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It is shown that a flux of unpolarized electrons across a symmetric double barrier quantum well induces a
spin polarization inside the well. Besides, the transmitted current acquires a spin polarized component and the
spin-Hall current flows in the planar direction. These phenomena are due to a combined effect of Dresselhaus
interaction and the spin-orbit interaction induced by gradients of heterostructure material parameters. In con-
trast to previous studies of the spin filtering effect, we predict that it can be observed in the case of an isotropic
distribution of incident electrons.
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I. INTRODUCTION

The spin-orbit interaction �SOI� is a fundamental quantum
relativistic phenomenon which recently attracted much inter-
est in connection with spin transport of electrons in semicon-
ductors and metals. Due to SOI, an electric field can influ-
ence the spin degree of freedom, thereby giving rise to a
number of transport phenomena which have potential for ap-
plication in spintronics. One of them is the spin-Hall effect
�SHE�, which recently has been intensively studied both
theoretically �for a review see Ref. 1� and experimentally.2,3

A standard system to study this effect is a two-dimensional
�2D� electron gas confined within a quantum well. Due to
SHE the electric current in the quantum well gives rise to a
perpendicular flux of the spin polarization, as well as to the
out-of-plane spin density near sample edges. Closely related
to SHE is the electric spin orientation, which is a bulk in-
plane spin polarization induced by the dc electric current.4 In
both cases SOI is realized either via impurity scattering or
due to an intrinsic spin-orbit coupling mechanism. The latter
consists of two parts. The first one is the Dresselhaus
interaction5 which is inherent to all zinc-blende semiconduc-
tors. The second contribution is determined by gradients of
material parameters and the electric potential across a
heterointerface.6,7 In quantum wells �QWs� these interactions
are averaged with wave functions of confinement coordinate
in the heterostructure growth direction. After such an aver-
aging procedure the second term transforms into the Rashba
SOI �Ref. 8� which is not zero only in asymmetric in
z-direction �growth direction� heterostructures. The Rashba
and averaged Dresselhaus interactions are basic SOI widely
used in works on SHE, as well as in works on spin-
dependent transport in general.

In this work we will consider spin-orbit effects on elec-
tron transport from a different point of view. Namely, we will
consider the electric current parallel to the growth direction,
rather than parallel to the quantum well. An appropriate
model for studying such a situation is a double barrier quan-
tum well. A principal difference from the conventional 2D
system is that one cannot use neither Rashba nor Dresselhaus
interactions averaged over QW confinement. For example, a
part of the latter interaction, which is proportional to the z

component of the electron momentum operator, turns to 0
when averaged with a wave function of a confined state in
the well. At the same time it is finite for tunneling states.
Considering these states it is also easy to see that SOI asso-
ciated with electric fields at heterointerfaces does not reduce
to the single parameter Rashba interaction. The explicit de-
pendence on z of the initial spin-orbit interaction becomes
important. To make this point more clear we deliberately
considered a symmetric heterostructure, where Rashba SOI
is zero. For such a model of a symmetric double barrier
quantum well we found out that the electric current in the z
direction induces a parallel to the z-axis spin density, as well
as a current of spins polarized in a planar direction. The spin
current flows parallel to heterointerfaces. The former effect is
an analog of the electric spin orientation, while the latter is
the spin-Hall effect. Besides, we found the transmittance of
the double barrier structure to be dependent on the spin ori-
entation. A similar spin filtering effect has been considered
before within various models.9,10 It was shown there that this
effect can be observed only in the case of an anisotropic
distribution of incident electrons. It was suggested to create
such a distribution applying a planar electric field. In contrast
to these works, we predict the spin filtering effect for an
isotropic distribution of electrons tunneling through a sym-
metric double barrier structure. Moreover, our spin filter
makes electrons polarized in the z direction, instead of the
planar polarization in Refs. 9 and 10. Such fundamental dis-
tinctions arise from the �kz term of the Dresselhaus interac-
tion which has been neglected in Ref. 10.

The general Hamiltonian of the problem will be derived
in Sec. II. In Sec. III we will present our results related to the
spin-Hall effect, spin orientation, and the spin filtering effect.
A brief conclusion is presented in Sec. IV.

