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Abstract

Many decision-making or choice problems in Marketing incorporate preferences. How to
assist decision makers in understanding the decision context and improving inconsistencies in
judgments are two important issues in ranking choices. This study develops a decision-making
framework based on the screening, ordering, and choosing phases. Two optimization models and
a Decision Ball model are proposed to assist decision makers in improving inconsistencies and
observing relationships among alternatives. By examining a Decision Ball, a decision maker can
observe ranks of and similarities among alternatives, and iteratively adjust preferences and
improve inconsistencies thus to achieve a more consistent and informed decision.

Key words:  Decision Ball; Visualization; Ranking; Inconsistency; Decision-making



1. Introduction

Many decision-making or choice problems in Marketing incorporate preferences (Liechty
et al, 2005; Horsky et al. 2006; Gilbride and Allenby, 2006). Keeney (2002) identified 12
important mistakes frequently made that limit one’s ability in making good value judgments, in
which “not understanding the decision context” and “failure to use consistency checks in
assessing value trade-offs” are two critical mistakes. Hence, how to assist decision makers in
understanding the decision context and adjusting inconsistencies in judgments are two important
issues in ranking choices.

There is evidence that decision makers’ preferences are often influenced by the visual
background information (e.g., Simonson and Tversky 1992; Tversky and Simonson, 1993;
Seiford and Zhu, 2003). From marketing it is known from consumer choice theories that context
impacts the choices consumers make (Seiford and Zhu, 2003). For example, a product may
appear attractive against a background of less attractive alternatives and unattractive when
compared to more attractive alternatives (Simonson and Tversky, 1992). Visual representations
can simplify and aggregate complex information into meaningful pattern, assist people in
comprehending their environment, and allow for simultaneous perception of parts as well as a
perception of interrelations between parts (Maruyama, 1986; Meyer, 1991; Sullivan, 1998).
Hence, how to provide visual aids to help decision makers make a more informed decision is the
first issue addressed by this study.

Ranking alternatives incorporating preferences is a popular issue in decision-making. One
common format for expressing preferences is to use pairwise comparisons, which forces one to
make a direct choice of one object over another when compariing two objects, rather than
requiring one to comparing all objects simultaneously (Cook et al., 2005). For example, in sports
competitions, such as tennis, football and baseball, pairwise rankings are the typical input
(Hochbaum and Levin, 2006). Several methods have been proposed (e.g., Saaty, 1980; Jensen,
1984; Genest and Rivest, 1994) to rank alternatives in pairwise comparisons fashion. However,
inconsistencies are not unexpected, as making value judgments is difficult (Keeney, 2002). The
ranks different methods yield do not vary much when the decision makers’ preferences are
consistent. But, if a preference matrix is highly inconsistent, different ranking methods may
produce wildly different priorities and rankings. Hence, how to help the decision makers to
detect and improve those inconsistencies thus to make a more reliable decision is the second issue
addressed here.

Multicriteria decision makers tend to use screening, ordering and choosing phases to find
a preference (Brugha, 2004). They tend to make little effort in the first phase as they screen out
clearly unwanted alternatives, use somewhat more effort in the second phase as they try to put a

3



preference order on the remaining alternatives, and reach the highest effort in the final phase
when making a choice between a few close alternatives.

This study develops a decision-making framework based on these three phases.
Preferences in pairwise comparison fashion are adopted in the choosing phase. Two optimization
models and a Decision Ball model are proposed to assist decision makers in improving
inconsistency and observing relationships among alternatives. By examining Decision Balls, a
decision maker can iteratively adjust preferences and improve inconsistencies thus to achieve a
more consistent decision. The proposed approach can be extensively applied in Marketing.
Possible applications are the selection of promotion plans, decisions regarding product sourcing,
choice of marketing channels, evaluation of advertising strategy, research of customer
behavior ...etc.

