007, 2008), we know that the required population size
grows linearly with the problem size while the BBs size
is constant. Such results indicate that ILI is more
efficient than LINC, O(‘2)¼O(k2m2) (Munetomo and
Goldberg 1998), and similar to D5,O(‘)¼O(km) (Tsuji
et al. 2006), where ‘ is the problem size, k is the size
(i.e. length or order) of BBs, and m is the number of
BBs. Note that the comparison focuses on the amount
of required computational resource instead of the
identification quality. This is because given sufficient
computational resource, all these methods can success-
fully identify every BB. In order to gain further
understandings on the flexibility and applicability of
ILI, in the next section, experiments on the BBs of
different sub-functions as well as lengths are conducted
and discussed.

4. Experiments and results

Experiments and results of ILI on binary and non-
overlapped ADFs will be presented in this section.
These experiments are designed to gain a better
understanding of the behaviour of ILI on problems
of different sub-functions compositions, including size-
varied, size-mixed BBs and different sub-functions.

The required population size reflects the behaviour
of ILI. Therefore, our experiments are designed to

Figure 2. ID3 decision tree constructed according to Table 2.
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obtain the minimal population sizes required for
different problem configurations. For a given problem,
first a population size assuring successful trials of
linkage identification, which means correctly identify-
ing all the BBs within the problem for 30 consecutive
and independent runs, is obtained by doubling the
population size from 2500 until the first successful trial
is archived. Once the upper bound of population sizes
PU is found, the required population size is determined
in a bisection manner: the population size P¼
(PLþPU)/2 will be configured for ILI, where PL¼ 1
for the first iteration. If ILI can succeed with this
population size P, then P will be regarded sufficiently
large for the problem. The next iteration will perform
on the range [PL,P]. Otherwise, the range [P,PU] will
be used. This procedure repeats until the range is
smaller than a predefined distance, which is 2 in this
study, and the last tested population size is considered
as the minimal requirement for the current problem.

4.1. Different BB sizes

This section describes the experiment on problems of
identical overall sizes but with different-sized sub-
functions. From our experimental results with different
configurations of the BB size k and the number of BBs
m, we group those results with the overall problem
sizes and arrange them with the BB size k. Thus, the
results of the same problem size with different k can be
examined.

Figure 3(a) and (b) shows the experimental results
where the overall problem sizes are 60 bits, 240 bits,
420 bits and 600 bits with a log-scaled y-axis. The
straight lines indicate that for identical overall problem
sizes, the requirements of both the population size and
the function evaluation grow exponentially.

With the exponential regression of the experimental
results, an estimation of y¼C� 2a�k can be obtained,
where a is a constant around 0.8 and C varies with
different problem sizes. Earlier studies by Munetomo
and Goldberg (1998) and Heckendorn and Wright
(2004), respectively, suggested an empirical and a
theoretical upper bounds of function evaluations,
which are both in the form of 2k‘ j log(�) for problems
of ‘ bits, composed of order-k BBs and each BB
sharing j bits with others. Reviewing our empirical
results with the upper bounds, ILI shows the same
computational complexity of the exponential growth
with k when overall sizes remain constant, such an
observation is consistent with the upper bounds
reported in the literature. However, the regression
gives 0.8 as the base of exponent and thus indicates a
practically better efficiency compared to the suggested
upper bound when the complexity of sub-problem
increases.

4.2. Mixed BB sizes

One of the key features of ILI is unsupervised. In this
section, we inspect this feature by conducting experi-
ments on the problems consisting of non-overlapping
BBs of order-k1 and order-k2 trap functions as

trapk1þk2 ð�Þ ¼
Xm
i¼1

trapk1ð�Þ þ trapk2 ð�Þ
� �

, ð7Þ

where m is the number of trapk1 and trapk2 . By
designing the experiments in this way, the empirical
results can be easily compared with those from
problems consisting of identical sub-problem complex-
ities in the following manner: for each problem size
obtained from the experiment of trapk1þk2ð�Þ, two
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Figure 3. Requirements on different BB sizes; (a) Population size and (b) Function evaluation.

2208 Y.-p. Chen et al.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
] 

at
 2

3:
09

 2
4 

O
ct

ob
er

 2
01

2 



results of the same amount of trapk1 and trapk2 from
experiments in Section 4.1 are summed up to get the
same problem size and total number of BBs, interpo-
lation is utilised when there are no results of such
configurations. These calculated numbers are denoted
as trapk1 þ trapk2 in Figure 4 with the experimental
results trapk1þk2 .

First, these results show that ILI is capable of
detecting BBs of different sizes within one problem
without any extra information regarding the complex-
ity of sub-problems. Second, comparing with calcu-
lated data, it can be seen that although ILI requires
more function evaluations for the problems composed
of mixed BB sizes, the growth rate is still linear or very
close to linear. The observation indicates that identi-
fying size-varied BBs within a problem poses no
particular difficulties for ILI. Such a property of
robustness makes ILI more practical when being
applied to real world problems where information
regarding the sub-problem complexity is usually
unavailable and no guideline exists to make appropri-
ate assumptions.

4.3. BBs of various elementary functions

Despite of using trapk functions as the sub-function to
construct BBs, the capability of ILI to handle BBs
formed by other functions shown in Figure 5 is
examined in this section. These elementary functions
are used to compose the objective function according
to the ADF model, and the complexity of order 4 is
used in this section.

Figure 6 shows the experimental results. The
required population sizes and function evaluations of

trap4, nith4, tmmp4 and valley4 are plotted together, and
the standard deviation of the results for trap4 is also
shown in the figures. Because the population and
function evaluation requirements of these problems are
similar, the behaviour of ILI should also be similar for
problems constructed by mixing sub-problems of the
same complexity. Moreover, the applicability of ILI on
a wide range of problems is also confirmed. ILI is
capable of detecting the interactions among variables
as long as a sufficiently large population is employed to
provide significant statistics.

5. Summary and conclusions

In this article, we examined ILI on several different
configurations of BBs in order to gain better under-
standings. We focused on the mixed sizes of BBs and
the elementary functions of different types. These series
of experiments verified the efficiency of ILI on the
population requirement growth, the robustness of ILI
on mixed sizes of BBs, and the applicability of ILI on
BBs formed with various elementary functions.

From the experiments of BB sizes, it is demon-
strated that the required function evaluations grow
exponentially with the size of BBs when the overall
problem size remains constant. Such a result is
consistent with the conclusions of previous studies
from other researchers in the manner of Big-O while
ILI demands less computational resource in practice.
On the other hand, if computationally expensive real-
world problems, such as parametric engineering design
(Saridakis and Dentsoras 2009), are handled, and the
optimisation framework has to be made much more
efficient, techniques of the surrogate-assisted
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Figure 4. Problems with mixed BB sizes. The solid lines represent the actual experimental results while the dashed lines are the
summed up calculations from Section 4.1.
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evolutionary algorithm (SAEA) (Sastry, Goldberg, and
Pelikan 2001; Jin 2003; Lim, Jin, Ong, and Sendhoff
2010a; Lim, Ong, Setiawan, and Idris 2010b) may be
adopted and utilised.

Another observation is that when ILI performs on
problems composed of mixed-sized BBs, the computa-
tional complexity of ILI is still in the same order.

This phenomenon indicates that detecting these more
complicated problem structures poses no particular
difficulty for ILI. Finally, the experimental results
obtained by using four different elementary functions
to construct BBs are quite similar. Thus, this series of
experiments evidentially proves that ILI behaves sim-
ilarly when handling sub-problem of different types.
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Figure 5. Elementary functions adopted in the series of experiments in Section 4.3; (a) trap4, (b) nith4, (c) tmmp4 and (d) valley4.
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Figure 6. Experimental results on different 4-bits BB types: (a) required population sizes and (b) required function evaluations.
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As a consequence, we can now know that the most
important factor that affects ILI’s ability to identify
linkage is the size of BBs. Compared with the BB size,
ILI is relatively insensitive to other factors commonly
studied by the related work, including the overall
problem size, the number of BBs, and the type of BBs.
Hence, ILI can be considered as a good linkage
learning technique and can be adopted as a tool for
analysing structures of target problems or a pre-
processing procedure in frameworks of GAs.

Since its introduction, ILI as a linkage learning
technique has been empirically proven efficient, robust
and widely applicable. Research along this line
includes integrating ILI into a GA framework, han-
dling real-world applications with ILI, exploring ILI’s
capability of analysing problem structures and under-
standing the nature of linkage learning via getting
deeper insights of ILI. As for the immediate future
studies, the idea of ‘linkage identification as decision
learning’ can be adapted to work with other advanced
decision tree techniques. Characteristics of different
decision tree algorithms might exhibit behaviour of
different kinds and give us a better understanding of
linkage identification. Such knowledge can be utilised
to practically help the algorithmic development of GAs
and theoretically reveal the working principle of
evolutionary computation.
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Mühlenbein, H., and Höns, R. (2005), ‘The Estimation of

Distributions and the Minimum Relative Entropy

Principle’, Evolutionary Computation, 13, 1–27.
Mühlenbein, H., and Mahnig, T. (1999), ‘FDA – A Scalable

Evolutionary Algorithm for the Optimization of Additively

Decomposed Functions’, Evolutionary Computation, 7,

353–376.

Mühlenbein, H., and Paaß, G. (1996), ‘From Recombination

of Genes to the Estimation of Distributions I. Binary

Parameters’, in Proceedings of the 4th International

Conference on Parallel Problem Solving from Nature

(PPSN IV), pp. 178–187.

Munetomo, M., and Goldberg, D.E. (1998), ‘Identifying

Linkage by Nonlinearity Check’, IlliGAL Report No.

98012, Illinois Genetic Algorithms Laboratory, University

of Illinois at Urbana-Champaign.
Munetomo, M., and Goldberg, D.E. (1999), ‘Identifying

Linkage Groups by Nonlinearity/Non-monotonicity

Detection’, in Proceedings of Genetic and Evolutionary

Computation Conference 1999 (GECCO-99), pp. 433–440.
Pal, N.R., Nandi, S., and Kundu, M.K. (1998), ‘Self-

crossover – A New Genetic Operator and Its Application

to Feature Selection’, International Journal of Systems

Science, 29, 207–212.
Pelikan, M., Goldberg, D.E., and Cantú-Paz, E. (1999),
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a b s t r a c t

Recently, data replication algorithms have been widely employed in data grids to replicate frequently
accessed data to appropriate sites. The purposes are shortening file transmission distance and delivering
files from nearby sites to local sites so as to improve data access performance and reduce bandwidth
consumption. Some of the algorithms were designed based on unlimited storage. However, they might
not be practical in real-world data grids since currently no system has infinite storage. Others were
implemented on limited storage environments, but none of them considers data access patterns which
reflect the changes of users’ interests, and these are important parameters affecting file retrieval efficiency
and bandwidth consumption. In this paper, we propose an adaptive data replication algorithm, called
the Popular File Replicate First algorithm (PFRF for short), which is developed on a star-topology data
grid with limited storage space based on aggregated information on previous file accesses. The PFRF
periodically calculates file access popularity to track the variation of users’ access behaviors, and then
replicates popular files to appropriate sites to adapt to the variation.We employ several types of file access
behaviors, including Zipf-like, geometric, and uniform distributions, to evaluate PFRF. The simulation
results show that PFRF can effectively improve average job turnaround time, bandwidth consumption
for data delivery, and data availability as compared with those of the tested algorithms.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Generally, a data grid, a specific grid system that provides users
with a huge amount of storage space, often maintains a high
volume of distributed data to serve users. Many recent large-scale
scientific systems [1–4] and commercial applications [5], e.g., the
Biomedical Informatics Research Network (BIRN) [6], the Large
Hadron Collider (LHC) [7], the DataGrid Project (EDG) [8], and
physics data grids [9,10], have collected a huge amount of data and
performed complex experiments and analyses on the data [11–13].

According to the Pareto principle (also known as the 80/20
rule) [14], a part of data grid files is frequently accessed and
transferred. If a file has no replicas distributed over the data grid,
the efficiency of accessing the file is often poor since long distance
data transfer always occupies a lot of bandwidth and causes long
transmission delays [15]. Hence, how to decrease data access
latency, lower bandwidth consumption for data transmission, and
improve data availability have been the key issues in data grid
research [16]. Data replication is a general and simple approach to
achieve these goals. It has been widely used in many areas, such as

∗ Corresponding author.
E-mail addresses:mingchang1109@gmail.com (M.-C. Lee), leufy@thu.edu.tw

(F.-Y. Leu), ypchen@nclab.tw, ypchen@cs.nctu.edu.tw (Y.-p. Chen).

the Internet, peer-to-peer systems, and distributed databases [17–
21]. A well-defined data replication method should meet the
requirements of being able to determine an appropriate time to
replicate files, decide which files should be replicated, and store
these replicas in appropriate locations [15,16,22–24].

On the other hand, the analyses of data access patterns
have been the critical steps in designing efficient dynamic data
replication schemes [25–27]. Several distributions have been used
to model data access patterns, defined as the distribution of access
counts on files of a system, and file popularity, defined as howoften
a file is accessed by users, i.e., how popular a file is [28,29]. Breslau
et al. [28] claimed that using the Zipf-like distribution can more
accurately model the distribution of webpage accesses. Cameron
et al. [29] showed that the distribution of file accesses in data grids
follows the Zipf-like distribution. Ranganathan and Foster [22,
30] claimed that the geometric distribution can properly model
file access behaviors and the property of temporal/geographical
locality.

Further, Ranganathan and Foster [31] derived file popularity
by using both Zipf and geometric distributions on a multi-tier
data grid with unlimited storage space. Tang et al. [23] also used
Zipf-like and geometric distributions to simulate users’ file access
behaviors on a multi-tier data grid. Chang et al. [32,24] proposed
two data replication strategies on a cluster-based data grid with
limited storage. However, the strategy they proposed in [32] did

0167-739X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.08.015
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not consider the data access pattern. Hence, it might lead to
inefficient data access as the users’ access pattern changes; the
strategy proposed in [24] only replicates the file most frequently
accessed in the last time period, consequently resulting in long file
transmission delays for those files with similar but low weights.

In this study, we propose an adaptive data replication
algorithm, called the Popular F ile Replicate F irst algorithm (PFRF
for short), which is developed on a star-topology data grid with
limited storage space. A star-topology data grid is a simplified tree-
topology data grid with a central cluster that connects all other
clusters. A link l between two arbitrary clusters will go through the
central cluster, and l might comprise several routers, and physical
links. Directly evaluating the components of l is difficult since too
many analytical items might be involved. Hence, this study treats
l as a logical link to simplify the original topology as a whole [33,
34]. The simplification process will be proposed. To adapt to the
changes of users’ interests in files, the PFRF aggregates file access
information and replicates popular files to suitable clusters/sites.
We simulate several cases in which file popularity follows a Zipf-
like distribution, geometric distribution, and uniform distribution
under the assumption that user behaviors vary with the changes
of users’ interests. The simulation results show that PFRF provides
users with a system that has higher data availabilities, lower data
transmission delays, and less bandwidth consumption for data
access.

The rest of the paper is organized as follows. Section 2
introduces background and related work of this study. Section 3
describes the architecture of a star-topology data grid and the
details of the PFRF. Simulation results are presented and discussed
in Section 4. Section 5 concludes this article and addresses our
future research.

2. Background and related work

In this section, we describe the architectures of data grids and
several existing replication strategies and algorithms.

2.1. Data grid architecture

Data grids can be classified into multi-tier data grids, first
proposed by the MONARC project [35], and cluster data grids,
initially introduced by Chang et al. [32]. The multi-tier data
grid architecture in which a leaf node represents a user or a
computational node, and internal nodes are resource sites keeping
sharable files. In this architecture, a file held by a site will also
be held by all its ancestor sites. Therefore, the root site holds all
files stored in the data grid. When an end user requires a file F
which does not exist in his/her site, the user requests F from its
immediate ancestor. If the ancestor does not have the file, it in turn
requests F from its immediate ancestor. The process repeats until
the user obtains the file from a node which holds the file. After
that, the file will be replicated to all the nodes on this requesting
path following the reverse direction of the requests. It is clear that
file access latency can be reduced in a multi-tier data grid, but it
leads to higher storage cost since files will be redundantly stored
in multiple locations.

A cluster data grid consists of n clusters connected by the
Internet [24]. Files are stored in these clusters. Each cluster has
a header node (a header for short) responsible for managing site
information and exchanging file access information with other
cluster headers. A header periodically determineswhich file should
be replicated by computing file weights. After that, the file with
the highest weight will be replicated to clusters that need the file.
Sites in these clusters can then locally and quickly retrieve the file.
Compared with a multi-tier data grid, a cluster data grid consumes
less storage to hold files.

2.2. Existing data replication algorithms/strategies

Least Frequently Used (LFU) [36] and Most Frequently Used
(MFU) [36] are two simple dynamic replication strategies widely
used in many areas, such as disk and cache memory duplication. If
a storage device has insufficient space to hold a new file, LFU (MFU)
will be invoked to choose the files that have been the least (most)
frequently used as the victims tomake room for the newone. In the
experiments of this study, MFU and LFU are both involved, called
the MFU/LFU strategy (M/LFU for short) in which MFU is used to
choose themost frequently used files and LFU is employed to select
victims once the destination cluster has insufficient storage space
to save the replicated files.

Ranganathan and Foster [22] presented six replication/caching
strategies for a multi-tier data grid: No Replication or Caching,
Best Client, Cascading Replication, Plain Caching, Caching plus
Cascading Replication, and Fast Spread, and three types of
localities: temporal locality, geographical locality, and spatial
locality. The experimental results showed that the Fast Spread and
Cascading Replication outperform the other four strategies and
their file access latencies are shorter than those of the other four
strategies. They also found that Fast Spread (Cascading) is better
when the data access pattern is random (geographical locality).
However, the six strategies cannot avoid the disadvantages of a
multi-tier data grid, i.e., a file may be redundantly stored in a
multi-tier. In fact, the storage space utilization and access latency
are a trade-off [32]. Ranganathan and Foster [31] also proposed
a suite of job scheduling and data replication algorithms for a
multi-tier data grid and evaluated the performance of different
combinations of the replication and scheduling strategies. One
of the data replication algorithms, called DataRandom (DR for
short), replicates a file when the corresponding access frequency
exceeds a pre-defined threshold. Although DR is designed for an
unlimited storage environment, it can also be run on a limited
storage environment. DR is therefore involved in the experiments
of this study.

Tang et al. [23] introduced Simple Bottom-Up (SBU) and
Aggregate Bottom-Up (ABU) algorithms to reduce the average data
access response time for amulti-tier data grid. The basic idea of the
two algorithms is to replicate a file to sites close to its requesting
clients when the file’s access rate is higher than a pre-defined
threshold. SBU considers the file access history for individual site,
but ABU aggregates the file access history for a system. With ABU,
a node sends aggregated historical access records to its upper tiers,
and the upper tiers do the same until these records reach the root.
Due to the aggregation capability, ABU has a shorter job response
time and less bandwidth consumption than those of SBU.

Khanli et al. [37] proposed an algorithm called Predictive
Hierarchical Fast Spread (PHFS), which is an extended version of
fast spread [22], in a multi-tier data grid. PHFS utilizes spatial
locality [22,38] to predict data files required in the future,
and pre-replicates these files to suitable sites to improve the
performance of file accesses. Kunszt et al. [39] presented a
replicamanagement gridmiddleware to reduce file access/transfer
time. Their experimental results showed that this middleware
significantly reduces wide area transfer times. However, this
model was developed for multi-tier data grids with unlimited
storage space.

Chang et al. [24,32] presented two dynamic replication strate-
gies, Latest Access Largest Weight (LALW) [24] and Hierarchical
Replication Strategy (HRS) [32], on cluster-based data grids. LALW
utilizes the half-life concept to evaluate file weights. A file with a
higher access frequency has a larger weight. Their experimental
results show that LALW outperforms LFU and no-replication data
replication strategies [22] in network utilization and efficiency.
However, LALW only replicates the most popular file in each time
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(a) A tree-topology data grid. (b) A star-topology data grid.

Fig. 1. The architectures of a tree-topology data grid and a star-topology data grid.

Fig. 2. (a) A physical link between site A and site B. (b) A logical link between site A and site B.

interval. Hence, the transmission delays of those files with similar
but lower weights are still long. HRS, which is an extended version
of BHR (Bandwidth Hierarchy based Replication) [40], aims to re-
duce expensive cluster-to-cluster replica transmission. Whenever
the file is required, but cannot be retrieved from the local cluster,
HRS replicates the file to a local site from a remote cluster. How-
ever, HRS does not consider data access patterns, and thus it might
not be able to adapt to changes of user access behaviors and pro-
vide efficient data accesses.

3. System framework

The proposed data grid as shown in Fig. 1 consists of a global
replica controller (GRC) and several clusters connected to the GRC
through the Internet. As illustrated in Fig. 1(a), each connection
comprises several routers and links, forming a tree-topology data
grid rooted at the GRC. In other words, a file transmitted between
two clusters will go through the routers and links on the two
connections being considered. For example, when a site X in
a cluster i issues a file access request to the GRC to request
a file F stored in site Y which is a member of cluster e, the
GRC then requests Y to deliver F to X . F then goes through
routers and links between clusters i and e. Basically, it might
not be easy to analyze the performance of the file transmission
since in such a tree-topology too many network components and
environmental parameters are involved. To simplify the evaluation
of file transmission, in this study, we reduce a tree-topology data
grid to a star-topology (see Fig. 1(b)).

3.1. Tree-to-star reduction

As shown in Fig. 2(a), site A connects to site B through link l1,
router r1, link l2, router r2, and link l3. The corresponding physical
path is denoted by lA_l1_r1_l2_r2_l3_B. The bandwidth of the path is

|P|

Tl1+Wr1+Tl2+Wr2+Tl3
in which |P| is the size of a packet P delivered

through the path, Tli =
|P|

Bli
is the transmission delays of link li,

Wrj =
1

µrj−λrj
is the service (queueing) delay of router rj under

the assumption that rj is an M/M/1 queueing model where Bli is

the bandwidth of li, i = 1, 2, and λrj and µrj are respectively the
arrival rate and departure rate of rj, j = 1, 2, 3. lA_B shown in
Fig. 2(b) is the logical link of lA_l1_r1_l2_r2_l3_B. Its bandwidth is |P|

TA_B
where TA_B is the transmission delay of P from A to B. It is clear that
TA_B = Tl1 + Wr1 + Tl2 + Wr2 + Tl3 . Therefore, we can conclude
that lA_l1_r1_l2_r2_l3_B can be reduced to a logical link lA_B, and the
tree-topology data grid shown in Fig. 1(a) could be reduced to a
star-topology data grid shown in Fig. 1(b). Now a star-topology
with the performance equivalent to that of the tree-topology can
be obtained.

3.2. GRC and LRC

In the proposed architecture, each cluster comprises sites and a
local replica controller (LRC). They are connected by a LAN or LANs.
The LRC maintains a local replica table (LRT ) includes filename,
file location, access count, file weight, and master file fields, to
record file access information. A master file is an original file that
cannot be deleted from the data grid. File weight is the popularity
of the file. Its calculation will be described later. File access count
shows the frequency that the file is accessed by sites within a
cluster. All master files are distributed to sites of different clusters.
The GRC as a central server located somewhere in the Internet is
responsible for aggregating file access records for all clusters and
determining which files should be replicated to which clusters.
The GRC maintains a global replica table (GRT ) to collect the
information recorded in LRTs. When the GRC decides to replicate a
file to a cluster, it records the location of the new replica in GRT so
that some time later when a LRC requests the location of the file, it
can answer the LRC accordingly. Similarly, the cluster holding this
new replica will record the related information in its LRT.

3.3. Zipf-like distribution and geometric distribution

To achieve a better file access performance, we need to keep
track of users’ file access behaviors to accordingly predict which
files will be accessed frequently in the near future. The prediction
is a main task of a data replication algorithm/strategy based
on the assumption of temporal locality [22] in which a popular
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Fig. 3. PFRF data replication algorithm.

file will be accessed more frequently than unpopular ones [23].
Breslau et al. [28] showed that webpage requests follow a Zipf-like
distribution [29,41] derived from Zipf’s law [42]. In the Zipf-like
distribution, the access probability of the i-th most popular file,
denoted by P(fi), is

P(fi) = 1/iα (1)

where i = 1, 2, . . . , n and α is a factor determining the file access
distribution, 0 ≤ α < 1.

Ranganathan and Foster [30,31] adopted the geometric distri-
bution to simulate file popularity in which the access probability
of the i-th most popular file, denoted by P(i), is

P(i) = (1 − p)i−1
· p (2)

where i = 1, 2, . . . , n and 0 < p < 1. A larger p represents that
a smaller portion of files has been frequently accessed. As stated
above, we assume that our users’ access behaviors follow either
Zipf-like or geometric distributions with different parameters.

3.4. Popular file replicate first (PFRF) algorithm

The PFRF algorithm, as illustrated in Fig. 3, is performed by the
GRC at the end of a round, where a round is a fixed time period Td
in which y jobs, y ≥ 0, are submitted by users from each cluster.
A job might require several files as its input data. The algorithm
comprises four phases: file access aggregate phase, file popularity
calculation phase, file selection phase, and file replication phase.

1. File access aggregate phase: Between lines 2 and 5 of the
algorithm, PFRF aggregates the access count for each file fi
stored in cluster c at round r , denoted by Ar

c(fi), sorts all the
files onAr

c(fi)s in a descending order, and stores the sorted result
into a set S. After that, PFRF calculates the total number of files
having been accessed by all sites in cluster c at round r , denoted

by TNF r
c , based on the information stored in LRT C . Note that

1 ≤ i ≤ Nk, and 1 ≤ c ≤ Nc where Nk is the number of files
in cluster c in round r , and Nc is the number of clusters that the
data grid has, and r = 1, 2, 3, . . ..

2. File popularity calculation phase: In line 6, PFRF calculates a
popularity weight for file fi, denoted by PW r

c(fi),

PW r
c(fi) =


PW r−1

c (fi) + Ar
c(fi) · a, if Ar

c(fi) > 0
PW r−1

c (fi) − b, otherwise
,

r ≥ 1, c ≥ 1, i ≥ 1. (3)

where a and b are constants and a < b. The reason why a < b
is described later. If Ar

c(fi) > 0, i.e., fi has been accessed by users
in round r , PFRF increases PW r−1

c (fi) by Ar
c(fi) · a. Otherwise,

it decreases PW r−1
c (fi) by b. Basically, a higher PW r

c(fi) implies
that fi ismore popular.We assume that in round 0 all files follow
the binomial distribution, i.e., PW 0

c (fi) =0.5, which means that
the initial access probability of fi is 0.5. Note that the minimum
value of each PW r−1

c (fi) is 0. From previous access records of fi,
PFRF derives the variation of the popularity of fi and predicts
the popularity of fi for the next round, where 1 ≤ i ≤ Nk. For
instance, if f3 has been accessed 5 times by cluster 2 in round
1, PW 1

2(f3) = 0.5 + 5 · a. After the derivation and prediction,
PFRF calculates the average popularity of the files in all clusters,
denoted by PW r

avg(fi),

PW r
avg(fi) =

Nq
k=1

PW r
c(fi)

Nq
(4)

where Nq is the total number of clusters holding fi in the data
grid.

3. File selection phase: Between lines 7 and 10, PFRF sorts the set S
on the average popularweights in a decreasing order, calculates
Nf which is the number of files that might be replicated, and
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Fig. 4. The simulation topology.

selects the firstNf files as cluster c ’s replication candidates from
S, where

Nf = ⌊TNF r
c · (1 − x)⌋ (5)

in which x is a constant, 0 < x < 1. In this study, we use the
80/20 rule as an example, i.e., PFRF will replicate the top 20% of
frequently accessed files in this phase. Therefore, x is set to 0.8.
If different rules or principles are employed, xmay be changed.

4. File replication phase: Between lines 12 and 27, PFRF first
checks to see whether each file, e.g., file fj, in cluster c ’s
replication candidates is stored in cluster c or not. If yes, PFRF
does nothing. Otherwise, it further checks to see whether a site
in cluster c has sufficient storage space to accommodate fj or
not. If yes, PFRF replicates fj to the site from a nearest cluster
holding fj. Otherwise, PFRF deletes v files (v ≥ 1) that are less
popular than fj from a site of cluster c so that it has enough
storage space to keep fj.

Since files and users may be located at different sites in the
same cluster or different clusters in a star-topology data grid, a
file transmission might go across clusters, consequently raising
transmission delays. With the PFRF, popular files can be properly
replicated and inter-cluster access can be dramatically reduced.

4. Simulation and performance comparison

To evaluate the proposed scheme, a real grid testbed or a
grid simulator is required. However, to establish and maintain a
real testbed is expensive. Instead, we choose a grid simulator as
the simulation tool. Many grid simulators have been introduced,
such as GridSim [43], MicroGrid [44], OptorSim [45], SimGrid [46],
MONARC [47], and ChicSim [48], among which GridSim is chosen
since it provides a flexible and extensible simulation environment
and allows researchers to add new components/functions. In
the following simulation, the existing data replication algorithms

includingM/LFU (recallMFU/LFU), DR (recall DataRandom), andNo
Replication (NR for short) are implemented and comparedwith the
PFRF on a star-topology data grid.

4.1. Experimental environment and parameters

The test environment illustrated in Fig. 4 consists of a GRC and
eight clusters. Each cluster has a LRC. The resource specifications
and job parameters are listed in Tables 1 and 2, respectively.
Each site comprises six computers, and each computer has four
processors, i.e., a cluster has 24 processors. The processor rate
of a processor is 1600 MIPS, i.e., the total processor rate of a
cluster is 38,400 (=1600 × 24) MIPS. A cluster has 75 GB storage
space to accommodate files. The inter-router, router-to-site,
user-to-router, GRC-to-router, and LRC-to-router bandwidths are
10 Gb/s, 2.5 Gb/s, 100Mb/s, 2.5 Gb/s, and 1 Gb/s, respectively. A
total of 200 master files, each 1 GB in size, are randomly stored in
this environment. A job randomly requests 5–10 files as its input
files. On average, 10 jobs are submitted by each cluster in each
round, i.e., on average a total of 80 jobs are submitted by all clusters
in each round, and the time period of a round Td is 1600 s.