II. SPIN-ORBIT HAMILTONIAN

Let us consider a quantum well �QW� of the width 2d
separated from the left �z�−d−b� and right �z�d+b� parts
of a doped semiconductor system by two equal barriers of
the thickness b. These parts are assumed to be thermal res-
ervoirs with respective chemical potentials �l and �r. Be-
sides a system homogeneous in x ,y directions, we will also
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consider an electron gas confined in the y direction. For sim-
plicity, the adiabatic case will be considered when the con-
finement width w slowly increases from the QW towards
reservoirs. This situation is realized when the confinement is
achieved by depleting the electron gas with the help of elec-
trodes on top of the QW.

The spin-orbit interaction in such a system is represented
by two Hamiltonians Hso

�1� and Hso
�2�. The former is the

Dresselhaus SOI, while the latter is SOI due to change of the
band-gap width and other material parameters across hetero-
interfaces. Usually, in narrow gap semiconductors Hso

�2� is
much stronger. Therefore we will consider the Dresselhaus
interaction within the first order perturbation theory. Only the
part of Hso

�1� which is proportional to the z component of the
electron momentum operator will be taken into account.
Hence for �001� growth direction

Hso
�1� = − i��z�kx

2 − ky
2�

�

�z
, �1�

where �z is the Pauli matrix and � is the coupling parameter,
which is assumed to be z independent. An important property
of Hamiltonian �1� is that its expectation values taken with
tunneling states incident from the left and from the right
reservoirs have opposite signs, while it does not change sign
when kx, ky→−kx, −ky. Alternatively, other parts of the
Dresselhaus SOI, which have been omitted in Eq. �1�, are

even functions of k̂z and odd functions of kx, ky. Since the
interaction represented by Hso

�2� is of the same symmetry, the
omitted terms of Hso

�1� do not add particularly new qualitative
features to spin dependent electron tunneling, as well as to
other effects considered below. At the same time, the sym-
metry difference of Eq. �1� and Hso

�2� has important conse-
quences for these effects. This is also the main reason why
the results of Ref. 10, where interaction �1� has been ne-
glected, are qualitatively different from those presented be-
low.

Following Ref. 6 the Hamiltonian Hso
�2� can be written as

Hso
�2� =

1

k�

��xky − �ykx�h�z� , �2�

where

h�z� = k�

��

�z
�3�

and k� =�kx
2+ky

2. The parameter h�z� denotes SOI strength
which varies across the heterostructure depending on semi-
conductor material parameters and the electric potential. Ig-
noring the electron energy, which is much less than the gap
value, ��z� can be written as6

��z� =
1

2m�z�
��z�

3Eg�z� + ��z�
, �4�

where Eg�z� and ��z� are respective values of the band gaps
and split off energies.

The major effect of SOI �1� is that it gives rise to spin
precession around the z axis. This precession takes place
during particle transmission through the double barrier struc-

ture. Since the width of this structure is small in comparison
with the spin precession length, the effect of the spin preces-
sion is expected to be small. In order to get explicitly the
corresponding small parameter, the Hamiltonian can be
transformed using an appropriate unitary transformation.
Taking into account that the kinetic energy operator in the z
direction is

1

2

�

�z

1

m�z�
�

�z
�5�

one can apply the unitary transformation

H → U−1HU , �6�

with

U = ei�z��z�, �7�

where

��z� = − ��kx
2 − ky

2��
0

z

m�z�dz . �8�

This transformation removes Eq. �1� from the Hamiltonian.
At the same time, applying it to Eq. �2� one obtains, up to the
linear in ��z� terms, the spin orbit interaction

Hso = Hso
�2� +

2��z�
k�

��xkx + �yky�h�z� . �9�

For the model under consideration, with rectangular symmet-
ric barriers and a rectangular QW, h�z� becomes

h�z� = k�	��r − �b��	�z − b − d� − 	�z + b + d�� + ��b − �w�


�	�z − d� − 	�z + d��
 . �10�

The parameters �r, �b, and �w denote SOI strengths for res-
ervoirs, barriers, and QWs, respectively.