The reasons why this study uses a sphere model instead of a traditional 2-dimensional
plane or a 3-dimensional cube model are described as follows. A 2-dimensional plane model
cannot depict three points that do not obey the triangular inequality (i.e. the total length of any
two edges must be larger than the length of the third edge) neither can it display four points that
are not on the same plane. For instance, as illustrated in Figure 1, consider three points, Q1, Q., Qs,
where the distance between Q:Q,, Q.Qs, and Q:Qs are 3, 1, and 6, respectively, as shown in
Figure 1(b). It is impossible to show their relationships by three line segments on a 2-dimensional
plane, as shown in Figure 1(a). If there are four points, Q;, Q, Qs, and Q4, which are not on the
same plane, as shown in Figure 1(c), it is impossible to present these four points on a
2-dimensional plane too. In addition, a sphere model is also easier for a decision maker to observe
than a 3-dimensional cube model because the former exhibits alternatives on the surface of a
sphere rather than inside the cube.

This paper is organized as follows. Section 2 reviews the relevant literature. Section 3
sets the three-phase decision making framework, including the screening, ordering and choosing
phases. Section 4 proposes a weight-approximation model and a Decision Ball model to support a
decision maker to filter out poor alternatives in the ordering phase. Section 5 develops an
optimization model which can assist a decision maker in improving inconsistencies in preferences,
and provides three methods to allow a decision maker to iteratively adjust his preferences in the
choosing phase. Sections 4 and 5 form the main theoretical part of this paper; therefore, readers
only interested in the application of proposed approach can skip these two sections. Section 6
uses an example to demonstrate the whole decision process.

2. Relevant Literature
Several visualization approaches have been developed to provide visual aids to support
decision-making process. For instance, Li (1999) used deduction graphs to treat decision
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problems associated with expanding competence sets. Jank and Kannan (2005) proposed a spatial
multinomial model of customer choice to assist firms in understanding how their online
customers’ preferences and choices vary across geographical markets. Kiang (2001) extended a
self-organizing map (SOM) (Kohonen, 1995) network to classify decision groups by neural
network techniques. Many studies (Kruskal, 1964; Borg and Groenen, 1997; Cox and Cox, 2000)
adopted Multidimensional scaling (MDS), which is widely used in Marketing, to provide a visual
representation of similarities among a set of alternatives. For instance, Desarbo and Jedidi (1995)
proposed a new MDS method to spatially represent preference intensity collected over
consumers’ consideration sets. However, most of conventional visualization approaches are
incapable of detecting and improving the decision makers’ inconsistent preferences. Gower
(1977), Genest and Zhang (1996) proposed a powerful graphical tool, the so-called Gower Plot, to
detect the inconsistencies in decision maker’s preferences on a 2-dimensional plane. Nevertheless,
the Gower plots do not provide suggestions about how to improve those inconsistencies either.

A pairwise-comparison ranking problem can be provided with magnitude of the degree of
preference, intensity ranking; or in terms of ordinal preferences only, preference ranking. These
are sometimes referred to also as cardinal versus ordinal preference (Hochbaum and Levin, 2006).
Many studies (Saaty, 1980; Saaty and Vargas, 1984; Hochbaum and Levin, 2006; etc.) use
multicriteria decision making approaches to find a consistent ranking at minimum error. However,
conventional eigenvalue approaches cannot treat preference matrix with incomplete judgments.
And, most of them focus on adjusting cardinal or ordinal inconsistencies instead of adjusting both
cardinal and ordinal inconsistencies simultaneously. Li and Ma (2006)(2007) developed goal
programming models which can treat incomplete judgments and improve cardinal and ordinal
inconsistencies simultaneously. However, the ranks of and similarities among alternatives can be
displayed.

This study cannot only improve cardinal and ordinal inconsistencies simultaneously but
provide visual aids to decision makers. They can observe ranks of and similarities among
alternatives, and iteratively adjust their preferences to achieve a more consistent decision.

3. Setting the Decision-Making Framework
The proposed decision-making framework is illustrated by the screening, ordering, and

choosing phases as listed below:

(1) The screening phase: the decision maker tries to screen out clearly unwanted alternatives.
The decision maker specifies upper and/or lower bounds of attributes to screen out poor
alternatives.

(ii) The ordering phase: the decision maker tries to put a preference order on the remaining
alternatives.



® The decision maker roughly specifies partial order of alternatives.