In round r , M/LFU replicates cluster’s most frequently used files
to a cluster c in descending order. The replication is performed one
by one until exhausting c ’s storage space. When c has insufficient
storage space to replicate a remote file F , M/LFU selects k local
files of c , denoted by v = {fc1 , fc2 , . . . , fck}, as the victims in the
situation where the access count of fci is smaller than that of F and
k is the smallest integer that satisfies

k
i=1 fci ≥ |F |, where |F | is

the size of F . After that, M/LFU deletes the k files and replicates F
to c.

We implemented two types of DR. One is DR-Local, in which
a replication threshold of cluster c is set to the average access
counts of all the files stored in c. For example, c has k files which
have been accessed a total of m times in round r . The replication
threshold is m

k . When a file, e.g., F , that is not stored in c has a
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Table 1
Resources specifications of the following experiments.

Resources Value

Total number of clusters 8
Total number of processors in a cluster 24
Single processor rate (MIPS) 1600
Total processor rate of a cluster 38,400

(=1600 × 24)
Storage available in a cluster 75 GB
Inter-router bandwidth 10 Gb/s
Router-to-site bandwidth 2.5 Gb/s
User-to-router bandwidth 100 Mb/s
GRC-to-router bandwidth 2.5 Gb/s
LRC-to-router bandwidth 1 Gb/s

Table 2
Job parameters of the following experiments.

Job parameters Value

Total number of master files 200
Size of a master file 1 GB
Average number of jobs submitted by each cluster in a
round

10

Average number of jobs submitted by all clusters in each
round

80
(8 × 10 jobs)

Number of files accessed by a job 5–10
The duration of a round (Td) 1600 s

higher access count than m
k in round r, F will be replicated to c

at the end of r, 1 ≤ c ≤ 8. The other is DR-Global, in which the
replication threshold is set to the average access counts of all files
in all clusters, i.e., if the 200 files have been accessed h times in
round r , the replication threshold will be h

200 for all clusters. When
F has been accessed at least h

200 times by c in round r , it will be
replicated to c. If c has insufficient space to hold the file, DR-Local
and DR-Global will delete the files that have been least frequently
accessed from c to make room for F .

Two types of NR were also implemented, denoted by NR-GRC
and NR-LRC. In the NR-GRC, the 200 master files are all stored in
the GRC. When a job requires a file, it remotely accesses the file
from the GRC without storing the file locally. In the NR-LRC, the
200master files are randomly distributed to the eight clusters. The
GRC only maintains the GRT. A job locally accesses a file if the file
is locally available. When it requires a remote file, it has to consult
the GRC for the file location, and then remotely access the file. Due
to duplicating no files, files are only stored in fixed sites and fixed
clusters. Table 3 summarizes the master file settings for the tested
algorithms.

4.2. Access patterns

Five access patterns listed in Table 4were employed to simulate
user access behaviors. File popularities follow Zipf-like (ZipfL
for short), geometric (Geo for short), and uniform distributions
(Uniform for short) where a uniform distribution represents that
the probability of accessing a file by each user is the same. JRR,
standing for job repeating rate, of round r is the probability of re-
accessing those files that have been accessed in round r − 1, 0 ≤

Table 4
Different data access patterns employed.

No. Data access pattern α/p JRR (%) p(fi)/p(i)

1 ZipfL-0.8 0.8 25 1/i0.8

2 ZipfL-0.6 0.6 25 1/i0.6

3 Geo-0.2 0.2 25 (1−0.2)i−1
·0.2

4 Geo-0.5 0.5 25 (1−0.5)i−1
·0.5

5 Uniform None 25 None

JRR ≤ 1, and parameters α and p are respectively used when ZipfL
and Geo are employed.

To effectively analyze the algorithms, we evenly partitioned
the popularities of the 200 master files into 10 levels and divided
twenty consecutive rounds into three phases. As listed in Table 5,
the first, the second, and the third phase respectively contain
rounds 1–7, 8–14, and 15–20. In the first phase, we assume
that File0–File19 are the most popular files, i.e., belonging to
the first popularity level. File20–File39 are the second popular
files, thus belonging to the second popularity level, and so on. In
the second phase, we swap the files of the first two popularity
levels, i.e., File20–File39 become the most popular, File0–File19
become the second, to simulate the change of file popularities,
and other files’ popularities remain unchanged. In the third phase,
File40–File59 are the most popular files, File20–File39 the second,
and File0–File19 the third. Other levels’ file popularities remain
unchanged.

To better understand the behaviors of data access patterns,
i.e., file popularities, over the three phases, we first conduct
the following experiments: 2000 jobs, instead of 80 jobs, were
submitted for file accesses in each phase. The experimental
results of ZipfL-0.8, ZipfL-0.6, Geo-0.2, Geo-0.5, and Uniform
are illustrated in Figs. 5–9, respectively. Fig. 5(a) shows users’
file access behaviors in the first phase; Fig. 5(b) and Fig. 5(c)
respectively plot those in the second and the third phases. The
access count (AC) of each most popular file in all the three
phases/figures is about 215, and unpopular files, i.e., File60 to
File199, are accessed less. In the case of ZipfL-0.6 (see Fig. 6), the
AC of each most popular file in all the three phases is about 170.
However, the ACs of the other popularity levels, i.e., between levels
4 and 10, are not evidently different, like a uniform distribution,
in all three phases. When Geo-0.2 is invoked (see Fig. 7), the AC of
eachmost popular file is about 175.When file IDs increase, the ACs
decline more sharply than those in ZipfL-0.6 and ZipfL-0.8. In the
Geo-0.5 case (see Fig. 8), the difference between/among the most
popular files’ ACs and those of the second and the third popular
files in the three phases is significant. Generally, the ACs of the first
three popularity levels on all access patterns are clearly different
from those of the other popularity levels, implying that File0 to
File59 are frequently accessed, while accesses of File140 to File199
are rare. Thedifference among theACs of different popularity levels
on the Uniform as shown in Fig. 9 is insignificant.

4.3. Simulation results

The tested algorithms were run on the same experimental
environment so their performance can be fairly compared. Several

Table 3
Master files settings for PFRF, M/LFU, DR-Local, DR-Global, NR-GRC, and NR-LRC algorithms.

No. Data replication algorithm Setting

1 PFRF 200 master files are randomly distributed to the eight clusters
2 M/LFU ’’
3 DR-Local ’’
4 DR-Global ’’
5 NR-GRC 200 master files are all stored in the GRC
6 NR-LRC 200 master files are randomly distributed to the eight clusters
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Table 5
The file popularities in the three phases (Rounds 1–7, 8–14, and 15–20).

Popularity level (files) Phases
Phase 1
(rounds 1–7)

Phase 2
(rounds 8–14)

Phase 3
(rounds 15–20)

1 (File0–File19) 1st popular 2nd popular 3rd popular
2 (File20–File39) 2nd popular 1st popular 2nd popular
3 (File40–File59) 3rd popular 3rd popular 1st popular
. . . . . . . . . . . .
10 (File180–File199) 10th popular 10th popular 10th popular

0
0

20
40
60
80

100
120

A
cc

es
s 

C
ou

nt
s

140
160
180
200
220
240

20 40 60 80 100

File ID

120 140 160 180 199 0
0

20
40
60
80

100
120

A
cc

es
s 

C
ou

nt
s

140
160
180
200
220
240

20 40 60 80 100

File ID

120 140 160 180 199 0
0

20
40
60
80

100
120

A
cc

es
s 

C
ou

nt
s

140
160
180
200
220
240

20 40 60 80 100

File ID

120 140 160 180 199

(a) Phase 1. (b) Phase 2. (c) Phase 3.

Fig. 5. Distributions of file requests against the 200 master files in the simulation process on ZipfL-0.8.
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Fig. 6. Distributions of file requests against the 200 master files in the simulation process on ZipfL-0.6.
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Fig. 7. Distributions of file requests against the 200 master files in the simulation process on Geo-0.2.
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Fig. 8. Distributions of file requests against the 200 master files in the simulation process on Geo-0.5.

test metrics were used. The first is average job turnaround time
(ATT ), which is an average time interval from the time point when
a job sends a file request to its LRC to the time point when the

requested files are successfully received by the job. ATT is derived
by dividing the total turnaround time of all jobs in all clusters
in round r by the total number of jobs. The second is average
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Fig. 9. Distributions of file requests against the 200 master files in the simulation process on Uniform.

data availability (ADA). Data availability, which was proposed by
GridSim [43] for a job, e.g., jobx, in cluster c to access a file fi of size
dxi , denoted by Availx,c , is defined as

Availx,c =

k
i=1

txi,c

k
i=1

dxi

(6)

where k is the number of files accessed by jobx running on cluster
c in round r , and txi,c is the time that jobx consumes to acquire fi,
locally or remotely. Let avgAvailc be the average data availability of
cluster c which is defined as

avgAvailc =


x∈jobsc

Availx,c

|jobsc |
(7)

where jobsc is the set of jobs submitted to cluster c by users to
access files. The ADA of all clusters is defined as

ADA =

Nc
m=1

avgAvailm

Nc
(8)

where Nc is the number of clusters in the data grid. The last is
average bandwidth cost ratio (ABCR). Bandwidth cost ratio of cluster
c in a round, denoted by BCRc , is defined as

BCRc =
LFAc · LC c + RFAc · RC c

AFAc · Cbaseline

=
LFAc · LC c + RFAc · RC c

(LFAc + RFAc) · Cbaseline
(9)

where LFAc(RFAc) is the number of files that users in cluster c can
locally (should remotely) access,AFAc = LFAc+RFAc, LC c is the cost
for a user in cluster c to locally access a file. RC c is the cost for the
user to access a file from a remote cluster or the GRC, and Cbaseline is
the average cost for a user to access a file from a remote cluster to
local cluster c. If LFAc is larger than RFAc , that implies the particular
data replication algorithm can more accurately predict user access
behaviors. Otherwise, the algorithm due to inaccurate prediction
would consume a lot of network resources to remotely access files.
Eq. (9) only involves the number of files and neglects file sizes
since in the simulation all files are of the same size, i.e., 1 GB. The
ABCRused to determinewhether a data replication algorithmcould
accurately predict popular files or not is defined as

ABCR =

Nc
m=1

BCRm

Nc
(10)

where Nc is the total number of clusters in the data grid. A data
replication algorithm with a smaller ABCR value will lead to better
grid performance since most data can be locally retrieved. In the
following, each simulation was performed ten times to obtain the
values of the three performance metrics.

Fig. 10. Average job turnaround times for PFRF, M/LFU, DR-Local, DR-Global, and
NR-LRC on ZipfL-0.8 with JRR = 25%.

Fig. 11. Average job turnaround times for PFRF, M/LFU, DR-Local, DR-Global, and
NR-LRC on ZipfL-0.6 with JRR = 25%.

4.3.1. Average job turnaround time (ATT) and average data availabil-
ity (ADA)

Fig. 10 show the experimental results of ATTs for PFRF, M/LFU,
DR-Local, DR-Global, and NR-LRC on access pattern ZipfL-0.8 with
JRR = 25%. The results of ZipfL-0.6, Geo-0.2, Geo-0.5, and Uniform
are illustrated in Figs. 11–14, respectively. When ZipfL-0.8 with
JRR= 25% is employed, as shown in Fig. 10, PFRF’s ATTs are shorter
than those ofM/LFU, DR-Local, andDR-Global after the sixth round.
This is also true on ZipfL-0.6 and Geo-0.2 (see Figs. 11 and 12,
respectively). Fig. 13 plots the experimental results of Geo-0.5. On
Uniform with JRR = 25% as shown in Fig. 14, ATTs of PFRF, M/LFU,
DR-Local, and DR-Global are longer than those shown in Figs. 10–
13 since the tested algorithms cannot effectively discriminate file
popularity. It is clear that PFRF has shorter ATTs than those of
M/LFU, DR-Local, and DR-Global on all of ZipfL-0.8, ZipfL-0.6, and
Geo-0.2.
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Fig. 12. Average job turnaround times for PFRF, M/LFU, DR-Local, DR-Global, and
NR-LRC on Geo-0.2 with JRR = 25%.

Fig. 13. Average job turnaround times for PFRF, M/LFU, DR-Local, DR-Global, and
NR-LRC on Geo-0.5 with JRR = 25%.

Fig. 14. Average job turnaround times for PFRF, M/LFU, DR-Local, DR-Global, and
NR-LRC on Uniform with JRR = 25%.

When the data access pattern is Geo-0.5 with 25% (see Fig. 13),
PFRF, M/LFU, and DR-Global have similar ATTs since the popular
files shown in Fig. 8 can be easily identified. This is also why
these algorithms onGeo-0.5 have the shortestATTs comparedwith
ATTs of these algorithms on other data access patterns (see scale
of Y -axis of Figs. 10–14). Note that, on Geo-0.5, DR-Local does
not effectively keep up with the change of user access behaviors
especially at the end of phase 1 and phase 2. The reason is
that it keeps accumulating the access count of certain popular
files, resulting in a higher average access count as the replication
threshold. It is impossible for a rising-popularity file, e.g., F , to have

Fig. 15. Total popular file replication delays for PFRF, M/LFU, DR-Global, and DR-
Local on ZipfL-0.8 with JRR = 25%.

its access count suddenly larger than the threshold. Hence, F will
not be replicated.

ATTs of PFRF on ZipfL-0.8, ZipfL-0.6, and Geo-0.2 in the twenty
rounds are shown in Figs. 10–12, in which when file popularities
change, i.e., between rounds 7 and 8 and between rounds 14 and
15 according to Table 5, ATTs of PFRF increase less sharply than
those of other algorithms, implying that the PFRF can quickly adapt
to the change of user access behaviors and provide better access
performance as compared with all the other algorithms.

We have not mentioned NR-GRC and NR-LRC since NR-LRC’s
plots are high above those of the other four access patterns (see
Figs. 10–14), and NR-GRC leads to a longer ATT (4714 s in average)
which is about three times the highest scale of each figure. If we
plot the results of NR-GRC in Figs. 10–14, the ATTs of the other
algorithmswill be close to each other and cannot be discriminated.
The cause of longer ATTs for NR-GRC is that because there are no
local files, all jobs have to remotely access all required files from
the GRC. On NR-LRC, a job in each round spent about 1625–1675 s
(see Figs. 10–14). Apparently, NR’s access performance is not better
than those of the other four algorithms on all access patterns.

Fig. 15 shows the total popular file replication delays of the
PFRF,M/LFU, DR-Local, and DR-Global on ZipfL-0.8with JRR= 25%.
Note that NR does not replicate files. Hence, its experimental
results are absent from this figure. Due to the page limit, we omit
the total popular file replication delays of these algorithms on the
other access patterns since they are similar to those illustrated
in Fig. 15. According to the 80/20 rule, PFRF only replicates the
top 20% of popular files, and thus PFRF always spends less than
5000 s to replicate popular files from remote clusters to local sites
in each round. For each cluster, due to the number of remote
files becoming less over time, ATTs of PFRF as shown in Figs. 10–
14 reduce gradually. M/LFU replicates required files from remote
clusters in each round, consequently, like that of PFRF, taking a
longer time (about 14,000 s) to replicate files in the first round,
and spending less in the later rounds.

After the fourth rounds, the total popular file replication delays
of DR-Local are almost the same as those of M/LFU. Thus, ATTs
of DR-Local are then similar to those of M/LFU on all data access
patterns except on Geo-0.5. That is why in Figs. 10–12 and 14,
the two curves almost overlap. DR-Global results in longer file
replication delays than those of other algorithms and the delays are
always higher than 5000 s in each round since it keeps replicating
files in each round. That is why ATTs of DR-Global as shown in
Figs. 10–14 can remarkably decline after the first round. However,
ATTs of DR-Global are longer than those of PFRF after the sixth
round in all access patterns except on Geo-0.5. The reason has been
stated above.
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Fig. 16. Average data availabilities for PFRF, M/LFU, DR-Local, DR-Global, and NR-
LRC on ZipfL-0.8 with JRR = 25%.

Fig. 16 illustrates the ADAs for PFRF, M/LFU, DR-Local, DR-
Global, and NR-LRC on ZipfL-0.8 with JRR = 25%. According to the
definition of Availx,c presented in Eq. (6), the numerator txi,c is the
turnaround time of jobx in cluster c , and hence the ADAs of all the
tested algorithms have similar trends to that of their ATTs on all
data access patterns. For example, all curves in Fig. 10 are similar
to those in Fig. 16 on ZipfL-0.8 with JRR = 25%. Note that the ADAs
of NR-GRC in each round are also omitted from Fig. 16 because they
are the worst (about 0.637 which is far above the top scale, 0.23, of
Fig. 16). The cause of these high ADAs was mentioned above.

4.3.2. Average bandwidth cost ratio (ABCR)
Fig. 17 illustrates the ABCRs of PFRF, M/LFU, DR-Local, DR-

Global, NR-GRC, and NR-LRC on ZipfL-0.8 with JRR = 25%. The
bandwidths of the inter-router link, router-to-site link, user-
to-router link, and GRC-to-router link as listed in Table 1 are
respectively 10, 2.5, 0.1, and 2.5 Gb/s, and the corresponding
unit costs are respectively 1

10 ,
1
2.5 ,

1
0.1 , and

1
2.5 . With the tested

algorithms other than NR-GRC, files required by a job may be
stored in remote clusters or a local cluster. To fairly compare all
these algorithms, the router-to-site link andGRC-to-router link are
given the same bandwidth, i.e., 2.5 Gb/s.

With NR-GRC, LC c and LFAc in Eq. (9) are zero since all master
files are located at the GRC, i.e., AFAc = RFAc, RC c =

1
2.5 +

1
10 +

1
0.1 = 10.5, and Cbaseline =

1
2.5 +

1
10 +

1
10 +

1
0.1 = 10.6. Thus, BCRc =

RCc
Cbaseline

= 0.99, ABCR = BCRc , and ABCR = 0.99 in all rounds on all
access patterns. For PFRF,M/LFU, DR-Local, DR-Global, andNR-LRC,
RC c = Cbaseline = 10.6, and LC c =

1
2.5 +

1
0.1 = 10.4.

Comparing the plots shown in Figs. 17–21, ABCRs of NR-LRC
in the five figures are all the worst, between 0.997 and 0.998.
The reason is that NR-LRC does not replicate files among clusters;
hence, each cluster has to access required files from remote
clusters, even though it has frequently accessed these files. PFRF
can effectively adjust file weights and lead to the best ABCRs on
ZipfL-0.8, ZipfL-0.6, and Geo-0.2 after the sixth round, as compared
with all the other algorithms. However,ABCRs of NR-GRC are better
than those of other algorithms on ZipfL-0.6 (see Fig. 18) since all
unpopular files have similar access count (see Fig. 6), like those
of a uniform distribution. As shown in Fig. 20, PFRF, M/LFU, and
DR-Global on Geo-0.5 have similar ABCRs, which are better than
those of DR-Local, NR-GRC, and NR-LRC since the former three
algorithms can effectively identify popular files and replicate them
to the clusters requiring these files.

As shown in Fig. 21, NR-GRC on Uniform with JRR = 25%
outperforms all the other algorithms since all required files can
be accessed from the GRC rather than from remote clusters. On
the other hand, ABCRs of PFRF, M/LFU, DR-Local, and DR-Global

Fig. 17. Average bandwidth cost ratios for PFRF, M/LFU, DR-Local, DR-Global, NR-
GRC, and NR-LRC on ZipfL-0.8 with JRR = 25%.

Fig. 18. Average bandwidth cost ratios for PFRF, M/LFU, DR-Local, DR-Global, NR-
GRC, and NR-LRC on ZipfL-0.6 with JRR = 25%.

Fig. 19. Average bandwidth cost ratios for PFRF, M/LFU, DR-Local, DR-Global, NR-
GRC, and NR-LRC on Geo-0.2 with JRR = 25%.

are similar because popularities of all files as shown in Fig. 9 are
similar and remain unchanged over time. According to Eqs. (9)
and (10), the increase of RFAcs will result in higher BCRcs and
ABCRs, indicating that the bandwidths consumed by all algorithms
except NR-GRC on Uniform, of which ABCR is about 0.993 after
the sixth (see Fig. 21), are higher than those on the other access
patterns. Please compare theABCR value 0.993with those shown in
Figs. 17–20, all between 0.983 and 0.992.

If we change the bandwidth of the user-to-router links shown
Fig. 4 from 100 Mb/s to 1 Gb/s, when NR-GRC is employed, RC c =

1.5, Cbaseline = 1.6, and BCRc = ABCR = 0.937 which is lower
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Fig. 20. Average bandwidth cost ratios for PFRF, M/LFU, DR-Local, DR-Global, NR-
GRC, and NR-LRC on Geo-0.5 with JRR = 25%.

Fig. 21. Average bandwidth cost ratios for PFRF, M/LFU, DR-Local, DR-Global, NR-
GRC, and NR-LRC on Uniform with JRR = 25%.

than that calculated above, i.e. 0.99. When NR-LRC is used, RC c =

Cbaseline = 1.6, LC c = 1.4, and ABCR ≈ 0.984 which is also lower
than the value calculated above for NR-LRC, i.e., between 0.997 and
0.998, implying that when there is a bottleneck along a path, the
ABCRwill be bigger. Other algorithms have similar phenomena.

4.3.3. Comparison of PFRF parameters a and b
The experimental environment used to evaluate the parameters

a and b in Eq. (3) is the same as the one mentioned in Section 4.1.
Fig. 22 shows experimental results for ATTs of PFRF when a <

b(i.e., a = 0.1, b = 0.15), a = b (i.e., a = 0.1, b = 0.1), and
a > b (i.e., a = 0.15, b = 0.1) on ZipfL-0.8 with JRR= 25%. Fig. 23,
a zoomed-in portion of Fig. 22, illustrates the ATTs of PFRF from
round 6 to round 20. Evidently, the case of (a = 0.1, b = 0.15)
has the best ATTs, showing that it can accurately reflect which files
are more popular. Therefore, in this study we select (a = 0.1, b =

0.15) to do the previous simulations.

4.3.4. Discussion
From an end user viewpoint, the goal of invoking a data replica-

tion algorithm is to shorten average turnaround time and enhance
data availability. From the whole system viewpoint, the data repli-
cation algorithm should reduce bandwidth cost/consumption for
grid systems. From the simulation results, we can see that PFRF,
M/LFU, DR-Local, and DR-Global can improve turnaround time,
bandwidth cost ratio, and data availability. Although NR-LRC can
slightly reduce job turnaround time and improve data availability,

Fig. 22. The average job turnaround time against different rounds.

Fig. 23. The zoom-in figure between rounds 6 to 20 in Fig. 22.

its average bandwidth cost is still high. NR-GRC has the best aver-
age bandwidth cost ratios on the uniform distribution, but it has
the worst turnaround time and data availability on all data access
patterns.

In most situations, PFRF outperforms M/LFU, DR-Local, DR-
Global, and NR-LRC on the three performance metrics. Although
DR-Global has similar performance to that of PFRF, its high
replication frequency will run out of storage space quickly, and
consume considerable network bandwidth, resulting in high disk
I/O costs for all clusters in a data grid. In our simulations, the
average job turnaround time does not include the total popular file
replication time. In other words, DR-Global is not really optimal.

Note that theGRC is only responsible for supplying the locations
of files/replicas, instead of files/replicas themselves, to all clusters
when PFRF, M/LFU, DR-Local, DR-Global, and NR-LRC algorithms
are employed. Therefore, the bandwidth of the GRC will not be
the bottleneck of these algorithms. However, with NR-GRC, all
requested files are transmitted from the GRC. The bandwidth of
the GRC might be a bottleneck when it receives a high volume of
file requests from clusters.

5. Conclusions and future work

In this paper, we propose a novel data replication algorithm for
a star-topology data grid with limited storage space to improve
system performance. Although some previous studies have done
that, such as providing shorter job response time, higher network
usage, and less storage occupation on limited storage space, they
did not consider data access patterns and the change of user
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access behaviors over time. Therefore, PFRF is designed to improve
these weaknesses. It can effectively adapt to the changes of users’
interests by dynamically adjusting file weights and replicating
these files to appropriate clusters to improve performance of the
whole system. We also analyze the average job turnaround time,
average data availability, and average bandwidth cost ratio as the
performance metrics of PFRF and compare them with those of five
existing algorithms on five data access patterns. The simulation
results show that PFRF outperforms all the tested algorithmswhen
file popularity changes with time.

In the future, we plan to validate our simulation results on real
data grids so that the proposed scheme can be evaluated on a
real testbed. We would also like to enhance the reliability of the
architecture by providing a hot-standby GRC like that presented
in [49] to take over as the GRCwhen theGRC cannotwork properly.
Wewill also try to replicate popular files to users’ local sites, rather
than to users’ local clusters. This can further reduce intra-cluster
bandwidth consumption and unnecessary data transmission time.
Finally, we plan to develop a reliability model to evaluate how
many replicas are required for a file such that the file can stand
against site failures. Those constitute our future studies.
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We analyze the convergence time of particle swarm optimization (PSO) on the facet of particle interaction. We firstly introduce
a statistical interpretation of social-only PSO in order to capture the essence of particle interaction, which is one of the key
mechanisms of PSO. We then use the statistical model to obtain theoretical results on the convergence time. Since the theoretical
analysis is conducted on the social-only model of PSO, instead of on common models in practice, to verify the validity of our
results, numerical experiments are executed on benchmark functions with a regular PSO program.

1. Introduction

Particle swarm optimizer (PSO), introduced by [1, 2], is a
stochastic population-based algorithm for solving continu-
ous optimization problems. As shown by [3] and by lots
of real-world applications, PSO is an efficient and effective
optimization framework. Although PSO has been widely
applied in many fields [4–7], understanding of PSO from
the theoretical point of view is still quite limited. Most of
previous theoretical results [8–18] are derived under the sys-
tem that assumes a fixed attractor or a swarm consisting of a
single particle.

Due to the lack of theoretical analysis on PSO particle
interaction, in this paper, we will make an attempt to analyze
the convergence time for PSO on the facet of particle
interaction. In particular, we will firstly introduce a statistical
interpretation of PSO, proposed by [19], to capture the
essence of particle interaction. We will then analyze the
convergence time based on the statistical model. Finally,
numerical experiments will be conducted to confirm the
validity of our theoretical results obtained on simplified PSO,
the social-only model, in a normal PSO configuration.

In the next section, we will briefly introduce the algo-
rithm of PSO and the statistical interpretation of social-
only PSO. In Section 3, we will analyze the convergence time
of PSO based on the statistical model. The experimental

results are presented in Section 4, followed by Section 5
which concludes this work.

2. Particle Swarm Optimization and the
Statistical Interpretation

The social-only model of PSO can be described as pseu-
docode shown in Algorithm 1. In this paper, we will use bold-
face for vectors, for example, Xi, Vi. Without loss of gener-
ality, we assume that the goal is to minimize the objective
function.

According to Algorithm 1, in the beginning, m particles
are initialized, where m is the swarm size, an algorithmic
parameter of PSO. Each particle contains three types of
information: its location (Xi), velocity (Vi), and personal
best position (Pbi). At each generation, each particle updates
its personal best position (Pbi) and neighborhood best
position (Nb) according to its objective value. After updating
the personal and neighborhood best positions, each particle
updates the velocity according to Pbi and Nb. In the velocity
update formula, w is the weight of inertia which is usually
a constant. Cp and Cn are random values sampled from
uniform distributions U(0, cp) and U(0, cn), where cp and
cn are called acceleration coefficients. Finally, each particle
updates its position according to the velocity and then goes
to next generation.
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procedure Social-only PSO (Objective function F : Rn → R)
Initialize m particles
while the stopping criterion is not satisfied do

for i = 1, 2, . . . ,m do
if F (Xi) < F (Pbi) then

Pbi ← Xi

if F (Pbi) < F (Nb) then
Nb← Pbi

end if
end if

end for
for i = 1, 2, . . . ,m do

for j = 1, 2, . . . ,n do
Vi j ← wVi j + Cn(Nb j −Xi j)
Xi j ← Xi j + Vi j

end for
end for

end while
end procedure

Algorithm 1: Social-only model of PSO.

From the aforementioned brief description, we can al-
ready see that particle interaction is a crucial mechanism
in the design of PSO. Although there have been previous
studies on particle interaction and the PSO behavior, most
of these studies were totally based on the assumption of fixed
attractors, a false condition for PSO in action. In order to take
particle interaction into consideration, we use an alternative
view of PSO that regards the whole swarm as a unity. Instead
of tracking the movement of each particle, we consider the
overall swarm behavior by transforming the state of entire
swarm into a statistical abstraction. Furthermore, in order to
concentrate on particle interaction, we adopt the social-only
model of PSO [20], which does not consider personal best
positions.

The statistical interpretation of PSO we use in this paper
is modified from [19], summarized in Algorithm 2. In the
statistical model, the exact particle locations are not traced
but modeled as a distribution θ overRn. Velocities are viewed
as random vectors V ∈ Rn. The swarm size m is considered
as the number of samples from distribution θ, since the
geographic knowledge is embodied in the distribution, the
neighborhood attractor can be viewed as the best of the m
samples.

Each particle Pi is considered as a random vector
sampled from θ, and the velocity Vi is sampled from V.
The neighborhood attractor can then be defined as Pa :=
minPi{F (P1), F (P2), . . . , F (Pm)}. At each generation, Pi j is
updated as Pi j +wVi j +C(Pa j −Pi j). The next distribution is
thus the statistical characterization denoted by functions of
the observed values:

θ ←− Tp(P1, . . . , Pm),

V ←− Tv(P1, . . . , Pm, V1, . . . , Vm).
(1)

Since w is a constant, distribution V can be removed because
given two random vectors X ∼ θ and V ∼ V, we can simply
let θ′ be the distribution of X′ := X + wV.