The transmission wave functions are represented by two
sets of functions incident from the left ��l� and from the right
��r� of the double barrier structure. In the zeroth order, when
the second term in Eq. �9� is ignored, these functions can be
conveniently written using the chiral basis. In the case of the
quantum wire confinement this basis corresponds to the spin
quantization axis directed along the y axis. Outside the
double barrier structure the scattering eigenstates are repre-
sented by incident, transmitted, and reflected plane waves,
with transmission and reflection amplitudes t�

l/r and r�
l/r, re-

spectively, where �=1,2 denotes the spin projection in the
corresponding chiral basis. This projection is conserved upon
the scattering, as far as the second term in Eq. �9� is ne-
glected. The wave vector of the scattering states is denoted
as k=�2mr�E−E��, where mr is the electron effective mass in
the left and right reservoirs, E is the total energy, and E� is
the energy of motion in x, y directions.

III. SPIN CURRENT AND SPIN POLARIZATION

A. Spin current

The nonzero spin current Jn
s , where s and n denote the

spin polarization and current direction, respectively, can be
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calculated already in the zeroth order with respect to ��z�,
while the latter will be important below in the calculation of
the spin density and spin dependent transmission. Hence in
this section we entirely neglect the presumably weak
Dresselhaus SOI. Let us take the chiral component of Jn

s .
That means that we look for the flux of spins polarized per-
pendicular to the flux direction that can be expressed as
Jn

s =J�snz, where �snz is the antisymmetric tensor. Using
the conventional definition of the spin current operator

Ĵn
s = 	vn ,�s /4
, where the spin dependent part of

vn =
kn

m�z�
+ �niz�i

h�z�
k�

�11�

is obtained from Eqs. �2� and �3�, the spin current density can
be written as

Jn
s�z� =

�snz

2 �
k�,�
�

0

 dk

2�
� k�

2m*�z�
��1

�2 − �2
�2�

+
h�z�
k�

��1
�2 + �2

�2��nF
��E� , �12�

where �= l, r and nF
��E� is the Fermi distribution function for

the left and right reservoirs. The first term in square brackets
represents the bulk spin current density distributed in the
QW, barriers and outside, while the second term is the “sur-
face” term which, according to Eq. �10�, is finite only on
heterostructure interfaces. From Eq. �12� it becomes imme-
diately evident that the spin current is not zero in the equi-
librium state when nF

l �E�=nF
r �E�. For example, the surface

current at each interface is given by ��z����z�, where ��z� is
the local equilibrium electron density and ���z� is the dif-
ference of the spin-orbit coupling parameters � on both sides
of the interface, as follows from Eq. �10�. In a symmetric
QW the surface currents on opposite interfaces flow in op-
posite directions, so that they cancel each other. It is easy to
see that the total equilibrium current, obtained by integration
of Eq. �12� over z, is identically zero in case of a symmetric
heterostructure. That follows from the symmetry relation
�1

l/r�z�=�2
r/l�−z� which makes Jn

s�z� an odd function of z. At
the same time, one cannot expect the total current to be zero
in an asymmetric heterostructure, as has been shown by
Rashba11 for confined states. It should be noted that Rashba
found that the total equilibrium current is cubic with respect
to the spin-orbit coupling constant, while the current density
given by Eq. �12� is linear. The latter becomes evident from
the above expression for the surface current. That means
that, at least, linear and quadratic terms vanish after integra-
tion of Eq. �12� over z.

By convention, the “nonequilibrium” current could be de-
fined as a part of Eq. �12� which is proportional to nF

l −nF
r . In

a symmetric QW this current density is an even function of z
and, hence, the corresponding total nonequilibrium current is
finite. However, one cannot define unambiguously the dissi-
pative part of the spin current using only its definition �12�.
Calculation of the spin accumulation at the sample boundary
would be helpful to clarify the physical meaning of Eq. �12�.

B. Spin orientation

In order to calculate the spin density induced by the tun-
neling current, the second term in Eq. �9� must be taken into
account. It causes spin flip processes upon transmission and
reflection of particles incident onto the double barrier struc-
ture. Therefore we label spin variables of wave functions by
two indices, as ���, where � denotes the spin polarization of
the incident wave. Treating such functions as matrices, the
spin density can be expressed as

S�z� =
1

2 �
k�,�
�

0

 dk

2�
Tr���+����nF

��E� , �13�

where �= ��x ,�y ,�z� is the vector of Pauli matrices. We cal-
culate Eq. �13� in the first order perturbation theory with
respect to ��z�. Since a commutator of two terms in Eq. �9�
is proportional to �z, one should expect the z component of
S�z� to be finite. Further, the time inversion symmetry dic-
tates

�
�=l,r

Tr��k�

�+��k�

� � = − �
�=l,r

Tr��−k�

�+ ��−k�

� � . �14�

Applying this relation to Eq. �13� the latter is transformed to

Sz�z� = �
k�

�
0

 dk

4�
Tr��l+�z�

l��nF
l �E� − nF

r �E�� . �15�

It immediately follows from this expression that the spin
density is zero in the equilibrium state.

