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Leveraging Spatio-Temporal Redundancy for
RFID Data Cleansing

ABSTRACT

Radio Frequency ldentification (RFID) technologies are used in
many applications for data collection. However, raw RFID read-
ings are usually of low quality and may contain many anomalies.
An ideal solution for RFID data cleansing should address the fol-
lowing issues. First, in many applications, duplicate readings (by
multiple readers simultaneously or by a single reader over a period
of time) of the same object are very common. The solution should

take advantage of the resulting data redundancy for data cleaning.
Second, prior knowledge about the readers and the environment

(e.g., prior data distribution, false negative rates of readers) may
help improve data quality and remove data anomalies, and a de-
sired solution must be able to quantify the degree of uncertainty
based on such knowledge. Third, the solution should take advan-
tage of given constraints in target applications (e.g., the number
of objects in a same location cannot exceed a given value) to ele-

vate the accuracy of data cleansing. There are a number of exist-

ing RFID data cleansing techniques. However, none of them sup-
port all the aforementioned features. In this paper we propose a
Bayesian inference based approach for cleaning RFID raw data.
Our approach takes full advantage of data redundancy. To cap-
ture the likelihood, we design atrstate detection model and for-
mally prove that the 3-state model can maximize the system per-
formance. Moreover, in order to sample from the posterior, we
devise a Metropolis-Hastings sampler with Constraints (MH-C),
which incorporates constraint management to clean RFID raw data
with high efficiency and accuracy. We validate our solution with a
common RFID application and demonstrate the advantages of our
approach through extensive simulations.

1. INTRODUCTION

Radio Frequency Identification (RFID) is an electronic tagging
technology that allows objects to be automatically identified at a
distance without a direct line-of-sight, using an electromagnetic
challenge/response exchange [27]. An increasing number of major
retailers such as Wal-Mart, The Home Depot, Kroger, and Costco
have installed RFID based inventory management systems in their
warehouses and distribution centers. However, practitioners are
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Figure 1: Spatial overlapping of detection regions.

Zone 1| Zone 2| Zone 3| Zone 4| Zone 5| Zone 6
Reader | Reader | Reader | Reader | Reader | Reader
Objl1| 1 0 0 0 0 0
Obj2 | 0 1 1 0 0 0
Obj3 | 0 0 0 1 0 0
Obj4 | 0 0 1 1 0 0
Table 1: RFID readings.

facing a challenging problem: the raw data collected by RFID
readers are inherently unreliable [23, 17]. Therefore, middleware
systems [16] are required to correct readings and provide cleansed
data. Most previous solutions [11, 17, 21, 15, 8] for cleansing RFID
raw data focused on smoothing the readings generated by a group
of readers. However, these existing solutions suffer from three ma-
jor limitations:

e Dataredundancy introduced by overlapping detection regions
of multiple stationary readers (spatial redundancy) or contin-
uous readings over time of a single mobile reader (temporal
redundancy) is not utilized to improve reading accuracy.

Prior knowledge about tagged objects and RFID readers is
not effectively utilized to improve reading accuracy.

Constraints in target applications (e.g., the maximal capacity
of a room or a shelf) are not effectively utilized to cleanse the
data.

In this paper, we propose a method to address these limitations.
We focus on taking full advantage of data redundancy, prior knowl-
edge, and application constraints to elevate the accuracy of data
cleansing.

1.1 Data Redundancy

Two types of redundancy may arise in RFID related applications:
spatial redundancy, where an object is detected by multiple readers
in its neighborhood, and temporal redundancy, where an object is
detected multiple times by a single reader over time.



Spatial Redundancy: In order to reduce the complexity of data 1.3 Constraints

analysis, previous works [11, 17, 21, 15, 8, 28] assume that each Enyironmental constraints can be utilized to improve data cleans-
object is read once, and read by one reader only. Clearly, this aS-ing. For example, the maximal capacity of each zone (the num-
sumption is difficult to enforce, but more importantly, it oversim-  per of objects that can reside in the same zone) is a constraint. If
plifies the reality. Because RFID readings are of low quality, many each zone represents a rack or shelf in a warehouse, one possible
applications have to employ redundant readers to cover the targetconstraint is the total size or weight of the objects which the rack
area completely to improve localization accuracy, which means ob- can hold. In addition to these physical constraints, information ob-
jects are read by multiple readers simultaneously. tained from other channels can be translated into constraints. For
Indeed, in RFID systems, spatial redundancy is very common. nstance, if an extra source indicates that two certain objects are in
Figure 1 shows an example of spatial redundancy where the targetne same zone, it may help cleanse the data of these two as well as

area is divided into six zones (using one dimensional model) and other objects when the information is integrated with readings and
an RFID reader is located in the center of each zone. Spatial over-gther constraints.

lap of readers’ detection regions leads to duplicate readings, i.e., an .
object is in the detection regions of multiple readers. A possible 1.4 Overview of Our Approach
set of readings is shown in Table 1 wherein 1's denote successful |n this paper, we propose an innovative approach of cleansing
detections and O's otherwise. The table shows two effects of redun-RFID raw data which is able to take full advantage of duplicate
dancy: readings and integrate prior knowledge as well as environmental
constraints. Our approach is based on Bayesian inference. We
e Object 2 is detected by the reader in Zone 2 and also the introduce amn-state detection model and prove by entropy anal-
reader in Zone 3, which makes it difficult to tell the exact Ysis that the3-state detection model can maximize the system per-
location of Object 2. However, since an object cannot appear formance. Furthermore, we devise a Metropolis-Hastings sampler
in more than one zone at the same time, at least one of the with constraints to efficiently approximate the posterior (Metropolis-
readings belongs to spatial redundancy. Hastings sampling is a Markov Chain Monte Carlo method [22, 2]).
Consequently, our approach enables two important types of queries
e Object 3 is detected in Zone 4 only. However, it does not 2dainst RFID raw data: the location query and the aggregate query
necessarily mean that Object 3 is in Zone 4 for sure. Itis (€-9., aboutremaining capacity of each zone). The contributions of
possible that the reader in the zone where Object 3 is located this study are as follows:

simply fails to detect it. e By using Bayesian inference, we derive a universal frame-
work for computing the posterior probabilities (of the loca-
On the first look, spatial redundancy causes confusion as it intro- tion of each object).

duces inconsistent information (e.g., about the location of Object
2). However, a redundant reading may supply the necessary infor-
mation for the system to derive the location of an object when its
intended reader fails to detect it (e.g., Object 3). Thus, the chal-
lenge is how to take advantage of redundancy while avoiding its o We analyze the relationships between the system entropy and
undesirable effect in data cleansing. the read rate of RFID readers under the 2-state and 3-state
detection models, respectively.

e Based on the physical characteristics of RFID readers, we
propose am-state detection model to capture likelihoods,
which enables us to take full advantage of duplicate readings.

Temporal Redundancy: Besides employing multiple stationary
readers, many applications monitor the target area using a mobile ¢ By investigating the impact of the number of states in a de-

reader (e.g., a handheld or a robot-mounted reader [24]) to take tection model on the system entropy, we formally prove that

continuous readings on its route. Because the exact location of the system entropy can be minimized if the 3-state model is
the mobile reader is always changing when the reader reports raw adopted compared with other state models. In other words,
data, the detection regions at different time points may overlap, having even more states (greater than 3) can in fact deterio-
introducing temporal data redundancy of readings. However, if we rate the overall system performance.

treat the same reader at different time points as different readers,
e.g., as shown in Table 1, when a mobile reader traverses from ® We devise MH-C, an improved Metropolis-Hastings sam-
zone 1 to zone 6, the reader can be considered as the zone 1 reader ~ pler, to sample from the posterior while taking the environ-
while moving in zone 1 and the reader can be treated as the zone 2 mental constraints into consideration.

reader while moving in zone 2, the temporal redundancy problem

can be reduced to the spatial redundancy problem. Therefore, we
will mainly focus on spatial redundancy in this paper.

e We demonstrate the efficiency and effectiveness of our ap-
proach by comparing the performance of MH-C with the
Sequential Importance Sampling (SIS) based solution [28]
through extensive simulations.

1.2 Prior Knowledge

As false negatives and false positives abound in raw RFID read- 1.5 Paper Organlza“on
ings [23, 17], in order to recover the true information, the data  The rest of this paper is organized as follows. The Bayesian
cleansing system should take prior knowledge into account. Prior inference-based framework of our approach is presented in Sec-
knowledge may include information such as, for example, the de- tion 2. In Section 3, we propose thestate detection model to take
tection areas of readers in Zone 2 and Zone 3 have significant over-full advantage of duplicate readings. We prove that the 3-state de-
lapping, the positioning of the reader in Zone 4 makes it more likely tection model can maximize the system performance in Section 4.
to detect objects in Zone 3 than objects in Zone 5, or the reader in In Section 5, we introduce a Metropolis-Hastings sampler with con-
Zone 3 has high false negative rate, etc. Such information, when straints. The experimental validation of our design is presented in
properly integrated with the readings, is extremely valuable for data Section 6. Section 7 surveys the related work. Finally, Section 8
cleansing. concludes this paper.