For simplicity, in this paper, we consider the positions of
each dimension of a particle is independently sampled from
distribution θi. Consider the random variable X ∼ θi and let
E[X] = μ. If we divide the support of θi into s disjoint regions
R1, . . . ,Rs, such that Prob[X ∈ Ri] = 1/s for i = 1, 2, . . . , s,
and each region is associated with a random variable of
velocity Vi ∼ Vi. By picking xi ∈ Ri for each region, when
s is sufficiently large, the swarm can be characterized as

s∑

i=1

1
s

(xi + Vi) =
s∑

i=1

xi
s

+
s∑

i=1

Vi

s
≈ μ +

s∑

i=1

Vi

s
. (2)

Each component of
∑s

i=1Vi/s can be approximated with
a normal distribution by the central limit theorem. As a
consequence, normal distributions are a reasonable choice
for describing the behavior of the entire swarm. We let
the distribution of ith dimension, θi, be N(μi, σ2

i ), where
N(μi, σ2

i ) is the normal distribution with mean μi and
variance σ2

i . The update of distribution becomes simply by
calculating the mean and the variance.

The mean can be calculated by taking the average of
updated positions, and the variance is calculated by using
the maximum likelihood estimation (MLE). Let σt

2
i and μt

2
i

be the variance and mean of the ith dimension at the tth
generation. Let yj = Pji and y′j = P′ji for j = 1, 2, . . . ,m
and let ya = Pai, y = (1/m)

∑m
j=1y

′
j . To estimate the variance

of the ith dimension at the (t + 1)th generation, we use
the maximum likelihood estimation (MLE). The likelihood
function L(σt

2
i ) is defined as the joint probability:

L
(
σt

2
i

)
:=

m∏

j=1

(
1√

2πσt+1
2
i

)
exp

⎛
⎜⎝
−
(
y′j − y

)2

2σt+1
2
i

⎞
⎟⎠

=
(

1√
2πσt+1

2
i

)m

exp

⎛
⎜⎝
−∑m

j=1

(
y′j − y

)2

2σt+1
2
i

⎞
⎟⎠.

(3)
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procedure Statistical interpretation of social-only PSO (Objective
Function F : Rn → R)

Initialize: σ ← σ0, μ← μ0

while the stopping criterion is not satisfied do
for i = 1, 2, . . . ,m do

for j = 1, 2, . . . ,n do
Pi j ∼ N(μj , σ2

j )
end for

end for
Pa = minPi{F (Pi)}
for i = 1, 2, . . . ,m do

for j = 1, 2, . . . ,m do
P′i j ← Pi j + C(Pa j − Pi j)

end for
end for
μ← (

∑m
i=1P′i )/m

σ2 ←MLE(P′1, P′2, . . . , P′m)
end while

end procedure

Algorithm 2: Statistical model of social-only PSO. Distribution θ is represented by μ = (μ1,μ2, . . . ,μn) and σ = (σ1, σ2, . . . , σn). Acceleration
coefficient C ∼ U(0, c).

To find σt+1
2
i that maximizes L(σt

2
i ), we differentiate L(σt

2
i )

with respect to σt+1
2
i :

L′
(
σt

2
i

) = −
(
m

2

)(
1√
2π

)m
σt+1

−m−2
i

× exp
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(4)

the value of σt+1
2
i that maximizes L(σt

2
i ) is

∑m
j=1(y′j − y)2/m.

As a result, in our model of PSO, the results of MLE is σt+1
2
i =∑m

j=1(y′j − y)2/m for i = 1, 2, . . . ,n.

3. Convergence Time Analysis

In this section, we will analyze the PSO convergence time
based on the aforementioned statistical interpretation of the
social-only model. As the first step, we must define the state
of convergence. Since, in this work, we regard the entire
swarm as a distribution, the state of convergence is then
referred to as the variance of the distribution. We define the
state of convergence as the variance for every dimension is
less than a given value ε > 0. By using this definition, we can
now start our analysis of PSO convergence time. To estimate
the variance after distribution update, we need the following
lemma from [21].

Lemma 1. Let X1,X2, . . . ,Xm ∼ N(μ, σ2). Define S =∑m
i=1(Xi − X)2/(m − 1), where X = ∑m

i=1Xi/m. One has
(m − 1)S ∼ σ2χ2

m−1, where χ2
m−1 is the chi-square distribution

with m− 1 degrees of freedom.

With this lemma, we can obtain the following.

Lemma 2. Given the swarm size m, acceleration coefficient c,
and variance of the ith dimension at the tth generation σt

2
i , one

has E[σt+1
2
i ] = [(1/3)c2 − c + 1][(m− 1)/m]σt

2
i .

Proof. We know σt+1
2
i =

∑m
j=1(y′j−y)2/m. The expected value

is
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Let S = ∑m
j=1(yj − (1/m)

∑m
k=1yk)2. Since yj ∼ N(μt+1i,

σt+1
2
i ) for j = 1, 2, . . . ,m and y1, y2, . . . , ym are i.i.d.,
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by Lemma 1, S ∼ σt
2
i χ

2
m−1, and E[S] = (m − 1)σt

2
i . Then,

we can obtain
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2
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(6)

Lemma 2 is derived under the condition that σt
2
i is given.

The following lemma will derive the relationship between
E[σt

2
i ] and E[σt+1

2
i ].

Lemma 3. E[σt+1
2
i ] = ((1/3)c2 − c + 1)((m− 1)/m)E[σt

2
i ].

Proof.
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(7)

Now, we can obtain the relationship of convergence time
and algorithmic parameters of PSO.

Theorem 4. Given swarm size m, acceleration coefficient c,
ε, and σ0. Let h = maxi{σ0

2
i }. One has E[σt

2
i ] < ε for

i = 1, 2, . . . ,n when [(1/3)c2 − c + 1][(m − 1)/m] < 1 and
t > log(ε/σ0

2
h)/log([(1/3)c2 − c + 1][(m− 1)/m]).

Proof. From Lemma 3, we know
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Since [(1/3)c2 − c + 1][(m− 1)/m] < 1, we have
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(9)

The last inequality holds because
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2
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2
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(10)

We have two corollaries immediately from Theorem 4.

Corollary 5. Given swarm size m, acceleration coefficient c,
and level of convergence ε such that [(1/3)c2 − c + 1][(m −
1)/m] < 1 and ε < 1, one has E[σt

2
i ] < ε for i = 1, 2, . . . ,n for

t = O(− log ε).

Corollary 6. Given swarm size, m, c, and ε such that
[(1/3)c2− c+ 1][(m−1)/m] < 1 and ε < 1, there exists a con-
stant c′ < 1 such that for t = O(−1/log c′(1 − 1/m)), one has
E[σt

2
i ] < ε for i = 1, 2, . . . ,n.

Corollary 5 reveals the linear relationship between the
level of convergence and the convergence time, and the inter-
pretation of Corollary 6 is that when the swarm size is suf-
ficiently large, the effect of enlarging swarm size on the con-
vergence time is not important. In the next section, we will
empirically examine the two corollaries with a common
practical PSO configuration.

4. Experiments

In this section, we verify the validity of Corollaries 5 and 6
by running standard PSO 2006 downloaded from Particle
Swarm Central. We use two objective functions in our exper-
iments:

(i) sphere function [22]:

f1(x) =
D∑

i=1

x2
i , x ∈ [−100, 100]D, (11)

(ii) schwefel’s problem 1.2 [22]:

f2(x) =
D∑

i=1

⎛
⎝

i∑

j=1

x2
j

⎞
⎠, x ∈ [−100, 100]D. (12)

We have D = 10 for both f1(x) and f2(x) in the following
experiments.

We firstly examine Corollary 5. The PSO algorithmic
parameters are given as cp = 1, cn = 1, w = 1/(2 ln 2),
and swarm size = 50. The value of ε is varied from 10−1

to 10−10. For each value of ε, we perform 100 independent
runs. For each run, we count the number of generations
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Figure 1: Comparison of experimental results and theoretical re-
sults from Corollary 5 of f1(x). The x-axis represents the value of
ε, and y-axis represents the mean number of generation. The ex-
perimental results are very close to O(− log ε).
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Figure 2: Comparison of experimental results and theoretical
results from Corollary 5 of f2(x). The x-axis represents the value
of ε, and y-axis represents the mean number of generation. The
experimental results are very close to O(− log ε).

from initialization to the state in which variances for all
dimensions are smaller than ε, and we calculate the mean
number of generations for the 100 runs.

The comparison of these experimental results and our
theoretical results is shown in Figures 1 and 2. From Figure 1,
we can see that the experimental results of f1(x) are very
close to −4.6 log ε + 43 = O(− log ε), and from Figure 2, the
experimental results of f2(x) are very close to −4.7 log ε +
43.5 = O(− log ε). The experimental results agree with our
estimation in Corollary 5, in which the value of − ln ε and
the PSO convergence time are linearly related.

Sphere function

−64.9/ log(0.555(1− 1/m))
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Figure 3: Comparison of experimental results and theoretical
results from Corollary 6 of f1(x). x-axis represents the swarm
size ranging from 50 to 200, and y-axis represents the mean
number of generation. The experimental results are very close to
O(−1/ log c′(1− 1/m)) with c′ < 1.
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Figure 4: Comparison of experimental results and theoretical
results from Corollary 6 of f1(x). x-axis represents the swarm
size ranging from 50 to 1000, and y-axis represents the mean
number of generation. The experimental results are very close to
O(−1/ log c′(1− 1/m)) with c′ < 1.

After Corollary 5 is empirically verified with the standard
PSO, we now examine Corollary 6. The parameters we used
in PSO are given as cp = 1, cn = 1, w = 1/(2 ln 2), and ε =
10−6. The swarm size ranges from 50 to 1000 with step 5.
For each swarm size, we perform 100 independent runs and
record the mean as we did in last experiment.

The comparison of experimental and theoretical results is
shown in Figures 3, 4, 5, and 6. From Figures 3 and 4, we can
see that the convergence time is close to −64.9/ log 0.555(1−
1/m) = O(−1/ log c′(1 − 1/m)), where c′ = 0.555,
and in Figures 5 and 6, the convergence time is close to
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Figure 5: Comparison of experimental results and theoretical
results from Corollary 6 of f2(x). x-axis represents the swarm
size ranging from 50 to 200, and y-axis represents the mean
number of generation. The experimental results are very close to
O(−1/ log c′(1− 1/m)) with c′ < 1.
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Schwefels problem 1.2

Figure 6: Comparison of experimental results and theoretical
results from Corollary 6 of f2(x). x-axis represents the swarm
size ranging from 50 to 1000, and y-axis represents the mean
number of generation. The experimental results are very close to
O(−1/ log c′(1− 1/m)) with c′ < 1.

−99.75/ log 0.405(1− 1/m) = O(−1/ log c′(1− 1/m)), where
c′ = 0.405. As we can observe from these figures, when the
swarm size becomes large, the increase of convergence time
is insignificant, confirming our estimation in Corollary 6.

5. Conclusions

In this paper, a statistical interpretation of a simplified model
of PSO was adopted to analyze the PSO convergence time.
In order to capture the essence of particle interaction, the

statistical model adopted in this paper assumed no fixed
attractors. The effect of particle interaction was included in
our analysis. Our theoretical results revealed the relationship
between the convergence time and the level of convergence
as well as the relationship between the convergence time and
the swarm size. Numerical results, in the standard settings
of PSO, were obtained to empirically verify our theoretical
results derived with a simplified PSO configuration. The
agreement between the experimental and theoretical results
indicated the importance of particle interaction in PSO.
Consequently, more research effort should be invested into
analyzing the working of particle interaction in order to
better understand particle swarm optimization.

Some future extensions of this study are now ready to
be explored. First of all, the relationship between PSO and
the number of dimensions, that is, in the adopted model,
the relationship between t and E[σt(n)

2], where σt(n)
2 =

max{σt
2
1, σt

2
2, . . . , σt

2
n}. Second, the theoretical analysis con-

ducted in this study is independent of objective functions.
In Section 4, we verify the analysis with only two objective
functions. More functions of various features and properties,
which do not violate the settings of the adopted statistical
model, should be used to examine the estimation. Third,
the distribution which we used in this paper is the normal
distribution. However, there should exist some objective
functions that enforce the swarm to distribute according
to different distributions. The analysis presented in this
paper will fail on those objective functions. As a result,
more sophisticated models should be adopted to provide
good descriptions of the PSO macrobehavior and to enable
researchers to derive more accurate PSO estimations. Finally,
the social-only PSO model we adopted in this paper does
not take the personal experience into consideration. We
also need more sophisticated models to analyze the PSO
macrobehavior influenced by the personal experience.
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Analysis on the Collaboration Between Global
Search and Local Search in Memetic Computation

Jih-Yiing Lin and Ying-Ping Chen, Member, IEEE

Abstract—The synergy between exploration and exploitation
has been a prominent issue in optimization. The rise of memetic
algorithms, a category of optimization techniques which fea-
ture the explicit exploration-exploitation coordination, much
accentuates this issue. While memetic algorithms have achieved
remarkable success in a wide range of real-world applications,
the key to successful exploration-exploitation synergies still re-
mains obscure as conclusions drawn from empirical results or
theoretical derivations are usually quite algorithm specific and/or
problem dependent. This paper aims to provide a theoretical
model that can depict the collaboration between global search and
local search in memetic computation on a broad class of objective
functions. In the proposed model, the interaction between global
search and local search creates a set of local search zones, in
which the global optimal points reside, within the search space.
Based on such a concept, the quasi-basin class (QBC) which
categorizes problems according to the distribution of their local
search zones is adopted. The subthreshold seeker, taken as a
representative archetype of memetic algorithms, is analyzed on
various QBCs to develop a general model for memetic algorithms.
As the proposed model not only well describes the expected time
for a simple memetic algorithm to find the optimal point on
different QBCs but also consists with the observations made
in previous studies in the literature, the proposed model may
reveal important insights to the design of memetic algorithms in
general.

Index Terms—Global search, local search, memetic algorithms,
quasi-basin class, subthreshold seeker.

I. Introduction

OPTIMIZATION, finding the optimal element among a
set of feasible ones, is a type of problem commonly

encountered in many fields. Many real-world and theoret-
ical problems can be formulated as optimization problems
and solved by applying or developing various optimization
techniques. Early optimization techniques, such as Newton’s
method, simplex method, conjugate gradient algorithm, and
the like, have been well developed on problems with certain
mathematical characteristics. However, as many real-world
optimization problems are black-box problems of which a
priori problem knowledge is not available, the use of meta-
heuristics started to prevail. Meta-heuristics are generally
population-based algorithms which explore the search space
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stochastically according to some heuristics. As they are not
problem-specific, they have a good chance to perform well
on black-box optimization problems. Evolutionary algorithms,
particle swarm optimizations, ant colony algorithms, and the
like, are some of the renowned meta-heuristics which have
been widely adopted.

The generality of meta-heuristics which provides the wide
applicability also limits the efficiency of meta-heuristics.
When complicated problems are encountered, without taking
advantages of problem-specific information given a priori
or retrieved during optimization, meta-heuristics can merely
deliver mediocre performance. As problem-specific heuristics
can generally take advantages of problem-specific information,
techniques that hybrid general meta-heuristics and problem-
specific heuristics have been developed to provide more effi-
cient optimization techniques for more complicated problems.
These techniques which employ general meta-heuristics as
global search and problem-specific heuristic as local search
are commonly referred to as memetic algorithms (MAs).
With an appropriate coordination, memetic algorithms cannot
only exhibit a good explorative ability as a population-based
global search algorithm does but also deliver a good exploitive
performance as a local search algorithm does. As a result,
memetic algorithms perform better than pure population-
based global search algorithms or stand-alone local search
algorithms. As the research interests and activities of memetic
algorithms thrive, memetic computing has been evolved from
hybridization of global search and local search to hybridization
with adaptation and has the potential to be applied to com-
putational intelligence [1]. Manifold of successful memetic
algorithms in various application domains, ranging from NP-
hard combinatorial problems to non-linear programming prob-
lems, have been reported [2]. Besides the various application
domains mentioned in [2], recent memetic algorithm applica-
tions in Cartesian robot control [3], e-learning systems [4],
image segmentation [5], feature selection [6], mission man-
agement [7], and portfolio selection [8] also demonstrate
the efficacy of memetic algorithms in different application
domains.

Among these memetic algorithms, in addition to the se-
lection of the global search component and the local search
operator, the synergy between global search and local search
has always been one of the key design issues. The design
of most memetic algorithms follows the seminal studies on
memetic algorithms proposed in [9] and [10]. In these studies,
the authors observed that memetic algorithms favor infrequent

1089-778X/$26.00 c© 2011 IEEE
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starts and long running time of local search. They also
proposed several renowned strategies for selecting solution
candidates on which the local search operator is applied: the
fitness based selection and the diversity based selection. How-
ever, with the aids of these guidelines, designing a memetic
algorithm for a specific problem still requires considerable
time as the optimal design is not only algorithm specific but
also problem dependent. To cope with this issue, the concept
of systematically adjusting the parameters of local search is
proposed [11]. Although this technique is robust, it does not
guarantee the best performance. Another line of research is
regarding the concept of memes [12]–[14]. In these studies,
the local search algorithms, encoded as memes, can adapt to
the underlying problem and thus improve the efficiency as
the memetic algorithm progresses. This framework is robust
as well as efficient with the expense of the learning cost of
memes.

In spite of the light shed on the design issue of memetic
algorithms by the aforementioned studies, the question of how
one can achieve the optimal design of memetic algorithms on
a specific problem remains. The key to achieve this ultimate
goal apparently include a full awareness of the physics behind
the algorithm and the problem. As theoretical studies can help
to understand the internal mechanism of algorithms, they can
provide important insights to the design issue. Compared to the
progress of theoretical studies on evolutionary computation,
which is still in its infancy [15]–[23], theoretical studies of
memetic algorithms are even scarce. Recent studies [24], [25]
investigated the behavior of simple memetic algorithms on sev-
eral classes of functions. The proposed theoretical models on
the demonstrative classes of functions reaffirmed that param-
eterizing memetic evolutionary algorithms can be extremely
difficult. As these theoretical models are developed according
to different classes of functions, they are capable of depicting
the algorithmic behavior from their respective perspectives on
the adopted classes of functions instead of providing a unified
principle for the design of memetic algorithms.

The concept of basins of attraction [26] provides another
perspective and gives an opportunity to conduct general anal-
ysis on memetic algorithms. In [27] and [28], the search space
is viewed as a union of basins of attraction, and the optimal
allowable local search length of simple memetic algorithms
is theoretically estimated. A similar concept, quasi-basins
defined by the subthreshold seeker, was adopted to prove the
searchability of general functions [29] and to investigate the
subthreshold seeking behavior [30].

In this paper, we aim to establish a theoretical model that
can depict the collaboration between global search and local
search in memetic computation on a wide range of problems.
To achieve this, we propose the concept of local search zones
which are the regions that local search exploits. In this per-
spective, these local search zones are defined by the landscape
of the problem as well as the collaboration between global
search and local search. As local search zones are generally
not easy to assess, we adopt quasi-basins to estimate local
search zones and define the quasi-basin class (QBC) which
categorizes problems by their quasi-basin distributions as the
basis on which memetic algorithms are investigated. Then, we

analyze the performance of the subthreshold seeker, which is
regarded as a representative archetype of memetic algorithms,
to develop a theoretical model for the global-local search
collaboration in memetic computation. The derived theoretical
model can describe how the distribution of local search zones
and the efficiency of the global search algorithm and the local
search algorithm are related to the expected time for a memetic
algorithm to find the optimal solution. Because this model,
empirically verified, is consistent with the observations made
in many previous studies in the literature, it may be considered
valid for representing various memetic algorithms on a wide
range of problems and may give important insights to the
future design of advanced memetic algorithms.

The rest of this paper is arranged in the following manner.
Section II gives a survey on the current progress of analysis on
memetic algorithms and elaborates the need of a general the-
oretical model which can describe the collaboration between
global search and local search in memetic computation on a
broad range of problems. Section III expounds the fundamental
concepts on the analysis of memetic algorithms and provides
the definitions of our framework to form the basis for further
derivation. As a memetic algorithm comprises global search
and local search, we first analyze the global search component
of the subthreshold seeker and discuss how this analysis is
related to the behavior of common global search algorithms
in Section IV. Based on the analysis of global search and
the concept of QBC, we derive and empirically verify the
formula that describes the behavior of the subthreshold seeker
working with local search operators of different efficiency on
various QBCs in Section V. After the empirically verifying
the proposed model, we expound how our model can repre-
sent the general behavior of memetic algorithms and discuss
possible extensions and future work of the proposed model in
Section VI. Finally, we recap the significance of our model
and conclude this paper in Section VII.

II. Background

Designing a memetic algorithm requires not only selecting
a global search mechanism as well as a local search operators
but also establishing a subtle coordination to exhibit the van-
tage of both ends. Hart [9] in his seminal study for designing
efficient memetic algorithms investigated the following four
questions on continuous optimization problems.

1) How often should local search be applied?
2) On which solutions should local search be used?
3) How long should local search be run?
4) How efficient does local search need to be?

In his framework, he noted that the memetic algorithms that
employ elitism will be most efficient with large population
sizes and infrequent local search. He also proposed two
strategies, fitness based selection and diversity based selection,
for selecting solution candidates to apply local search. He
concluded that these two strategies help much. Land [10]
extended Hart’s study to combinatorial domains. In his study,
he adopted steady state genetic algorithms as global search
and proposed a local search potential based strategy in se-
lecting local search candidates. The local search potential
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strategy turned out to be not very useful. Yet, he observed
that his steady state memetic algorithm favored smaller rates
and longer runtime for local search, consistent with Hart’s
study.

Although limited to specific problems, the studies of Hart
and Land gave some insights to the first three questions and
have inspired the successive memetic algorithms in a wide
variety of applications. The concepts of selecting the best or
some qualified individuals for local search which resemble
the fitness based selection have been adopted in [31]–[33].
The steady state memetic algorithm with adaptive local search
has been applied in [34]–[36], while other studies exhibit
the vantage of utilizing the diversity information in their
design of memetic algorithms [37], [38]. Investigations into
the balance between global search and local search for some
applications available in the literature also accord with Hart’s
and Land’s observations [39], [40]. Despite that the accordance
of these results reveals some essential design principles of
efficient memetic algorithms, designing a memetic algorithm
still requires a considerable amount of effort due to the lack of
detailed knowledge on how the key mechanism of memetic al-
gorithms, the synergy between global search and local search,
working on the underlying problem. An interesting technique
of adapting local search intensity in a simulated annealing way
was proposed to cope with the MA parameterizing issue [11].
More robust than the fixed local search intensity setting, this
method still requires a range setting and does not guarantee
the best performance.

In addition to the parameterizing issue caused by using
memetic algorithms to handle different problems, the effi-
ciency of a local search operator is particularly problem
dependent. [41] provided a landscape analysis for memetic al-
gorithms. Following this, the concept of memes [12]–[14] was
proposed. In these frameworks, the local search component is
designed to adapt to the underlying problem as the optimiza-
tion progresses. These meme evolving or learning memetic
algorithms are robust regardless of the underlying problem and
efficient. Recent studies [42], [43] have also proposed several
metrics to assess the improvement of applying a local search
algorithm on a problem.

Furthermore, theoretical analysis has always been a preva-
lent way to provide clues to the design of algorithms. For
continuous problems, convergence analysis is widely adopted
in performance assessment for evolutionary computation [16],
[19], [22]. For discrete problems, the (1+1) evolutionary
algorithm (EA) has been widely adopted in theoretical anal-
ysis on evolutionary algorithms [15], [17], [18], [20], [21],
[23]. The (1+1)-EA is a rather simple algorithm with one
individual and an evolutionary operator flipping each bit of the
individual with a uniform probability. Following these studies,
the theoretical analysis of memetic algorithms starts from the
(1+1)-MA and goes to the (μ+λ)-MA [24], [25]. On three
discrete functions, Sudholt investigated the behavior of the
(1+1)-MA and the (μ+λ)-MA, and these studies reaffirmed
the parameterizing of memetic algorithms is extremely hard.

Theoretical models developed in this way are capable of
providing different perspectives, according to the adopted
classes of functions, to analyze a memetic algorithm. Ref-

erence [44] illustrated that different problems favor different
population sizes, while [45] and [46], which investigated
the effect of recombination operators, provided counter per-
spectives. The issue of such an analysis technique is that
the derived theoretical behavior is naturally confined and
largely determined by the adopted objective functions. As
an undesirable result, the different conclusions obtained from
various theoretical models cannot form a unified guideline to
the design of algorithms.

Another line of analysis involves the concept of basins of
attraction. The basin of attraction of a local optimum is the set
of points in the search space such that a local search process
starts from any member within a basin will eventually find
the local optimum in that basin [26]. In this line of research,
the search space is a union of basins of attraction. References
[27] and [28] adopted this concept to estimate the optimal
local search length. In these papers, basins of attraction in the
search space are categorized into two types, in which target
solutions can or cannot be reached. The optimal local search
length is estimated via acquiring the probability of hitting the
former basins.

A closely related concept, quasi-basin defined by subthresh-
old seeker, was introduced by [29] in investigating searchable
functions in which the No Free Lunch theorem does not hold.
The submedian seeker which starts local search when hitting
a point with a submedian value and turns to do random search
when hitting a point with a supermedian value was considered.
By applying the submedian seeker to functions with a certain
degree of self-similarity, that the functions exhibiting self-
similarity are searchable was proved. Whiteley and Rowe
further proposed the subthreshold seeker, a generalized 1-D
submedian seeker, and investigated its seeking behavior [30].
In their work, the subthreshold seeking behavior, the ratio
of the sampled subthreshold points to superthreshold points,
was used as a performance index. Their theoretical analysis
detailed the conditions under which the subthreshold seeker
could outperform random search and showed that a higher
bit-precision could improve the performance.

Finally, in this paper, we aim to provide a general model
for the collaboration between global search and local search
in memetic algorithms on a broad class of problems. The
proposed model will describe how the expected performance
of a memetic algorithm is related to the efficiency of the
local search operator, the landscape of the problem, and the
collaboration between global search and local search. In order
to achieve this goal, we propose the concept of local search
zones. Local search zones are the regions which local search
prefers and the global optimal point resides in. As generally
local search zones are not easy to assess, we adopt the idea
of quasi-basins to estimate local search zones and define
the QBC to categorize problems according to their quasi-
basin distributions. The subthreshold seeker, taken as a rep-
resentative archetype of memetic algorithms, is analyzed over
different QBCs as a general theoretical model for memetic
algorithms. Thus, the proposed model can depict the essence
of the collaboration between global search and local search in
memetic algorithms on various problems and may shed light
on the design of memetic algorithms.
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III. Quasi-Basin Classes and Subthreshold Seeker

In this section, we introduce the concept of local search
zones and give definitions to the fundamental terminologies
of our framework. The concept of the local search zones is
described based on the formal definitions of the search process
of an algorithm on a problem and the search space viewed by
a search process. Then, based on the concept of local search
zones, we introduce the QBC and the generalized subthreshold
seeker on which the theoretical analysis is based.

A. Local Search Zones

The task to handle an optimization problem is to optimize
a given objective function f : X → Y . For convenience, we
specify our optimization goal as to find a point x∗ ∈ X with
the minimum value y∗ ∈ Y . We assume that both X and Y are
finite sets. Such an assumption makes a practical sense because
optimization problems are generally numerically solved on
digital computers. In this paper, for simplifying the derivation,
we also assume that every function maps different x ∈ X
to different y ∈ Y . In order to formally describe a search
process of an algorithm on a function, we adopt part of the
terminologies defined in [47] as the following definitions.

Definition 1 (Search Process): Given two finite sets X and
Y:

1) A trace of length m is a sequence Tm := ((xi, yi))m1 =
((x1, y1), (x2, y2), . . . , (xm, ym)) ∈ (X × Y)m with dis-
tinct xi. “x ∈ Tm” denotes that x = xi for some
i ∈ {1, 2, . . . , m}. Let T0 be the empty sequence and T �

be the set containing all the traces of a length smaller
than or equal to �.

2) Let AT , where T ∈ T |X |−1, be a random variable over
X satisfying that Prob{AT = x} = 0 for all x ∈ T . An
algorithm A is a collection of such random variables,
i.e., A = {AT | T ∈ T |X |−1}.

3) The search process of A on f , S(A, f ), is a stochastic
process (Xi, Yi := f (Xi)) over X × Y defined by X1 ∼
AT0 and Xk+1 ∼ A(Xi,Yi)k1

.

For generality, we interpret the search space viewed by a
memetic algorithm as a graph. Since a local search algorithm
usually starts from a candidate solution and iteratively moves
to a neighbor solution, the local search algorithm defines the
neighborhood of a candidate solution in the search space
viewed by the memetic algorithm which utilizes it. Thus,
we define the search space viewed by a memetic algorithm
as a graph of which the vertices are the set of points of
X and the edges are the set of pairs of points connected
by the local search algorithm of the memetic algorithm as
follows.

Definition 2 (Search Space): Given a memetic algorithm
MA, a function f , and LS, the local search algorithm adopted
by MA. Let NLS(v) denote the neighborhood of a vertex v

defined by LS. The search space viewed by MA on f can
be represented by a graph G = (V, E), where V (G) := X and
E(G) := {〈vi, vj〉 | vj ∈ NLS(vi), ∀i, j}.

In the rest of this paper, the terms X and V (G) are used
exchangeably. Now, with all these fundamental terminologies,
we can formally define the local search zone as follows.

Definition 3 (Local Search Zone): Given a search process
of a memetic algorithm MA on function f , S(MA, f ), and
LS, the local search algorithm adopted by MA:

1) The local search points of a search space G viewed
by S(MA, f ) are defined as the set of points SLSZ =
{v | E[Pr(Xk+1 = u, u ∈ NLS(v)|v ∈ Tk, u /∈ Tk)] >

0.5, ∀v ∈ V (G)}.1
2) A local search zone LSZ is defined as a maximal subset

in SLSZ such that there exists a path2 between all the
pairs of vertices.