The first order correction to the wave function can be
written in terms of the retarded Green function, so that

���
l �z� = ��

l �z�	�� +� dz�G��z,z��V���z����
l �z�� , �16�

where V���z�� is a matrix element of the second term in Eq.
�9� and ��

l �z� is the unperturbed wave function. In its turn,
the Green function is given by

G��z,z�� = − i
mr

kt�

���
l �z���

r �z����z − z��

+ ��
r �z���

l �z����z� − z�� . �17�

In the considered case of a symmetric heterostructure, it is
easy to see that the transmission coefficient t1= t2� t. At the
same time, the reflection is spin dependent through its phase.
We note that, according to Eq. �8�, the matrix elements V��

are proportional to kx
2−ky

2. After integration in Eq. �13� over
angles of the vector k� this expression turns to 0. It does not
necessarily happen for other than �001� crystal orientations.
We will not consider such an opportunity here. Also, we will
not discuss here other than Dresselhaus’s SOI effects, for
example, due to strain, or due to potential gradients along x,
y axes. Instead, let us consider a situation when electrons are
confined, say, in the y direction. In this case kx

2−ky
2 becomes

kx
2−ky

2
n, where the overline and the label n denote averaging

of the momentum operator over the nth quantum eigenstate
in the y direction. Thus the symmetry between x and y di-
rections is broken and Sz does not turn to zero. Below we
will assume a parabolic confinement. After averaging over
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the y direction the spin-orbit interaction �9� depends only on
kx, with k� = kx.

Substituting Eq. �17� into Eq. �16� and then into Eq. �15�
we express Sz�z� through unperturbed eigenstates. The latter
are calculated for a square barrier structure described above.
For an order of magnitude evaluation of the spin density, the
result can be written in an analytical form. Calculations are
strongly simplified if only resonance terms in Eq. �15� are
taken into account. One may also make use of the small
parameter kw

2 /2mwU, where kw is the wave vector in the z
direction within a QW and U is the barrier height. At the
lowest transmission resonance kw=k0�� /2d. By this way,
in the leading approximation the spin density in the center of
the well �z=0� and the center of the wire �y=0� can be writ-
ten as

Sz = −
4

�
�
kx,n

�n�0�2�
0



dk
�4

��kw − k0�2 + �2�2

mrmb

�k


A�n�d�h2 cosh2 �b sinh 2�b�nF
l �E� − nF

r �E�� ,

�18�

where h=kx��w−�b�, ���2mbU. The phase �n�z� is ob-
tained from Eq. �8� by averaging ky

2 with oscillatory wave
functions �n�y�. The width of the transmission resonance in
k space is given by �= �mb

2 /mrmw��kkw /�2d�sinh−2�b, where
mr, mb, mw are effective masses in reservoirs, barriers, and
QWs, respectively. A is a dimensionless function of k. The
value of this function is close to 1 in the range of parameters
under consideration.

For a numerical evaluation the following parameters have
been taken: d=100 Å, b=40 Å, electron density in reservoirs
n=1023 m−3, the quantization energy of the parabolic con-
finement ��=4 meV, and �=27 eV Å3.7 Other parameters
correspond to the InAs quantum well, In0.53Ga0.47As barrier,
and In0.9Ga0.1As reservoirs. With such parameters we calcu-
lated �=104 cm−1 and ��d��10−3. From Eq. �18�, in the
linear regime ��=�l−�r�EF, the spin density can be
evaluated as Sz�0.1�� meV−1 �m−3. Although the spin
density is not high, nevertheless, in the range of 1 mV ter-
minal voltages it can be detected by the Kerr rotation
method.3 The parameters of the heterostructure can also be
optimized to reach the higher density. Experimentally, the
total spin polarization can be enhanced in superlattices.