2. BAYESIAN INFERENCE on the assumption, we can derive Equation 2.

In this section, we develop a Bayesian inference-based approach Furthermore, because we employ MH-C to take into account
to handle redundant readings and prior knowledge, and we analyzeconstraints (i.e., to ensure that each generated sample satisfies all

the challenges when applying this approach. Table 2 summarizesthe constraints), here we can simply assume independence between
the notations used in this section. differenth; (i.e., the locations of objects). In addition, we assume

) that each reader’s detection of the same object is independent. Be-
2.1 A Bayesian Inference Based Approach sides, the prior distribution of each object does not depend on that
Bayesian inference is a statistical inference technique that es-Of other objects. Therefore, we can obtain Equation 3. If we rewrite

timates the probability of a hypothesis)(based on observations ~ Equation 3 using the normalizing constant, denoted.age can

(). Bayesian inference shows that posterior is proportional to the 'each Equation 4, which shows how to compute the posterior of

multiplication of likelihood and prior, which can be represented as €ach sample. To be specifie(zi;|h;) reflects the corresponding

p(z|y)  p(y|lz)p(z). likelihood, which is the probability that the reader in zoheeports
Suppose there are, zones and objects in our monitoring en-  the value ofz;; about objecb; given that objecb; is actually in

vironment, each zone with a reader mounted in the zone center.the zone with IDh,. Furthermorep(#;) denotes therior proba-

Let o; represent the object with IR For eacho;, its location is bility that the objecb; is in the zone with the ID ofi;. The prior

represented by a random variatile Therefore, a possible distri- probability can be interpreted as the assumed distribution before

bution of n objects inm zones can be denoted as an instance of the acquiring of the RFID raw data.

the random vecto{ = (hi, h2,...,hs). h; represents the zone 2.2 The Goal and the Obstacles

ID where objecio; is in. For exampléi; = 2 denotes that object ) ) i ]
Based on Equation 4, given the raw readifigand a hypothesis

o1 is in zone 2 in the current instance. For the reader in zgne . ) ! . -
the raw data (0 or 1) it receives from the RFID tag of objects H (the location of each object), we can derive the probability of the

denoted as;;. The raw data matrix for each complete scan from hypothesis. However, finding just one valid hypothesis will provide
m readers can then be represented as anm matrix Z = [z;;]. nothing more than a biased answer to queries against the uncertain
Thus the Bayes’ theorem can be represented as Equation 1, wherélata. To address this issue, we need to query against all valid hy-
post(H|Z) denotes the posterior probability of location vectsr potheses. However, this is unrealistic because there are numerous

given the raw dat&, and a valid hypothesis means the hypothesis valid hypotheses_ in most cases. Thus, our_goal is_to Creat_e a large
satisfies all constraints: sample set of valid hypotheses, each associated with a weight com-

puted by Equation 4:(Hy,w:), (Ha,ws), -, (Hn, wy). The
sample set of valid hypotheses as a whole enables us to answer
queries with high credibility. To achieve this goal, we must over-
come the following obstacles:

: H is not valid
. H is valid
: Hy is more likely thanH o

post(H|Z) = 0
post(H|Z) > 0
post(H1|Z) > post(Hz|Z)

In particular, ifz;; = 1 in a raw data matrix and the actual loca-

. ) . . . e A prerequisite for effective hypothesis sampling is to be able
tion of objecto; is not in zonej, thenz;; is a false positive. Take * Aprereq yp piing

Table 1 as an example, at least one®fandz.; is a false positive
because object 2 cannot be in zone 2 and zone 3 simultaneously.

Similarly, at least one of,3 andz44 is a false positive.
To computepost(H|Z), we make some independence assump-

tions of random variables. RFID reader transmissions or tag trans-
missions may lead to collisions because readers and tags communi-
cate over a shared wireless channel. Reader collisions happen when
neighboring readers communicate with a tag simultaneously [9]
and tag collisions occur when multiple tags transmit to a reader
at the same time [10]. However, the two kinds of collisions can be
effectively prevented by arbitration protocols (e.g. by scheduling
adjacent readers to operate at different times) [25, 13, 20]. There
fore, we assume each reader detects the tags of different objects in-
dependently (i.e., whether a reader can successfully detect the tag
of a certain object does not interfere with whether the reader can
successfully detect that of another object) in this research. Based

to compute the posterior probability of each hypothesis pre-
cisely. Therefore, we propose thestate detection model in
Section 3 to capture likelihoods in an affordable and accurate
way.

The hypothesis space is high dimensional, and the posterior
probability is difficult to sample from. Thus, we need a sam-
pling technique that has desirable efficiency. In Section 5,
we apply a Markov Chain Monte Carlo method (MCMC) be-
cause MCMC can maintain the correlation between samples,
resulting in an improved sampling efficiency.

We need to incorporate constraint management in sampling.
We propose a sampler called Metropolis-Hastings sampler
with Constraints (MH-C), which improves the naive Metropolis-
Hastings (MH) sampler. Each sample generated by MH-C
automatically satisfies all the constraints.

[ Symbol | Meaning |

H The random vector that represents the locations of all
the objects

h; The random variable that represents the location of job-
jecto;

Z Raw data reported by RFID readers

23 The raw data (0 or 1) reported by the reader in zgne

for objecto;

post(mZ) The posterior probability of the location vectéf given
the raw dat&Z
p(zijlhi) | The likelihood that the zong reader reports the value
of z;; for objecto; given that objecb; is in the zone
with ID h;
p(hj) The prior probability that object; is in the zone with
ID hy

Table 2: Symbolic notations of Section 2.

3. RFID READER DETECTION MODELS

The major difficulty in computing the posterior of each sam-
ple (Equation 4) lies in how to accurately estimate the likelihood
p(zi5|hs:). To do so, we introduce the-state detection model of
RFID readers to capture likelihoods in an affordable and precise
way.

3.1 Physical Characteristics

An RFID reader sends RF signals to communicate with (passive)
tags to retrieve a list of IDs in its detection range. However, RFID
data acquisition and transmission are unreliable [10, 15, 17, 21]. In
our experiments, we investigated the change of the read rate over
distance using regular RFID readers and tags. The results are as
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illustrated in Figure 2. The model of the tags is Gen2 RFID Smart

) I (k)
j

This simplified 2-state model assumes readers’ detection regions

4)

Label and the model of the reader is MPR-6000 (antenna 902-928do not overlap, i.e., a reader is only able to detect the objects in its

MH), provided by WJ Communications Inc. Our test environment

is a lab with many metal objects (tables, desks and computer equip-

ment), representing a noisy environment.
As Shown in Figure 2, the overall detection range of a reader can

be separated into the major detection region and the minor detec-

tion region, where in the major detection region from 0 to almost

5 feet, the read rate can keep a level of around 95% and in the mi-

nor detection region approximately from 5 to 13 feet, the read rate

drops off almost linearly. Furthermore, the read rate deteriorates to

zero in the region more than 13 feet away from the reader, which is
defined as beyond the overall detection range [17].
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Figure 2: An illustration of the relationship between read rate
and distance.

0 2

3.2 Problems of the 2-State Detection Model

Taking the scenario in Figure 1 as an example, one way to esti-
mate likelihood is as follows:

ith;€{j—1,7,7+1}
otherwise

T

0 (5)

plaiy = 11he) = {

ith; € {j—1,5,5+1}
otherwise

pag = o) ={ 177 ©)

own zone. Then the likelihood can be estimated as follows:

_ N_ [ ifthi=j
p(zij = 1lhi) = { 0 otherwise @
[ 1—r k=
pzij = 0lhs) = { 1 otherwise ®)

This simplified 2-state model, however, has two problems. First,
it is unrealistic to assume that we can divide the space into non-
overlapping detection regions. Second, the model does not sup-
port applications that use redundant information (such as redundant
readings) to offset the unreliability of raw RFID readings.

Detection region RFID reader

= = % = = =
&1 ™ ” N/ 3é // ™ , AN
] ] ] ] ]
\\\ L \\\ 2“ 4l 7// \\\ NG 8&/
Zone 1 Zone 2 Zone3 Zone4 Zone 5 Zone 6

Figure 3: An illustration of the simplified 2-state detection
model.