3) The size of local search zones is denoted by |SLSZ|.
By this definition, a local search point is a vertex which if is
visited by MA, MA would tend to visit one of its unvisited
adjacent vertices in the future, and the local search zones are
where the local search points reside. In other words, the local
search zones are where local search prefers when a memetic
algorithm is applied. In our perspective, the distribution of the
local search zones has a great influence on the performance
of a memetic algorithm. As the local search of practical
memetic algorithms favors the points that have high potential
to lead to the optimal point, fitness-relevant and diversity-
relevant criteria are adopted. These criteria are somehow
dynamic, complicated, and difficult to analyze. Abstracting
the exploration behavior of global search and the exploitation
behavior of local search, we consider fitness as the prime
index of the potential to find the optimal point regardless
of the diversity-relevant metrics which are often auxiliary for
diversity maintenance. Thus, the local search zones can be
estimated by zones consisting of qualified high-fitness points.
Based on this way of thinking, we define the QBC to represent
different problem classes which possess different local search
zone distribution. Then, we take the subthreshold seeker as a
representative archetype of memetic algorithms and analyze
its behavior on various QBCs to develop a general theoretical
model for the core mechanism of memetic algorithms.

B. Quasi-Basin Classes

The QBC conceptually defines problem classes according
to the number of local search zones and the size of local
search zones. To define QBC, we first define the quasi-basin
(QB) as follows.

Definition 4 (QB):

1) For any function f , function value βm(f ), defined as
βm(f ) := min

{
argy {| {x ∈ X | f (x) ≤ y} | = m}}, deno-

tes a threshold, and there are m − 1 points with an
objective value less than βm(f ).

2) For any function f , the set that contains all the points
with an objective value less than βm(f ) is defined as
Sm(f ) := {x ∈ X |f (x) ≤ βm(f )}.

3) Given a graph G, for any function f : V (G) → Y , a
quasi-basin QB is defined as a maximal subset in Sm(f )
such that there is a path between all the pairs of vertices.

1The E[] notation indicates the expected value of Pr(Xk+1 = u, u ∈
NLS (v)|v ∈ Tk, u /∈ Tk) over all k ∈ |X | and all possible Tk which containing
v and not containing u.

2A path in a graph is a sequence of vertices such that from each vertex
there exists an edge to the next vertex in the sequence except for the last one.
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As generally the points residing in quasi-basins are better
than the other points in the search space and are favored
by fitness-relevant local search criterion, Sm(f ) conceptually
estimates the set of points residing in the local search zones
with a size m while a quasi-basin QB can be regarded
as a local search zone in the search space. Based on the
fundamental definitions, we define the QBC and the uniform
quasi-basin class (uQBC) in Definitions 5 and 6.

Definition 5 (QBC): Given a graph G and a co-domain Y ,
the corresponding discrete QBC with b distinct quasi-basins
and m subthreshold vertices is defined as

Q(G,Y, m, b) :=

{f : V (G) → Y | Sm(f ) =
b⋃

i=1

QBi,

b⋂
i=1

QBi = ∅,

|QBi| ≥ 1, 1 ≤ i ≤ b} .

Definition 6 (uQBC): Given a graph G and a co-domain
Y , the corresponding uniform discrete QBC with b distinct
quasi-basins and m subthreshold vertices is defined as

Qu(G,Y, m, b) :=

{f : V (G) → Y | Sm(f ) =
b⋃

i=1

QBi,

b⋂
i=1

QBi = ∅,

⌊m

b

⌋
≤ |QBi| ≤

⌈m

b

⌉
, 1 ≤ i ≤ b} .

The QBC defines a class of problems with the points
of m smallest function values distributed among b distinct
quasi-basins. Thus, we can categorize problems according to
their distribution of quasi-basins conceptually mapping to the
distribution of local search zones. The uniform QBC further
restricts the sizes of quasi-basins to be uniform. Note that m is
naturally restricted to be less than or equal to |X | and greater
than or equal to b. b is a positive integer which is less than
the minimum of m and |X | − m.

C. Subthreshold Seeker

Global search and local search of the subthreshold seeker
are coordinated by the threshold θ. A subthreshold seeker
globally searches by sampling the space uniformly at random
(u.a.r.) until it encounters a subthreshold point, a point with
a function value lower than the threshold. When this event
occurs, the subthreshold seeker starts local search to exploit the
quasi-basin, a maximal set of connected subthreshold points,
in which the subthreshold point resides. The local search part
keeps visiting the neighbors of the current vertex until it
could no longer walk on a subthreshold vertex. After local
search in the quasi-basin is done, the subthreshold seeker
continues global search until another subthreshold pointer is
encountered. The subthreshold seeker will continue switching
between global search and local search until the stopping
criterion is met. Fig. 1 illustrates how the subthreshold seeker
proceeds. In Whitley and Rowe’s work, their subthreshold
seeker was applicable only to 1-D functions. In our present
work, we generalize their subthreshold seeker to more dimen-
sions by utilizing the graph representation in the definition of
search space for more general applications.

Fig. 1. Generalized subthreshold seeker.

The notation Ns(x) denotes the set of virtual neighbors of
vertex x defined by the local search parameter s. When s = 1,
all the neighbors of vertex x in G defined by the local search
operator will be visited. In other words, for N1(x), all the
points in the quasi-basin under local search will be eventually
visited. In the rest of this paper, we refer to the exhaustive local
search as the local search with the local search parameter s = 1.
When s > 1, only 1/s of the points in the quasi-basin will be
visited in one local search run. To simulate the effect of this
parameter, we manipulate the local search to have a step size
s. Thus, the virtual neighbors of vertex x are those vertices
who are s distance away from x. Here, s distance refers to the
length of a path consisting s edges on the graph. Note that this
subthreshold seeker does not sample visited points to avoid the
performance declination caused by repeated sampling.

IV. Stochastic Global Search Time

Before we start to analyze the collaboration between global
search and local search in the subthreshold seeker, we first
investigate the behavior of the global search part employed
by the subthreshold seeker. In this section, we theoretically
and empirically analyze the behavior of the global search
part with respect to the number of subthreshold points m and
the number of quasi-basins b. We will derive the expected
number of visited points required by the random search, the
global search part, to find the first subthreshold point. The
expected number of visited points is referred to as the expected
first global search time E(Tθ), where θ is βm(f ). Then, we
will further approximate the expected kth global search time.
The theoretical results will be empirically verified, and the
discussion on the implication of the model will be presented.

A. First Global Search Time

In this section, we estimate the expected number of visited
points for global search to find the first point x with f (x) ≤ θ,
referred to as the first global search time Tθ . The first global
search time can be interpreted in the following manner. Since
θ = βm(f ), the number of points with their function values
less than or equal to θ is m. Let N be the size of X . As
global search is uniform random sampling without repetition,
the search space is of size N and contains m desired points,
the probability for q visited points to contain exactly one
subthreshold point follows the hypergeometric distribution
with parameters N, m, and q

P(X = 1; N, m, q) =

(
m

1

)(
N−m

q−1

)
(
N

q

) .
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Fig. 2. Expected Tθ with respect to m when N = 100. Exp represents the
actual average Tθ over 1000 independent simulation runs. Theo1 represents
the theoretical expected Tθ of non-repeated uniform random sampling, and
Theo2 represents the theoretical expected Tθ of uniform random sampling
that allows us to sample visited points.

The probability to hit a subthreshold point at the qth visited
points is therefore

1

q
P(X = 1; N, m, q) .

Let E(Tθ) be the expected first global search time. We have

E(Tθ) =
N−m+1∑

i=1

i
1

i
P(X = 1; N, m, i)

=
N−m+1∑

i=1

(
m

1

)(
N−m

i−1

)
(
N

i

)

= m

N−m+1∑
i=1

i

N

i−2∏
j=0

N − m − j

N − 1 − j
. (1)

Fig. 2 illustrates the expected value of Tθ with respect to
m when N = 100. In this figure, we compare (1) (the solid
line, Theo1) with N/m (the crosses, Theo2) and the average
first global search time in 1000 independent simulation runs
(the circles, Exp). The N/m is the expected Tθ for allowing
sampling visited points which is obviously an upper bound of
(1). In the figure, we can find that (1) consists of the empirical
result perfectly, while the trend of N/m gradually converges
toward the other two. For non-repeated random sampling, half
of points in the search space are expected to be visited before
finding the minimum point. As m increases, indicating that
Sm(f ) contains more points, time to meet a point in Sm(f )
decreases rapidly regardless of whether or not sampling visited
points is allowed. It indicates that although finding several
specific points in a search space via random search takes a con-
siderable amount of time, finding a point in a small but large
enough set can be attained within a relatively shorter time.

Fig. 3 illustrates the differences among the actual Tθ av-
eraged over 1000 runs, and the two theoretical expected Tθ

in ratio. The circle represents the difference between the
empirical result and N/m in ratio with respect to the empirical
result, and the cross represents that between (1) and N/m.
From this figure we can find that (1) can be approximated
by N/m as it only deviates significantly from (1) when m is

Fig. 3. Difference ratio of the expected Tθ with respect to m when N = 100.
The Exp diff represents the difference ratio between the actual average Tθ

and N/m. The Org diff represents the difference ratio between the theoretical
expected Tθ and N/m.

rather small. As (1) is a complicated formula and difficult to
analyze, we approximate the expected Tθ with N/m.

B. kth Global Search Time

In this section, we further measure the expected time for
global search to find a subthreshold point after k − 1 runs
of local search have been executed. In other words, we
estimate the time for the kth global search. As the local
search frequency and the global search frequency are related
to the landscape of the problem, for simplicity, we derive
the model on the uniform quasi-basin class Qu(G,Y, m, b).
All the problems in this class have their quasi-basin sizes
fixed to �m/b or �m/b�. Because each local search run in
a quasi-basin will eventually visit about 1/s of the points
in the quasi-basin, each local search run will visit �m/bs
or �m/bs� points. For convenience of derivation, we adopt
m/bs instead of �m/bs or �m/bs� for the number of points
visited by a local search run. For non-revisit search, since the
first global search time is approximated as N/m, when in the
second global search run, there will be N − N/m − m/bs

unvisited points and m − m/bs unvisited subthreshold points,
the time required for the second global search run is

N − N

m
− m

bs

m − m

bs

.

The ith global search time is denoted as Fi, where i is
referred to as the number of global search runs. We have

F1 =
N

m

F2 =
N − F1 − m

bs

m − m

bs

F3 =
N − (F1 + F2) − 2m

bs

m − 2m

bs
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Fk =
N − ∑k−1

i=1 Fi − (k − 1)m

bs

m − (k − 1)m

bs

. (2)

Fig. 4 illustrates the global search time, estimated by (2),
with respect to the number of global search runs for different
distributions of quasi-basins. Fig. 4, with N = 1000, m = 10,
b = 10, and s = 1, represents a case of a scarce small quasi-
basin distribution. In this case, the global search time is large
and does not change much as the number of global search runs
increases. The second case illustrated in Fig. 4 represents a
case of a scarce large quasi-basin distribution with N = 1000,
m = 900, b = 10, and s = 1. The global search time is small
and slightly increases as the number of runs increases. The last
case illustrated in Fig. 4 represents a case of fully uniform
distributed quasi-basins with N = 1000, m = 500, b = 500,
and s = 1. In this case, the global search time is also small
and slightly decreases as the number of runs increases.

As the QBC only defines the number of subthreshold points
and the number of quasi-basins, local search of the sub-
threshold seeker can be considered as stochastic non-repeated
sampling in the set of subthreshold points. Since the minimum
resides in Sm(f ) with m points, for the stochastic non-repeated
sampling, it is expected to sample (m + 1)/2 points before the
minimum point can be found. In the uniform QBC, each quasi-
basin is about the same size, �m/b or �m/b�, and a local
search run visits �m/bs or �m/bs� of the points in a quasi-

basin. It is expected to require k =

⌈
(m + 1)/2

m/bs

⌉
≈ �bs/2�3 lo-

cal search runs to find the minimum, which implies k = �bs/2�
global search runs are required. Thus, the final global search
time is

Ff =

N −
�bs/2�−1∑

i=1

Fi − (�bs/2� − 1)m

bs

m − (�bs/2� − 1)m

bs

. (3)

We are now ready to calculate the upper bound for the last
global search run. When bs is even, the last global search run
requires

Ff <
bsN − (�bs/2� − 1)m

bsm − (�bs/2� − 1)m

=

(
2bs

bs + 2

)
N

m
−

(
bs − 2

bs + 2

)
. (4)

When bs is odd, the last global search run requires

Ff <
bsN − (�bs/2� − 1)m

bsm − (�bs/2� − 1)m

=

(
2bs

bs + 1

)
N

m
−

(
bs − 1

bs + 1

)
. (5)

The lower bound for the last global search run can be

3For simplicity, we approximate (m + 1)/2 with m/2.

Fig. 4. Global search time with respect to the number of global search runs
when the exhaustive local search is applied. (a) Case of a scarce small quasi-
basin distribution. (b) Case of a scarce large quasi-basin distribution. (c) Case
of fully uniform distributed quasi-basins.

derived as follows:

Ff >
N − ∑k−1

i=1 Fi

m

>
N − N/2

m
=

1

2

N

m
. (6)

Both (4) and (5) indicate that the final global search time
would be no more than twice of the amount of the first global
search. On the other hand, (6) shows that the final global
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Fig. 5. Last global search time divided by the first global search time, Tθ ,
with respect to m when the exhaustive local search is applied.

search time would be greater than half of the amount of the
first global search. Fig. 5 illustrates the last global search time,
Ff , divided by the first global search time, Tθ , with respect to
m when the exhaustive local search is applied. The last global
search times of b = 10 and b = 100, initially increase as m

increases and reach a peak, followed by gradually degradation.
The smaller b is, the smaller m the peak appears at with
a greater peak value. Generally, when the number of quasi-
basins is considerably large, the smaller the last global search
time is. Overall, for N = 1000 the last global search time
is within 0.6 to 1.6 times of Tθ . As indicated in Fig. 4, the
variation of the global search time with respect to the number
of global search runs is approximately linear. Thus, we can
approximate the average global search time as the average of
the first global search time and the last global search time. The
resultant upper bound and lower bound of the approximated
average global search time are then 0.75 and 1.5 times of Tθ .

C. Discussion

Overall, in this section, we can see that the expected global
search time to hit a subthreshold point in local search zones is
inversely proportional to the size of local search zones in the
search space. Because the uniform random search is employed
as the global search component, such results illustrate a
baseline behavior of global search in common definitions. It
can be observed that when the size ratio between local search
zones and the whole search space is very small, the expected
global search time will be immensely long because finding
a local search zone is very difficult. If the ratio is not very
small and permits an acceptable probability to be hit by global
search, the expected global search time will drop dramatically.
In this case, since the size of local search zones is still small,
the local search operator requires a relatively short time to find
the optimum solution.

V. Subthreshold Seeker on QBC

In this section, we formulate the expected evaluation time
for a subthreshold seeker on a Q(G,Y, m, b) as the sum
of expected total global search time and the expected total
local search time. The expected total global search time is the

product of the expected time for global search to enter a local
search zone and the expected number of global search runs.
The expected total local search time is merely the expected
time for local search to find the global optimal points among
the local search zones which is proportional to the size of
the local search zones in the search space. In this manner,
the derived formula can depict how the collaboration between
global search and local search influences the performance of
memetic algorithms. Then, we propose a sampling test scheme
to empirically verify the behavior of the subthreshold seeker
on various QBCs. Finally, the empirical results are illustrated
to validate the proposed theoretical model.

A. Evaluation Time of Subthreshold Seeker

With the global search time ready, we can now estimate the
time to find the minimum point, i.e., the evaluation time T of
subthreshold seeker, with the equation

T =
cN

m

⌈
bs

2

⌉
+

m + 1

2
. (7)

The expected total time over a QBC is considered as the sum
of the expected total global search time, the first term, and the
expected total local search time, the second term. As discussed
in the previous section, it is expected to apply �bs/2� local
search runs in order to find the global optima, and thus, �bs/2�
global search runs.

cN

m
represents the average global time

with c varies between 0.75 and 1.5, and
m + 1

2
corresponds

to the expected time for the local search to find the minimum
among subthreshold points. To derive the m that achieves the
minimum evaluation time, we solve the following equation
with the first derivative of (7)4 to be zero:

T ′ = −bscN

2m2
+

1

2
= 0 . (8)

The solution of this equation is m =
√

bscN. Setting m to
about

√
bscN in (7), the subthreshold seeker can achieve the

minimum evaluation time T around
√

bscN.5 Note that the
total global search time and the total local search time are
near identical when the overall evaluation time is minimum.
The following sections verify (7) with the results obtained by
our experiments.

B. Sampling Test Scheme

For empirical convenience, we implement the simplest case
of QBC, pathwise quasi-basin class (PQBC). PQBC is the
class of functions with a simple path spatial structure and a
distinct integer value in Y = {1, 2, · · · , n}, where n = |X |, on
each vertex. PQBC is formally defined as

Definition 7 (PQBC): Given a finite set Y =
{1, 2, · · · , n} ⊂ N and a simple path G = v1v2 . . . vn,
the pathwise QBC with b distinct quasi-basins and m

subthreshold vertices is defined as Q+(G,Y, m, b).
To investigate the expected subthreshold seeker behavior

over a specific PQBC, we sample functions from a specific

4For convenience, we omit the ceiling.
5The actual value is

√
bscN+0.5, we omit 0.5 as it is a rather small quantity.
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Fig. 6. Pathwise QBC sampler.

PQBC via the PQBC sampler of which the pseudo code
is shown in Fig. 6 to generate functions in the pathwise
QBC with uniform basins and non-uniform basins. Function
UniformPick in Fig. 6 samples the input set uniformly at ran-
dom, returns the sampled value, and removes that value from
the input set. Function Pop outputs the first value of a sequence
and removes the first value from the sequence. The pathwise
QBC sampler separates the input values 1, 2, . . . , n into two
sets: the set with superthreshold points (GT ) and the set with
subthreshold points (ST ) and then uniformly randomly picks
one point from GT and one from ST to construct the basic
sequence of a quasi-basin. After every quasi-basin has its basic
sequence, the next step is to assign all the subthreshold points
to each quasi-basin. When the input boolean parameter Usize

is set to True, the sampler uniformly assigns subthreshold
points to every quasi-basin. Otherwise, each subthreshold point
is assigned to an arbitrary quasi-basin. We then uniformly
randomly pick members in the quasi-basin sequences and GT .
When a quasi-basin sequence is picked, this sequence is as-
signed as the values of next vertices. Fig. 7 illustrates an exam-
ple of functions in the pathwise QBC which consists 20 points
with three quasi-basins containing eight subthreshold points.

In order to empirically verify the time for a subthresh-
old seeker to find the minimum point of a given PQBC
Q+(G, {1, 2, · · · , n}, m, b), we set the subthreshold seeker’s
threshold θ to βm(f ). In the following sections, we verify (7)
with the average time for a subthreshold seeker to find the min-
imum on various PQBCs. For each PQBC, the performance of
the subthreshold seeker is measured by averaging 50 function
instances with 20 independent runs on each function instance.

C. Experimental Results

Fig. 8 compares the average evaluation time for a subthresh-
old seeker with the exhaustive local search (s = 1) and the

Fig. 7. Example of functions belonging to Q+(G, {1, 2, · · · , 20}, 8, 3).

theoretical evaluation time derived by (7) with respect to m

on different pathwise uQBCs with n = 1000 and b = 1, 10, and
250. The solid lines, Ttheo and Ttheo1, indicate the theoretical
evaluation time derived from (7) with c = 1, while the dashed
line Ttheo2 indicates that with c = 1.5. The circle (ls) and the
cross (gs) represent the average total number of sampling used
by local search and global search respectively.

Because there is only one quasi-basin in Fig. 8(a), one
global search is required. The proposed model matches the
empirical result in this case. In Fig. 8(b), the empirical result
matches the proposed model with c = 1.5. Such a situation
may be caused by the significant global search time growth
we observed in Fig. 5. The global search time grows as high
as 1.5 when both b and m are quite small. Fig. 8(c) illustrates
with large b, the subthreshold seeker performs worse than
random search with its evaluation time exceed half of the
search space size. Such a result, consisting with the proposed
model, indicates that when the number of basins are greater
than a quarter of the search space, the problem is unsearchable.
Note that in these three cases, the average total local search
time and the average total global search time also consist with
our theoretical model. The average local search time is about
m/2 while the average global search time matches (1).

Fig. 9 illustrates the evaluation time of a subthreshold seeker
with the exhaustive local search on a non-uniform pathwise
QBCs with n = 1000 and b = 10. Compare the results to
that shown in Fig. 8(b), we can observe that although the
deviations of the empirical results on non-uniform QBCs is
slightly greater than that on uniform QBCs, the two sets of
results basically resemble each other. Because the non-uniform
pathwise QBCs have every basin’s expected size identical, it
can be expected that a subthreshold seeker behave statistically
similarly on non-uniform and uniform QBCs.

Figs. 10 and 11 compare the theoretical optimal evaluation
time with the empirical results with respect to b and n, respec-
tively. In both cases, the exhaustive local search is applied.
The solid lines in both figures indicate the optimal theoretical
evaluation time predicted by (7) with c = 1, and the dashed
line indicates that with c = 1.5. Both figures demonstrate that
the theoretical prediction and the empirical results are in good
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Fig. 8. Time for a subthreshold seeker to find the minimum with respect to
m when (a) n = 1000 and b = 1, (b) n = 1000 and b = 10, and (c) n = 1000
and b = 250. The lines, Ttheo, Ttheo1, and Ttheo2, represent the theoretical
values derived from (7), and the dot, Texp, represents the average time for a
subthreshold seeker to find the minimum on different PQBCs. The average
total sampling counts used by local search and global search are also recorded
as ls and gs, respectively.

agreement, and therefore, (7) is dimensionally validated for
different factors.

Fig. 12 illustrates the evaluation time with respect to m

when non-exhaustive local search components, i.e., s > 1,
are used. In both cases, the solid lines represent the theo-
retical evaluation time predicted by (7) with c = 1.5. These

Fig. 9. n = 1000, b = 10, non-uniform quasi-basin.

Fig. 10. Optimal evaluation time versus b when n = 100. The solid line
indicates the theoretical value predicted by (7) with c = 1, and the dots
indicate the empirical results.

empirical results also well match the proposed theoretical
model (7).

VI. Discussion

In this section, we first explain how the subthreshold seeker
can be regarded as a representative archetype of MAs and how
the theoretical model can depict the general behavior of MAs.
Then, we connect the proposed model to previous related
studies in the literature. Finally, we discuss the extensions and
future work of the proposed model.

A. Subthreshold Seeker as a Representative Archetype of MA

Since the proposed model of the subthreshold seeker on
different QBCs has been validated by the empirical results in
the previous section, in this section, we revisit our framework
and discuss how our theoretical model is representative of
MAs on a broad range of problems. The origin of our
framework is the concept of local search zones. Based on
this concept, the search space viewed by a search process
can be partitioned into local search zones, which are areas
preferred by exploitation, and parts of no interests. Global
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Fig. 11. Optimal evaluation time versus n when b = 10. The solid line
indicates the theoretical value predicted by (7) with c = 1, the dashed line
indicates that with c = 1.5, and the dots indicate the empirical results.

Fig. 12. Evaluation time for subthreshold seekers with a non-exhaustive
local search component (s > 1). (a) n = 1000, b = 10, s = 2, uniform
quasi-basin. (b) n = 1000, b = 10, s = 4, uniform quasi-basin.

search explores the whole space to find a local search zone
for local search to exploit. The size of the local search zones
in the search space affects the time for global search to find a
point in local search zones and the time for local search to find
the optimal solution in local search zones. The number of local
search zones and the efficiency of local search further influence

the required local search runs and global search runs. The
performance of a memetic algorithm is thus determined by the
efficiency of global search, the efficiency of local search, and
the distribution of the local search zones. As the distribution
of local search zones is dictated by the landscape of the search
space and the local search criterion, by assessing the impact of
the distribution of local search zones on the evaluation time,
we can analyze the physics behind the collaboration between
global search and local search on various problem classes.

Fitness-relevant and diversity-relevant metrics are common
local search criteria in practical memetic algorithms. They
form complicated local search zones which are difficult to
measure. As we aim to model the pure collaboration between
global search and local search, we consider the global search
exhibits fair exploration and the local search exhibits fair
exploitation. Hence, the diversity-relevant metrics which are
commonly used to balance the exploration and the exploitation
can be ignored. To build a more comprehensible model, we
adopt fitness values as a representative fitness-relevant local
search criterion. This criterion forms local search zones that
can be referred to as quasi-basins. The QBC, which is accord-
ingly defined, then categorizes all problems according to their
quasi-basin distributions. In this way, our model is capable of
describing the general behavior of memetic algorithms on a
broad range of problems.

Generally, the QBC categorizes all the problems according
to their search space landscape and the local search threshold.
Besides the number of subthreshold points and the number of
the quasi-basins, the QBC does not put any other constraints
on the problems belonging to the same class. In other words,
except that the subthreshold points may tend to gather ac-
cording to the number of quasi-basins, both the subthreshold
points and the superthreshold points of an instance that belongs
to one QBC can be arbitrarily distributed in local search
zones and the rest of the search space, respectively. As the
expected performance of a local search algorithm on a QBC
is calculated over all the possible instances belonging to the
QBC, the local search processes on an instance of a QBC can
be considered virtually as random sequences of subthreshold
points. Thus, the expected performance of a local search gen-
erally would resembles that of a random sampling algorithm.
On the other hand, as the subthreshold points tend to gather
as quasi-basins, a greedy global search may perform worse
than random sampling because it is not likely to discover a
quasi-basin around a discovered quasi-basin. In fact, a random
sampling algorithm may be the perfect explorer on a QBC due
to its full diversity. From this point of view, the subthreshold
seeker which virtually employs random search as its global
search and local search can be considered a representative
archetype of memetic algorithms on QBCs.

The proposed theoretical model manifests and gives expla-
nations to the following facts.

1) Memetic algorithms which perform local search to few
qualified points perform better.

2) The efficiency of local search greatly influences the
evaluation time of memetic algorithms.

3) The physical landscape of a problem greatly influence
the evaluation time of memetic algorithm.
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We can assume that the average global search time to enter
a local search zone is inversely proportional to the size ratio
between local search zones and the search space, while the
average total local search time is proportional to the size
of the local search zones. Putting these two terms together,
we can obtain the “V-shaped” curve which resembles those
derived from (7). This V-shaped curve implies that a good
collaboration between global search and local search should
guarantee a short average global search time to hit local zones
and sufficiently small sizes of local zones for the local search
to exploit. Regarding the influence of the size of local search
zones on the average global search time to find local search
zones and the average time for local search to find the optimal
point, memetic algorithms which have small sized local search
zones will perform better. As mentioned in Section III-A, local
search zones are generally zones consisting of qualified high-
fitness points. A small size of local search zones implies that
local search only be applied to few qualified individuals. This
observation is consistent with the use of elitism in local search
candidate selection and the infrequent local search principle in
quite a number of research works [9], [10], [31]–[33]. It is also
notable that several studies adopt a local search/global search
ratio which is consistent with our theoretical model [36].

In our model, the local search component adopted by the
subthreshold seeker exploits a quasi-basin via visiting the
neighbors of current search point. The local search parameter
of the employed local search operator is connected to how
well a quasi-basin is exploited. Recall that when s = 1, the
exhaustive local search will eventually visit all the points in a
quasi-basin. In this case, the local minimum of a quasi-basin,
which may be the global minimum, will be visited, and thus,
only one local search run for each basin is required. For other
local search parameter greater than one, there are chances for
one local search run to miss the global minimum in a quasi-
basin, and thus, more local search runs on this quasi-basin and
more global search runs to hit this quasi-basin are required.
The cost will be the extra global search time to enter the
quasi-basin again when the algorithm guarantees non-repeated
sampling. Fig. 12 and the factor s in (7) demonstrate the effect
of the degree of exploitation of a basin. Such an effect implies
that a good local search operator ought to fully exploit the
given quasi-basin, at least the local minimum resides in the
quasi-basin should be found, to guarantee a good local search
and global search coordination. This inference is consistent
with the empirical results of those studies [10], [39], [40]
concluding that longer but not excessive local search lengths
are favored in memetic algorithms.

Another notable factor is the number of local search zones
in the search space. Our model illustrates that the number of
global search runs is proportional to this factor. Recall that
we represent the search space viewed by a search process as a
graph composed of the neighborhood defined by the employed
local search algorithm. The size of local search zones is
determined by the local search criterion and the connectivity
formed by the local search operator. Given the same local
search criterion, the local search operator which forms fewer
local search zones will perform better. This suggests that a
good local search operator should be able to find local search

points regardless of the physical landscape of a problem. This
is somehow difficult for naive greedy local search algorithms
to achieve and may require landscape knowledge given by the
user or learned from the search process. However, operators
with this kind of ability to cross the physical landscape of a
problem somehow deviate from the traditional definition of
local searchers. Thus, for typical local search, the number
of local search zones are primarily defined by the physical
landscape of a problem and the local search criterion. The
physical landscape of a problem is usually connected to the
number of niches of a problem. Our model also takes into
account this crucial factor and delineates the relationship
between this factor and the evaluation time. The proposed
theoretical model indicates that for a fair memetic algorithm,
the expected evaluation time should scale at most as the square
root of the number of niches of a problem.

Despite the aforementioned consistency between the pro-
posed model and the elitism based strategy in local search
candidate selection, infrequent local search, long local search
length, and local search/global search ratio, some previous
studies also show a strong connection to our model. In an
investigation on the balance between genetic search and local
search in memetic algorithms for multiobjective permutation
flowshop scheduling [39], the authors examined 132 com-
binations of 11 values of k, which is the maximum num-
ber of examined neighbors of the current solution, and 12
values of pLS , which is the local search probability applied
to the tournament selected individuals. The former factor k

connects to the degree of how well a feasible sub-region
can be exploited, and the second factor pLS connects to the
threshold that triggers local search. The authors found that
the combination of the maximum k value and the minimum
nonzero pLS value achieved the best performance, the lowest
cost of flowshop scheduling, in their experiments. The V-
shaped curve of cost along the axis of the maximum k with
respect to pLS in their Fig. 13 resembles our V-shaped curve
of the evaluation time in Fig. 8. Because the stop criterion of
their experiments is the evaluation of a fixed number of points,
the factor combinations that require less evaluation time to
find the global minimum will have better solution quality, i.e.,
lower cost. This agreement implies that the proposed model
may be adopted to give a theoretical explanation to the internal
working of their multiobjective memetic algorithms.