®  An optimization model and a Decision Ball model are developed to assist decision
maker in calculating and viewing ranks of and similarities among alternatives.

® The decision maker filters out poor alternatives according to the information
displayed on the Decision Ball.
(iii)  The choosing phase: the decision maker tries to make a final choice among a few
alternatives. There are four steps in this phase, including specifying pairwise-comparison
preferences, detecting and improving inconsistencies, adjusting preferences, and
determining the best alternatives.
®  Specifying pairwise-comparison preferences. Decision maker has to make more
sophisticated comparisons for the remaining alternatives in this phase.
Pairwise-comparison fashion, like analytical hierarchy process (AHP; Saaty, 1980),
is adopted here because it is good for choosing phase (Brugha, 2004).

® Detecting and improving inconsistencies. Because inconsistent preferences may
result in unreliable rank order, significant inconsistencies should be modified to
obtain a more consistent solution. An optimization model is proposed to assist
decision maker in detecting and improving inconsistencies. After inconsistencies
have been reduced, the ranks of and similarities among alternatives are calculated
and displayed on a Decision Ball.

®  Adjusting preferences. According to the information displayed on the Decision Ball,
the decision maker can iteratively adjust his preferences and see the corresponding
changes on the Decision Ball.

® Determining the best alternatives. Decision maker makes the final choice with the
assistance of the Decision Ball.

The detailed explanations about the ordering and choosing phases are illustrated in the

following two sections.

4.  The models for ordering phase

Consider a set of alternatives A = {A;, A,, ..., Ay} for solving a choice problem, where the
decision maker selects m criteria to fulfill. The values of criteria c,, ..., ¢, for alternative A;are
expressed as ciy, for k = 1,..., m_All criterion values are assumed to be continuous data. Denote C

= [¢;y ]m as the criterion matrix of the decision problem. Denote c, and a as the lower

and upper bounds of the criterion value of c, respectively. The value of ¢, and a can be

either given by the decision maker directly or calculated by the minimum and maximum raw
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criterion value of c,. The score function in this study is assumed to be in an additive form because
it is the most commonly used form in practice and more understandable for the decision maker
(Belton and Stewart, 2002). Denote S; as the score value of an alternative A;. An additive score
function of an alternative A; (Ci1, Ci, ..., Cim) iS defined as below:

Cik —Cx

S(w) =Y w, 2k )

k=1 Ck =C

m
where (i) wy is the weight of criterion k, w, >0, vk and Zwk =1. w=(W,W,,.,W,) is
k=1

a weight vector, (ii)) 0<S,(w)<1. Inorder to make sure that all weights of criteria and scores

of alternatives are positive, a criterion c;x with cost feature (i.e., a DM likes to keep it as small as
possible) is transferred from ¢; to (c, — C; ) in advance.

Following the score function, the dissimilarity function of reflecting the dissimilarity
between alternatives A; and A is defined as
i ICik —Cjix |

5i,j(W):ZWk+' (2)
k=1

C —Cy

where 0<¢; (W) <1 and ¢, ;(w)=7,;(w). Clearly, if cix= cjx for all k then ¢, ; (W) =0.

In the ordering phase, a decision maker has to roughly specify partial order of alternatives.
If the decision maker prefers A; to A;, denoted as A, > Aj , score of A; should be higher than that of

A; (Si > S;). However, there may be some inconsistent preferences. For instance, a decision maker
may specify A = A;, A; = Acand A, > A,. Abinary variable t;; is used to record the inconsistent

relationship between A; and A;: if A > A, and S;> §;, then t;; =0; otherwise, t;; = 1. A weight
approximation model for ordering phase is developed as follows:
Model 1 (Weight approximation model for ordering phase)

Min 225,

i1 j=1
R .
s.t. Si(w)=>w, ok i, (3)
k=t Gk —Ck
2 W =1, @)
k=1
SiZSj-i—é‘—Mti]j, VAi>-AJ-, (5)



W, < W, sw_k, w, >0, vk, (6)