3.3 Then-state Detection Model

In order to take full advantage of duplicate readings, we propose
ann-state detection model, which is illustrated in Figure 4. In Fig-
ure 4, the overall detection region of an RFID reader is divided into
several sub-regions, each of which corresponds to a zone associ-
ated with a unique read rate. As far as a specific detection model
is concerned, the difference in the read rate over any two adjacent
sub-regions is a constant, i.e., the read rates for different states con
stitute an arithmetic sequence. Take the 4-state model as an exam-
ple. Suppose the highest read rate in the model iBhe first state
(counted with the increase of the detection distance) holds a read
rate ofz, the second state keeps a read rat@gqfthe third state
maintains a read rate ¢f, and the fourth state eventually has a
read rate of zero. Thus, as for a specific reader, by employing the

wherer is the average read rate. Intuitively, it means that an n-state detection model, each correlated zone is assigned a distinct
object o, holds the same probability to be detected by a reader read rate according to its distance to this reader. In particular, the
whethero; is in the zonef) the reader is associated to, or in any of simplest model in the family of the-state detection model is the
neighboring zonesj(— 1 or j + 1). Apparently, if compared with 2-state model, where an identical read rate is assumed in the overall
Figure 2, this 2-state detection model is inherently inaccurate as it detection region of each reader.
fails to capture any change of the read rate in the overall detection Notice that in practice, the value depends on how zones are di-
region. Consequently, when predicting the location of an object, vided in overall detection regions of RFID readers. This is because
the resulting system is unable to differentiate between its own zone ann-state model in fact implies that eve2yn — 2) +1 =2n — 3
and all its neighboring zones because all the above zones are withzones correlate with each other (assuming that all the zones are in
an identical read rate. a 1-dimensional distribution). For example, if it is known as prior
In order to solve this problem, current works are forced to adopt knowledge that one object can be read simultaneously by up to five
a simplified 2-state detection model, which is shown in Figure 3. readers, we have to choose= 4 to incorporate the correlation



The advantage of the 3-state detection model over the 2-state

Two-state Four-state detection model can be measured by the system entropy (Section
model L\_‘m°del 4). We also answer the question whether having even more states

(more than 3) can further benefit the system.

!

Three-state Five-state 4. ENTROPY ANALYSIS
%\—L model L\_\ﬁmodel We use entropy to measure the uncertainty in a system after in-
J valid system states have been eliminated by a data cleansing method.
Generally, applying an efficient data cleansing method will lead
to systems with smaller entropy. In this section, we firstly show
the advantage of the 3-state model over the 2-state model and then
prove that the 3-state model can maximize the system performance
compared with other detection models with even more than 3 states.
A snippet of the RFID raw data is shown in Table 3 and the actual

Figure 4: The family of the n-state detection model.

among every 5 successive zones. A formal derivation of the loca-
tion distribution in terms of the probabilistic mass function can be

found in Section 4. location of an object is denoted as a random varialile
3.4 A Case Study: The 3-State Model 4.1 Entropy versus Read Rate

We elaborate on the 3-state model as a case study. Suppose Ongpiropy of the 2-State model: Suppose thay denotes the read
reader can only detect its own zone and the two neighboring zones rate in"the 2-state detection model. According to the right side
This assumption implies that, as for a particular reader, there areof Equation 4, the probabilistic mass function bfin the 2-state
three distinct location-based states of a object: in the same zone agnodel can be represented as:
the reader, in the neighboring zones, and in all the other zones. To e

- : . a(l-yy(l—y)B ifl=j
capture this correlation, we have to choase: 3 and the resulting p(L=1)= { al-9)1—y)ys flelj—1,7+1} (11
model is the3-state detection modelvhere the overall detection otherwise
range of a reader is divided into two sub-regions, as shown in Fig-

ure 5. Specifically, the major detection region, the minor detection probability (we assume the prior distribution as a uniform distri-

region and the zero read rate region in Figure 5 correspond to thebution) in Equation 4. Thus, we can calculate the entropy of the
zone where the reader locates, neighboring zones and all the otheyjstribution of L as:

zones, respectively. Therefore, the motivating scenario (Figure 1)

where « is the normalizing constant ané represents the prior

if interpreted by the 3-state model, can be illustrated in Figure 6. H(L) = —a(l=y)(1-y)ys-In(a(l —y)(1 -y)yb) (12)
' o —a(l—y)y(l —y)B - In(a(l —y)y(1 —y)B)
A/‘Ma]or detection region —a(l _ y)(l _ y)y,B . ln(a(l _ y)(l _ y)y,B)
‘Q;f Minor detection region
= Because the probabilities on all the locations sum to 1, we can
;8 derive Equation 13. By applying Equation 13 to Equation &2 (

) andg are canceled out), we can obtain Equation 14.
Overall detection Zero read rate

range 1
Ol— ! af = s (13)

— )2
Distance between reader and tag (I-y)y

1 1
Figure 5: The 3-state detection model of RFID readers. H(L)=-3- 3 +In 3 = 109 (14)

In Figure 6, by using the 3-state detection model, not only the Entropy of the 3-State model:Figure 6 corresponds to the 3-state
duplicate readings can be incorporated, but also a zone and all itsmodel scenario. Supposeis the read rate in the major detection
neighboring zone can be differentiated because they are with dis-
tinct read rates. To be specific, if objegtis in zonej, not only R e

. e Sl - < Minor detection region
zij but alsoz;(; 1y andz;(;+1) should have a considerable chance / o< ¢ Mator detection re
to be 1 (false positives). In the meantime, other readers are unable / 7N " ¢
to detect the tag of objeet;. The reason is that objeot may be

u

, _
1 ’ N e 5 (O
L ] L] L] L ]
] T Sa

ne 5/ Zone 6
RFID reader

in the major detection region of the reader in zgnehile it may
be also in the minor detection region of both readers in zgne$
andj + 1. As for the other readers, objestis totally beyond their N
overall detection regions, leading those readers to report O for ob- R
jecto;. If we denote the mean value of the read rate in major detec-

tion region as .o and the mean value of the read rate in minor Figure 6: The detection-region overlap interpreted by the 3-
detection region as,,i».r, the estimate of the likelihood using the  state detection model.

3-state model can be represented in Equation 9 and Equation 10.

... | Zone j — 1 | Zone j | Zonej + 1
- if he — 4 Reader Reader Reader
major W hi=7] ) )
p(zij = 1‘h1) = { Tminor I E.{] —1,57+ 1} 9)
0 otherwise Objz | ... | O 1 0

1 — Tmajor |f hi =]
p(zij:omi):{ 1= riner Hhi€{j—1j+1}  (10)

1 otherwise Table 3: A snippet of the RFID raw data.



region. Then the read rate in the minor detection region can be Based on Equation 17, we plotted the relationship between en-
denoted as:/2. Thus, according to the right side of Equation 4, tropy and the number of states in a detection model in Figure 8,

the probabilistic mass function d@f can be represented as follows:  where we assume equals to 0.95 (the most common case). Ac-
" © . . cording to Figure 8, the 3-state detection model can minimize the

a(l—-3)z(1—-5)8 ifl=j .

p(L=1)= { al— 31 —2f28 flelj—1,j+1} system entropy and lead to the maximum system performance. In
0 2 27 otherwise other words, having more states (more than 3) in a detection model
can even deteriorate the system performance. Therefore, our expe

Similarly, « is the normalizing constant amtirepresents the prior  jments are mainly focused on the 3-state model.
probability in Equation 4. Therefore, we can calculate the entropy

of the distribution ofL as:
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H(L)=  —a(1=2)(1-)7 4 In(a(l - 3)(1-2)75) e
T, ., 12 . /
—az(l — 5) B In(az(l — 5) 3) (15) '] /'
—a(l=5)(1=2) 58 n(a(l = 5)(1 = 2)35) /

Since probabilities on all locations sum to 1, we can obtain Equa-

tion 16. e
1 Number of State in Reader Detection Model
oaf = (16) : - -
z(1-3)(2-F) Figure 8: Relationship between entropy and the number of

Combining Equation 16 and Equation 15, we have: states in a detection model.

1—=x 1—=x 2—=x 2—=x

) =, M i i 5. SAMPLING

In Figure 7, we plot the relationship between the reconstruction ~BY Using Bayesian inference, we derive the posterior, as shown
entropy and read rate under the 2-state and 3-state models, resped? Equation 4. Since Equation 4 is easy to compute but hard to
tively. As Figure 7 illustrates, the entropy will decrease accordingly Sample from, we need an efficient method to draw samples from
with the increase of read rate, which indicates that the system will the posterior distribution. In this section, we firstly focus on the
have less uncertainty with more reliable readers. Moreover, Fig- Metropolis-Hastings (MH) and Gibbs samplers. Next, we show
ure 7 shows that the entropy in the 3-state model is always smallerWhy MCMC is chosen in our solution. Finally, we propose a Metropolis-
than that in the 2-state model. For exampley i 0.95, the en- Hastings sampler with Constraints (MH-C) method.

tropy in the 3-state model is 0.395 while the entropy in the 2-state o ; ; ;
model is 1.098. This observation reveals that the 3-state model can5'1 MetropO“S HaStmgS and Gibbs ngpllng
be more informative in object localization than the 2-state model. ~ The Metropolis-Hastings (MH) sampler and the Gibbs sampler
are the two most common MCMC samplers. MH conducts a se-
12 quence of random walks using a proposal distribution and decides
whether to reject the proposed moves using the rejection sampling.
In the applications of Bayesian inference, the normalizing constant

1

. o8 1 is usually extremely difficult to compute. MH avoids the computa-
S el | tion of the constant. It approximates the posterior by using only the
§ | phwo-state model ratio of the posterior, where the constant is canceled out.