Another set of intriguing empirical results is presented in
the study of parameterizing local search [11]. In that study,
the authors applied a hybrid approach to the memory cost
minimization problem with various local search parameter
settings. The local search parameter refers to the intensity
of the local search method, a tractable algorithm called code
size dynamic programming post optimization, applied to every
individual in the population. The authors depicted in Fig. 13
in their paper that when a fixed runtime is used, the number of
generations completed decreases rapidly as the local parameter
increases. That the global search time is proportional to the
number of generations implies the curve, indicating the global
search time, resembles the expected Tθ in our Fig. 2. As the
expected global search time is illustrated and the expected
local search time will be proportional to the intensity of local
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search, summing up the expected global search time and the
expected local search time, a V-shaped curve of the expected
evaluation time with respect to the intensity of local search
will be obtained. Fig. 12 in their study illustrates the attained
solution quality, lower cost preferred, versus the setting of
local search intensity. As previously discussed, lower attained
cost in a given fixed time leads to shorter expected time to
find the optimal solution. This figure also resembles the V-
shaped curve of our theoretical model which confirms that the
proposed model is quite applicable to their conclusions.

Although in these two studies, practical memetic algo-
rithms, instead of the subthreshold seeker, are employed and
investigated, the trend of their evaluation time resembles the
proposed model developed based on the subthreshold seeker.
It indicates that our theoretical model is indeed representative
of memetic algorithms as we previously inferred. Another
interesting study is the optimal bounds on finding fixed points
of contraction mappings proved by [48]. In this investigation,
the authors presumed that the expected lower bound of a
randomized algorithm to find the fixed point of a contraction
mapping f : M → M on a finite metric space (M, d) is
�(

√|M|) and proved this bound is valid. In this fixed point
problem, given any point x ∈ M with the d(x, f (x)) the
kth largest, one can find the fixed point with k steps via a
valid deterministic algorithm. Consider the set exploited by the
deterministic algorithm as the subthreshold sub-space which
consists only one quasi-basin and the random sampling process
to find a starting point for the deterministic algorithm as global
search, according to (7), the best size of the subthreshold sub-
space should be �(

√|M|) resulting in an expected optimal
evaluation time of �(

√|M|). Thus, our theoretical model can
also provide a reasonable, theoretical interpretation to this
presumed value �(

√|M|).
Although our model is developed based on the subthreshold

seeker, the subthreshold seeker can be taken as a representative
archetype of memetic algorithms as it employs a fair explorer
as its global search and a fair exploiter as its local search. The
proposed model delineates the general behavior of memetic
algorithms: how the global search behaves with respect to local
search criteria, how the local search behaves with respect to
local search criteria, how the local search criteria coordinate
global search and local search, and how the local search
efficiency and the problem landscape influence the evaluation
time. The preceding paragraphs illustrated the consistence
between our model and various memetic algorithm-problem
complexes studied in the literature, either discrete problems
or continuous problems, validate that our theoretical model
is capable of providing a unified explanation to the physics
behind memetic algorithms.

B. Extensions and Future Work

In our model, we propose the concept of local search
zones and link it to the QBCs. Then, the subthreshold seeker,
which employs random search as global search and local
search, clearly illustrates the collaboration of global search and
local search on various QBCs. In this presentation, estimating
local search zones as quasi-basins, the global search can be
considered as a baseline explorer and the local search can be

considered as a standard exploiter. Thus, the model can reveal
the essential relationship among the performance of memetic
algorithms, the problem class categorized by QBCs, and the
collaboration of global search and local search. In practical
memetic algorithms, not only global searchers are population-
based greedy approaches but also local searchers are greedy
approaches on continuous problems. The local search criteria
constantly depend on the status of the search process and
the corresponding local search zones are difficult to measure.
Although quasi-basins can roughly estimate local search zones,
further studies on local search zones are required if more
accurate models are to be developed. Extending our model
to an instance of algorithm-problem complexes requires much
further investigations into the following scopes.

1) The relationship between local search criteria and local
search zones on discrete problems.

2) The behavior of the population-based greedy global
search on discrete problems.

3) The behavior of the greedy local search on discrete
problems.

4) All the three items in infinite and/or continuous domains.
Here, we discuss the first three scopes via adopting a

memetic algorithm in the present framework. The memetic
algorithm illustrated in Fig. 13 is a modified version of (μ+λ)-
MA adopted in [25]. The algorithm first samples an initial
population of size μ from X , and then in each generation,
generates λ children via the parent selection, mutation, and
local search operations. The mutation operation flips each bit
in x independently with probability 1/� where � is

⌈
log2(|X |)⌉.

If the mutated offspring x′ satisfies the local search criterion,
it undergoes the local search operation. The best μ of the μ+λ

individuals are selected as the survivors of that generation. The
algorithm continues till its stopping criterion is satisfied. The
first problem we confront is that for a local search criterion
that other than a fitness value threshold, we must find a
way to transfer the local search criterion to a fitness value
threshold or the size of local search zones in a way that we can
link the algorithm-problem complex to a QBC. Though most
local search criteria are fitness-relevant and favor elitists, they
are dependent on the current population and dynamic along
generations. Further investigations are required to be devoted
to this issue to provide some proper measurement of the size of
local search zones. However, as the dynamics change slightly
between generations, approximating the resultant size of local
search zones with some statistical techniques may provide
good solutions to this issue.

To manifest how population based greedy searchers perform
on QBCs, the local search criterion of the (μ+λ)-MA is set
the same as the subthreshold seeker. In other words, when
the fitness value of the mutated individual is better than
the threshold value, local search is applied to the mutated
individual. Fig. 14 shows how a (20+20)-MA behaves with
different local search operators on QBCs. The greedy local
search keeps on moving to a better neighbor until no further
move can be made. The exhaustive local search acts identically
as the aforementioned subthreshold seeker does. In Fig. 14(a),
the evaluation time of this (20+20)-MA can be approximated
by the dashed line Ttheo which is (7) with c · s = 3.3. In
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Fig. 13. (μ+λ)-memetic algorithm.

Fig. 14(b), although the evaluation time could not be properly
approximated by (7), the V-shape remains. The triangles, lscnt,
in these two figures represent the number of local search runs.
From these figures, we can find that the applied greedy local
search is much less efficient than the exhaustive search with
its limited total local search time denoted by the circles, ls.
The higher lscnt than the total local search time in the case
of MA with greedy local search suggests revisiting of local
searched points. Note also that in both figures, the memetic
algorithm resembles the global search behavior of random
search with an offset and the greedy local search resembles
the exhaustive search with a degraded gradient. In these two
memetic algorithms, our theoretical model is still capable
of capturing the essence of the collaboration between global
search and local search.

To accurately estimate the evaluation time of an instance
of MA search process, one needs to take into account the
influence of the population size and the exploration ability
limited by its greediness to estimate its expected global
search time and assess the efficiency of local search which
corresponds to the parameter s. Another notable characteristic
is that both memetic algorithms in the two cases perform
worse than the subthreshold seeker on QBCs. This is consistent
with our earlier statement that the random sampling is a
better global explorer than any greedy algorithms on QBCs.
This may seem contrary to the practical memetic algorithms.
However, as the QBC categorizes arbitrary problems according
to the quasi-basin distribution, it does not guarantee that all the
problems within a QBC exhibit a regularity which a greedy
algorithm can take advantages of. To manifest the optimization
characteristics of greedy algorithms, fast convergence versus
degrading diversity, the QBC framework must be extended
to define classes of continuous-like discrete problems. In
our opinion, adopting the concept of discrete Lipschitz class
(DLC) [47] may be a good choice. In [47], the Lipschitz func-
tions, functions with bounded slope, are transferred to DLC to
describe continuous problems in discrete domains. Combining

Fig. 14. Evaluation time for (20+20) memetic algorithms. (a) n = 1024,
b = 10, MA with exhaustive local search. (b) n = 1024, b = 10, MA with
greedy local search.

the DLC and QBC may provide a desired model in discrete
domains that exhibits the characteristics of optimization in
continuous domains.

For continuous problems, further efforts are required to
extend all the analysis from discrete problems to continuous
problems. In continuous domains, both X and Y are infinite
sets. The first question may be how to extend the search space
represented by a graph to fit the continuous scenario. If we can
define the local search zones in a similar manner in continuous
domains, we may start to investigate the behavior of memetic
algorithms based on the modified framework. It may be much
harder to estimate in continuous domains the expected global
search time to enter local search zones, the expected total local
search time to find the optimal solution, and the efficiency
of local search of a given memetic algorithm. Once all these
issues are resolved, an instance of algorithm-problem complex
in continuous domains can be successfully delineated as well
as the performance of a global search algorithm and a local
search algorithm can be measured and compared in continuous
domains. Memetic algorithm designers can thus select their
global search algorithms and local search algorithms and
design the local search criterion by following the guideline
provided by the modified framework. As practical problems
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are generally black-box optimization, a designer with the
aforementioned knowledge must dynamically estimate the
number of local search zones and the size ratio of the local
search zones and the search space to accordingly adjust the
local search criterion in order to achieve the best collaboration
between global search and local search.

Overall, although our model in this paper depicts the core,
general behavior of memetic algorithms, it might potentially be
extended to specific instances of memetic algorithm-problem
complexes. Based on the concept of local search zones, the
expected performance of a memetic algorithm can be assessed
by analyzing the following components individually: the ex-
pected time for a global search algorithm to find a local search
point, the expected time for a local search algorithm to find the
optimal point in the local search zones, and the efficiency of a
local search algorithm. With all the information available, al-
gorithm designers can compare and select proper global search
algorithms and local search algorithms and adopt the optimal
local search criterion on the target problem accordingly. As
designing an optimal memetic algorithm on a given problem
has been the primary goal of memetic algorithms, extending
our model to more practical memetic algorithms may provide
a feasible way to achieve the goal. This may be an interesting
and challenging task in the field of memetic algorithms.

VII. Summary and Conclusion

In this paper, we proposed the concept of local search zones.
Based on this concept, we introduced the QBC to estimate
the local search zones and adopted the subthreshold seeker
as a representative archetype of memetic algorithms in order
to analyze the collaboration between global search and local
search on various quasi-basin classes. The derived theoretical
model was capable of depicting the essence of the collab-
oration between a baseline global searcher and a standard
local searcher. The efficiency of local search algorithms and
the niches of problems were also taken into account in the
proposed model.

The proposed theoretical model indicates that the global
search time to find a point to start local search is inversely
proportional to the size ratio between local search zones and
the search space. The total local search time is proportional
to the size of local search zones. Appropriate settings of
local search criteria should guarantee sufficiently small sizes
of local search zones. As the theoretical model cannot only
well describe the behavior of the subthreshold seeker for the
empirical results but can also capture the general behavior
of various memetic algorithms proposed and observed in the
literature, it can provide a unified explanation to the physics
behind memetic algorithms and may reveal important insights
to the design of memetic algorithms.

Furthermore, the proposed model is also capable of being
extended to describe some specific memetic algorithms. The
concept of local search zones provides an alternative way to
assess the performance of a memetic algorithm by analyzing
individually the performance of global search algorithms and
the performance of local search algorithms. In this way,
memetic algorithm designers may compare and select their

global search algorithms and local search algorithms and adopt
appropriate local search criteria for their problem. As the
research direction of this paper may be a feasible way to
achieve a better memetic algorithm design, along this line,
much effort may be worth putting into further investigations.
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a b s t r a c t

The No-Free-Lunch theorem states that there does not exist a genuine general-purpose
optimizer because all algorithms have the identical performance on average over all
functions. However, such a result does not imply that search heuristics or optimization
algorithms are futile if we are more cautious with the applicability of these methods and
the search space. In this paper, within the No-Free-Lunch framework, we firstly introduce
the discrete Lipschitz class by transferring the Lipschitz functions, i.e., functions with
bounded slope, as a measure to fulfill the notion of continuity in discrete functions. We
then investigate the properties of the discrete Lipschitz class, generalize an algorithmcalled
subthreshold-seeker for optimization, and show that the generalized subthreshold-seeker
outperforms random search on this class. Finally, we propose a tractable sampling-test
scheme to empirically demonstrate the superiority of the generalized subthreshold-
seeker under practical configurations. This study concludes that there exist algorithms
outperforming random search on the discrete Lipschitz class in both theoretical and
practical aspects and indicates that the effectiveness of search heuristics may not be
universal but still general in some broad sense.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the 1980s there was a belief in the field of evolutionary computation that evolutionary algorithms are more widely
applicable and have superior overall performance while they may not perform as well as the specialized algorithm for a
specific optimization problem. However, in 1995, Wolpert and Macready proposed the No-Free-Lunch (NFL) theorem [1,2]
which formally states that every algorithm performs equally well on average over all functions. A direct implication of NFL
is that, given a performance measure, the better performance of an algorithm on some problems is balanced by the worse
performance on others. In other words, there is no such thing as robustness under the NFL framework, or all algorithms are
considered robust. Therefore, it is no surprise that the proposition of the NFL theorem causes a great deal of controversy in
the optimization and heuristic search community [3], as the NFL theorem sets a limitation on the pursuit of general-purpose
optimizers.

Indeed, the implications of the NFL theorem seem to disagree with empirical observations of the effectiveness
of optimization algorithms and search heuristics, since general-purpose optimizers such as gradient-based methods,
simulated-annealing, and biologically inspired algorithms do have their share of significance in real-world applications. On
the other hand, the NFL theorem is amathematical theorem,whichmeans that it is absolutely truewhen all the assumptions
are given. As a consequence, previous studies intending to address the incoherence between theoretical results and empirical
observations are mostly aiming at the assumptions of the NFL theorem, especially the notion of ‘‘all functions’’. Droste
et al. [4,5] systematically described a few scenarios of functions and claimed that the scope of the NFL theorem is too
enormous to be realistic. Streeter [6] proved that theNFL theoremdoes not hold over the problemswith sufficiently bounded
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description length. Igel and Toussaint [7] extended theNFL theorem and investigated the necessary and sufficient conditions
for the NFL theorem based on distributions of target functions. Beyond identifying a subset of problems on which the NFL
result cannot be applied, Christensen and Oppacher [8] started with a more direct standpoint by proposing the submedian-
seeker anddemonstrated such an algorithmcanoutperform randomsearch on certain types of functions. Thereafter,Whitley
and Rowe [9] simplified and extended Christensen and Oppacher’s work and showed that a more generic subthreshold-
seeker can outperform random search on uniformly sampled polynomials in the sense of the number of subthreshold points
visited in a given time span.

In addition to the studies following the NFL theorem directly, there is a notable amount of efforts investigating the
expected runtime of search heuristics on various fitness functions. As early as 1992, when the NFL theorem had not been
introduced yet, Mülenbein [10] demonstrated the expected runtime of (1+ 1)-EA on the ONEMAX function and the (k, ℓ)-
deceptive function. Thereafter, because of the simplicity of (1+ 1)-EA, it has been widely explored in numerous theoretical
studies in the past decade, e.g., the analysis of (1+ 1)-EA on linear functions [11,12], unimodal functions [4,11], the needle-
in-a-haystack problem [13], the maximum matching problem [14], and the minimum spanning tree problem [15]. While
in these studies, the NFL theorem might not be the central topic, the rigorous analysis thereof provides a firm theoretical
basis to compare optimization algorithms and indicates superior performance of some algorithm over another on certain
functions [16], thus relating the applicability of optimization algorithms to the NFL theorem in a subtle manner.

In the aforementioned studies, the topics may be different, but a common goal is shared – addressing the generality
of optimization algorithms and search heuristics. This study serves the same purpose. Borrowing the notion of Lipschitz
functions in real analysis,we introduce the discrete Lipschitz class as an attempt to capture the continuity of a discrete search
space. The property of similarities in objective valueswithin a neighborhood is possessed bymany real-world problems, and
such a problem structure does facilitate the search process. In particular, we prove that a generalized subthreshold-seeker
indeed outperforms random search on the discrete Lipschitz class in theory as well as demonstrate the theoretical result can
be carried over into practice by proposing a sampling-test scheme and conducting numerical experimentswith comparisons.

The remainder of this paper is organized as follows: In Section 2, we briefly review the NFL framework to establish and
unify the terminology and definitions as preliminaries. Section 3 introduces the discrete Lipschitz class and describes the
relationship between the class and the theorem with a focus on the condition under which the NFL theorem holds over
the discrete Lipschitz class. In Section 4, we generalize the subthreshold-seeker and discuss its performance on the discrete
Lipschitz class in comparison with random search. In Section 5, we propose a sampling-test scheme as an alternative way
to examine the effectiveness of optimizers in practice, followed by the conclusions in Section 6.

2. A brief review of NFL

The No-Free-Lunch (NFL) theorem, in short, states that all algorithms have the same overall performance. As plain as
this statement may seem, there are several aspects to be clarified. Firstly, ‘‘algorithms’’ in the realm of NFL are restricted
to the scope of ‘‘non-repeating black-box algorithms’’. The term ‘‘black-box algorithm’’, referred to as ‘‘blind search’’ in
some papers, is used to describe the class of algorithms only employing the result of function evaluations as information.
The requirement of non-repeating ensures that the search process can be viewed as a permutation of the elements in search
space, and revisiting pointsmerely increases the running timewithout rendering any assistance for identifying the optimum.
In fact, when the performance is averaged over all functions, based on NFL, the best an algorithm can do is try not to re-
sample.

The concept of ‘‘all problems’’ is another intriguing point for its inherent vagueness. If the set of all problems is defined in
the most general sense that there are no restrictions, e.g., requiring all problems to share a fixed and finite domain, imposed
on the scope of problems, one of the fundamental results in computability is that the set of problems is uncountably infinite.
If we consider the collection of all feasible regions of optimization problems as a formal language, we can easily use the
diagonalization method to show that such a language is not recursively enumerable or Turing-recognizable. In other words,
in this case, there exists a problem whose feasible region is not recognizable by any Turing machine. Therefore, to bypass
this difficulty, the original NFL framework takes a more practical stand here by considering the functions defined on a finite
domain with a finite codomain.1

Within the NFL framework, the concepts of optimization problems and search algorithms can be formalized in the
following definition:
Definition 1 (NFL Framework). Given two finite sets X and Y,
(1) The set of all functions FX,Y , with respect to X and Y, is defined as FX,Y := {f | f : X→ Y}.
(2) A trace of length m is a sequence Tm := ((xi, yi))m1 = ((x1, y1), (x2, y2), . . . , (xm, ym)) ∈ (X × Y)m with distinct xi’s.

‘‘x ∈ Tm’’ denotes that x appears in Tm, i.e., x = xi for some i ∈ {1, 2, . . . ,m}. Let T0 be the empty sequence and T ℓ be
the set containing all the traces of a length smaller than or equal to ℓ.

(3) Let AT , where T ∈ T |X|−1, be a random variable over X satisfying that Prob{AT = x} = 0 for all x ∈ T . An algorithm A is
a collection of such random variables, i.e., A = {AT | T ∈ T |X|−1}.

1 While the original NFL theorem assumes finiteness of the search space, studies extending the applicability of the NFL theorem on continuous domains
have arisen recently [17,18].
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(4) The search process of A on f , S(A, f ), is the stochastic process (Xi, Yi := f (Xi)) over X × Y defined by X1 ∼ AT0 and
Xk+1 ∼ A((Xi,Yi))k1

. Let S(A, f , k) := ((Xi, Yi))
k
1, and Sy(A, f , k) := (Yi)

k
1 is called the performance vector.

(5) LetV :=
|X|

i=1 Yi be the set containing all possible performance vectors. A performancemeasure is any functionmapping
V to R.

The terminology in Definition 1mostly follows those adopted in [2] and [19] with a few slightmodifications applied to avoid
the situation that an algorithm is undefinable on a complete trace and to make search processes able to be expressed in a
naturally stochastic way.

Example 2 (Random Search in NFL). Let RTm be a random variable that Prob{RTm = x} = 1/(|X| − m) for all x /∈ Tm. In the
NFL framework, random search can be accordingly defined as RS :=

|X|−1
m=0 {RTm | Tm ∈ T |X|−1}.

Now, the NFL theorem can be given as Theorem 3. The complete proof can be found in the original NFL papers [1,2].

Theorem 3 (NFL Theorem). If v ∈ V is a performance vector with length ℓ,
∑

f Prob{Sy(A, f , ℓ) = v} = c, where c is a constant
independent of A.

3. Discrete Lipschitz class

3.1. Definition of the discrete Lipschitz class

In real analysis, Lipschitz functions refer to the functions with bounded slope. Given a set C ⊆ R, f : C → R is a Lipschitz
function if there exists a constant K > 0 such that |f (a) − f (b)| ≤ K |a − b| for all a, b ∈ C. The Lipschitz condition is a
stronger condition than normal continuity, because any Lipschitz function is uniformly continuous. On the other hand, the
functions that are not everywhere differentiable may still be Lipschitz, e.g., f (x) = |x|. On a closed interval, the Lipschitz
class lies between continuous functions and the functions having continuous derivatives [20].

For the discrete space, there is no such thing as continuity. However, if there is some sort of distance defined in some
discrete space, the Lipschitz condition can still be applied, and therefore a natural way to simulate continuity in the discrete
space can be obtained. In combinatorics, the spatial structures are typically formed via graph theory. If we view the vertex
set as the search space and the edge set as the specification of the geometry, the Lipschitz condition can be transferred here
by restricting the difference of objective values between any two adjacent vertexes. Themerit of such definition is thatwe do
not put any constraints on the global structure directly such as to demand the functions to be polynomial or the description
length to be bounded. Instead, we only expect some similarities of the objective values within a neighborhood in the search
space.

Before commencing to detail our work, we explain the notations adopted in this paper for clarity. Given a graph G,
the vertex set and the edge set of G are denoted as V (G) and E(G). Also, deg(v) and N(v) indicate the degree and the
neighborhood of a vertex v ∈ V (G), respectively. Since we will focus on the discrete Lipschitz class in the remainder of
this paper, the domain X is always the vertex set V (G), representing the spatial structure. Hence, the two notations X and
V (G) are used exchangeably. Furthermore, the property of Y of interest is the ordering, so without loss of generality, Y is
assumed to be a subset of N of the form {0, 1, . . . ,m} unless specified otherwise. The discrete Lipschitz class (DLC) can now
be introduced.

Definition 4 (Discrete Lipschitz Class, DLC). Given a connected graph G and a finite set Y ⊂ R, the corresponding discrete
Lipschitz class with Lipschitz constant K is defined as

L(G, Y, K) := {f : V (G)→ Y | ∀v1v2 ∈ E(G), |f (v1)− f (v2)| ≤ K} .

Such a definition provides a means to represent the intrinsically real-parameter optimization problems through
discretization (for practical computing devices). For instance, if a cube C ⊂ Rn is discretized uniformly into a set of grid
points, V (G) = {x1, x2, . . . , xM}n ⊂ Rn with xi+1 − xi = u > 0, we can let E(G) = {vivj | vi, vj ∈ V (G) and ‖vi − vj‖1 = u}.
L(G, Y, K) then forms a class containing all functions, defined on C differentiable with the absolute values of partial
derivatives upper-bounded by K/u, discretized over V (G). Furthermore, since Y is bounded, this class contains all functions
mapping V (G) to Y with sufficient large K (e.g., K = maxY −minY).

The simplest case of DLC is the class of functions defined on R, in which the graph representing the spatial structure is a
simple path. Fig. 1 gives an illustrative example of such functions.

Definition 5 (Pathwise Discrete Lipschitz Class, PDLC). Given a finite set Y ⊂ R and a simple path G = v1v2 . . . vn, the
pathwise discrete Lipschitz class with Lipschitz constant K is defined as L(G, Y, K).

3.2. Combinatorial optimization problems and DLC

Because DLC is discrete by definition, if a combinatorial problem can be represented in the form of its solutions, we can
then consider it an instance in DLC by specifying the neighborhood structure and the Lipschitz constant. For example, the
search space of the Traveling Salesman Problem (TSP, see, e.g., [21]) consists of all possible tours, i.e., Hamiltonian cycles.
For each tour, there is a corresponding edge set containing all the edges through which the tour passes. Therefore, we can
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Fig. 1. A function instance of PDLC with 10 vertexes and K = 10.

define the neighborhood of a tour t as the set of tours which agree on all but two edges with t , and the Lipschitz constant
can be written in terms of the maximum weight, as shown in the following example:

Example 6 (TSP and DLC). If theweights of edges are non-negative andupper-bounded by a constantK , then every traveling
salesman problem is an instance of L(G, Y, 2K), where each vertex of G corresponds to a tour in the original graph and if
two tours differ in only two edges, they are considered neighbors.

Note that G is not the original graph on which the TSP defined.
The Minimum Spanning Tree problem (MST, [21]) can also be similarly associated to DLC.

Example 7 (MST and DLC). If the weights of edges are non-negative and upper-bounded by a constant K , then every MST
problem is an instance of L(G, Y, 2K), where each vertex of G corresponds to a spanning tree on the original graph, and if
two spanning trees differ in only two edges, they are considered neighbors.

In addition to problems directly defined on graphs, the optimization version of the set-partition problem [21], which
aims to partition a set into two equally weighted subsets, can also be connected to DLC. For a set S ⊂ N, we denote the sum
of elements in S as MS , i.e.,MS =

∑
x∈S x.

Example 8 (Set-partition Problem and DLC). Given a finite set S ⊂ N with max{S} = K , the solution space of the set-
partition problem is the power set of S. For a subset U of S, the corresponding objective value is f (U) = |MU −MS/2|. Two
subsets A and B of S, where A ⊂ B, are considered neighbors if |B−A| = 1, and thus f (A) ≤ f (B) = |MB−MA+MA−MS/2| ≤
f (A)+ |MA −MB| ≤ f (A)+ K . Therefore, the set-partition problem on S is an instance of DLC with Lipschitz constant K .

Generally speaking, if a combinatorial optimization problem involves a weight set, it can be considered as an instance
of DLC by interpreting the solutions as nodes and the relationship between solutions as the neighborhood structure. In the
following section, we will show that the NFL theorem does not hold over DLC under most circumstances, and consequently,
it is possible to contrive algorithms outperforming random search on these combinatorial problems.

3.3. DLC and NFL

In this section, we will investigate DLC within the NFL framework and derive a condition under which the NFL theorem
holds. In order to determinewhether theNFL theoremholds over a problem class, Schumacher et al. [19] provided a criterion
for the NFL theorem based on permutation closure.

Definition 9 (Permutation Closure). If π is a permutation on X, define fπ as fπ (x) := f (π(x)) for all x ∈ X. F ⊆ FX,Y is
closed under permutation if for all f ∈ F and for every permutation π on X, fπ ∈ F .

Lemma 10. The NFL theorem holds over F if and only if F is closed under permutation.

Although in [19], this criterion is proposed for deterministic algorithms, since a randomized algorithm is simply a
mixed strategy, i.e., a distribution over all possible deterministic strategies [22,5], this criterion still holds for randomized
algorithms in the sense of expectation. Utilizing Lemma 10, a simple criterion for whether or not the NFL result can be
applied to a DLC can be obtained.

Theorem 11 (Criterion for NFL on DLC). LetL(G, Y = {0, 1, . . . ,m}, K)withm > K ≥ 1 be a DLC. NFL holds overL(G, Y, K)
if and only if G is complete.
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Proof. By Lemma 10, it is sufficient to show that L(G, Y, K) is closed under permutation if and only if G is complete.

• If G is complete, for every f ∈ L(G, Y, K), we have |f (vi)− f (vj)| ≤ K for all vi and vj ∈ V (G). For any permutation π on
X and for all vi and vj ∈ V (G), |fπ (vi)− fπ (vj)| = |f (π(vi))− f (π(vj))| ≤ K . Therefore, fπ ∈ L(G, Y, K).
• If L(G, Y, K) is closed under permutation, suppose for contradiction that G is not complete. The incompleteness and

connectivity of G imply that there exist vi and vj ∈ V (G) with vivj /∈ E(G). Select vk ∈ N(vi), where N(vi) is the
neighborhood of vi. Obviously, vk ≠ vj. Consider the function f ∈ L(G, Y, K):

f (v) =


0 if v = vi;

K + 1 if v = vj;

K otherwise.

and the permutation π :

π(v) =


vk if v = vj;

tvj if v = vk;

v otherwise.

|fπ (vk)− fπ (vi)| = |f (π(vk))− f (π(vi))| = |f (vj)− f (vi)| = K + 1, so fπ /∈ L(G, Y, K), a contradiction. �

The condition of completeness implies that the NFL theorem holds over DLC only in the extreme case that the entire search
space is in the same neighborhood. While such a situation is theoretically possible, yet somewhat trivial. Taking PDLC as an
example, whenm > K , the NFL theorem sustains over a PDLC only if there are merely two vertexes in the search space.

4. DLC and subthreshold-seeker

The subthreshold-seeker (STS), introduced by Whitley and Rowe [9] and proved to outperform random search on
uniformly sampled polynomials of one variable, is a metaheuristic that employs the threshold as a switch of local search.
In essence, it is a selective local search method as it conducts local search if a given condition is satisfied. In this section,
a generalization of subthreshold-seeker is firstly presented, and we will demonstrate that the generalized subthreshold-
seeker can outperform random search on DLC.

4.1. Generalized subthreshold-seeker

In Whitley and Rowe’s work, the subthreshold-seeker is an optimization algorithm aiming at functions with a one-
dimensional domain, i.e., functions defined on a subsetC ⊆ R. The subthreshold-seekerwill successively select a point from
the search space uniformly at random (u.a.r.) until a subthreshold point is encountered. Once encountering a subthreshold
point, the subthreshold-seeker will search through the quasi-basin where that subthreshold point resides. In Whitley and
Rowe’s definition, a quasi-basin is a set of contiguous points with objective values below the threshold. In other words, the
threshold is used to determine whether the subthreshold-seeker enters the local search phase, and the subthreshold-seeker
can be viewed as an optimizer with an exhaustively local search operator.