Ui, €{0,1}, Miis a large value, & isatolerable error. 7

The objective of Model 1 is to minimize the sum of t;;. Expressions (3) and (4) are from

the definition of an additive score function (1). Expression (5) indicates that if A > A,
ands; > Sj+e, then t;; =0; otherwise, t; = 1, where & and M are a computational precision

and a large value which can be normally set as 10 °and 10°, respectively. Denote w, and

W_kas the lower and upper bound of wy, which could be set by the decision maker as in

Expression (6). From (1) and (2), the score S; of alternative A; and dissimilarity o; ; between
alternative A; and A; can be calculated based on the results of Model 1

A Decision Ball model is then constructed to display all alternatives A; in A = {A, A,, ...,
A.} on the surface of a hemisphere. A non-metric multidimensional scaling technique is adopted
here to provide a visual representation of the dissimilarities among alternatives. The arc length
between two alternatives is used to represent the dissimilarity between them, e.g., the larger the
difference, the longer the arc length. However, because the arc length is monotonically related to
the Euclidean distance between two points and both approximation methods make little difference
to the resulting configuration (Cox and Cox, 1991), the Euclidean distance is used here for
simplification.

In addition, the alternative with a higher score is designed to be closer to the North Pole
so that alternatives will be located on the concentric circles in the order of score from top view.
For the purpose of comparison, we define an ideal alternative A., where A. = A*(c_l,a,...,a)
and S. =1 .A.is designed to be located at the north pole with coordinate (X., Y., z.)= (0, 1, 0).

The following propositions are deduced:
Proposition 1 The relationship between o;.(w) (the dissimilarity between A; and A.)) and

Si(w) is expressed as J; (W) =1-S;(w).

<Proof> 5i,*(W)=Zm: lCI_k—ZZm: G —C) = (Ciy —Cy)

k=1 Cy — Sk Ck C_k
-, (ck B L L
k=1 k=1 Ck —C¢

Denote d;;as the Euclidean distance between A; and A; . Let diyj :\/55”, such that if



0; ; =0 then d;j = 0 and if 6” = 1 then dj :ﬁ, where ﬁ is used because the distance

ij
between the north pole and equator is V2 when radius = 1. Denote the coordinates of an
alternative A;on a ball as (x;, ¥, zi). The relationship between y;and S; is expressed as
Proposition2 y; =2S, —S?.

<Proof> Since dZ =(x; —0)% +(y; —D* +(z; —0)* =252 =2(1-S;)?,

itisclear y, =2S; - Si2 . Clearly, if S;=1theny;=1; if =0, then y; = 0.

~

Based on the non-metric multidimensional scaling technique, denote d;; as a

monotonic transformation of &, ; satisfying following condition: if &, <&,,, then

A

di,j < &pyq. The coordinate (x;, yi, z;) of alternative A; all i can be calculated by the following

Decision Ball model:
Model 2 (A Decision Ball Model)

Min ii(du ~d, )’

{xi.yi.zi}

s.t. Yi :i;Sj?i—Sf, Vi, (8)
d, <d,,~&, V6, <&, )
dZ = = X)) 2 +(y; =y +(z —2;)%, Vi ], (10)
x> +yi+z2 =1, Vi, (11)
-1<x,,z; <1, 0<y, <1, Vi, & isatolerable error. (12)

The objective of Model 2 is to minimize the sum of squared differences between d;; and

A

di’j . Expression (8) is from Proposition 2, where the alternative with a higher score is designed

to be closer to the North Pole. Expression (9) is the monotonic transformation from 5”. to &i’j.

All alternatives are graphed on the surface of the northern hemisphere (11)(12).

Model 2 is a nonlinear model, which can be solved by some commercialized optimization
software, such as Global Solver of Lingo 9.0, to obtain an optimum solution. One restriction of
this model is the running time that may considerably increase when the number of alternatives
becomes large because the time complexity of Model 2 is n%. This model has good performance
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when the number of alternatives less than 10. However, in this case of alternatives more than 10,
some classification techniques, like k-means (MacQueen,1967) for instance, can be used to
reduce the solving time by dividing alternatives into several groups. The coordinates of group
centers are calculated first. Then, these group centers are treated as anchor points. The coordinates
of alternatives can be obtained by calculating dissimilarity between alternatives and anchor points.
Thus, all alternatives can be displayed on the Decision Ball within tolerable time.