04 Recall that the random vector representing the locations of ob-

ozl jects is dgnoted a# and the posterior distribution jmgt(H|Z).

’ SupposeH:; 1 is the immediate previous state before the stéte

0 ‘ ‘ ‘ ‘ in the formed Markov chain. According to the MH algorithm, at

0 0.2 0.4 0.6 0.8 1 . o . . . .

Read Rate flrs}, aproposal sapwplé{q, is drawn from a propo§al distribution,

q(Hq|H¢-1), i.e., Hy is a random deviation front,_;. In our

Figure 7: Relationship between entropy and read rate under  research, we use a uniform proposal distribution whose support is

the 2-state and 3-state models. defined as the step length. The proposal sarﬁjleanAbe denoted
asH;_1+ H,. Then MH acceptd{’ as the next staté/; with the
4.2 Entropy versus Number of States probability Of%.
. . . . post _
Here we investigate the relationship between system entropy and Here we compare MH sampler with the Gibbs sampler in brief.
the number of states in a detection model. Suppose-atate The Gibbs sampler requires that conditional (marginal) distribu-

model is adopted with the highest read rate oThus, the read rate tjons for each variable are known and easy to sample from. MH
inthei'" state (counted with the increase of the detection distance), relies on the ratio of the posterior, and does not require to sam-

can be represented 45-1“. Combined with Equation 4 and Ta- ple from any distribution. Because we have already derived the

ble 3, we can obtain the probabilistic mass function’ofrepre- closed form of the posterior as Equation 4 and are able to calculate
sented as Equation 17. Equation 17 shows that in-atate model, |ikelihoods easily according to the proposectate model, it will

a successful reading 1" of a certain reader about an object in fact he much more straightforward to use MH sampler rather than the
implies that this object may existin any of thgr—2)+1 = 2n—3 Gibbs sampler in our design.

correlated zones (including the zone which the reader is associated ]

to), each with a non-zero probability. 5.2 Sample Correlation



p -2 —92); . .
a(l = 557)(1 = ;25).(1 = %)-f-q 2)%)“((1; (-8 =
24 n— x n—1l1—K)x n— x
p(L:l):{ a 7(%711)18-17) nfl)'“(linfl().lﬁl(liﬁ)“.
o1 1k . . .
(1-"—=) (1—2) 1 - =)0 - 21 - 27 ifle{j—kj+khke{l,2..,n—2}
0 otherwise
17)
Next candidate but [ Symbol [ Meaning ]
Current qualified u[fx cf." 1date bu 7 The raw data matrix from RFID readers
qualified sample
sample S The sample set
Next qualified . : )  Qualified c The current sample |n.the Markov chaln‘
sample | sampling space P The proposal sample in the Markov chain
C; The;j*" dimension ofC
Proposal Complete P; Thej*" dimension of?
distribution sampling space E The number of effective samples
B The number of samples in the burn-in phase
S The step length for the uniform proposal distribution

Figure 9: Taking advantage of the correlation between samples Dop et The total number of monitored objects
objec

to improve sampling efficiency. D.one The total number of zones
Jitter A random number between 0 and 1
In our design, we choose MCMC instead of other sampling tech- | Rand(a,b) | Generate a random integer betweeandb based on
nique because MCMC maintains the correlation among samples. uniform distribution

In MCMC, the next sample depends on the current sample. Before | Post(H|Z) | The posterior probability of the sampl¢ given raw
we elaborate on how we can take advantage of sample correlation dataZ

to improve the efficiency of sampling in our scenario, we define
two terms as follows.

Table 4: Symbolic notations used in Algorithm 1.

o ) constraints into account. If we impose constraints to samples, many
Definition We call any sample generated by the samplearedi- of them should be rejected because they are inapplicable, i.e., they
date samp_IeA qualified samplés a candidate sample that satisfies 5re ot qualified samples.
all constraints. To incorporate constraints in sampling, we propose a Metropolis-

The existence of constraints leads to the uniqueness of our prob-1astings sampler with Constraints (MH-C). With MH-C, each zone
lem. Samples must satisfy all the constraints to become qualified. IS @ssociated with multiple variables callegsource descriptors
Note that in most sampling problems, we prefer independent sam- | € current value of eesource descriptorepresents how much the
ples, that is, the current draw of a sample is independent from the associated resource is still available. Suppose we have a_varlable,
previous draw. In our scenario, however, the sampling techniques d€noted adescriptorzone, , 10 keep track of the current available
which generate independent samples (e.g., importance sampling)/acancy in zone. T_he initial yalue OfDescmptorzonei.IS‘SeF to
may suffer from low sampling efficiency due to the loss of corre- the maximal capacity of zone Thus, whether an objegtwith
lation between adjacent samples. Figure 9 illustrates how the cor-th€ VolumeVolumeop;ect; is able to be stored in zonecan be
relation between samples can be utilized to improve the sampling €x@mined by:
efficiency. The qualified sampling space is a subset of the complete
sampling space. Suppose sample peiris the current sample in
the qualified sampling space. For an independent sampler, the next The proposed resource allocation is feasible onlydkcriptor.one,
sample could be any point in the complete sampling space. How- is no less than zero. Otherwise, we have to re-sample until a new
ever, the next sample is useful only if it happens to fall into the allocation meets all the constraints. Consequently, the problem of
qualified sampling space. On the contrary, if a MCMC-based sam- whether an allocation is feasible (or compatible) can reduce to the
pler is employed, the next sample will be chosen according to the problem of monitoring the value of each descriptor.
proposal distribution at poind, i.e., the next sample will be in the With MH-C, because each sample i®a;..:-dimensional vec-
area denoted by the dotted circle centering at pdinfTherefore, tor, a proposal sample is generated iteratively dimension by dimen-
compared to other independent samplers, the probability that thesion. If any descriptor for the current allocation is less than zero,
next sample generated by MCMC falls into the qualified sampling there will be no chance for the current partial sample to become a
space is considerably increased. qualified sample. Therefore, we can discard the current value and

Note that although MCMC improves sampling efficiency, a sam- then choose another value for that dimension by re-sampling. As
ple generated by MCMC may not necessarily be a qualified sample. far as the proposal distribution is concerned, we construct a random
As in Figure 9, pointB is a sample generated by MCMC after point  walk chain by choosing a uniform proposal distribution within the
A. However, pointB is outside the qualified sampling space. Con- step length. A detailed description of MH-C algorithm is illustrated

Descriptorzone; = Descriptor.one; — Volumeobjwtj (18)

sequently, we have to sample again to acquire p@intvhich is a in Algorithm 1 and the related notations are summarized in Table
qualified sample, and then add it into the Markov chain as the next 4.

state. Afterward, the Markov chain moves from poihto point In Algorithm 1, line 1 initializes the sample set and takes the
C. RFID raw data. Line 2 loads thestate detection model of readers

. . . with the objective of computing the likelihood. Line 3 initializes
5.3 Metropolis-Hastings Sampler with Con- 4 the resource descriptors ar?d line 4 randomly chooses a quali-
straints fied sample as the first state of the Markov Chain. Lines 6 to 17
Although the naive MH algorithm can evaluate the posterior by generate a random sample as the proposal sample dimension by
forming a Markov chain in the sampling space, it does not take dimension (object by object). Lines 8 to 13 correspond to the sam-



Algorithm 1 Metropolis-Hastings Sampler with Constraints MH-C (we use the terms MH-C and MCMC interchangeably in

