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Abstract

In this paper, we propose some “measurements” of the “non-stopping timeness” of
ends G of previsible sets, such that G avoids stopping times, in an ambiant filtration.
We then study several explicit examples, involving last passage times of some remarkable

martingales.
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1. INTRODUCTION: ABOUT ENDS OF PREVISIBLE SETS

In this paper, we are interested in random times G defined on a filtered probability
space (0, F, (F;), P) as ends of (F;)-previsible sets I', that is,
G=Gr—sup{t: (tw)eT} (1)

For simplicity, we shall make the following assumptions:

(C) All ((F), P)-martingales are continuous;
(A) For any (F;)-stopping time 7', P(G =T') = 0.

To such a random time, one associates the Azéma supermartingale
Z{ = P(G > t|F),
which, under (C) and (A), admits a continuous version.

Theorem 1.1. Under (C) and (A), there ezists a unique positive local martingale (Ny,t >
0), with No = 1, such that

N,
78 = P(G > 1) = .
t
where S; == supNy fort > 0.
s<t
Proof. See [8]: page 16, Proposition 1.3. O

Note that since G < oo a.s., IV — 0 a.s. We note further that log(Sy) is distributed

exponentially, since by Doob’s maximal identity

aw 1
log(Swo) (law) log <U) ,

where U is uniform on [0,1]. Then, the additive decomposition of the supermartingale
N;/S; is given by

M1y / T log(S1) = Ellog(S0) ] — Toa (S5 2)

Note that the martingale E[log(S«)|F:] belongs to BMO since from (2),
Ellog(Sw) — log S| F] < 1.

In a number of questions, it is very interesting to consider the smallest filtration (F7)¢>o,
which contains (F;), and makes G a stopping time; this filtration is usually denoted
(Ff)i=0. One of the interests of (Z7) is that it allows to write any (F;)-martingale as
a semimartingale in (F¢);>0; see e.g. [2, 3, 8, 9], for both general formulae and many

examples.
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Recently, it has been understood that Black-Scholes like formulae are closely related
with certain such G’s, thus throwing a new light on a cornerstone of mathematical finance,
see, e.g. [6, 7]. In the present paper, with (A) as our essential hypothesis, we would like to
measure “how much G differs from an (F;) stopping time”. The remainder of this paper
consists in two sections. In Section 2, we propose several criterions to measure the NST
(= Non Stopping Timeness) of G’s which satisfy (C) and (A). In Section 3, we compute
explicitly this function mg for various examples, where G is the last passage time at a
level of a martingale which converges to 0, as t — oo.

2. SEVERAL POSSIBLE "NST” CRITERIONS

Consider a filtered probability space (2, F, (F:), P), an (F;)-previsible set I' and a
random time G given by (1). Our aim is to discuss the difference between G and an
(F)-stopping time. A natural question is to consider the function

mg(t) = E [(1(@) — PG> t!]—"t)ﬂ .

If G is an (F;)-stopping time, the Azéma supermartingale Zf = P(G > t|F;) is identically
equal to 1(g>y). Thus, mg(t) = 0 for all t. If G is not an (F;)-stopping time, a simple but
useful remark is

mg(t) = E[Z7 (1 - 2Z7)]. (3)
Instead of considering the “full”function (mg(t), t > 0), we may consider only:

mg = sup mg(t) (4)
>0

as a “global” measurement of the NST of G.

Here are two other, a priori natural, measurements of the NST of G:

mg = E |sup (2 (1—Z7)) (5)
t>0
and
mg =sup E [Z§ (1 - ZF)] (6)
T>0

where T runs over all (F;) stopping times.

However, we cannot expect to learn very much from mg* and mg, since it is easily

shown the following result

Lemma 2.1.