According to the information displayed on the Decision Ball, the decision maker can
select better alternatives into the next phase.

5. The models for choosing phase
In this phase, the decision maker has to make more sophisticated comparisons for
the remaining alternatives. Pairwise comparisons are adopted here (Brugha, 2004). For some
i and j pairs, assume a decision maker can specify p;;, the ratio of the score of A; to that of A;,
which is expressed as

(13)

where S; is the score of A; and e, i is a multiplicative term accounting for inconsistencies, as

illustrated in the Analytic Hierarchy Process (AHP) (Saaty, 1980). It is assumed that p;; = 1/pji.
If the decision maker cannot specify the ratio for a specific pair i and j then p, ; =¢. Denote P

=[pi;lnn asa nxn preference matrix. P is incomplete if there is any p; ; = ¢. P is perfectly

consistent if e;; =1 for all i, j (i.e. pi; = Si/S;for all i, j). P is ordinally inconsistent (intransitive)

if for some i, j, ke {1, 2, 3, ..., n} there exists pi; > 1, pjx > 1, but pix < 1. P is cardinally

inconsistent if for some i, j, ke {1, 2, 3, ..., n} there exists Pik # Pij X P« (Genest and

Zhang, 1996).

If P is complete and ordinal consistent, all A; can be ranked immediately. However, if
there is ordinal or highly cardinal inconsistency, these inconsistencies should be improved before
ranking because significant inconsistencies may result in unreliable rank order.

An optimization model, developed by a goal-programming optimization technique, is
developed to assist decision maker in detecting and improving inconsistencies. In order to reduce
the ordinal inconsistency, a binary variable u;; is used to record if the preference p;;, specified by
the decision maker, is suggested to be reversed or not. If p;; is suggested to be reversed, then u;;
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= 1, otherwise, u;j = 0. A variable ¢; . , defined as the difference between p;; and Si/S;, is used to

ij

indicate the degree of cardinal inconsistency of p;;: the larger the value of ¢«; ., the higher the

ij?
cardinal inconsistency. The inconsistencies improving model is formulated as below:

Model 3 (Inconsistencies improving model )

Min M xObjl+Obj2

Objl= > > u;

izl j>i
Obj2= > > a;
i=1 j>i
s.t. (%—1)x(pi’j - +Mxu;; >2¢, foralli, jwhere p;; # ¢ and p;; =1, (14)
J
—‘Si —Sj‘+ M xu;; 20, forallijwherep;; =1, (15)
S, .
——pij‘ﬁaij,VI,j, (16)
S, ‘ ‘
m c., —C
S,(w)=>w, === vi, (17)
k=t G —Cy
3w, =1, (18)
k=1
w, <w, <w,, w, >0,vKk, (19)
u;; {01}, Misalarge value, & isa tolerable error. (20)

This model tries to improve ordinal and cardinal inconsistencies simultaneously. The first
objective (Objl) is to achieve ordinal consistency by minimizing the number of preferences

(i.e., p; ;) being reversed. Constraint (14) means: when p, ; # ¢ and Pi; #1, uij =0, if (i)

(% >1)and (p; ; >1) or (ii) (%<1) and (p;; <1) ; and otherwise u;; = 1. A tolerable
J J

S.
positive number & is used to avoidS—' =1. Constraint (15) means: when p;; = 1, if S;=S;; then
i
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uij = 0; otherwise u;j; = 1. The second objective (Obj2) is to reduce cardinal consistency by

minimizing the «;; values, i.e. to minimize the difference between S—' and p, ;. Since
i

ordinal consistency (Obj1) is more important than cardinal consistency (Obj2), Obj1 is multiplied

by a large value M in the objective function. Constraints (17) and (18) come from Notation 1.