1: SetS = () and take raw dat@ this section) to sample from the posterior. For comparison with
2: Load then-state detection model our MCMC-based solution, we extended the SIS-based approach
3: Initialize all the resource descriptors to their maximal @iya in [28] to incorporate duplicate readings because their approach
4: Initialize C'by randomly choosing a qualified sample within the support - does not consider duplicate readings and only focuses on the dis-
of Post(H|Z) as the starting point. tribution of the missing cases. To show the scalability of our ap-
55 for Cycle =2to E+B do proach, our experiments focus on two settings. In the small-scale
6: for j =1t0Dopject do -
7 repeat Warghouse experiment, we demonstrated the results (_)f_ the rela_ted
8: P; = C;+ Rand($,9) queries returned by MCMC and SIS based on a specific true dis-
{Generate a new integer based on the current value and a pro- tribution matrix. On the other hand, in the large-scale warehouse
posal value within the step length experiment, we randomly generated 100 times the true distribution
9: if P; <1then matrix and the corresponding noisy RFID input matrix to investi-
10: Py =1+ (1-P)) ) gate the performance of MCMC and SIS in terms of reconstruction
{Overflow and Reflectiop e
11 end if efficiency and accuracy.
1z T e (o Deone) 6.1 Types of Issued Queries
{Overflow and Reflectioh In our simulations, we investigate two common types of queries:
14: end if ] location queries and remaining capacity queries. Location queries
15: until The value of any resource descriptor related to the referred re sed to retrieve the location of a specific object while remaining
zone is no less than zero after the proposed allocation ocuihe o5 vy queries are used to find the leftover volume of a certain
rent object is committed . e . L
16: je—j+1 resource in a specific zone. Their definitions are as follows.
17:  end for

18 Generate a random number between 0 andilter e Location query:Given an object and a zone, a location query

19:  if Jitter < min(1 PostEIf:Z§ ) then returns the probability that the object is in the zone.
- > Post(C|Z
20: =P e Remaining capacity quen@Given a zone, a remaining capac-
{Metropolis-Hastings ity query returns the leftover volume of a certain resource in
21:  endif the zone.
22: AddCintoS as the next sample . .
23:  Resetting all the resource descriptors 6.2 Simulator Implementatlon

24:  Cycle + Cycle + 1

25: end for Our simulator consists of seven components as displayed in Fig-

ure 10. The true matrix generator randomly produces distribution
matrices as true distributions. The rows represent cases (objects)
and columns represent racks (zones). On the contrary, noisy ma-
trix generator provides the noisy matrices as the RFID raw data
in the same format. Then MCMC and SIS modules reconstruct

) . . the distribution for each case using the noisy matrix as the input.
1S [1, Dzonc]. Therefore, if the proposal vaI_qu overflows in the Our simulator generates the synthetic RFID raw data with the du-
range, we need to make the value reflect into the range. Then, we

. . licate readings according to the physical characteristics of RFID
check all the related descriptors to make sure their updated valuesfeaolers [17]. The 3-state detection model was used to capture the

are no less than zero. If any value is less than zero, it means that thq
current allocation will violate the corresponding constraints. Con-

sequently, we go back to line 8 to re-sample until an allocation

on that dimension is feasible, as shown in line 15. Note that our
algorithm guarantees each proposal sample is also a qualified sam
ple. After a complete proposal sample is generated, lines 18 to 21
accept this proposal sample as the next state of the Markov Chainapproach [28]. All our experiments were conducted on a Linux
with the probability of the posterior ratio of the proposal sample machine with ein Intel Pentium 4 2.4GHz processor with 2GB of

over the current sample. Line 22 adds the next state into the samplememory'

set. Line 23 resets all the resource descriptors to make sure that the ', employed K-L divergence, the top-1 success rate, and the

Eﬁ;nmz?m;g (ij:fgrg:totrr?gol; thgrnbe:ltjr?criogfoaﬂ izrrrr]lpllienls l(;%rret((:)t. top-2 success rate to evaluate the reconstruction accuracy. Specif-

E + B in order to guarantee trr)]zt the final number ofpsa?npleg in ic_ally, K-L divergence is a mc_etric_ commonly used to evaluate the
difference between two distributions. In our research, we calcu-

sample set id? + B It is because the firsB samples should b? . lated the K-L divergence from the reconstructed distribution to the
excluded as burn-in samples and consequently only the remaining

E samples will be taken into account to reconstruct the posterior to

answer the relatEd queries- ‘ MCMC Module ‘ [> Matrix Inversion
L

pling process. First, we obtain a random integer based on the cur-
rent value and the random proposal value. The correct range of the
value on each dimension of the sample vector, representég as

ikelihood. Also, we assume as the prior distribution that each case
exists on each rack with the same probability. Table 5 lists the pa-
rameters used in our simulator. For the simplicity of presentation,
we used the small-scale parameter set to visualize query results. On
the contrary, the large-scale parameter set was used to investigate
the advantage of our MCMC-based approach over the SIS-based

6. EXPERIMENTAL VALIDATION oty Mt . True i = (L Divergee Module
' Generator Generator | =) |:T0P-K SuccesaNIodule
In this section, we applied our Bayesian inference-based method r

to a warehouse application, i.e., each object corresponds to a case ‘ —— ‘Q‘ T
and each zone corresponds to a rack. To capture the likelihood,
without loss of generality, we assumed that the 3-state detection
model can be adopted in this application. Also, we implemented Figure 10: The simulator structure.



[ Parameter | Small scale | Large scale | rack. MCMC predicted a probability of 0.70 on that rack while SIS
Dopject 20 5000 predicted a probability of 0.98. For the third case, the accurate loca-
zone go 280 tion is the third rack. MCMC predicted a probability of 0.53 on that
g 1 20 rack while SIS predicted a probability of 0.98. For the fourth case,
Volumeopject 1 1 the exact location is the second rack. MCMC predicted a probabil-
Capacityzone 7 50 ity of 0.51 on that rack while SIS predicted a probability of 0.32.

For the fifth case, the precise location is the fifth rack. MCMC
predicted a probability of 0.53 on that rack while SIS predicted a
probability of 0.99. At last, for the sixth case, the correct location

Table 5: The parameters for our simulations.

true distribution, i.e., the smaller value of K-L convergence indi- ! : . -
cates the higher accuracy of the reconstructed distribution. The S the first rack. MCMC predicted a probability of 0.20 on that
recovered matrices (reconstructed distributions) were inverted by Fack while SIS predicted a probability of only 0.05. In summary,
the matrix inversion module to facilitate the computation of K-L = MCMC tends to generate a much smoother probability distribution

divergence. Then the K-L divergence module was used to compareth@n SIS. Consequently, MCMC provides a superior overall pre-

the reconstructed distributions with the true distributions and com-
pute the corresponding K-L divergence values for MCMC and SIS.

On the other hand, the top-k success rate reflected how many case

can be located precisely at a certain resolution using data cleansin
techniques. The top-k analysis module was responsible for calcu-

diction of the distribution of all the objects monitored by an RFID
system compared with SIS.

%.3.2 The Remaining Capacity Query

We applied the available length on a rack as the acquirable vol-
ume of that rack to demonstrate the remaining capacity query. The

g

lating the top-k success rate. S ¢ !
results of the remaining capacity queries answered by MCMC for

the first five racks are demonstrated in Figure 12. Note that the
remaining capacity on each rack is 3 because each rack exactly ac-
commodates 4 cases according to the true distribution matrix used
for this experiment (the first six rows of the matrix are as shown
in Table 6(a)). As illustrated in Figure 12, the remaining volumes
6.3 Visualization of Query Results on racks 1 and 4 were reported correctly. On the contrary, the re-

To visualize the results of location and remaining capacity queriesmMaining volumes on racks 2 and 3 were underestimated and the
for the simplicity of presentation, we issued queries against the 'emaining volume on rack 5 was overestimated.

small-scale warehouse setting. As Table 5 shows, we assume tha . _
there are twenty cases with identical length and five racks with a b'4 The Performance AnaIyS|s of MH-C
In this section we focus on the performance of MCMC and SIS

length limit to accommodate at most seven cases. True distribu-
tions of the first six cases are shown in Table 6(a) where the rows With respect to the reconstruction efficiency and accuracy in the
represent cases and columns represent racks. To be specific, if darge-scale warehouse setting where there are 5000 cases and 200
case is on a rack, the corresponding position is 1 and 0 otherwise.racks in total as shown in Table 5. For each result in this section,
Therefore, according to Table 6(a), the first case is on the firsf rack We randomly generated the true distribution matrix and the cor-
the second case is on the fourth rack and so on. On the other handfeésponding RFID noisy matrix 100 times. We reconstructed case
the corresponding noisy RFID data matrix, generated by our sim- distributions, recorded the average sampling time, and computed
ulator, is shown in Table 6(b) in the same format. By comparing the average K-L divergence, the top-1 success rate and the top-2
the two matrices, we can easily see that there is notable differencesuccess rate of all the involved 5000 cases.
(existence of noise and duplicate readings) between these two ma- . . .
trices. Specifically, duplicate readings of the fourth and fifth case 6.4.1 The Reconstruction Efficiency
(consecutive 1's) occur in the noisy raw data. Afterward, we em-  Here we investigated the performance of MCMC and SIS in
ployed MCMC and SIS to cleanse the noisy distribution matrix to terms of the average sampling time. Compared to SIS, the aver-
recover the true distributions. In this experiment, we drew 5000 age sampling time of MCMC is remarkably reduced over different
qualified samples for MCMC and SIS, respectively, and we assume Number of qualified samples as illustrated in Figure 13. For exam-
that the read rate in the major detection region of readers is 95%. Ple, with 5000 qualified samples the sampling time of MCMC is
11.58 seconds while the sampling time of SIS is 230.78 seconds.
6.3.1 The Location Query

This is because MCMC takes advantage of the current qualified
The results of the location queries returned by MCMC and SIS sample to generate the next qualified sample (i.e., keeping the rele-

for the first six cases are demonstrated in Figure 11. For the first vance of samples). Consequently, MCMC takes less time than SIS

case, the correct location is the first rack. MCMC predicted a prob- t0 come up with the same number of qualified samples .

ability of 0.47 on that rack while SIS predicted a probability of only 500

0.01. Similarly, for the second case, the true location is the fourth / 490

Definition Thetop-k success ratis a percentage of the number of
cases whose true locations match the kgpredicted locations of
the reconstructed distribution over the total number of cases.
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6.4.2 The Reconstruction Accuracy rate of SIS extended from 0.36 to 0.55 as shown in Figure 14(b). In

data redundancy degree, and the number of managed racks peWhile the top-2 success rate of SIS changed from 0.60 to 0.76 as
reader to investigate their effects on the reconstruction accuracy. demonstrated in Figure 14(c).