According to this point of view, we generalize the subthreshold-seeker to the extent that it is applicable to any function
of which the domain possesses a neighborhood structure as in Algorithm 1.
Algorithm 1 (Generalized Subthreshold-seeker).
procedure Subthreshold-seeker(X, Y, N : X→ 2X, f : X→ Y)

while the stopping criterion is not satisfied do
if Queue is not empty then

x← Queue.pop();
else

Select x from X u.a.r.
end if
if f (x) ≤ θ then

Queue.push(N(x))
end if

end while
end procedure

Following the NFL framework, the parts of selecting and pushing are both restricted to unvisited points. Such a task can
be achieved by a bookkeeping manner. Since the performance of an algorithm is judged by the performance vector, all
overheads other than function evaluations will not count under the NFL framework.

The only control parameter of the subthreshold-seeker is the threshold. The elegance of the subthreshold-seeker is that it
comprises the two fundamental operations of search heuristics, local search and global restart, and yet still stays in a simple
form.
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4.2. Subthreshold-seeker on DLC

Christensen and Oppacher [8] defined the performance measure as the number of submedian points visited by an
algorithm, and Whitley and Rowe [9] generalized this notion to any threshold less than or equal to the median. That is,
given a predefined stopping time L and α ∈ (0, 1/2], the performance measure is the number of points visited in the first L
function evaluations with the top α|X| values in the objective space.

This performance measure may seem odd at the first glance, for typically the performance of an optimizer is measured
in terms of the time in which the optimum is located. However, even focusing on functions as simple as unimodal functions
that are monotone with respect to the distance from the optimum, the time complexity analysis is still a difficult task.
For instance, to the best of our limited knowledge, the time complexity of (1 + 1)-ES [23] on such functions has not been
analyzed until recently [24]. Hence, it seems unlikely to analyze the runtime of an algorithm that is more sophisticated
than random search over a broad class of problems. Furthermore, as mentioned in Section 2, within the NFL framework, the
performancemeasure can be any function defined on the set containing all performance vectors, and roughly speaking, with
more subthreshold points visited, it is more likely to identify a point with a satisfiable objective value. Therefore, Whitley
and Rowe’s notion appears in between theoretically analyzable and practically meaningful.

For any function f , we define βα(f ) be the maximum objective value below the performance threshold, i.e.,

βα(f ) := max


y ∈ Y

 y−
i=0

|{x ∈ X | f (x) = i}| ≤ α|X|


.

If the set following the ‘‘max’’ notation is empty, then βα(f ) is defined to be−∞. LetΨα,f (v) be a performancemeasure that
maps a performance vector v to the number of components of v below performance threshold, i.e.,Ψα,f ((v1, v2, . . . , vL)) =
|{vi | vi ≤ βα(f )}|. It is noteworthy that the performance threshold should be distinguished from the algorithmic threshold.
The latter should be regarded as a control parameter of the algorithm and hence is not related to the performance measure.

Whitley and Rowe showed that if f is a uniformly sampled polynomials of one variable, and βα(f ) is known in advance,
setting θ = βα(f ), under certain conditions the subthreshold-seeker outperforms random search on f . In this study, we
will show that the subthreshold-seeker with θ within some range of codomain, rather than a specific value, will outperform
random search in the sense that for all functions in the DLC, the expected number of points below the performance threshold
visited by the subthreshold-seeker is greater than or equal to that by random search, and there does exist a function such
that the inequality is strict.

Theorem 12 (Equal or Better Performance of STS on DLC). Let L(G, Y = {0, 1, . . . ,m}, K) with m > K be a DLC. For all
f ∈ L(G, Y, K) if the algorithmic threshold θ of a subthreshold-seeker satisfies θ ≤ βα(f ) − K , then E[Ψα,f (Sy(STS, f , L))] ≥
E[Ψα,f (Sy(RS, f , L))] for all L with 1 ≤ L ≤ |X|.

Proof. Let f be any function belonging to L(G, Y, K). Suppose S(STS, f , L) = ((Xsi, Ysi))
L
i=1 and S(RS, f , L) = ((Xri, Yri))

L
i=1.

Define the indicator variable Isi as Isi = 1 when Ysi ≤ βα(f ) and Isi = 0 otherwise, and Iri is defined in a similar way for
random search. We can obtain that Ψα,f (Sy(STS, f , L)) =

∑L
i=1 Isi and Ψα,f (Sy(RS, f , L)) =

∑L
i=1 Iri.

We prove the theorem by induction on L. Let U := |{x ∈ V (G) | f (x) ≤ βα(f )} be the total number of points
below the performance threshold. When L = 1, since both strategies select a point u.a.r. from X in the first move, clearly
E[Is1] = U/|X| = E[Ir1]. Suppose E[

∑L
i=1 Isi] ≥ E[

∑L
i=1 Iri] for 1 ≤ L < |X|. Then,

E


L+1−
i=1

Isi


= E


L−

i=1

Isi


+ E[IsL+1]

= E


L−

i=1

Isi


+

−
(xi)Li=1∈X

L

E

IsL+1 | (Xsi)

L
i=1 = (xi)Li=1


Prob{(Xsi)

L
i=1 = (xi)Li=1}. (1)

If Xsi is popped out from the queue, f (Xsi) ≤ θ +K ≤ βα(f )−K +K = βα(f ), and hence, Isi = 1. Otherwise, if Xsi is selected
from X u.a.r., then Prob{Isi = 1} = (U− k)/(|X|− i+1), where k is the number of points visited in the first i−1 steps with
objective values smaller than or equal to βα(f ). Let CL be the set collecting all (xi)Li=1 ∈ XL such that if (Xsi)

L
i=1 = (xi)Li=1, the

queue will be nonempty in the (L+ 1)th move. Therefore,−
(xi)Li=1∈X

L

E[IsL+1 | (Xsi)
L
i=1 = (xi)Li=1]Prob{(Xsi)

L
i=1 = (xi)Li=1}

=

−
(xi)Li=1∈CL

E[IsL+1 | (Xsi)
L
i=1 ∈ CL]Prob{(Xsi)

L
i=1 = (xi)Li=1}

+

−
(xi)Li=1 /∈CL

E[IsL+1 | (Xsi)
L
i=1 /∈ CL]Prob{(Xsi)

L
i=1 = (xi)Li=1}
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=

−
(xi)Li=1∈CL

1 · Prob{(Xsi)
L
i=1 = (xi)Li=1}

+

−
(xi)Li=1 /∈CL

U −
{xi ∈ (xi)Li=1 | f (xi) ≤ βα(f )}


|X| − L

Prob{(Xsi)
L
i=1 = (xi)Li=1}

≥

−
(xi)Li=1∈X

L

U −
{xi ∈ (xi)Li=1 | f (xi) ≤ βα(f )}


|X| − L

Prob{(Xsi)
L
i=1 = (xi)Li=1}

=

L−
k=0

U − k
|X| − L

Prob


L−

i=1

Isi = k


. (2)

Substituting into (1),

E


L+1−
i=1

Isi


≥

L−
k=0

kProb


L−

i=1

Isi = k


+

L−
k=0

U − k
|X| − L

Prob


L−

i=1

Isi = k



=
U

|X| − L
+
|X| − L− 1
|X| − L

L−
k=0

kProb


L−

i=1

Isi = k



=
U

|X| − L
+
|X| − L− 1
|X| − L

E


L−

i=1

Isi



≥
U

|X| − L
+
|X| − L− 1
|X| − L

E


L−

i=1

Iri



=

L−
k=0

kProb


L−

i=1

Iri = k


+

L−
k=0

U − k
|X| − L

Prob


L−

i=1

Iri = k



= E


L−

i=1

Iri


+

L−
k=0

E


IrL+1

 L−
i=1

Iri = k


Prob


L−

i=1

Iri = k



= E


L+1−
i=1

Iri


. (3)

Inequality (3) follows from the induction hypothesis. �

Furthermore, next theorem guarantees that for any f ∈ L(G, Y, K), if there exists a point above performance threshold and
the subthreshold-seeker ever enters the local search phase, the subthreshold-seeker will outperform random search strictly
in expectation according to the performance measure Ψα,f .

Theorem 13 (Strictly Better Performance of STS on DLC). Let L(G, Y = {0, 1, . . . ,m}, K) with m > K be a DLC. For all
f ∈ L(G, Y, K) and for every subthreshold-seeker STS with θ ≤ βα(f )− K satisfy:

(1) ∃v ∈ V (G) with f (v) > βα(f ), and
(2) ∃v ∈ V (G) with f (v) ≤ θ ,

E[Ψα,f (Sy(STS, f , L))] > E[Ψα,f (Sy(RS, f , L))] for all L ∈ [2, |X| − 1].

Proof. If there are no such functions in L(G, Y, K), the theorem holds vacuously. Otherwise, let f be any function satisfying
the two conditions and define ((Xsi, Ysi))

L
i=1, ((Xri, Yri))

L
i=1, Isi, Iri, U , and CL in the same way as in Theorem 12. We prove

by induction on L. When L = 2, since in the second step, the queue is nonempty if and only if f (Xsi) ≤ θ , C1 = {v ∈
V (G) | f (v) ≤ θ} ≠ ∅ by Condition (2). Therefore,

E[Is1 + Is2] = E[Is1] +
−
x∈X

E[Is2 | Xs1 = x]Prob{Xs1 = x}

= E[Is1] +
−

x:f (x)≤θ

1 · Prob{Xs1 = x} +
−

x:θ<f (x)≤βα(f )

U − 1
|X| − 1

Prob{Xs1 = x}

+

−
x:f (x)>βα(f )

U
|X| − 1

Prob{Xs1 = x}
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> E[Is1] +
−

x:f (x)≤βα(f )

U − 1
|X| − 1

Prob{Xs1 = x} +
−

x:f (x)>βα(f )

U
|X| − 1

Prob{Xs1 = x}

= E[Is1] +
−

k∈{0,1}

U − k
|X| − 1

Prob{Is1 = k}

= E[Ir1] +
−

k∈{0,1}

U − k
|X| − 1

Prob{Ir1 = k}

= E[Ir1 + Ir2].

The inequality follows from C1 ≠ ∅ and (U − 1)/(|X| − 1) < 1, for Condition (1) implies U < |X|. For the induction
hypothesis, suppose E[

∑L
i=1 Isi] > E[

∑L
i=1 Iri] for Lwith 2 ≤ L < |X|−1. In the (L+1)th step, from the proof of Theorem 12,

we always have

E


L+1−
i=1

Isi


≥

U
|X| − L

+
|X| − L− 1
|X| − L

E


L−

i=1

Isi



>
U

|X| − L
+
|X| − L− 1
|X| − L

E


L−

i=1

Iri



= E


L+1−
i=1

Iri


. (4)

Since (|X| − L − 1)/(|X| − L) > 0 when L < |X| − 1, and E[
∑L

i=1 Isi] > E[
∑L

i=1 Iri] from the induction hypothesis,
Inequality (4) is strict. �

The following example illustrates a set of functions on which subthreshold-seekers strictly outperform random search.

Example 14. Given V (G) = {v1, v2, . . . , v2n} and a positive integer K , the function f defined as f (vi) = iK is an instance
of the PDLC L(G, Y = {0, 1, . . . , 2nK}, K). If α = 1/2, then all subthreshold-seekers with (n − 1)K ≥ θ ≥ K strictly
outperform random search on f .

Let d := max{deg(v) | v ∈ V (G)} be the maximum degree of the graph and dis(u, v) be the length of the shortest path
from u to v. For any subthreshold-seeker, if we are able to set its θ within some interval, the following corollary gives a
sufficient condition of the existence of functions on which the subthreshold-seeker strictly outperforms random search.

Corollary 15. Let L(G, Y = {0, 1, . . . ,m}, K) be a DLC with a maximum degree d > 2. Given α ∈ (0, 1/2] and an integer
C > 1 with CK + 1 ≤ m, if

α|V (G)| >
d(d− 1)C − 2

d− 2
,

then there exists a function f ∈ L(G, Y, K) such that E[Ψα,f (Sy(STS, f , L))] > E[Ψα,f (Sy(RS, f , L))] for all L with 2 ≤ L ≤
|X| − 1, where STS is a subthreshold-seeker with θ ∈ βα(f )− [K , CK ].

Proof. We prove this corollary constructively. Select a vertex v0 from V (G) arbitrarily. Consider the function f defined as

f (v) =


0 if v = v0;

dis(v, v0)K if 1 ≤ dis(v, v0) ≤ C;
CK + 1 otherwise.

Since

|vo| + |{v ∈ V (G) | 1 ≤ dis(v, v0) ≤ C}|
≤ 1+


d+ d(d− 1)+ d(d− 1)2 + · · · + d(d− 1)C−1


= 1+

d

(d− 1)C − 1


(d− 1)− 1

=
d(d− 1)C − 2

d− 2
< α|V (G)|,

from the definition of βα(f ), βα(f ) = CK . Furthermore, there must exist v1 ∈ V (G) that f (v1) = CK + 1, for
|vo| + |{v ∈ V (G) | 1 ≤ dis(v, v0) ≤ C}| < |V (G)|. Therefore, we have f (v0) ≤ θ and f (v1) > βα(f ). Thereby Theorem 13
can be applied. �
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For PDLC, since the maximum degree is upper-bounded by 2, the sufficient condition can be reduced to a simpler form.

Corollary 16. Let L(G, Y = {0, 1, . . . ,m}, K) be a PDLC. Given α ∈ (0, 1/2] and an integer C > 1 with CK + 1 ≤ m, if

|V (G)| > (1+ 2C)α−1,

then there exists a function f ∈ L(G, Y, K) such that E[Ψα,f (Sy(STS, f , L))] > E[Ψα,f (Sy(RS, f , L))] for all L with 2 ≤ L ≤
|X| − 1, where STS is a subthreshold-seeker with θ ∈ βα(f )− [K , CK ].

Proof. For any v0 ∈ V (G), |vo| + |{v ∈ V (G) | 1 ≤ dis(v, v0) ≤ C}| ≤ 1+ 2C . �

Combining Theorems 12 and 13, if we manage to set θ ≤ βα(f ) − K , the subthreshold-seeker will perform at least as
good as random search on a DLC. If the subthreshold-seeker has a chance to conduct local search, it will strictly outperform
random search. Corollaries 15 and 16 show that if d and C remain unchanged, we can obtain a DLC satisfying the conditions
by increasing |V (G)|, for α as a predefined performance threshold. In other words, with the same neighborhood structure,
if the capability of a subthreshold-seeker to sample a decent threshold is unaffected by the increasing domain size, which is
generally true and will be discussed later, then the conditions in Corollaries 15 and 16 hold with a sufficiently large domain.
Estimating θ within some range should be more practical than gauging a specific value such as βα(f ). In the next section,
we will explore this possibility and empirically confirm the theoretical results obtained in this section by proposing and
adopting a sampling-test scheme.

5. Sampling-test scheme

Conventionally, the effectiveness of an optimizer is examined via experiments on a suite of test functions that serves
as a benchmark. These test functions are selected according to some prior knowledge of the importance thereof. Here we
propose and adopt a different approach in order to confirm the theoretical results obtained in the previous section from
an empirical aspect. We draw a sample of functions randomly from PDLC in a manner similar to select respondents in a
campaign survey and conduct experiments on these sampled functions. There is no bias in favor of which functions should
be selected. We expect the arbitrariness delivers information about the composition of the problem class.

A uniform sampler for PDLC is firstly given in Section 5.1. Experiments are then presented to summarize this section and
demonstrate how the Lipschitz condition facilitates the search process in a practical standpoint.

5.1. A uniform sampler for PDLC

In order to conduct the sampling test, we need a uniform sampler in the first place. The following algorithm generates
problem instances of PDLC with Lipschitz constant K u.a.r.

Algorithm 2 (Uniform PDLC Sampler).
procedure Uniform PDLC Sampler(v1v2 . . . vn, Y = {0, 1, . . . ,m}, K )

f (v1)← Uniform([0,m])
i← 2
while i ≤ n do

f (vi)← f (vi−1)+ Uniform([−K , K ])
if f (vi) > m or f (vi) < 0 then

f (v1)← Uniform([0,m])
i← 1;

end if
i← i+ 1

end while
return f

end procedure

HereUniform([a, b]) denotes the function that selects an integer u.a.r. from the closed interval [a, b]. Such a sampler belongs
to the category of accept–reject algorithms [25]. It generates a problem instance with bounded difference between any two
successive vertexes u.a.r., and if the instance at hand exceeds the range of the codomain, the sampler rejects the instance.
The accept–reject mechanism guarantees the uniformity. Once the sampler halts, the output is always an instance of the
PDLC.

Since this sampler is a Las Vegas algorithm, in which the answer is guaranteed to be correct but the resources used are
not bounded [26], we need to address its time complexity for the practicality. For each candidate instance, the sampler will
go through at most |X| steps to assign all the vertex objective values, so it remains to show howmany candidate instances
it takes to generate a legit instance successfully. The accept–reject process is geometrically distributed, and therefore the
expected number of instances consumed is the inverse of the acceptance probability. The following theorem provides an
upper bound for the rejection probability.
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Lemma 17. Suppose |Y| = 2m+ 1, where m is an integer, and |X| = n. If

m >


(n− 1)(K 2 + K)

3
≥ 2,

then the rejection probability is less than

4


(n− 1)(K 2 + K)
√
3|Y|

−
4(n− 1)(K 2

+ K)

3|Y|2
+

5
|Y|

.

Proof. Without loss of generality, suppose Y = {−m,−m + 1, . . . ,m}. Let (Ki) be a sequence of i.i.d. random variables
that Ki = j with probability 1/(2K + 1) for j ∈ {−K ,−K + 1, . . . , K} and Sj :=

∑j
i=1 Ki. When f (v1) = i, the

instance is rejected if and only if i + Sj ≥ m + 1 or i + Sj ≤ −m − 1 for some 1 ≤ j ≤ n − 1, so the occurrence
of rejection always implies max1≤j≤n−1 |Sj| ≥ min{|m + 1 − i|, | − m − 1 − i|}. Moreover, the symmetry indicates that
Prob{rejection | f (v1) = i} = Prob{rejection | f (v1) = −i} for |i| ≤ m. Therefore,

Prob{rejection} =
m−

i=−m

Prob{rejection | f (v1) = i}Prob{f (v1) = i}

=

m−
i=−m

Prob{rejection | f (v1) = i}

2m+ 1

≤

Prob{max1≤j≤n−1 |Sj| ≥ m+ 1} + 2
m−
i=1

Prob{ max
1≤j≤n−1

|Sj| ≥ m+ 1− i}

2m+ 1

=

Prob{max1≤j≤n−1 |Sj| ≥ m+ 1} + 2
m−
i=1

Prob{ max
1≤j≤n−1

|Sj| ≥ i}

2m+ 1
.

Using Kolmogorov’s inequality [27], we can get

Prob{ max
1≤j≤n−1

|Sj| ≥ i} ≤ min

Var[Sn−1]

i2
, 1


.

Since Var[Ki] = 2(12
+22
+· · ·+K 2)/(2K +1) = (K 2

+K)/3, Var[Sn−1] = (n−1)Var[Ki] = (n−1)(K 2
+K)/3. Moreover,

Var[Sn−1]/i2 ≤ 1 if and only if i ≥
√
Var[Sn−1], we have

Prob{rejection} ≤

Var[Sn−1]
(m+1)2

+ 2


√

Var[Sn−1]

−1−

i=1

1+
m−

i=
√

Var[Sn−1]

Var[Sn−1]

i2


2m+ 1

≤

Var[Sn−1]
(m+1)2

+ 2
√

Var[Sn−1]

− 1+ Var[Sn−1]

 m
x=
√

Var[Sn−1]

−1

x−2dx


2m+ 1

≤

Var[Sn−1]
(m+1)2

+ 2

√
Var[Sn−1] −

Var[Sn−1]
m +

Var[Sn−1]√
Var[Sn−1]


−1


2m+ 1

.

Since x/(x− 1) decreases when x > 1, we obtain

Var[Sn−1]√
Var[Sn−1]


− 1
≤

Var[Sn−1]
√
Var[Sn−1] − 1

=

Var[Sn−1] +

√
Var[Sn−1]

√
Var[Sn−1] − 1

≤

Var[Sn−1] + 2.



Author's personal copy

1624 P. Jiang, Y.-p. Chen / Theoretical Computer Science 412 (2011) 1614–1628

According to the assumption that Var[Sn−1]/(m+ 1)2 < 1,

Prob{rejection} <
4
√
Var[Sn−1] −

2Var[Sn−1]
m + 5

2m+ 1

=
4


(n− 1)(K 2 + K)
√
3(2m+ 1)

−
2(n− 1)(K 2

+ K)

3m(2m+ 1)
+

5
2m+ 1

<
4


(n− 1)(K 2 + K)
√
3|Y|

−
4(n− 1)(K 2

+ K)

3|Y|2
+

5
|Y|

. �

Theorem 18 (Upper Bound for the Rejection Probability). Define m := ⌊(|Y| − 1)/2⌋. If m >


(n− 1)(K 2 + K)/3 ≥ 2 , then
the rejection probability is less than

4


(n− 1)(K 2 + K)
√
3|Y|

−
4(n− 1)(K 2

+ K)

3|Y|2
+ O


|Y|−1


.

Proof. If |Y| = 2m + 1, then we are done by the previous lemma. Otherwise, if |Y| = 2m + 2, without loss of generality,
suppose that Y = {−m,−m+ 1, . . . ,m+ 1} and let Y′ = {−m,−m+ 1, . . . ,m}. Therefore,

Prob{rejection} = Prob{f (v1) ∈ Y′}Prob{rejection | f (v1) ∈ Y′}

+ Prob{f (v1) /∈ Y′}Prob{rejection | f (v1) /∈ Y′}

=


2m+ 1
2m+ 2


Prob{rejection | f (v1) ∈ Y′}

+


1

2m+ 2


Prob{rejection | f (v1) = m+ 1}.

When f (v1) ∈ Y′, if f exceeds the range of Y, then f also exceeds the range of Y′, so from the previous lemma we have

Prob{rejection | f (v1) ∈ Y′} <
4


(n− 1)(K 2 + K)
√
3(2m+ 1)

−
4(n− 1)(K 2

+ K)

3(2m+ 1)2
+

5
2m+ 1

.

As a result,

Prob{rejection} ≤

2m+ 1
2m+ 2


Prob{rejection | f (v1) ∈ Y′} +


1

2m+ 2


<

4


(n− 1)(K 2 + K)
√
3(2m+ 2)

−
4(n− 1)(K 2

+ K)

3(2m+ 1)(2m+ 2)
+

6
2m+ 2

<
4


(n− 1)(K 2 + K)
√
3|Y|

−
4(n− 1)(K 2

+ K)

3|Y|2
+ O


|Y|−1


. �

Corollary 19. If |Y| = C


(n− 1)(K 2 + K) > C · 2
√
3 for some constant C ≥

√
3, then the rejection probability is less than

4
√
3C − 4
3C2

+ O

|Y|−1


.

Proof. If C ≥
√
3,

m =

|Y| − 1

2


≥
|Y|

2
− 1

≥


3(n− 1)(K 2 + K)

2
− 1

=


(n− 1)(K 2 + K)

3
+


(n− 1)(K 2 + K)

2
√
3

− 1

>


(n− 1)(K 2 + K)

3
.

Substituting


(n− 1)(K 2 + K)/|Y| by 1/C and applying Theorem 18, the corollary is proved. �
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For instance, if C =
√
3 and |Y| is so large thatO(|Y|−1) is negligible, the expected number of instances consumed is nomore

than 9. Multiplying the time to assign all vertexes’ values, the expected runtime, in terms of the number of assignments, is
no more than 9|X|. In other words, asymptotically speaking, if |X| and |Y| are about equal and |Y| is larger than K 2 to some
extent, then the expected runtime is approximately linear.

5.2. Experimental settings and results

As demonstrated in Section 4, the virtues of the subthreshold-seeker rely on a proper algorithmic threshold. Although
themain results in Section 4 hold when θ ≤ βα(f )−K , because we do not set a performance threshold literally to scrutinize
how many subthreshold points are visited in real-world applications, in an experimental setting, we can examine the
subthreshold-seeker more practically in terms of the time to identify the optimum. Therefore, the algorithmic threshold
should be utilized for optimization, or more specifically, to minimize the objective function in this case.

We will compare the subthreshold-seeker with random search. Here we present three different subthreshold-seekers.
For the theoretical purpose, the first one uses the actual median of all objective values, in the form of exterior knowledge,
as θ . The second one firstly selects a 100 points u.a.r. and then employs the calculated median as θ . The third one also starts
with obtaining 100 points u.a.r., but it computes themean and the standard deviation of these points and sets θ to themean
minus the standard deviation. Moreover, the three subthreshold-seekers and random search obey the NFL framework and
hence are non-repeating.

In advance of experiments, we need to determine the size of the set PDLC problems to be sampled. Suppose we want
to estimate a population proportion q ∈ [0, 1]. We draw a sequence of samples uniformly and independently from the
population with replacement. For each sample, we observe if it belongs to the variety of interest. With a large sample size,
we expect the proportion in the sample approximates the real proportion. The following theorem depicts the relationship
between the sample size and the error bound.

Theorem 20 (Sample Size and Error Bound). Let (Zi) be a sequence of i.i.d. indicator variables with E[Zi] = q. For all δ, ϵ ∈
(0, 1), if

n ≥ −
ln(δ/2)
2ϵ2

,

then

Prob




n−
i=1

Zi

n
− q

 > ϵ

 ≤ δ.

Proof. Let Z = (
∑n

i=1 Zi)/n. Applying Hoeffding’s inequality [28], for 0 < ϵ < 1− q, we have

Prob{Z − q > ϵ} ≤ e−2nϵ
2
,

and for 0 < ϵ < q,

Prob{Z − q < −ϵ} ≤ e−2nϵ
2
.

Moreover, if ϵ ≥ 1− q,

Prob{Z − q > ϵ} ≤ Prob{Z > 1} = 0 ≤ e−2nϵ
2
.

Similarly, if ϵ ≥ q,

Prob{Z − q < −ϵ} ≤ Prob{Z < 0} = 0 ≤ e−2nϵ
2
.

Hence, we conclude that for all ϵ ∈ (0, 1),

Prob{|Z − q| > ϵ} ≤ 2e−2nϵ
2
.

Finally,

n ≥ −
ln(δ/2)
2ϵ2

implies 2e−2nϵ
2
≤ δ, and we complete the proof. �

In particular, with the conventional setting of (ϵ, δ) = (0.03, 0.05), a sample of size 2, 050 suffices. In other words, if we
draw a sample of size 2, 050, [Z − 0.03, Z + 0.03] forms a confidence interval for qwith confidence level at least 95%.
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Table 1
Successful rate.

θ Category (|X|, |Y|)
(104, 104) (105, 105) (106, 106)

γ > 0.9995 (2,049) 0.9985 (2,047) 0.9976 (2,045)
> .2 0.9951 (2,040) 0.9620 (1,972) 0.9624 (1,973)

γ̂ > 0.9995 (2,049) 0.9990 (2,048) 0.9985 (2,047)
> .2 0.9937 (2,037) 0.9620 (1,972) 0.9732 (1,995)

µ̂− σ̂ > 1.0000 (2,050) 1.0000 (2,050) 1.0000 (2,050)
> .2 1.0000 (2,050) 1.0000 (2,050) 1.0000 (2,050)

γ :median. γ̂ : estimatedmedian. µ̂: estimatedmean. σ̂ : estimated standard deviation.
‘‘>": proportion of instances where the subthreshold-seeker outperforms random
search. ‘‘> .2": proportion of instances where the subthreshold-seeker outperforms
random search by a 20% margin.

Table 2
Mean time steps to locate the minimum.

Algorithm (|X|, |Y|)
(104, 104) (105, 105) (106, 106)

STS, θ = γ 2037.58 22913.23 229232.26
STS, θ = γ̂ 2221.44 23170.58 229532.04
STS, θ = µ̂− σ̂ 918.29 8095.78 80322.92
random search 4972.50 49724.74 496912.49

γ : median. γ̂ : estimatedmedian. µ̂: estimatedmean. σ̂ : estimated
standard deviation.

The sampler generates 2,050 instances of PDLCwith (|X|, |Y|) = (104, 104), (105, 105), and (106, 106), respectively. The
Lipschitz constant K is set to 100 for the concern of execution time, as previously discussed. For each problem instance, we
test each algorithm for 50 independent runs. If the average time of a subthreshold-seeker to find the optimum is less than
that of randomsearch, the instance is counted as a success.We also count the number of instances that a subthreshold-seeker
outperforms random search by a 20%margin, i.e., the instancewhere the average optimization time of a subthreshold-seeker
is less than 80% of that of random search. Table 1 displays the empirical results.

All three subthreshold-seekers outperform random search in most of the sampled problem instances. Furthermore, the
subthreshold-seeker with θ = µ̂− σ̂ outperforms random search in all 2,050 instances sampled, evenwith the requirement
of a 20% margin. The statistical significance of such results is obvious to see: suppose the population proportion that
the subthreshold-seeker with θ = µ̂ − σ̂ outperforms random search is q. To obtain the result that random search is
outperformed in all instances, the probability is q2050. Even if q is as high as 0.995, the above probability is just 0.000034. To
more formally rephrase, if the null hypothesis is ‘‘q ≤ 0.995’’, the p-value is merely 0.000034.

Table 2 displays the averaged optimization time over the 2,050 sampled problem instances. The subthreshold-seeker
with θ = µ̂ − σ̂ outperforms others by a significant margin. Random search averages approximately |X|/2 to find the
minimum, which is expected. The subthreshold-seeker using the actual median and the one using the sample median both
take about half time steps of that needed by random search to optimize the function.

The subthreshold-seekerswith θ = µ̂−σ̂ and θ = γ̂ are indeed black-box algorithms, for there is no exterior knowledge
exerted and the only information they can use are function evaluations, but they outperform random search by a remarkable
difference.