*ok ~

(7)



Proof. (i) The fact that m§" = 1/4 follows immediately from

1
sup z(l—x) = —,
z€0,1] 4
and the fact that, a.s., the range of the process (Zf,t > 0) is [0, 1] since Z§ = 1,
79 =0, and (Z¢,t > 0) is continuous.
(ii) Let us consider T, = inf{t : ZZ = a}, for 0 < a < 1. Then:

Z9(1 — Ztg)}t::ra =a(l —a).
Hence,
1
sup [Z5. (1—25)] = sup (a(l—a)) = 1
a€)o, 1 a€lo,1]

O

An immediate result is that 1/4 is an upper bound of mg due to the definition. More-
over, there are some other measurements which have been investigated in a number of
literatures.

Remark 2.2. (1) (The optional stopping time discrepancy pug) It has been shown in
[4], of stopping times, among random times, as the times 7 such that for every

bounded martingale (M;);>o one has
M, = E[M.|F,],

where, under our hypothesis (C), we may define F, = 0{H,; H previsible}. Thus,
another measurement of the NST of G is
pg = sup  E[(Mg— E[Mu|Fg])’] .

Mo €L?(Foo)
E(MZ,)<1

(2) (Distance from stopping times) We introduce
vg = inf E|G — T,
T>0

where T" runs over all (F;) stopping times. However, this quantity may be infinite
as G may have infinite expectation. We note that this distance was precisely
computed by du Toit-Peskir-Shiryaev in the example of [1]. A more adequate
distance may be:



In this paper we concentrate uniquely on the study of (mg(t), ¢ > 0) using the technique
of Azéma supermartingale and enlargement of filtration.

3. A STUDY OF SEVERAL INTERESTING EXAMPLES OF FUNCTIONS mg(t)

3.1. Some general formulae. We shall compute (mg(t), t > 0) in some particular cases

where
G=Gx=sup{t>0: M, =K}, K <1,

with My =1, M; > 0, a continuous local martingale such that M, . 0. We recall that
(see, e.g. [2, 8]):

Zy=P(Gk > t|/F)=1A (%) .
Thus
mic(t) = E[Z (1= 2)] = % E[M, (K — M)*]. (8)

Consider the particular case M; = & = exp(B; — t/2), with (B;) a standard Brownian
motion, and Gx = sup{t: & = K} for K < 1. From formula (8), we deduce:

1

mi(t) = 5 E[&(K-&)"]
1 t\\ " :
= = E||K—exp| B+ ) (by Cameron-Martin)

= 50 {07 (o0 (B0 3) < 5) 8 [t o (515 -

Set K = ¢!, we have

[\

t t
mg(t) = e'P (Bt + =< l) —ele7?2p (Bt + 3t < l)

2 2
3Vt 1 SV N
= el—e”lP(B < - +—>+elP(——+—<B <——+—>.
In particular,
3Vt 3Vt t
(0= (=) P (B <=5 ) e p (< < my <)

Figure 1 presents the graphs of mg(t) for some K's.
5
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FIGURE 1. Graphs of mg(t), for K =0.1,0.2,...1.

3.2. The case G = G» = sup{u < T : B, = a}. For fixed time T" and a € R, the

associated Azéma supermartingale is of the form

B, —a
Zt:®(| i |>1{t<T}

T —

t



D 0 0.1 0.2 0.3 0.4
mg’T 0.17548 | 0.175531 | 0.173103 0.220612 0.244867
D 0.5 0.6 0.7 1 1.1
mag’T 0.249704 | 0.24059 | 0.218382 0.132556 0.105833
D 1.2 1.5 2 3 3
mg’T 0.0840563 | 0.0416004 | 0.0122678 | 0.000653202 | 1.30174 x 10~7

TABLE 1. The values of mg’T for some D

(see, e.g., Table (1a) of Progressive Enlargements, p.32 of [8]), where ®(z \/7 / e~ du

Then for ¢ < T, using change of variables we have

- o (MBZ) (g (VYY) :mm( _)

where
mP(c) \/cz_ﬂ/o"oq)( Y- ))< < (cy—l—D\Q/c2+1) >+ ( (cy D\2/c2 ) )) a0
Hence

mg" = sup mg’ (t) = sup m*V7T(c).