Constraint (19) sets the upper and lower bound of weights. An improved complete preference

, : .S
matrix can be obtainedas P = [p;;],.,, where p; :S—' if p;;=¢ oru=1;otherwise,
j

pil,j =P

Model 3 is a nonlinear model, which can be converted into the following linear mixed 0-1
program:

I}/Ii? M x Objl+ Obj2

i=L j>i

Obj2 = anzn:a”

i=L j>i

st (S5 =S;)x(pi; - D+Mxu;; 2¢, foralli, jwhere p;; #¢ and p;; =1, (21)

L=

-Mxuy;; <5, -5, <Mxu

L=

foralli,j where p;; =1, (22)

ij?

Vi, |, (23)

ij Pi; — i <§, < ij i+,

(17) ~ (20),
where (21), (22) and (23) are converted from (14), (15) and (16) respectively.
. . O Cix =G
After the weight vector, (wi, Wy, ..., Wy), is found, Si(w)=Z:Wk ——=— and

k=1 Ck =G

m C., —C.
d; i (w) =ZWk li—’kl can be calculated. All alternatives are shown on a Decision Ball by
k=1 Ck =Cx.
Model 2.
According to the information visualized on the Decision Ball, the decision maker can
iteratively adjust his preferences by the following ways:
Q) Adjusting preference order. Since alternative with a higher score is designed to be closer
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to the North Pole so that a decision maker can see the rank order by the location of
alternative: the higher the latitude, the higher the score. If the decision maker would like
to adjust a preference order, from A; < A; to A;> Az for instance, a constraint
S, =S, + ¢ will be added into Model 3.

(i) Adjusting dissimilarity. The distance between two alternatives on a Decision Ball implies
the dissimilarity between them: the larger the dissimilarity, the longer the distance.
Therefore, if a decision maker observes the Decision Ball and decides to adjust the

dissimilarity relationship, from &, ,(W) < J,,(W) to J,,(W) > &, ,(w) for example,

a constraint 6, ;(W) > o,,(w) (i.e. Zmlwkl Lk C?’k | i lclk |+g) will
k=1 Cy — k=1 —C
be added into Model 3.

(iii)  Adjusting preference matrix. A decision maker can choose to adjust the preference matrix
directly. The value of p;j; in Model 3 will be modified according to the change in the
preference matrix.

Solving Model 3 yields a new set of weights, and an adjusted Decision Ball will be
displayed. The decision maker can iteratively adjust his preferences until he feels no adjustments
have to be made. A final choice can be made with the assistance of a resulting Decision Ball.

6. Application to choice data: selection of a store location
Example 1 (Selection of a store location)

The choice of a store location has a profound effect on the entire business life of a retail
operation. Suppose a manager of a convenience store in Taiwan who needs to select a store
location from a list of 43 spots A = {A;, ..., As}. The manager sets four criteria to fulfill: (cy)
sufficient space, (c,) high population density, (cs) heavy traffic, and (c,) low cost. Store size is
measured in square feet. The number of people who live within a one-mile radius is used to
calculate population density. The average number of vehicle traffic passing the spot per hour is
adopted to evaluate the volumes of traffic. Cost is measured by monthly rent. The criteria values
of 43 candidate locations are listed in the criterion matrix C4, as shown in Table 1.

The manager would like to rank choices incorporating his personal preferences. The
manager can rank these choices by the following three phases:

Phase 1 — the screening phase

The manager tries to screen out clearly unwanted alternatives by setting upper or lower
bound of each criterion. He sets the minimum space required to be 800 square feet, the minimum
population density to be 700, the minimal traffic to be 400, and the maximum rental fee to be

13



5000. That is, ¢, =800, ¢, = 700, C, = 400 and C, = 5000. The values of c,, C,, C, and

C, can be set as the maximum values of c;, C;, ¢ and minimum value of c,, i.e. ¢, = 1500,

E: 1260, §:780, and c, = 3100. After filtering out alternatives with criterion values

exceeding these boundaries, only 23 choices {As, As, As, A7, Ag, A11, Az, Ass, As7, Ars, Aoa, Az, Aga,
Azs, Ags, Azg, Azt Az, Azs, Asz, Ao, Agz, Ags} are remaining for the next phase.
Phase 2 — the ordering phase