The performance difference between θ = γ̂ and θ = γ is insignificant. Such a result suggests that in this case, an
estimation of median may be adequate. Suppose that P with |P| = N is a subset of real numbers, and for all i ∈ P , R(i) is
defined to be the rank (i.e., ordering) of i in P . For instance, R(min P) = 1 and R(max P) = N . For simplicity, we assume
that N is odd and hence the median of P is the element i with R(i) = ⌈N/2⌉. Now we want to estimate the median of
P . If a point sample S of size n, where n is assumed odd, is drawn by successively selecting an element u.a.r. from P with
replacement, the estimated median, γ , is presumed to be the sampled median, and we want the error is bounded by ϵ > 0,
i.e., |R(γ )− ⌈N/2⌉ | ≤ ϵN .

If R(γ ) < ⌈N/2⌉ − ϵN , there are at least ⌈n/2⌉ selections with ranks less than ⌈N/2⌉ − ϵN . Let Xi be the indicator
variable that indicates if the ith selection is less than ⌈N/2⌉ − ϵN , Xi = 1 with probability p := (⌈N/2⌉ − ⌊ϵN⌋ − 1)/N .
R(γ ) < ⌈N/2⌉ − ϵN if and only if

∑n
i=1 Xi ≥ ⌈n/2⌉. Since E[

∑n
i=1 Xi] = np, applying another form of Hoeffding’s

inequality [28], we have

Prob

R(γ ) <


N
2


− ϵN


= Prob


n−

i=1

Xi ≥

n
2
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≤ Prob


n−

i=1

Xi ≥
n
2



= Prob


1
n

n−
i=1

Xi ≥ p+

1
2
− p



≤

 p
p+ 1

2 − p

p+ 1
2−p


1− p

1− p− ( 1
2 − p)

1−p−( 1
2−p)

n

= [4p(1− p)]
n
2 .

Moreover, the symmetry implies that

Prob

R(γ ) >


N
2


+ ϵN


≤ [4p(1− p)]

n
2 .

Therefore,

Prob
R(γ )−


N
2

 > ϵN

≤ 2 [4p(1− p)]

n
2 .

Now the only quantity left is p. By definition,

p =

N
2


− ⌊ϵN⌋ − 1

N
≈

1
2
− ϵ.

For instance, if we set ϵ = 0.1 and n = 100, the probability of exceeding the error bound is less than 0.26. If the sample size
n increases to 2, 000, even with a small ϵ = 0.03, the probability reduces to just 0.054. It is noteworthy that the effect of
the population size N is negligible. Therefore, the required number of samples remains the same, even if the search space is
immense. Although in real-world applications P is usually a multiset, if the multiplicities of P are not too large, such a gauge
should not diverge significantly.

6. Conclusions

In this study, we introduced and investigated the properties of the discrete Lipschitz class. A generalized subthreshold-
seeker was then proposed and shown to outperform random search on this broad function class. Finally, we proposed a
tractable sampling-test scheme to empirically demonstrate the performance of the generalized subthreshold-seeker under
practical configurations. We showed that optimization algorithms outperforming random search on the discrete Lipschitz
class do exist from both theoretical and practical aspects.

As controversial as it may be, the NFL theorem provides an alternative standpoint to review the position of optimization
algorithms and search heuristics. The NFL theorem expels the false hope to conquer all possible functions with only limited
information available, as it points out the expectation to find a universally black-box optimizer is definitely over-optimistic.
However, the NFL theorem does not imply the utter infertility in the land of search heuristics by any means if our goals
are appropriately placed. In this paper, the discrete Lipschitz class, as a simulation of continuous functions in a discrete
space, is shown to be a class of problems on which black-box optimizers have performance advantages in both theory and
practice. The only constraint imposed on the search space is bounded differenceswithin a neighborhood. Under such aminor
condition, black-box optimizers can still be effective over a broad, meaningful, and practical problem class as suggested by
this study.
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Abstract—Luby Transform (LT) codes are a new member in
the family of forward error correction codes without a fixed code
rate. The property called rateless is attractive to researchers in
last decade, and lots of studies have been proposed and attempted
to improve the performance of LT codes. One variation is the use
of a sparse degree distribution instead of a full one referred to
in the encoding process of LT codes to reduce the search space.
Observing a fact that the ability of a sparse degree distribution
is limited by the nonempty degrees, we introduce a tag selection
scheme to choose reasonable sparse degrees for LT codes in this
paper. We firstly investigate the influence of different degrees on
the error rate of LT codes and then propose a general selection
algorithm based on our observations. After that, the covariance
matrix adaptation evolution strategy (CMA-ES) is applied to
find the optimal sparse degree distributions of which the degrees
are defined by our selection algorithm. Finally, the experimental
results are presented as evidence to show the proposed scheme
is effective and practical.

I. INTRODUCTION

Digital fountain [1], [2] is a new class of forward error cor-

rection codes, which are used in erasure channel for recovering

erased data. The most important property of digital fountain

codes is rateless. The property allows encoder to generate

encoded packets unlimitedly without a fixed code rate. En-

coded packets are continuously delivered like a fountain, and

any receiver can reconstruct the source data once a sufficient

amount of packets are received without considering the order.

It means that the performance of digital fountain codes is

independent of channel parameters, such as the erasure rate. It

is a great advantage to deliver data through an unclear channel

or broadcast information to many users whose connection

qualities are unequal. The first practical implementation of

digital fountain is Luby Transform (LT) codes [3] proposed

by Michael Luby in 2002. LT codes are not only rateless

but also have low computation complexity due to its simple

coding procedure. As other linear block codes, the coding

structure of LT codes can be expressed as a tanner graph.

Tanner graph is a bipartite graph consists of bit nodes, check

nodes and connection edges for indicating the coding relation

between the nodes. To generate a check node, LT codes decide

the degree of a node according to a particular probability

distribution called degree distribution. The performance of

LT codes totally depends on the size of bit nodes, k, and a

given degree distribution. Luby hence suggested two general

expressions to define practical degree distributions for LT

codes. However, the proposed distribution named as soliton

distribution is near optimal only when the size of source data

gets close to infinite. In other words, there is still room to

improve LT codes with moderate source data size.

The approach to improve the LT codes can be modeled

as an optimization problem in which the probability on each

degree is considered as a decision variable and the objective

is to search for degree distributions with better performance.

Many kinds of methods have been proposed to solve such

an optimization problem. The researchers firstly focused on

optimizing the performance of LT codes for a short data

length [4], [5]. [5] even presented an numerical approach

which can compute the optimal degree distributions. Unfor-

tunately the optimization scale is limited to k ≤ 30 due to

huge computational cost. For a large k size, [6] made the

first attempt to apply heuristic search algorithms to optimize

degree distributions. [7] and [8] are our previous studies in

which evolutionary algorithms were introduced to address the

issue and several distributions better than soliton distributions

were obtained for LT codes, while [9] presented the similar

idea and focused on maximizing the intermediate recovery rate

of LT codes by using multi-objective optimization algorithms.

Studies show the feasibility to optimize degree distributions

by evolutionary algorithms. In the optimization framework, the

challenge of huge search space is a key issue. The problem

dimensionality is equal to the source data length k since an

individual should represent the probability on each degree

from 1 to k. It is hard to deal with so many variables while

k rises to hundreds. Adopting a sparse degree distribution

is an alternative solution which has been frequently used in

LT codes optimization. In a sparse degree distribution, non-

zero probabilities distribute on only partial degrees which are

predefined by a set of tags. The set of tags is a subset of all

degrees and used to limit the search in a sub-space whose size

is much less than full degrees.

[6] chose the power of 2 to compose sparse degree distri-

butions for optimization, and Fibonacci numbers were used

in [7], [8]. All the previous studies proposed practical ap-

proaches which can find better distributions in a sparse form.

However, the best distribution in sub-space defined by given

tags is merely near-optimal for LT codes. Previously, the tags

were usually decided according to experimental experience,

and there exists no complete investigation on how to choose

tags. As a result, this paper employs evolutionary algorithms

as a research tool and observes the influence of different
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tags on decoding error probability of LT codes. Based on the

observations, a sparse degree selection algorithm is proposed

to define appropriate tags, and the optimal distribution formed

by the selected tags may get close to the global optimal.

The remainder of the paper is organized as follows. Sec-

tion II gives the details of coding mechanism of LT codes and

introduces two evaluation approaches for degree distributions.

Section III investigates the probability reallocation of degree

distributions and presents the influences of different tags. In

section IV, our selection algorithm is proposed and described

in detail. Several optimization results with different parameter

settings are presented in section V to examine the selection

algorithm. Finally, the conclusion and our contribution are

given in section VI.

II. LT CODES

Before describing main work of the paper, the operation of

LT codes is introduced in this section as a background. The

encoding and decoding procedures are given in section II-A.

Source data in general are divided into k fragments with an

identical length. These fragments are bit nodes or called input

symbols if the length of each fragment is only a bit. Similarly

encoding symbols denote the codewords generated by the

encoding procedure in LT codes. For a clear presentation, the

terms, input symbols, and encoding symbols, are consistently

used in this paper. Section II-B introduces soliton degree

distributions, which were proposed according to a theoretical

analysis. Furthermore, because evaluating the quality of degree

distributions is necessary in optimization, section II-C intro-

duces two different approaches for evaluating the decoding

error rate of LT codes for a given degree distribution.

A. Encoding and Decoding

Given the source data, we suppose that the source data

are cut into k input symbols. Before an encoding symbol is

generated, a degree d is chosen at random according to the

adopted degree distribution Ω(d), where 1 ≤ d ≤ k and∑k

d=1 Ω(d) = 1. The degree d decides how many distinct

input symbols are involved to compose an encoding symbol.

Then d input symbols, also named neighbors, are chosen

uniformly at random and accumulated by XOR. In the design

of LT codes, random number plays an essential role in the

encoding process. The approach employed by LT codes for a

sender to inform receivers of all information is to synchronize

a random number generator with a specified seed.

At the receiver side, when n, which is usually slightly larger

than k, encoding symbols arrive, belief propagation is used to

reconstruct the source data step by step. All encoding symbols

are initially covered in the beginning. In the first step, all

encoding symbols with only one neighbor can be directly

released to recover their unique neighbor. For an input symbol

that has been recovered but not processed yet, it is called a

ripple and will be pushed into a queue. At each subsequent

step, ripples are popped from the queue as a processing target

one by one. A ripple is removed from all encoding symbols

that have it as a neighbor. If an encoding symbol has only

one remaining neighbor after removing, the releasing action

repeats and may produce new ripples to maintain a stable

size of the queue. Maintaining the size of the ripple queue is

important because the decoding process fails when the ripple

queue becomes empty with uncovered input symbols. In other

words, more encoding symbols are required to continue the

decoding process. The decoding process succeeds if all input

symbols are recovered at the end.

B. Soliton distribution

The coding behavior of LT codes is determined by the

degree distribution, Ω(d), and the number of received encoding

symbols, n. Reception overhead, ε = n/k, denotes the delivery

efficiency of LT codes, and ε depends on the given degree

distribution. Based on the theoretical analysis, Luby proposed

the ideal soliton distribution which can achieve the best

performance, ε = 1, in the ideal case.

Ideal soliton distribution ρ(d):

ρ(d) =

{ 1
k

for d = 1
1

d(d−1) for d = 2, 3, . . . , k
. (1)

Ideal soliton distribution guarantees that all the release proba-

bilities are identical to 1/k at each decoding step. Hence, there

is exactly one expected ripple generated at each step when the

encoding symbol size is k. After k processing step, ideally,

the source data can be fully recovered.

However, ideal soliton distribution works poorly in practice.

Belief propagation may be suspended by a small variance

of the stochastic encoding/decoding situation in which no

ripple exists because the expected ripple size is only one at

any moment. According to the theory of random walk, the

probability that a random walk of length k deviates from its

mean by more than ln(k/δ)
√

k is at most δ. It is a baseline of

ripple size that must be maintained to complete the decoding

process. Therefore, in the same paper by Luby, a modified

version called robust soliton distribution was also proposed.

Robust soliton distribution µ(d):

S = c ln(k/δ)
√

k ,

τ(d) =




S/dk for d = 1, . . . , k/S − 1
S ln(S/δ)/k for d = k/S
0 for d = k/S + 1, . . . , k

, (2)

β =

k∑
d=1

(ρ(d) + τ(d)) , (3)

µ(d) =
ρ(d) + τ(d)

β
for d = 1, . . . , k , (4)

where c and δ are two parameters for controlling the character

of a robust soliton distribution. c controls the average degree

of the distribution, and δ estimates that there are ln(k/δ)
√

k
expected ripples as aforementioned. Robust soliton distribution

can ensure that only n = k + O(ln2(k/δ)
√

k) encoding

symbols are required to recover the source data successfully

with a probability at least 1-δ.
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C. Evaluation of Degree Distributions

In this section, we outline two approaches to evaluate degree

distributions. One intuitive indicator for evaluating degree

distributions is the reception overhead, ε. For the reasons that

the coding process of LT codes is stochastic and there is

uncertainty in the transmission channel, a successful decoding

cannot be guaranteed in the condition of a constant overhead.

Moreover, in order to obtain the average overhead, a large

amount of simulations are required to estimate ε. Therefore,

an alternative approach is to evaluate the error probability of

LT codes with some particular reception overhead. In 2004, an

effective evaluation method was proposed in [10] for LT codes

with a finite size of k. Dynamic programming was utilized to

construct the distribution of ripple size during the decoding

process. In short, the error probability of LT codes can be

deterministically evaluated by the method when the input

symbol size k and a fixed overhead are given. Unfortunately,

the computation considers a 3-dimensional matrix of which

the edge size is k and the complexity is too high. Even when

several reduction techniques are applied, the computational

complexity is still O(k3 log2(k) log log(k)). Subsequently, a

new model for rigorous analysis on LT codes has been

proposed in 2006 [11]. The difference in this approach is to

make an assumption that the number of received symbols is a

random variable with mean n. Based on the assumption, a fast

evaluation with time complexity O(k2 log(k)) was presented.

Both approaches are feasible to serve as an evaluation function

and are employed in this paper for different requirements.

III. PROBABILITY REALLOCATION

For seeking a reasonable strategy to select sparse tags, we

conduct experiments to observe the effects of the probability

reallocation on the degree distribution. We first define the

probability reallocation process. For a given optimal degree

distribution Ω(d), we choose degrees i, a, and b, where a, b 6= i
to apply reallocation and get the new degree distribution Ω′(d):

Ω′(d) =




Ω(d) for 1 ≤ d ≤ k, d 6= i, a, b
0 for d = i
Ω(d) + ∆(d) for d = a, b

,

where ∆(a) + ∆(b) = Ω(i), i.e. reallocate the probability

of degree i to degrees a and b. After determing degrees

i, a, and b, an evolutionary algorithm is applied to find out

the best distribution of the probability reallocation on these

degrees. The objective of the best distribution denotes the

least increment of error probability after reallocation. In [5],

a method that can find the optimal degree distributions for LT

codes with small k size was presented. The obtained optimal

degree distributions guarantee the minimal error probability

for overhead ε = 1. Calculation of the error probability

for LT codes at ε = 1 can be done by Karp’s evaluation

approach. Hence, the optimal degree distribution for input

symbol size k = 7 was chosen as our experimental subject and

the covariance matrix adaptation evolution strategy [12], [13],

[14](CMA-ES) is employed to search for the best reallocation.

In the experiment, we denote the minimal error probability
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Fig. 1. Error probability variances after reallocation.

for input symbol size k = 7 as BP 7 and for reallocated

distribution with pair (a, b) as RP (a,b). Figure 1(a) shows the

differences of error probabilities between the optimal and the

reallocated degree distributions.

In the experiment, we choose the optimal degree distri-

bution for k = 7 as the observation target and redistribute

the probability of degree 4 to any combinations of degree

(a, b) with a, b 6= 4. The results illustrate two factors of

error probability variances that: 1) the distance between the

reallocated and the removed degrees; 2) the complementary

property of the reallocated degrees. For the first factor, the

figure shows that the differences of error probabilities would

grow as the distances of a, b to 4 become larger. For instance,

if we fix a = 1 and change b from 1 to 7 excluding 4, it can be

found that the differences would be decreased when the value

of b close to 4. For the latter, the complementary property

means one of the pair (a, b) is bigger than the removed

degree and the other is smaller would be better. It can be
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Algorithm 1 Tags Selection Function

Input: The source symbol size k, the density parameter d;

Output: The set of sparse tags;

1: procedure TSF(k, d)

2: D ← Ideal soliton distribution for size k;

3: S ← 0, E ← 1, Tags← [];
4: while i < k do

5: S ← S + E ×D(i)
6: if S > (1/d) then

7: Tags← [Tags, i];
8: S ← 0;

9: E ← 1;

10: else

11: E ← E + 1;

12: end if

13: end while

14: return vector [1, Tags, k];
15: end procedure

observed by comparing the selections of (a, b) = (a1, 4 + i)
to (a, b) = (a1, 4 − i), e.g. comparisons between (1, 2) and

(1, 6). The distance influence of such two pairs are the same

but the pair (1, 6) with complementary property observably

has a smaller difference.

Given the above considerations, it turns out that the reallo-

cation of the probability to degrees 3 and 5, the nearest two

degrees to 4, would be the most close to the optimum. For

a better view of showing how close the adjusted distributions

could approach to the optimal one, we illustrate the differences

of error probabilities in logarithm scale in Figure 1(b). It

also gives the proof that the error probability of the original

distribution could be well approximated by the reallocated one.

These observations inspire us regarding how to choose the tags

for a sparse degree distribution.

IV. SELECTION FUNCTION FOR SPARSE TAGS

In addition to the factors observed from experiments, we

also take some intuitive properties into account. For example,

the higher probability to be reallocated would result in higher

difference of the error probability to the optimal one. Summing

up all of above, the main considerations of our degree selection

strategy for sparse tags would be as follows:

1) The number and value of probabilities around each

degree.

2) The distance between the probability reallocated degrees

and the removed one.

The first criterion comes from the positive correlation of the

reallocated probability and the error probability. The second

one accounts for the results of the experiments that replacing

the tag to be removed with two adjacent tags would have the

best approximation for error probability. According to these

criterion, we propose the sparse tags selection function in

Algorithm 1.

We consider the ideal soliton distribution since it would be

the optimal degree distribution in the ideal case. The density
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Fig. 2. Illustration of the work done by TSF(k, d).

parameter d acts as the bound that base on the first main con-

sideration, degree i would not be removed if its probability was

larger than 1/d. On the other hand, we group the degrees with

probabilities below 1/d and concentrate those probabilities to

a nearby degree. The second main consideration would be

applied to the selection of the representative degree of each

group. We accumulate the probabilities multiplied the distance

factors and take the degree while the sum exceeds the bound

1/d. In addition, considering the complementary property of

the selected degrees to distribute the probability, we reserve the

degrees 1 and k to ensure there always exists degrees satisfied

this property to be chosen. Figure 2 illustrates the work done

by Tags Selection Function (TSF) and shows the tags selected

for (k, d) = (30, 10). Tags 1 and 30 were selected to meet

the complementary property. The tags 2, 3 were selected since

the probabilities of these tags in ideal soliton distribution

were above the density criteria. The remaining tags were the

representations of the grouped tags of which probabilities were

below the density bound.

Following we provide some examples of sparse tags selected

by Algorithm 1 for k = 100:

1) TSF(100, 1) = [1, 4, 23, 100].

2) TSF(100, 3) = [1, 2, 5, 12, 30, 76, 100].

3) TSF(100, 5) = [1, 2, 4, 8, 16, 32, 64, 100].

4) TSF(100, 10) = [1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 100].

5) TSF(100, 20) = [1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 40, 56,

78, 100].

We can see that the sparse tags selected in TSF(100, 5) were

close to the series of power of 2 and those selected in

TSF(100, 10) were close to Fibonacci series. Such a result

gives an explanation for the good performance of choosing

these series, power of 2 and the Fibonacci series, as approxi-

mation to the full tags in a certain extent.
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TABLE I
THE ERROR PROBABILITIES OF THE BEST DEGREE DISTRIBUTIONS DISCOVERED IN EACH 30-RUN EXPERIMENT.

Tag Type k = 100 k = 150 k = 200 k = 250 k = 300

d = 3 0.56332720 0.46689819 0.37998428 0.30450876 0.24139928

d = 5 0.56296776 0.46627322 0.37872813 0.30325441 0.24007702

d = 10 0.56293832 0.46622717 0.37871451 0.30324585 0.24008108

d = 20 0.56291529 0.46619257 0.37866506 0.30319090 0.24001890

Full Tags 0.56291403 0.46619313 0.37869051 0.30323273 0.24023868

Min. 0.56291403 0.46619257 0.37866506 0.30319090 0.24001890
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Fig. 3. The evolutionary trends of fitness values in optimization.

V. EXPERIMENTAL RESULTS

In this section, we make a complete examination on the

effects of the proposed sparse tags selection function. We

set up the input parameters k = {100, 150, 200, 250, 300}
and d = {3, 5, 10, 20}. For each (k, d) pair, we firstly use

the TSF function to determine the corresponding tags and

then apply the CMA-ES algorithm to search for the optimal

sparse degree distribution with these tags. Finally, we compare

the minimal error probabilities of the sparse degree distribu-

tion and the full degree distribution. For each optimization

setting, 30 independent runs were tested due to the natural

randomness of evolutionary algorithms. The minimal error

probability in 30 runs was recorded for each generation.

The maximum number of function evaluation is limited to

3 × 104 and the optimization result is presented in Figure 3.

Figure 3(a) shows the early phase of optimization process.

The results of all sparse degree distributions are with high

error rates at beginning because the initial probabilities on

sparse degrees were set by random values. In contrast, the full

degree distribution was initialized as ideal soliton distribution

to avoid the failure of optimizing a large number of decision

variables. As the number of evaluations increases, the curves

of sparse distributions drop down to the same level of error

probability as the full degree distribution. Since the density

parameter, d, of our selection function effects the size of tags,

it also reflects on the convergence of the curve of each sparse

distribution. It can be observed that the curve with d = 3 firstly

converges and d = 20 is the last. Figure 3(b) shows the same

experimental result but in a different interval of x-axis. We can

clearly observe that under the same optimization approach, the

optimized results of sparse distributions are better than that of

the full degree after hundreds of function evaluations.

Fast convergence is an expected advantage for adopting

sparse degree distributions. Furthermore, it can be expected

that the tags defined by our selection strategy could approx-

imate full degrees on performance as nicely as possible. To

examine our argument, the minimal error probabilities of

different tag types are listed in Table I for comparison. The

values were the minimal results found by CMA-ES in 30

runs and 3 × 104 function evaluations. For each column, the

minimal error probability is marked as bold and copied to the

last row. The sparse degree distribution with d = 20 leads

four of totally five different k size experiments. For giving a

more convenient view to compare the results, we survey the

differences between each entry and the minimal value in same

column. Accounting for the minimal error probability of the

column will be zero after all entries minus the minimal one,

we add a base value (10−7) to calculate differences for letting

all data be plotted in a logarithmic coordinate system. Figure 4

visualizes the values in Table I and shows the distance between

each tag types and the near optimal distribution that we have

found. Although a larger value of d which means a larger

subset of degrees will cause slow convergence in optimization,

more tags can form a sparse distribution with a lower error

probability. Our experimental result definitely confirms the

argument and also illustrates that the selection strategy is

practical. On the other hand, the full degree distribution is
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Fig. 4. Differences between the error probabilities and the minimal one.

considered to have global minimal error probability because it

is the universal set of all distributions and forms the complete

search space. However, the optimization result of full degree

distributions gets worse and worse as input symbol size k
increases. For the same optimization algorithm and evaluation

function are implemented for each degree set, the worse results

of full degree distributions could be explained by that the

number of decision variables is too many for CMA-ES to

handled in limited function evaluations.

VI. CONCLUSION

Using evolutionary algorithms to optimize the degree distri-

bution for LT codes is a promising research topic. Sparse de-

gree distributions are frequently used to replace full degrees for

reducing the search space. How good the performance could

be achieved by a sparse degree distribution depends on the set

of its non-zero entries, i.e., tags. However, no investigation

has been done regarding how to decide appropriate tags to

construct sparse degree distributions with good performance.

In this paper, the authors analyzed the influence of different

degrees on decoding rate and proposed a tag selection algo-

rithm to choose tags for LT codes optimization. Finally, the

presented experimental results were evidentially illustrate the

practicality of the proposed tag selection algorithm.

In previous studies, researchers manually chose tags for

sparse degree distributions according to their own experimental

experience. Even though the chosen subset of degrees worked

well, the detailed mechanism was still unknown. This work

made an effort to find out guidelines for choosing appropriate

tags. The proposed selection algorithm can be applied for any

input size and control the level of sparseness conveniently

by adjusting the density parameter. This solution can help

researchers to put more attention in the optimization algorithm

rather than the individual encoding. The paper presented the

qualitative analysis of probability reallocation in a distribution.

The variances of error probability were compared for changing

the reallocated degree and then quantitative analysis is needed

in advance. If the quantity of variance can be measured

precisely, developing a local search based on the measure

approach to enhance certain optimization framework for LT

codes will be possible. Research of this line is definitely worth

pursuing, and the authors are currently taking the challenge.
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[5] E. Hyytiä, T. Tirronen, and J. Virtamo, “Optimal degree distribution for
LT codes with small message length,” in Proceedings of the 26th IEEE

International Conference on Computer Communications (INFOCOM

2007), 2007, pp. 2576–2580.
[6] ——, “Optimizing the degree distribution of LT codes with an impor-

tance sampling approach,” in Proceedings of the 6th InternationalWork-

shop on Rare Event Simulation (RESIM 2006), 2006, pp. 64–73.
[7] C.-M. Chen, Y.-p. Chen, T.-C. Shen, and J. K. Zao, “On the optimization

of degree distributions in LT code with covariance matrix adaptation evo-
lution strategy,” in Proceedings of the IEEE Congress on Evolutionary

Computation, 2010, pp. 3531–3538.
[8] ——, “Optimizing degree distributions in LT codes by using the multiob-

jective evolutionary algorithm based on decomposition,” in Proceedings

of the IEEE Congress on Evolutionary Computation, 2010, pp. 3635–
3642.

[9] A. Talari and N. Rahnavard, “Rateless codes with optimum interme-
diate performance,” in Proceedings of the Global Telecommunications

Conference (GLOBECOM 2009), 2009, pp. 1–6.
[10] R. Karp, M. Luby, and A. Shokrollahi, “Finite length analysis of

LT codes,” in Proceedings of the IEEE International Symposium on

Information Theory 2004 (ISIT 2004), 2004, p. 39.
[11] E. Maneva and A. Shokrollahi, “New model for rigorous analysis of

LT-codes,” in Proceedings of the IEEE International Symposium on

Information Theory (ISIT 2006), 2006, pp. 2677–2679.
[12] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation

distributions in evolution strategies: the covariance matrix adaptation,”
in Proceedings of the IEEE International Conference on Evolutionary

Computation, 1996, pp. 312–317.
[13] A. Auger and N. Hansen, “Performance evaluation of an advanced

local search evolutionary algorithm,” in Proceedings of the 2005 IEEE

Congress on Evolutionary Computation (CEC 2005), 2005, pp. 1777–
1784.

[14] ——, “A restart CMA evolution strategy with increasing population
size,” in Proceedings of the 2005 IEEE Congress on Evolutionary

Computation (CEC 2005), 2005, pp. 1769–1776.

2468



When and What Kind of Memetic Algorithms

Perform Well

Jih-Yiing Lin

Department of Computer Science

National Chiao Tung University

HsinChu City, TAIWAN

Email: jylin@nclab.tw

Ying-ping Chen

Department of Computer Science

National Chiao Tung University

HsinChu City, TAIWAN

Email: ypchen@nclab.tw

Abstract—The synergy between exploration and exploitation
has been a prominent issue in optimization. The rise of memetic
algorithms, a category of optimization techniques which fea-
ture the explicit exploration-exploitation coordination, much
accentuates this issue. While memetic algorithms have achieved
remarkable success in a wide range of real-world applications, the
key to a successful exploration-exploitation synergy still remains
obscure. Manifold empirical results and theoretical derivations
have been proposed and provided various perspectives from dif-
ferent algorithm-problem complexes to this issue. In our previous
work, the concept of local search zones was proposed to provide
an alternative perspective depicting the general behavior of
memetic algorithms on a broad range of problems. In this work,
based on the local search zone concept, we further investigate
how the problem landscape and the way the algorithm explores
and exploits the search space affect the performance of a memetic
algorithm. The collaborative behavior of several representative
archetypes of memetic algorithms, which exhibit different degrees
of explorability and exploitability, are illustrated empirically
and analytically on problems with different landscapes. As the
empirical results consist with the local search zone concept and
describe the behavior of various memetic algorithms on different
problems, this work may reveal some essential design principals
for memetic algorithms.

I. INTRODUCTION

Optimization, finding the optimal element among a set of

feasible ones, is a type of problems commonly encountered

in many fields. Numerous real-world and theoretical problems

can be formulated as optimization problems and solved by ap-

plying or developing various optimization techniques. Among

them, general meta-heuristics, population-based algorithms

which explore the search space stochastically according to

some common heuristics, exhibit good explorative ability and

have a good chance to perform well on many real-world op-

timization problems which are generally black-box problems

with little a priori problem knowledge available. Some of the

renowned meta-heuristics are evolutionary algorithms, particle

swarm optimization, ant colony algorithms, and the like.

However, the generality of meta-heuristics which provides the

wide applicability also limits the efficiency of meta-heuristics.

When complicated problems are encountered, without taking

advantages of problem specific information given a priori

or retrieved during optimization, meta-heuristics can merely

deliver mediocre performance. In an attempt to incorporate

the good explorative ability of general meta-heuristics and the

good exploitive performance of problem specific algorithms

to provide more efficient techniques for more complicated

problems, techniques which employ general meta-heuristics as

global search and problem specific algorithms as local search,

referred to as memetic algorithms (MAs), have thrived. A

variety of successful memetic algorithms in various domains,

ranging from NP-hard combinatorial problems to non-linear

programming problems, also have been reported [1].