0<t<T >0

Remark 3.1. (1) For a € R, mag’T = mga’T, since mP(c) = m=P(c).

(2) mg’T is independent of T', since

me’ = su / )) ex (—@)d
- e rew (-5 )

is independent of T.
(3) the value of mcg”’T depends only on D := a/VT, e.g., (a,T) = (1,1) and (a,T) =
(1/2,1/4) have the same mg’T value, since D =1 in both cases.

Remark 3.2. Table 1 gives the values of mg’T for some D.

1 1
In fact, if D satisfies ®(D) = 3 (i.e., D around 0.47693627), then m“gT =1 and the

maximum occurs at ¢ = 0. The same as mg" and mg.
7



Figure 2 - Figure 4 present the graphs m”(c) for some D. The horizontal axis is the

[T —t
value of ¢ = ; and the vertical axis is the value of m”(c), and its maximum is

exactly mg’T.
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3.3. The case G = Gy, = sup{t < T, : B, = 0}. , Here, we denote T, = inf{u : B, = a},

for a > 0; and S; = sup B,. The corresponding Azéma supermartingale is given by
0<u<t

1
Zt — 1 B;;\Ta

see, e.g., Table (1a) of Progressive Enlargements, p.32 of [8]. Thus, we obtain:

moft) = [( B ) (1- 1 5 )|

= —2 [1 t<Ty) (Bt>0)Bt(a’ B Bt)}

@I»—‘

a
= % E [1(s,<a)L(mi>0)Bi(a — By)] -
Let
p(r)=FE [1(Sl<x)1(31>0)31(95 — B1)} ;
then

mo(t) = o 0 ().
a> "\t
Now, it remains to compute the function . We note that
p(z) = E[Bf (z = B))"]| = E [Lis,;>0) B (z — B1)"].
We shall take advantage of the very useful formula:
P(S) > z|B; = a) = exp(—2z(x — a)), x>a>0,

see, e.g., [5], p.425. Thus, we find

o(z) = \/LQ_W /Of” dy y(x — ) (exp (—y;) —exp <_%<2x _ y)Q))
o) gy (o () e ().

is independent of the value of a, since it

Thus,

x
Note that the value of sup mg(t) = supsp(
>0 >0 T

depends only on the value of z := a/v/t.



3.4. The case G = L, = sup{u: R, = a}. We have

2p
a
Zy=1N|—
t (Rt) 9

see, e.g., Table (1la) of Progressive Enlargements, p.32 of [8]. Here, (R,) is BESy(d), and
1> 0. Thus,

[ a a \* a \*
= Fl|l|——x<1 —_— 1—(—— .
[ (i) () (- () )]
Using the fact that R? (o) 274/ for d = 2(p + 1), we get

mo(t) = o0 ()

where

0.25

0.2

0.15f

0.1

0.05

FIGURE 5. Graphs of ¢, (2), for u =1/2, 1, 3/2, 5/2, 7/2, 9/2, 11/2, 13/2, and that
Zl/2 = 019, zZ1 = 061, 23/2 = 108, 25/2 = 205, Z7/2 = 304, 29/2 = 403, 211/2 = 502,
213/2 = 6.02.

Figure 5 presents the graphs of ¢, for p=1/2,1,3/2,5/2,7/2,9/2,11/2 and 13/2. We
also approximate z,, the unique > 0 real which achieves the max of ¢,. This will give
us the value m, def mg, for these G = L, (note that, for a given p, the value does not

depend on a; this is because of the scaling property).
10



It is not difficult to show that: z, is the unique solution of

1 [ dh
E,): —= — e
(Bu): 5 /0 e

_ ]' —Zpu (’ZH)M
mu = F(/JJ T 1) (& .

and also

[\

Note that

m, <m’ dﬁf;su e_zﬁ
S N (7R ZZI(? 2)°

Figure 6 presents the graphs of m, and mL

FIGURE 6. Graphs of m, and m/,
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