The decision maker roughly specifies partial order of alternatives. He specifies Az > A,
A7 > Azz, As = Ag Ar7 > As Asr > Agsand Ag > Ag. The minimum weight of each criterion is set as

w, = 001 for all k by the decision maker. Applying Model 1 to these

preference relationships yields w = {wy, w,, ws, w,} = {0.21, 0.43, 0.01, 0.35}, 15 =1, and the
rest of t;;= 0. The objective value is 1. The variable t;s5 = 1 indicates the preference relationship
A5 > Ag should be reversed. When checking criterion matrix in Table 1, all criterion values of Ag
are better than or equal to those of A;s which makes Ajs > Ag impossible; therefore, the
relationship between A;s and Ag is reversed.

The score of alternatives can be calculated according to Expression (1), where S;= 0.54,
S4=0.10, S¢=0.33, S;=0.54, Sg= 0.71, S3; = 0.29, Sy3= 0.59, Sy5= 0.36, S;7= 0.53, Sig= 0.31, Sy,
= 0.30, Sp3=10.30, Sz, = 0.45, Sps=0.22, Sy = 0.39, Sp9= 0.23, S3; = 0.22, Sz, = 0.42, Sz, = 0.46, Sy;
= 0.39, Sy = 0.31, Ss;p = 0.34, S;3= 0.24. The dissimilarity between alternatives can also be
calculated according to Expression (2).

Applying Model 2 to this example yields coordinates of alternatives. The resulting
Decision Ball is displayed in Figure 2. Because the alternative with a higher score is designed to
be closer to the North Pole, the order of alternatives can be read by the latitudes of alternative: the
higher the latitude, the higher the score. The order of top ten alternatives is Ag > A1z > Az>A;
= Ag7 > Ags > Aps > Agp > Agr > Age. In addition, the distance between two alternatives represents
the dissimilarity between them: the longer the distance, the larger the dissimilarity. For instance,
the dissimilarity between Ay and As; is smaller than that of between As; and A-.

Based on the information provided on the Decision Ball, assume the decision maker
decides to select the top eight alternatives to make more sophisticated comparisons. That is, only
Ag Ais Az A7 A7, Ass, Azsand Ag, are remaining for the next phase.

Phase 3 — the choosing phase

In the choosing phase, the manager uses pairwise comparisons to express preferences

among pairs of choices in preference matrix R;, as listed in Table 2. Because the manager is
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unable to make comparison among some spots, the relationships pszs4, P717, Ps24; P1334 are left
blank, which means R; is incomplete. The preference matrix Ry is ordinally inconsistent because
there is an intransitive relationship among Az, Ag and Ag,. That is, Azis preferred to Ag(psgs > 1),
and Ag is preferred to Az, (pss2 > 1); however, Az, is preferred to Az (psz2 < 1). Ry is also
cardinally inconsistent. For instance, there exists psg= 1.6, pg13= 2.5; but, p313=2 (1.6 x 2.5=

4, that is P3g X Pgy13 # p3,13)'

Applying Model 3 to the example yields Objl =1, Obj2=3.91, uzg = 1 and the rest
of ujj= 0, (w1, Wy, Wz, Wy) = (0.04, 0.19, 0.06, 0.71), (Ss, S7, Ss, S13, S17, Sz4, Ss2, Sss) = (0.55,
0.55, 0.78, 0.27, 0.39, 0.40, 0.74, 0.51). The variable usg = 1 implies that the value of psg is
suggested to be changed from psg >1 to psg <1 (i.e. from A; > Agto Az <Asg) to improve

. . . ‘g S
ordinal inconsistency. The values of unspecified preferences can be computed as psz; = S—;

=1.08, , pri7, = 1.41, psaa = 1.93, and piz34= 0.76. The corresponding Decision Ball is
shown in Figure 3. The order of alternatives is Ag > Az >Az A7 > Az > Ay > Asr.