The Impact of the Number of Qualified Samples The Impact of the Redundancy Degree

We first increased the number of qualified samples from 500 to Next, we studied the performance of MCMC and SIS on the recon-
9000 to investigate the performance of MCMC and SIS on recon- struction accuracy by varying the data redundancy degree. Because
struction accuracy. Here we assumed that the read rate in the maihe false positives are actually the successful readings about the ob-
jor detection region is 95% and the number of racks managed byjects in t.he minor d.etectio.n regions. of readers, we use the read rate
a reader is 1. As demonstrated in Figure 14(a), with the increasein the minor detection region to define the data redundancy degree.
of the number of qualified samples, the K-L divergence values of The larger redundancy degree indicates the higher probability that
both approaches kept decreasing. However, MCMC always out- & reader can detect an object in the neighboring zones (or racks).
performed SIS with all experimented sample numbers. Particu-

larly, when we drew 500 qualified samples, the K-L divergence of Definition The data redundancy degreis the probability that a
MCMC was 0.86 while the K-L divergence of SIS was 3.78. When reader successfully detects a object in the minor detection region
we picked 9000 qualified samples, the K-L divergence of MCMC of that reader.

reduced to a remarkable value 0.64 comparing with 2.77 of the SIS

solution. Also, as far as the top-1 success rate is concerned, with Here, we varied the data redundancy degree from 0.325 to 0.475,
the increase of the number of qualified samples, the top-1 successcorresponding to the read rate in the major detection regions from
rate of MCMC increased from 0.50 to 0.70 while the top-1 success 65% (the least reliable reader) to 95% (the most reliable reader).
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For each experiment, we drew 5000 qualified samples and the num-for lost readings. Our paper, however, is motivated by how to lever-
ber of racks managed by a reader is 1. Figure 15 illustrates the age data redundancy to elevate the localization accuracy for all the
results. With the enlargement of data redundancy degree, both thetagged objects in a target area.

performances of MCMC and SIS on reconstruction accuracy are  The works in [18, 19, 28] are the most relevant research to this
elevated. Specifically, as demonstrated in Figure 15(a), MCMC al- paper. For correcting erroneous RFID raw data, Khoussainova et
ways maintained a lower K-L divergence value than SIS, reflecting al. [18, 19] presented a system for correcting input data errors au-
a more precise prediction. Furthermore, as shown in Figure 15(b), tomatically using application defined global integrity constraints.
the top-1 success rate of MCMC increased from 0.54 to 0.65 with The system corrects the input data by inserting missing tuples when
the increase of the data redundancy degree while the top-1 successecessary and assigning to each one the probability that it is correct
rate of SIS expanded from 0.42 to 0.51. Figure 15(c) demonstratesfor groups of conflicting tuples. This maximum entropy based so-
how the top-2 success rate increased when we raised the reduntution is practical. However, it is unable to capture all application
dancy degree for MCMC and SIS. related prior knowledge and dependency compared with sampling-

based approaches. Useful information can be recovered from nois
The Impact of the Number of Managed Racks per Readekr|p data by exploiting constraints and sequential importance sam-

We evaluated the performance of MCMC and SIS by varying the Pling methods [28]. Nevertheless, the work in [28] failed to con-
number of managed racks per reader. In order to deploy readerssider the duplicate readings caused by the overlapped detection re-
in a warehouse more efficiently, users may want to assign multiple gions of RFID readers.

racks to be managed by a single reader. Taking into account the

fact that the overall detection region of a regular RFID reader has 8. CONCLUSIONS

little chance to be more than 20 feet [17], we changed the number The data reported by RFID devices are known to be unreliable.
of racks managed by a reader from 1 to 6. As Figure 16(a) demon- In this research, we propose a Bayesian inference based approach
strates, when each rack had its own reader, the K-L divergence val-for cleansing RFID raw data which can take advantage of duplicate
ues of MCMC and SIS were 0.68 and 3.11, respectively. When a readings. In order to evaluate the location and aggregate queries,
reader monitored more racks, both the K-L divergence values of our approach employs prior knowledge to quantify the degree of
MCMC and SIS deteriorated. When a reader was responsible for uncertainty on the location of each object and the remaining ca-
detecting cases on six racks, the K-L divergence values raised topacities in each zone. Furthermore, we proposentiséate model

1.66 of MCMC and 4.01 of SIS. Moreover, as demonstrated in Fig- to capture likelihood and validate that the 3-state model can max-
ure 16(b), with the enlargement of the number of managed racks imize the system performance. Finally, we devise MH-C to effi-
per reader the top-1 success rate of MCMC decreased from 0.65 tociently sample from the posterior distribution under environmental
0.55. On the other hand, the top-1 success rate of SIS dropped fromconstraints.

0.51to 0.41. Also, Figure 16(c) depicts how the top-2 success rate

of MCMC and SIS decreased correspondingly. 9. REFERENCES
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ABSTRACT

Power Saving Class (PSC) is an essential issue on IEEE 802.16-
2009. In previous research, many algorithms had been proposed to
reduce the consumption of power, but most of them only
considered multiple connections in a Mobile Subscriber Station
(MSS); in fact, it does not fit in with the situation of real world.
On the contrary, others proposed algorithms considering the
situation of multiple MSSs with multiple connections;
nevertheless, it is difficult to increase the amount of MSSs. In this
paper, we propose an efficient algorithm, which refers to both
categories and avoids state transitions. When packet size is much
smaller or delay bound is more loosening, the result shows that
our scheduling algorithm can serve almost double multiple MSSs
with multiple connections and still maintain high sleep ratio for
energy efficiency.

Categories and Subject Descriptors
C.2.1. [Computer-Communication Networks]: Network

Architecture and Design — Wireless communication

General Terms
Algorithms, Design, Performance

Keywords
IEEE 802.16-2009; power saving class (PSC); energy saving;
multiple MSSs; state transitions

1. INTRODUCTION

IEEE 802.16 Worldwide Interoperability for Microwave Access
(WIMAX) is used for the internet of Broadband Wireless Access
(BWA), and its characteristics of widespread coverage area in
metropolitan areas and high-speed bandwidth are much better than
those of personal communication networks we use today. By
adopting the structure of Point-to-Multipoint (PMP), a Base
Station (BS) can serve several Mobile Subscriber Stations (MSSs)
with multiple connections simultaneously, but the scheduling
algorithm can not violate each Quality of Service (QoS) demand
of connections.
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Because the scheduling algorithm is an open issue on the Media
Access Control (MAC) layer in the IEEE 802.16-2009 standard
(including the specification of IEEE 802.16e) [1], an efficient
scheduling algorithm must increase the capacity of BS in order to
serve more MSSs in large-scale environments. Besides, the
algorithm attempts to make MSSs work longer based on the
battery-powered energy. In the standard, there are four QoS
mechanisms: Unsolicited Grant Scheme (UGS), real-time Polling
Service (rtPS), non-real-time Polling Service (nrtPS) and Best
Effort service (BE) [2]. UGS, like VolP, requests consistent
bandwidth for a guaranteed period of time. Unlike UGS, rtPS, like
streaming audio or video, requests variable bandwidth and strict
delay bound. nrtPS, like FTP service, provides efficient service of
non-real-time traffic with minimum reserved rate. Like web
browsing, BE allocates bandwidth only when the bandwidth is not
exhausted. In this paper, we focus on UGS applied to multiple
connections among multiple MSSs

The standard also establishes three types of Power Saving Class
(PSC): type I, type 1l and type Ill. Even though the process of
each type is different, the goal is identical to less energy
consumption for each MSS. In the PSC, there are two states of
transceiver within the time unit of frame: on-state and off-state.
The continuous frames with on-state are called listening period,
and those with off-state are called sleep period. We can find that
an association between listening period and sleep period is a
periodical pattern called sleep cycle. When starting the sleep
period, the transceiver will go into off-state; when ending the
sleep period, it will revert back to the on-state. In type I, usually
applied to BE and Non-Real-Time Variable Rate (NRT-VR),
sleep period will double itself in the next time when listening
period has no packet to deliver. When applying to UGS and Real-
Time Variable Rate (RT-VR), type Il will repeat sleep cycle
sequentially; i.e. the sleep cycle has a fixed listening period and
sleep period. When the purpose of multicast or management
operations is known beforehand, type Il only enters the sleep
period once. Fig. 1 presents a comparison between these types [3].
Because we focus on the UGS of QoS type, we adopt the Type Il
of PSC in this paper.