C. Spin dependent transmittance

The second term in Eq. �9� causes spin flips of a particle
transmitting through the double barrier structure. The spin
dependent transmission is obtained from Eqs. �17� and �16�
where �l is calculated at z�d+b. By this way, near the
resonance, the spin flip transmittance becomes

�t1,2 = − i16t2��d�Bmb
3mr

mw
2

h2kw
2

�3k

cosh3 �b

sinh �b
,

�t2,1 = − �t1,2, �19�

where B�1 is a dimensionless factor. It is easy to see that,
according to Eq. �19�, �t1,2 transforms an unpolarized flux of

electrons, say, from the left reservoir into a flux of spin po-
larized electrons, with the polarization in the z direction. In-
deed, according to our choice of the spin basis, the z polar-
ization is obtained by taking an average of the �y spin
operator. Equation �19� gives rise to two spinors correspond-
ing to two possible initial spin polarizations: �1= �t ,�t1,2�
and �2= ��t2,1 , t�. For an unpolarized source, after summing
up averages of �y with these spinors, one obtains a
finite result, taking into account that near the resonance
t= i��kw−k0+ i��−1�1. It should be noted that besides Eq.
�19� �t1,2 contains one more term which, however, does not
result in a resonant polarized transmission. This term has
been neglected. The transmission coefficient obtained from
Eq. �19� is symmetric with respect to x→−x, y→−y and,
hence, remains finite after the angular averaging, in contrast
to a spin filtering effect considered in Refs. 9 and 10. Close
to the Fermi energy and with the same numerical parameters
used for evaluation of Eq. �18� we obtain �t1,2�3
10−3. In
spite of its small value, this coefficient can lead to a notice-
able accumulation of the spin polarization in a reservoir with
small spin relaxation rate. For example, let us take a reser-
voir of 1 �m3 volume. The spin polarization flux carried
from the left reservoir through the wire of the length L is
given by

Is =
L

�
�
kx,n
�

0



dk
k

mr
Im�t*�t1,2��nF

l �E� − nF
r �E�� . �20�

Taking �l−�r=1 meV, L=1 �m, the typical spin relaxation
time in bulk semiconductors 1 ns,12 and all the rest of the
parameters as in the above evaluations, we get the spin den-
sity in the reservoir around 0.5 �m−3, which is within the
optical detection range.3

IV. CONCLUSION

We considered the spin orbit effects associated with reso-
nant tunneling of electrons through a symmetric double bar-
rier structure. Two contributions to SOI have been taken into
account, namely, the Dresselhaus SOI and the spin-orbit in-
teraction induced by gradients of heterostructure material pa-
rameters. We found out that the vertical transport of electrons
gives rise to the spin current flowing parallel to heterointer-
faces, as well as to the spin polarization within the QW.
These effects are analogous to the spin-Hall effect and the
electric spin orientation, intensively studied recently for 2D
electron gas. A distinction with these traditional studies is
that instead of electron wave functions confined in a QW we
employ eigenstates corresponding to resonant electron trans-
mission. Moreover, instead of an electric field parallel to the
QW, the vertical bias has been considered. In compliance
with such a 3D model, we calculated a distribution in the z
direction of the spin-Hall current density and spin polariza-
tion. This dependence reveals an interesting structure, such
as “surface” currents flowing along the heterointerfaces. The
spin-Hall current density does not turn to 0 with the external
bias, thus signaling existence of the equilibrium spin current
density, which was found to be linear with respect to the
spin-orbit interaction. At the same time, in a symmetric
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double well structure the net equilibrium current, obtained by
integration of the current density over z, turns to 0. Although
the spin-Hall and the equilibrium currents take place in the
absence of the Dresselhaus SOI, the latter is necessary to
obtain the finite out-of-plane spin density within the QW. It
was found out that the most important is a part of the
Dresselhaus SOI which is proportional to the z-component of
the electron momentum operator. This SOI also gives rise to
spin dependent transmission. Due to interplay of the Dressel-
haus SOI and the spin-orbit interaction induced by gradients
of heterostructure material parameters, an unpolarized and
isotropic in the x, y directions beam of electrons becomes
polarized in the z direction after tunneling a through double
barrier QW.

The effects discussed in this paper can be interesting in
the application to metal surfaces with strong spin-orbit ef-
fects associated with surface states.13 The STM set up with a
magnetic tip could be employed for studying spin related
effects. The above model, however, must be modified to take
into account spin-orbit interactions typical for a particular
metal surface.
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