Among these memetic algorithms, the synergy between

global search and local search has always been one of the key

design issues. The seminal study on memetic algorithms [2]

and its succeeding work [3] both suggest that memetic al-

gorithms favor infrequent starts and long running time of

local search. They also proposed several renowned strategies

for selecting solution candidates on which the local search

operator is applied: the fitness based selection and the diversity

based selection. However, with the aids of these guidelines,

designing a memetic algorithm for a specific problem still

requires considerable time as the optimal design is not only

algorithm specific but also problem dependent. Parameterizing

difficulties in the design of memetic algorithms have been

practically encountered in applications and also theoretically

proved on several problem classes [4], [5]. To cope with this

issue, memetic algorithms have been evolved from hybridiza-

tion of global search and local search to hybridization with

adaptation [6]–[8]. These algorithms adopting adaptive local

search, referred as to memes, are robust and efficient with the

expense of the learning cost of memes.

These studies on different algorithm-problem complexes

have provided manifold aspects to the behavior of different

memetic algorithms on different problems. In our previous

work [9], we proposed the concept of local search zone to

provide an alternative perspective which aims to depict the

general behavior of memetic algorithms. In the previous work,

a theoretical model depicting the exploration-exploitation syn-

ergy of the subthreshold seeker, a representative archetype

of memetic algorithms, on different Quasi-Basin Classes

(QBCs) was formulated to represent the general behavior

of collaboration between global search and local search in

memetic computation on a broad class of objective functions.

As the theoretically and empirically verified model not only

well depicts the collaborative behavior of the representative
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archetype of memetic algorithms but also consists with the

empirical results in quite a few studies in the literature, further

investigation on the effect of problem landscapes and how the

explorability of global search and the exploitability of local

search affect the optimization performance is possible.

In this work, as practical problems generally exhibit some

degree of continuity rather than distributions of different sets

of stochastic points described in QBCs, we further extend the

QBC to Discrete Lipschitz Quasi-Basin Class(DLQBC) which

categorizes Lipschitz continuous problems according to the

number of basins and the roughness of landscape. Then we

apply several representative archetypes of memetic algorithms

on different DLQBCs to investigate the collaborative behavior

of memetic algorithms exhibiting different explorability and

exploitability on different problem landscapes. As the em-

pirical results of this framework not only consist with the

theoretical model proposed in our previous work but also well

delineate how different types of memetic algorithms behave on

different problems, this work may shed light into the design

of memetic algorithms.

The rest of this paper is arranged in the following manner.

We firstly introduce the framework of subthreshold seeker on

QBCs as the basis of this study in Section II, then provide the

definition of Discrete Lipschitz Quasi-Basin Class (DLQBC)

and its sampling test scheme in Section III, and propose

several representative archetypes of memetic algorithms for

investigation in Section IV. The empirical results of the

proposed representative archetypes memetic algorithms on

different DLQBCs are presented and discussed in Section V.

Finally, we conclude this paper in Section VI.

II. SUBTHRESHOLD SEEKER ON QUASI-BASIN CLASSES

In this section, the concept of local search zones and the

theoretical model proposed in our previous work [9] are briefly

reviewed to form the basis of this study.

A. Quasi-Basin Classes

In [9], an optimization problem is to optimize a given

objective function f : X → Y , and the optimization goal

is to find x∗ ∈ X with the minimum value y∗ ∈ Y . The X is

assumed a finite set as optimization problems are generally

numerically solved on digital computers. To simplify the

derivation, every function maps different x ∈ X to different

y ∈ Y is also assumed. For generality, the search space is

interpreted as a graph viewed by an optimization algorithm.

In this interpretation, the vertices are the set of points of X
and the edges are the set of pairs of points which are neighbors

viewed by an optimization algorithm. The terms X and V (G)
are used exchangeably in the following text.

Based on the fundamental definition of the search space, the

local search zones are defined as regions where local search

prefers and are virtually determined by the adopted local

search criterion and the landscape of the search space. Thus,

frameworks based on the concept of local search zones are

especially suitable for investigating the collaboration between

global search and local search. As local search zones are gen-

erally hard to measure, quasi-basins are used to approximate

local search zones. Given a threshold βm(f), which forms a

set Sm(f) consisting m vertices with their objective values

smaller than or equal to the threshold, a quasi-basin (QB) is

defined as a maximal connected subset in Sm(f). Accordingly,

the Quasi-Basin Class(QBC) is proposed to define a class of

problems with m subthreshold points, points with objective

values that are smaller than or equal to βm(f), distributed

among b distinct quasi-basins. As the vertices residing in

quasi-basins are better than the other vertices in the search

space and are favored by fitness-relevant local search criteria,

QBCs categorize the problems according to their distribution

of quasi-basins which is conceptually mapping to the distri-

bution of local search zones.

B. Subthreshold Seeker

To illustrate how the distribution of local search zones

affects the performance of a memetic algorithm, [9] adopts

Subthreshold Seeker (SS) as a representative archetype of

memetic algorithms. SS is a simplistic, minimal optimization

algorithm that coordinates random global search and exhaus-

tive local search according to a threshold. It explores the search

space by uniformly randomly sampling the search space. When

a subthreshold point is encountered by global search, SS

exploits the quasi-basin defined by the local search threshold

where the encountered subthreshold point resides in. In other

words, the exhaustive local search will eventually visit all the

points in the encountered quasi-basin. After local search in the

quasi-basin is done, SS continues to global search until another

subthreshold point is encountered. This switching between

global search and local search proceeds until the stopping

criterion is satisfied.

C. Theoretical Model of SS on QBCs

Now we are ready for the theoretical model of SS on

QBCs. Given a QBC Q(G,Y,m, b), the theoretical expected

samplings, T , for SS, with its local search threshold set to

βm(f), to find the minimum of a function in the QBC is

derived in [9] as

T =
cN

m

⌈
b

2

⌉
+

m + 1

2
, (1)

where N denotes |G|, the size of G, and c denotes a parameter

between 0.75 and 1.5. The first term and the second term of

this formula are corresponding to the global search time and

the local search time of SS respectively. The global search

time of SS depends on the expected time for the random

search to find one of the m subthreshold points in N points.

It is inversely proportional to m and dramatically drops as

m increases. On the other hand, the local search time of

SS linearly scales with m as SS employs exhaustive local

search. Summing up the global search time and the local

search time, a v-shape of the expected evaluation time along

the m-axis with its optimal setting of m around
√

bcN can

be obtained. This theoretical model suggests that applying
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local search on small amount of qualified individuals generally

delivers better performance than applying local search on

several superior individuals or conducting massive local search

on indistinguishable individuals.

III. DISCRETE LIPSCHITZ QUASI-BASIN CLASS

In order to demonstrate the effect of problem landscapes,

we adopt the concept of Lipschitz continuity to define the

Discrete Lipschitz Quasi-Basin Class (DLQBC) as a class

that categorizes problems exhibiting continuity according to

the number of modals and the roughness of landscape. The

Discrete Lipschitz Quasi-Basin Class (DLQBC) is defined in

Definition 1.

Definition 1: (Discrete Lipschitz Quasi-Basin Class,

DLQBC). Given a graph G and a co-domain Y , the

corresponding discrete Lipschitz quasi-basin class with b
distinct quasi-basins, Lipschitz constant K and landscape

monotonicity mo is defined as

L(G,Y, b,K,mo) :=

{f : V (G)→ Y | ∀v1v2 ∈ E(G), |f(v1)− f(v2)| ≤ K,

∀v1v2, v2v3 ∈ E(G),

E[Prob[(f(v1)− f(v2))× (f(v2)− f(v3)) > 0]] ≈ mo,

S|V (G)/2|(f) =
b⋃

i=1

QBi,
b⋂

i=1

QBi = ∅,

⌊|V (G)|/2b⌋ ≤ |QBi| ≤ ⌈|V (G)|/2b⌉ , 1 ≤ i ≤ b} .

In this definition, a function that belongs to a DLQBC has its

value difference of any two neighbor points in the search space

bounded to less than or equal to the Lipschitz constant K. The

mo parameter, defined as the approximated expected value of

the probability of the monotonicity among three connected

points, decides the roughness of landscape. An mo value of 1
indicates a smooth landscape while a mo value of 0.5 indicates

a rough landscape. We also set the number of subthreshold

points to V (G)/2 and adopt uniform basin size, thus the b
specified in a DLQBC can match the general sense of the

number of modals of a problem.

A. Sampling Test Scheme

For empirical convenience, we implement the simplest case

of DLQBC, pathwise Discrete Lipschitz Quasi-Basin Class

(PDLQBC), which is the class of functions with a simple path

spatial structure, G = v1v2 . . . vn, with Y = R.

To investigate the expected behavior of an optimization

algorithm over a specific PDLQBC, we sample functions from

a specific PDLQBC via the PDLQBC sampler of which the

pseudo code is shown in Fig. 1. The PDLQBC sampler firstly

determines the size of each basin and hill, then constructs and

concatenates each basin and hill. In DLQBC, the subthreshold

points and the rest points have equal amount, thus θ is set

to n/2∗. The UniformPick(θ − 1, b) function uniformly

randomly picks b integers from the set {1, . . . , θ − 1}. Thus

after sorting GTL and concatenating θ to the gtli sequence,

∗For simplicity, we illustrate the sampler only when n is even.

1: procedure PATHWISE DLQBC SAMPLER(v1v2 . . . vn,

Y = R, b,K,mo)

2: θ ← n/2
3: GTL← UniformPick(θ − 1, b)
4: {gtl1, gtl2, . . . , gtlb+1} ← Sort(GTL), θ
5: Sizeb ← ⌊θ/b⌋
6: f(v)gtl1

1 ← StartSampler(gtl1, θ,K,mo)
7: idx← gtl1
8: for i = 1 to b do

9: if i ≤ mod(Θ, b) then

10: l← Sizeb + 1
11: else

12: l← Sizeb

13: end if

14: f(v)idx+l
idx+1 ← SubSampler(l, θ,−K,mo)

15: idx← idx + l
16: l← gtli+1 − gtli
17: if i ≤ b then

18: f(v)idx+l
idx+1 ← SubSampler(l, θ,K,mo)

19: else

20: f(v)idx+l
idx+1 ← EndSampler(l, θ,K,mo)

21: end if

22: idx← idx + l
23: end for

24: return f
25: end procedure

Fig. 1. Pathwise DLQBC Sampler.

gtli+1− gtli can be utilized as the size of the i’th hill. As the

basin sizes are uniform, either ⌊θ/b⌋ or ⌊θ/b⌋+1 are assigned

as the basin sizes. Each basin or hill {f(va), . . . , f(vb)},
indicated by f(v)b

a, is constructed by StartSampler or

SubSampler or EndSampler. The SubSampler constructs

a basin (in a ∪ shape) or a hill (in a ∩ shape) according to

the specified basin/hill size l, θ, the Lipschitz constant K,

and the landscape monotonicity mo. When K is negative,

the SubSampler samples a path of length l consisting half

of down-hilling subthreshold points and half of up-hilling

subthreshold points which obey the continuity specified by

the Lipschitz constant K and the landscape monotonicity

mo. Furthermore, the starting point and end point of this

∪-shape path have their value within θ − K to guarantee

the Lipschitz continuity of all the concatenated basins and

hills. Similarly, when K is positive, the SubSampler samples

a ∩-shape path which fulfils the Lipschitz continuity and

landscape monotonicity constraints. The StartSampler and

EndSampler samples a downhill path and a uphill path that

fit the aforementioned constraints respectively. Via concatenat-

ing the paths constructed by StartSampler, SubSampler,

and EndSampler, we can sample an instance that belongs to

a PDLQBC.

In our framework, all the PDLQBC instances have their G
set to v1v2 . . . v1000 and K set to 10. The notation b# denotes

that the b of the PDLQBC is set to #. The notations easy
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Fig. 2. Instances of PDLQBCs

and hard denote that mo of the PDLQBC is set to 1 and 0.5
respectively. Fig. 2 illustrates two instances of PDLQBCs.

IV. REPRESENTATIVE ARCHETYPES OF MEMETIC

ALGORITHMS

In this framework, we investigate how the explorability and

exploitability of a memetic algorithm affect its performance.

In our perspective, according to the degree of explorability

and exploitability, basic optimization algorithms are mainly of

three types: random search, heuristic search, and exhaustive

search. Here we refer to pure random sampling as random

search, refer to sampling according to some rules as heuristic

search, and refer to sampling all the vertices as exhaustive

search. Accordingly, we investigate representative archetypes

of memetic algorithms consisting of different combinations of

random search, heuristic search, and exhaustive search.

A. Nelder-Mead Method

As heuristic search algorithms are various in forms, we

adopt the Nelder-Mead method (NM) as a representative

heuristic search algorithm. The Nelder-Mead method utilizes

the concept of a simplex, which is a special polytope of

N + 1 vertices in N dimensions, and features its capability

of approximating a local optimum of a problem with N
variables when the objective function varies smoothly and is

unimodal. As our sampling test scheme samples instances of

PDLQBC which are fundamentally one dimension problems,

we adopt the 1-D Nelder Mead Algorithm shown in Fig. 3.

The Uniform(X , 2) indicates a uniformly random sampling

of two vertices from the search space X . To avoid stagnation

during a global search, when x1 and x2 appear to be the same

vertex, we re-sample x1 and x2. Note that when this Nelder-

Mead method is utilized as a local search algorithm in the

following text, the stop criterion is set to the convergence of

the simplex. In other words, it will stop when x1 and x2 appear

to be the same vertex.

B. Memetic Algorithm Types

Fig. 4 illustrates the pseudo code of a generalized memetic

algorithm. The S is the resultant set of vertices of the current

global search and the reference for the next global search. If

one of the vertex si in S satisfies the local search criterion,

local search will be performed on the point. This process

1: procedure 1-D NELDER MEAD ALGORITHM(X , Y , f :
X → Y)

2: {x1, x2} ← Uniform(X , 2)
3: while the stopping criterion is not satisfied do

4: {x1, x2} ← Sort({x1, x2})
5: xr ← x1 + (x1 − x2)
6: if f(xr) < f(x1) then

7: xe ← x1 + 2(x1 − x2)
8: if f(xe) < f(x1) then

9: x2 ← xe

10: else

11: x2 ← xr

12: end if

13: else

14: xc ← x2 + (x1 − x2)/2
15: x2 ← xc

16: end if

17: if x1 = x2 then

18: {x1, x2} ← Uniform(X , 2)
19: end if

20: end while

21: end procedure

Fig. 3. 1-D Nelder-Mead Algorithm

1: procedure GENERALIZED MEMETIC ALGORITHM(X , Y ,

f : X → Y)

2: S ← Initialization()
3: while the stopping criterion is not satisfied do

4: S ← GlobalSearch(S,X ,Y, f : X → Y)
5: for si ∈ S do

6: if local search criterion is satisfied then

7: si ← LocalSearch(si,X ,Y, f : X → Y)
8: end if

9: end for

10: end while

11: end procedure

Fig. 4. A generalized memetic algorithm.

will continue until the stopping criterion is satisfied. In this

framework, we set the stopping criterion to the sampling of

the global optima, i.e., the minimum. To illustrate how local

search criteria affect the collaboration between global search

and local search based on the concept of local search zones, we

set the local search criterion as the subthreshold seeker does.

Thus, local search will be performed on any vertex si in S with

an objective value f(si) less than or equal to βm(f), the local

search threshold, and we can then investigate the behavior of

the subject memetic algorithms based on the model in [9].

To identify representative archetypes of memetic algorithms

for investigation, we firstly categorize all optimization algo-

rithms into three types: random search, heuristic search, and

exhaustive search. Among these three types, heuristic search

exhibits both fair explorability and exploitability while random

search and exhaustive search deliver full explorability and full
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TABLE I
LIST OF REPRESENTATIVE ARCHETYPES OF MEMETIC ALGORITHMS

Memetic Algorithm Global Search Local Search

SS random search exhaustive search

MA1 Nelder-Mead method exhaustive search

MA2 random search Nelder-Mead method

exploitability, respectively. Based on the paradigm of memetic

algorithms described in Fig. 4, the three algorithms listed

in Table. I are proposed as three representative archetypes

of memetic algorithms. They are Subthreshold Seeker (SS),

Memetic Algorithm Type 1 (MA1), and Memetic Algorithm

Type 2 (MA2). SS, as introduced in Section II, employs ran-

dom global search and exhaustive local search. MA1 employs

NM as its global search and exhaustive search as its local

search. MA2 employs random search as its global search and

NM as its local search. In this manner, we consider SS, MA1,

and MA2 are three representative archetypes for memetic

algorithms. Note that following our previous work [9], the

evaluation time of all the optimization algorithms, SS, MA1,

MA2, and NM, in this framework is considered as the count

of non-repeated sampling to find the minimum of a PDLQBC

instance. In other words, repeated samplings are not counted.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we investigate the behavior of all the

proposed representative archetypes of memetic algorithms on

different DLQBCs. The collaborative behavior of different

archetypes of memetic algorithms on different problems cate-

gorized by the number of modals and the landscape roughness

will be illustrated by the evaluation times of the proposed

algorithms with different local search thresholds on four

representative PDLQBCs. The notations MA2-1 and MA2-

10 are used for MA2 with one and ten step distances for

the initial simplex of the NM local search respectively. That

is, one vertex of the initial simplex is set to the encountered

subthreshold point, and the other is set to a point that is one

or ten steps far from the encountered subthreshold point.

All the proposed algorithms are tested on four PDLQBCs,

b1-easy, b1-hard, b10-easy, and b10-hard. These four

PDLQBCs are used as representative problem instances of

smooth unimodal problems, rough unimodal problems, smooth

multi-modal problems, and rough multi-modal problems, re-

spectively. The local search threshold of each algorithm is set

to βm(f) and m is set from 1 to 991 with a step of 10.

For each algorithm with a specified local search threshold, its

evaluation time on a PDLQBC is measured by averaging 50

function instances with 20 independent runs on each instance.

As the theoretical model derived in [9], modeling the

evaluation time as the summation of global search time and

local search time, describes the behavior of SS on QBCs well,

we extend this modeling approach to explain the behavior of

different MAs on DLQBCS. In the remainder of this section,

we will firstly analyze the behavior of NM as a global search

algorithm and as a local search algorithm. Then, we will

investigate and discuss the behavior of the proposed archetypes

of MAs on different problems.

A. Nelder-Mead Method as Global Search and Local Search

In order to explain the behavior of the proposed archetypes

of memetic algorithms in a similar way to the theoretical

model of SS on QBCs, we demonstrate the global search

behavior and local search behavior of NM, which is employed

as global search as well as local search in the proposed

archetypes. The explorability and exploitability of NM are as-

sessed by measuring the average time for NM to find one of the

m subthreshold points in N points and the minimum among

m points, respectively. In both assessments, we test them on

b1-easy and b1-hard problems. The G in the explorability

assessment is set to v1v2 . . . v1000 and in the exploitability

assessment is set to v1v2 . . . vm. Figs. 5(a) and 5(b) illustrate

the global search behavior and the local search behavior of

NM with respect to m. As NM is employed as global search

in MA1 and employed as local search in MA2, we also

compare the global search time of MA1, MA1GS, and the

local search time of MA2-10, MA2LS, with the explorability

of NM, NMGS, and the exploitability of NM, NMLS.

In Fig. 5(a), theoGS is calculated as 1.5 log2(N/m). On

b1-easy problems, both NMGS and MA1GS could be approx-

imated by theoGS and are logarithmic inversely proportional

to m. On b1-hard problems, the roughness has more significant

impact to the NM’s global search behavior, either NMGS or

MA1GS, when m is rather small. In Fig. 5(b), theoLS is

calculated as 2 log2((m + 1)/2). On b1-easy problems, both

NMLS and MA2LS could be approximated by theoLS and

exhibit a logarithmic growth with respect to m. On b1-hard

problems, the roughness of the landscape has more impact

on both NMLS and MA2LS as m increases. As the goal of

MA1 and MA2 is to find the minimum of a problem instance,

several local search rounds and thus several global search

rounds are required on rough landscapes and this could results

in the larger values of MA1GS and MA2LS than the values

of NMGS and NMLS.

In short, when NM is employed as global search on uni-

modal problems, it performs significantly better than random

search when m is small. When NM is employed as local

search, it is more robust to the size of local search space

than exhaustive search when the landscape is smooth. However

landscape roughness could alter this robustness.

B. Fundamental Observations

Now we investigate the behavior of the proposed archetypes

of memetic algorithms on different problems. Firstly, Fig. 6

and 7 illustrate the evaluation times of the proposed archetypes

of memetic algorithms on different PDLQBCs, b1-easy, b1-

hard, b10-easy, and b10-hard. On these four types of problems,

the evaluation times of NM and the theo lines are included to

provide baselines for performance comparison of the subject

algorithms. The theo lines are depicted according to Equa-

tion(1), the theoretical evaluation time of SS on QBCs, with

c set to 1 when b1 and set to 1.5 when b10.
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Fig. 5. The global search behavior and local search behavior of NM on
DLQBCs. Fig. 5(a) illustrates the average evaluation time for the Nelder-
Mead method to find one subthreshold point among N points when there are
m subthreshold points. Fig. 5(b) illustrates the average evaluation time for
the Nelder-Mead method to find the minimum point among m points.

Note that in Fig. 6 and 7, the evaluation times of all the

algorithms exhibit either v-shapes or L-shapes along the m
axis. As the evaluation time is the summation of global search

time and local search time, and global search time generally

dramatically decreases as m increases while local search time

basically increases as m increases, the global search time and

the local search time dominate the evaluation time when m
is rather small and when m is sufficiently large, respectively.

Thus, when m is rather small, MA1, which employs NM as

its global search, has a much smaller evaluation time than

SS and MA2, which employ random global search. When

m is large, the employed local search algorithm dictates

the evaluation time of a memetic algorithm: SS and MA1,

employing exhaustive local search, have their evaluation times

linearly scale with respect to m as the exhaustive local search

does on all the four types of problems; MA2, employing
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Fig. 6. The behavior of the proposed representative archetypes for memetic
algorithms on unimodal PDLQBCs.

NM as local search, has its evaluation time logarithmically

increases with respect to m on easy problems and linearly

increases with respect to m on hard problems as NM local

search does. The shapes and collaborative behavior of all

the subject algorithms basically consist with the modeling

approach in [9]. This implies that the proposed local search

zone concept could be adopted to model the collaborative

behavior of more realistic algorithm-problem complexes than

the one proposed in [9].

C. Memetic Algorithms on Unimodal Problems

In Fig. 6(a), NM captures the landscape well and achieves

an ideal evaluation time about the order of the logarithm

of the size of the search space. On these smooth unimodal

problems, both MA1, employing NM as global search, and

MA2, employing NM as local search, have their best per-

formance at some values of m better than NM; and as both

the global search algorithm and the local search algorithm
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Fig. 7. The behavior of the proposed representative archetypes for memetic
algorithms on multi-modal PDLQBCs.

of SS perform worse than NM global search and NM lo-

cal search, its collaborating performance consequently is not

comparable to NM and the rest of MAs. This implies that

when an optimization algorithm is efficient for a problem,

properly collaborating it with a global search algorithm or

a local search algorithm could further slightly improve its

performance. Note also that on smooth unimodal problems,

MA2 which employs NM local search is much robust to m,

corresponding to the local search criterion, as NM local search

scales logarithmically with respect to m. Contrastively, MA1

employing exhaustive local search performs better than NM

only in a small range of m, thus a more delicate setting of m is

required. This may also suggest that when having an efficient

problem-specific algorithm at hand for an unimodal problem,

either utilizing the algorithm alone or properly employing it

as local search will provide an acceptable and robust solution

to the problem. Taking CMA-ES as an example of efficient

heuristic algorithm, on the Sphere function of BBOB 2010,

algorithms which employ CMA-ES and have their exploration-

exploitation synergies adjusted perform well [10].

In Fig. 6(b), as the landscape is rough, NM cannot perform

well as it does on b1-easy problems and may be considered

as a heuristic algorithm that cannot properly capture the

landscape of problem. Under this circumstance, when NM

is employed as local search, it may not find the minimum

of a quasi-basin in one local search and thus requires more

global searches and local searches to revisit a quasi-basin.

Contrastively, though exhaustive local search linearly scales as

m increases, it is more efficient than NM on small rough quasi-

basins for it guarantees the discovery of the minimum of the

quasi-basin in one local search. When m, corresponding to the

size of the local search zone, is large enough for an employed

global search to enter effortlessly and small enough to require

little exhaustive local search time, a better performance than

NM could be attained by collaborating a global search and

exhaustive local search. This is why the best evaluation times

of SS and MA1 outperform those of NM and MA2.

Note that as MA1 employs NM as its global search, it

is more efficient than SS when m is small and thus has

better evaluation times than SS does. Note also that MA2

does not benefit from collaborating random global search and

NM local search as their best performance could not surpass

NM’s performance. With a bad initial local search step size,

MA2-1 even exhibits the severely performance degradation

than MA2-10 does on these problems. The rough landscapes

make the initial local search step influential to MA2. Over-

all, these observations on b1-hard problems suggest that on

rough unimodal problems, memetic algorithms which employ

heuristic global search and exploitive local search like MA1

does may have a good chance of achieving good performance

with an elaborated collaborating mechanism. Or, in another

perspective, when heuristic algorithms cannot properly capture

the landscape of a unimodal problem, carefully coordinating

it with exploitive local search algorithms is a good choice

to pursue salient performance. For example, the Artificial

Bee Colony algorithm, one of the best algorithms for the

Rastrigin function of BBOB 2010, is an exploitive heuristic

algorithm [10].

Besides the performance relevant observations on unimodal

problems, we explain the intriguingly increasing deviations

between SS and theo with respect to m in Figs. 6(a) and 6(b).

These deviations may be mainly due to the landscape regular-

ity introduced by the Lipschitz continuity. In these unimodal

problems, the minimum always lies around the middle points

of the only basin. Any local search starts at a subthreshold

point in the basin will find the minimum within half of the

size of subthreshold points. Similarly, MA1 which employs the

exhaustive local search also exhibits this deviation. As MA1’s

initial local search points are the better point of simplexes,

they are generally better than SS’s. On b1-easy problems

with smooth landscapes, MA1’s initial local search points are

generally closer to the local minimum than SS’s. This makes

MA1 deviate more from theo than SS in Fig. 6(a). On the

other hand, as shown in Fig. 6(b), on b1-hard problems with
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rough landscapes, better initial local points do not guarantee

closer distances to the local minimum and do not help much

to reduce the local time.

D. Memetic Algorithms on Multi-modal Problems

In Fig. 7(a), NM performs worse than on b1-hard problems.

The reason for this performance degradation may be twofold.

Firstly, the multi-modal landscapes may induce deceptive

unimodal information and thus interfere the fast convergence

of NM. Secondly, as explorability is not a main concern of

NM, it may repeatedly visiting the same quasi-basin leaving

other quasi-basins, where the minimum may reside in, unex-

plored. On these multi-modal problems, MA2 exhibits the best

performance as it employs random global search, capable of

effectively exploring the basins, and NM local search, capable

of efficiently exploiting an encountered quasi-basin. Though

m has smaller impact on MA2, a feature of NM local search,

when the m is properly set to some values that guarantee

both small global search time and local search time, MA2 still

could further achieve its best performance as indicated in this

figure. SS also has its best performance outperforming NM on

these multi-modal problems as a result of good collaboration

between the random global search and exhaustive local search.

Note that MA1 does not perform well as its collaboration

of NM global search and exhaustive local search may not

suit this type of problems well. All of these observations

on b10-easy problems suggest that on smooth multi-modal

problems, coordinating random global search with an efficient

heuristic algorithm may provide a good optimization solution

which is in some degree robust to the local search criterion.

Furthermore, these observations also imply that when an

efficient problem-specific local search is at hand for multi-

modal problems, coordinating it with explorative global search

algorithm may provide salient performance than other kinds of

hybrids. In recent studies, the IPOP-CMA-ES, which benefits

from the efficiency of CMA-ES and the explorative restart and

increase population size mechanism, may be a good example

of MA2-type algorithms. It performs well on the Weierstrass

function of BBOB 2010 [10].

In Fig. 7(b), NM has its worst performance among the

four types of problems due to the roughness and the multi-

modality of the landscapes explained in b1-hard and b10-easy

problems. On these problems, all the MAs (considering MA2-

1 and MA2-10 as one) with a not-too-bad coordination of

global search and local search achieve better performance than

NM does. This implies that when the problem is extremely

hard, rough and multi-modal, any MAs with proper design

could outperform a mediocre heuristic algorithm. Note that

SS achieved the best performance among MAs. This suggests

that memetic algorithms employing an explorative global

search algorithm like random search and an exploitive local

search algorithm like exhaustive search, with an elaborated

coordination, have a chance to achieve better performance than

other combinations of memetic algorithms on hard problems.

Another interesting observation on the algorithmic perfor-

mance is that SS and MA1 perform better on b10-hard than

on b10-easy. This may be due to the larger deviations among

depths of the basins induced by the landscape roughness as

illustrated in Fig. 2(b). Within some value of m, the number of

quasi-basin viewed by the SS and MA1 on b10-hard problems

is less than that on b10-easy problems and thus requires less

evaluation time. Note that though with this virtual reduction

on the number of quasi-basins, the landscape roughness still

make the b10-hard problems harder than b10-easy for NM

and MA2 which lack of the exploitability of exhaustive local

search as depicted in Fig. 7(b).

VI. CONCLUSIONS

In this work, we made an attempt to investigate when

and what kind of memetic algorithms perform well. We

extended our previous framework to illustrate the collabora-

tive behavior of three representative archetypes of memetic

algorithms and compare them with a representative heuristic

algorithm, Nelder-Mead method, on four representative types

of problems. On each type of problems, the success and

failure of each algorithm are analyzed and discussed. This

study may provide a reasonable and systematic explanation to

why some memetic algorithms on certain problems outperform

heuristic algorithms and attain salient performance, and we, as

researchers on memetic algorithms, thus could gain insights

into the design principals of memetic algorithms.
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