In the real world, a MSS usually has multiple connections
simultaneously; furthermore, a BS also serves many MSSs at the
same time. The problem is that the BS can only deliver packets to
a MSS in a time slot, the unit of minimal time for scheduling.
When PSC is adopted, the whole frame, the unit of minimal time
for PSC, must awake if a slot wants to deliver a packet. In past
research, many algorithms had been proposed to reduce the
consumption of power, but most of them only considered multiple
connections in a MSS, which does not fit in with real world



situations. On the contrary, others proposed algorithms
considering the situation of multiple MSSs with multiple
connections; nevertheless, it is difficult to increase the amount of
MSSs. In this paper, we propose an efficient algorithm, which
refers to both categories and avoids state transitions. The result
shows that our scheduling algorithm can serve more multiple
MSSs with multiple connections and still maintain high sleep ratio
for energy efficiency.

Nomal Mode Sleep Period - Listening Period

Power Saving Class of type 1

[ [ Sleep Mode I |

- N =

Power Saving Class of type 11

[ [ Sleep Mode I |

| || || || W -
Power Saving Class of type 111

[ [ Sleep Mode I |

| [---
Figure 1. Power saving classes defined in the IEEE 802.16-2009

The remainder of this paper is organized as follows. In section I,
we not only review the related work but also classify it into two
categories; furthermore, we summarize the problems. In section
111, we propose a new scheduling algorithm to match the real
world situations. The simulation results are presented in section
1V, and in conclusion, we summarize this paper in section V.

2. MOTIVATION AND PROBLEM
DEFINITION

We categorize the related work into two categories: the first
category concentrates on power saving with multiple connections
in only a single MSS, and the second category deals with multiple
connections among multiple MSSs. There are some different
properties between these two categories, particularly in combining
or separating the overlapping frames. In the related work, we find
that [4-6] and [10] focused on the first category and [7-9] and [3]
emphasized the second one. Both categories consider three basic
parameters. The first parameter is packet inter-arrival time
representing the interval period, in which two packets are
delivered between BS and MSS. In type Il of PSC, inter-arrival
time must be the same in the sleep cycle repetitively. The second
parameter is bandwidth, which means the maximal traffic that BS
grants for MSS in a frame. If the number of MSS increases, the
bandwidth for each MSS decreases. The third parameter is delay
bound, which is used to concern the maximum tolerable period of
inter-arrival time. In this paper, we only consider the scenario that
inter-arrival time is smaller than delay bound. In fact, it is almost
true in the real world.

References [4-5] propose the Maximum Unavailability Interval
(MUI), and apply the Chinese Remainder Theorem to select the
best start frame for each connection. The purpose of increasing
the overlapping number of frames in the sleep period among
connections is to decrease the energy consumption of MSS. In
addition, [5] proposes Intelligent Table Consulting (ITC) to
reduce the computational complexity, but it does not consider the
bandwidth and how sleep cycle among numerous connections is
scheduled. While [5] only changes the start frame on each
connection, the result represents to improve the limited
consumption of power. All of [3-10] consider delay bound on
scheduling algorithms with a single PSC; more importantly, [6]

attempts to consider with multiple PSCs. When the size of packet
is smaller than bandwidth, [6] derives the most efficient power
saving rate among all other papers; nonetheless, when scheduling,
the algorithm of [6] does not consider the state transitions, a
phenomenon proposed in [10]. In fact, [10] is the first paper to
discuss this new parameter that inherited from [11] to improve
Aperiodic on-off Scheme (AS) [3] and Minimum Wakeup Time
(MWT) [7] in 802.16. Although the scheduling of [10] can work
more efficiently than [3] and [7], sleep cycle changes from
periodic to aperiodic. In other words, the scheduling of [10] still
causes the issue of state transitions. We consider this new
parameter in our algorithm and try to avoid it.

Reference [7] proposes an algorithm separating different
transmission time among MSSs, but it is deficient. Reference [8]
fixes this problem by adopting Ford-Fulkerson algorithm.
Although [8] can work more efficiently than [7], it has the same
problem as [10]. Reference [9] proposes a much easier and more
efficient algorithm to interleave different MSSs and still maintains
each connection with periodic sleep cycle; in other words, each
connection among MSSs can still fit in with UGS. Unfortunately,
this algorithm brings the unnecessary cost because of additional
connection to MSS and does not discuss power saving. Besides, [9]
also assumes that each MSS only has one connection, but it is not
real world situation. Reference [3] proposes Periodic on-off
scheme (PS) and AS and considers to combine not only the
packets from different connections but also the pattern from
different MSSs under the maximum bandwidth of minimum delay
bound. Before [6] and [10] are proposed, [3] is more outstanding
in power saving than previous research; nonetheless, [6] and [10]
do not consider the situation of multiple MSSs that [3] does. In
the simulation result, we compare PS with a new scheduling
algorithm called Power Saving Class Management Scheme based
on CAGE (PSS-CAGE), which we propose in this paper, with PS.
In Fig. 2, we can observe that PS has a limited BS pattern to the
minimal MSS pattern; on the contrary, PSS-CAGE has a limited
BS pattern to the maximal MSS pattern. For this reason, we can
estimate that the number of MSSs, which BS can maintain,
increases when the length of MSS patterns is much more variable.
For example, the BS pattern in Fig. 2(b) can serve an additional
MSS pattern 1 and an additional MSS pattern 2, but that in Fig.
2(a) can only serve an additional MSS pattern 1.

MSS Pattern 1 DD —————— MSS Pattern 1 |:|:|:| ——————

MssS Pattern 2 [ [ [ ]- - -- MssPatem2 [ [ ]----
BS Pattern [III]- --- BS Pattern |:I:|:|:|:|— ---

— —_
cycle cycle

(a) (b)

Figure 2. Example of difference between
(a) PS and (b) PSS-CAGE

In this paper, we want to combine the issues of two categories.
We define that B; is the maximum bandwidth per frame granted
from BS in an OFDM frame for a MSS. We attempt to aggregate
potential frames from each connection as more as possible, and
still keep each delay bound of connections, as shown in Fig. 3(a),
and the maximum bandwidth of MSS pattern under control. In
different MSSs, we interleave the overlapping frame by
rearranging the start frame of each type Il connection but not
violate the delay bound. By the research of [9], we can find that if



the sleep cycles of two connections are multiples or factors of
each other, the sleep cycles do not have overlap with each other,
and they can work together in the same MSS. The same property
can apply to two MSS patterns in the same BS. Therefore, we
must maintain each MSS pattern to conform to type Il in order to
interleave with other MSSs as shown in Fig. 3(b).

Gomneston 1 [T T ITITI)-- S Patem 1 [T TTIITTIITH-
omeston 2 [ T TTHIT T}~ wss patem2 I A}
g paten TN BN ICH -

wss Patiern [l TIT T TTTCIIT -

(@ (b)

Figure 3. Example of ideas

Because the probability that sleep cycle of connections or MSS
pattern becomes the multiple or factor of each other will increase,
the bandwidth utilization rate of BS pattern will increase, when
the number of connection and MSS increases. On the other hand,
in some special cases such as shown in Fig. 4(a), MSS pattern is
not a multiple or factor of each other but can still interleave
successfully. Nonetheless, in some special cases such as shown in
Fig. 4(b), MSS patterns will overlap in some frames. This means
that those MSSs can not work simultaneously in the same BS. In
order to simplify the situation of Fig. 4(a) and avoid the situation
of Fig. 4(b), we can use the relation between multiple and factor
to schedule the BS patterns like in Fig. 3(b). Furthermore, we
must schedule the connections of each MSS and consider all four
parameters, especially state transitions, referred in the previous
paragraph.

s Patiem + [T [T ILT[TITT] Mss Patem 1 (LT[ TTTTTIT1]
mss Pattem2 [ [l TTTT M TTT] mssPatem2 [ T I T T
BspPaten [ [ [TTITIT]
overlap

(a) (b)

BS Pattern

Figure 4. Example of special case

3. PROPOSED SCHEMES

We define that T; is the length of MSS i, T, is the minimal length
of MSS pattern in BS pattern, and T,, is the maximal length of
MSS pattern in BS pattern. M, which means how many T, are in
Tm, I that Ty, divided by Ts. S, is the remaining resource in the Xt
CAGE. TFR; is the request resource of MSS i. C;; means
connection j of the MSS i. D;; is the delay bound of C;;. CHECK
is used to indicate if the first two different MSS patterns are
successfully scheduled in the BS pattern. In the below, we
propose an algorithm to check whether T; can join to the BS
pattern.

27’1
Ti = F < mlnDl"}'

i=1.aj=1..b;a,bneN 1)

Algorithm 1: Scheduling BS pattern

Input:

Sorting T; from minimum to maximum;

Te=T1; Tn=To; My=Tn/ Tg; S = (T1*By) -TFRy; CHECK=1,
Join MSS pattern 1 to BS pattern;

Output:
Checking whether T; can join to the BS pattern
Fori=2toado
If CHECK <> 2 and Mu ==
IfS; >TFR,
S, =S; —TFR;; Join T; to the BS pattern;
Else
Can’t join T; to the BS pattern;
End If
Else If CHECK <> 2 and Mu <> 1
If S; > TFR;
For k=2 to Mu do
S«=8;; $1=5;-TFR;; T,=T;; CHECK = 2;
End For; Join T; to the BS pattern;
Else
Can’t join T; to the BS pattern;
End If
Else
Forr=1to Mu do
Forz=1to((T;/T,)—-1)do
Sr = Sr+z*Mu;
End For
End For
Tn=Ti;
If any S, can contain TFR;;
Join T; to the BS pattern;
Else
Can’t join T; to the BS pattern;
End If
End If
End For

Because we restrict that T; is an exponent of 2, as shown in Fig. 5,
we can avoid the problem presented in Fig. 4(a) and Fig. 4(b).
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Figure 5. Example of Algorithm 1

The remaining work is how to schedule each connection to a sleep
cycle of type Il in the same MSS and maintain each pattern of
MSS with the exponent of 2. Furthermore, we have to consider
the basic three parameters together with state transitions but not
violate those rules. We define that PI;; is the packet inter-arrival
time of C;;. The frame duration F is assumed to be an exponent of
2mes. Firstly, we sort C;; of the same MSS i by delay bound of C;
like D;y < D;, <-- < D;, and then choose the D;; and CAGE,
which is the length of sleep cycle for C;;, qualified by (2).



leugszJ =2 < Dil < on+l
2<CAGE<L @)
Secondly, we can set each length of sleep cycle for C; , , like T;;.
D;;
Ty = Tig-s % |24 ®

Therefore, we can obtain each T;;, a multiple of CAGE. Assuming
Pi; is the expected packet size of C;;, we can compute the
required bandwidth R;; of C;; per T;; by (4).

Ty xF
Ry = [ L ] x Py @)

In the next step, Fig. 6 indicates four connections, Ci;, Ci,, Cis
and Ci4, in the same MSS i with T;;=CAGE, T;,=2*CAGE,
Ti’3:2*CAGE and Ti’4:4*CAGE and Ri,l = B, Ri,Z = 2B;, Ri.3 = Bs
and R; ; = 2B; when CAGE = 4 frames.

We break each R;; into fractions as FR;; by (5).

R;
FR[J = Ti,; (5)

CAGE
Then we schedule FR;; continuously from the first frame. We can
observe that each FR;; is limited in the period of CAGE, just as a

CAGE contains all FR;; following (6).
¢_1 FR;; < CAGE X By (6)
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Figure 6. Example of PSS-CAGE

Finally, we can obtain a MSS pattern, which sleep cycle is CAGE,
the listening period is F’iil and the sleep period is CAGE —
f

a_ FR;; .
[2,_;_,] In fact, we can use exhausted search to find every
1

possible CAGE from (2) and calculate every possible sleep period.
We will choose the best CAGE of minimal power consumption.
The length of MSS pattern will be the exponent of 2, and we can
use Algorithm 1 to check whether this MSS pattern can join to BS
pattern.

4. SIMULATION RESULTS

We set up our simulation environment by referring to VolP
parameters and considering only downlink traffic. The length of
an OFDM frame is assumed to be 4ms, and each MSS has four
connections simultaneously. Our algorithm can still work by
multiplying by five in (2) when the duration of frame is 5ms, even
though it has slightly decreasing performance. Besides, our
scheduling algorithm is able to gain much better performance in
the simulation result when assuming that the duration of frame is
an exponent of 2ms.

Each packet inter-arrival time of connections is picked between
20ms and 32ms randomly, and delay bound is chosen between
48ms and 200ms randomly. All of the simulation results are
averaged from 100 rounds. Three metrics are used to evaluate the
performance: total number of MSSs, sleep ratio and successful
scheduling rate. The number of MSSs that can work
simultaneously in the same BS is counted. The sleep period
divided by the sleep cycle is sleep ratio. The successful
scheduling rate is the ratio of the number of successful scheduling
MSSs to the number of MSSs need to schedule.

4.1 Effects of Packet Size

In this simulation, we not only fix the B; to 2500 bytes per frame
but also randomly set packet size between 20 and 40 bytes per
frame by increasing the interval gradually. In Fig. 7, we can
observe that the number of MSSs decreases when the packet size
increases, and PSS-CAGE can always maintain more MSSs
simultaneously than PS. When packet size is much smaller
between 20 and 40 bytes per frame, the number of MSSs by PSS-
CAGE is almost 100% more than that by PS. This phenomenon
happens because PSS-CAGE adopts the pattern calculated by an
exponent of 2 with type Il for each MSS. Unlike PS that always
adopts the same minimal length of MSS pattern for each MSS,
PSS-CAGE can use the maximum length of MSS pattern to
schedule much more MSSs without overlapping or violating each
delay bound. Furthermore, the results shown in Fig. 7 can
response to the situation of Fig. 2.
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Figure 7. Effects of packet size on the number of MSSs

4.2 Effects of Delay Bound

We fix the B; to 2500 bytes per frame in this simulation and
randomly pick the packet size of connection between 40 and 80
bytes per frame. We gradually loosen the delay bound of
connection with a 25 frame increment. In Fig. 8, although PS can
contain more MSSs than PSS-CAGE when the delay bound fixes
in an integer but not randomly picked from an interval, the gap
can be somewhat neglected. The reason is that maximum length
of MSS pattern and minimum length of MSS pattern are the same
in this situation, and PSS-CAGE can schedule each sleep cycle no
more than that of PS. However, each sleep cycle of connection is
not usually the same in the real world, so that we simulate some



situations randomly picked the delay bound from an interval. The
simulation result presents that when the interval is more loosening,
PSS-CAGE can contain more MSSs as a result of bigger gap
between the maximum length of MSS pattern and the minimum
length of MSS pattern. As the same, the results shown in Fig. 8
can response to the situation of Fig. 2.
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Figure 8. Effects of delay bound on the number of MSSs
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4.3 Effects of Maximum Bandwidth (By)

We randomly pick the packet size from 40 to 80 bytes per frame
and gradually increased the B; from 150 to 2500 bytes per frame.
Furthermore, we set five MSSs working simultaneously in this
simulation. Through Fig. 9, we can observe that PS can not
activate the sleep mode when By is lower than 500 bytes per frame
because the total requested bandwidth of all MSSs exceeds By;
nevertheless, PSS-CAGE can activate even though the By is very
small. This phenomenon happens because PSS-CAGE can
abandon some MSSs in order to successfully schedule others
when B; is very small; however, PS can only either successfully
schedule all MSSs with all connections or schedule none of them.
In other words, PSS-CAGE gets better performance than PS when
the BS lay in high loading. We can also observe that when By is
lower than or equal to 500 bytes per frame, PSS-CAGE can
successfully and completely schedule as many MSSs into BS as
PS after B; is greater than or equal to 750 bytes in Fig. 10.
Although PS still obtains higher sleep ratio when By exceeds 500
bytes per frame, PSS-CAGE is very close to PS as shown in Fig. 9.
The gap between PS and PSS-CAGE is only 3% and lower than
1% when By is greater than or equal to 500 bytes per frame.

5. CONCLUSIONS

In this paper, we propose a new power saving algorithm called
PSS-CAGE that can let more MSSs work simultaneously than
previous work and still maintain high sleep ratio. Besides, PSS-

CAGE also avoids state transitions issue by adopting type Il of
PSC. Thus, each connection and MSS can maintain a regular
pattern and does not violate its delay bound. In other words, PSS-
CAGE can decrease additional listening period and try its best to
approach the delay bound. According to Fig.7, the result indicates
that PSS-CAGE can schedule more MSSs simultaneously than PS,
and PSS-CAGE still maintains high sleep ratio as shown in Fig. 9.
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