According to the information observed on the Decision Ball, the decision maker can
iteratively adjust his preferences. Suppose he would like to adjust a preference order from A;
>~Azato Ay =A; A constraint S,, =S, +¢ is added into Model 3. Solving Model 3 yields
Objl = 3, Obj2=3.96, Usg = U734 = U1724 = 1 and the rest of uj;= 0, (w1, Wy, w3, W,) = (0.01, 0.13,
0.17, 0.69), (Ss, S7, Ss, Si3, S17, S2a, Sz2, Saq) = (0.53, 0.50, 0.76, 0.27, 0.44, 0.40, 0.71, 0.51). In
order to satisfy the relationship As4 > A7, the relationship between A;;and Ay, has to be reversed
(u17.24 = 1). Applying Model 2 to this result yields a new set of coordinates. An adjusted Decision
Ball is displayed in Figure 4. On this Decision Ball, the latitude of Az, is higher than that of A;.

By seeing the relationships of alternatives displayed on the Decision Ball in Figure 4, the
decision maker would like to adjust some dissimilarity relationships between alternatives. His
adjustment is that the dissimilarity between Az and Ag is larger than that of between A;and Ag. A

constraint Zm:wk M sz: W, M+ & is added into Model 3. Solving Model 3
k=1 C, — C_k k=1 Cy —C_k

again yields Objl1 =5, Obj2=4.33, Uzg = U734 = U1724 = Ug7 = Ug3, = 1 and the rest of uj;= 0, (wy,
Wa, W3, Wy) = (0.01, 0.04, 0.19, 0.76), (Ss, S7, Ss, S13, S17, Sas, S32, Sa4) = (0.51, 0.53, 0.74, 0.19,
0.39, 0.36, 0.78, 0.53). This result shows that in addition to rank reversal of A; and Ag, A; and Asg,
Ag7 and Ay (Usg = U734 = Ug724 =1), the relationship between Az and A;, Ag and A, are suggested to
be reversed to satisfy the adjustment of dissimilarity. A corresponding Decision Ball is depicted
in Figure 5.
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Suppose the decision maker stops further adjustment. The decision maker can make a final
decision based on the Decision Ball in Figure 5. From the latitude of alternatives, the decision
maker can tell the rank of choices as Azy =Ag>Azs=A; =As>A17 = A= A13. The best choice is
Asy. The dissimilarity between alternatives can be read by the distance between them. For instance,
the dissimilarity between A; and As, is the smallest because the distance between them is the
shortest. That is, if As;, Ag and Az, are not available, Az as well as A; will be a good choice.

It is important to notice that Az is more similar to Az, than A; is but Az, >A; > As. This kind
of relationship is possible. For instance, comparing with three alternatives A, B, C with benefit

criterion values (5, 5, 5), (4, 4, 6) and (3, 5, 5), given equal weightand ¢, =0and a =10 for
k =1...3. The scores of three alternatives are Sp= 0.5, Sg= 0.47, and Sc = 0.43. The dissimilarities
between alternatives are 6,5 =0.1, 5. =0.1and &, =0.067. It is obvious that A>B>~C

but C is more similar to A than B is because &, <O,p -
Example 1 was solved by Global Solver of Lingo 9.0 [20] on a Pentium 4 personal
computer. The running time was less than 3 minimums for three phases totally.
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Table1 Criterion Matrix C, of Example 1

C, C, C, C, C, C, C, C,
Alternative Sst:)zree Population | Traffic Rle:r;';al Alternative Sstiozr: Population | Traffic Rl(ir:e:al
A1 1600 580 320 | 3200 A2 960 750 650 3900
A2 390 680 450 | 2900 Aoy 860 1100 550 4350
As 850 1140 550 4000 As 866 810 550 4400
Aa 1000 750 440 5000 A 1058 750 450 3500
As 900 840 450 5500 A7 998 1100 750 5200
Ag 1000 900 500 4400 Aog 665 900 650 3900
A7 1500 840 450 | 3800 A2 1055 800 450 4600
Ag 800 1260 600 | 3500 Ag 1008 900 650 5100
Ao 755 700 400 1800 A3zl 1100 850 520 4950
A 1400 600 500 | 4800 Az 885 720 420 3100
A 1100 720 480 4000 Ass3 750 780 185 2800
A 700 800 450 4800 Az 1205 880 580 3950
A1 1300 1250 650 4950 Ass 1900 400 280 3000
A 1250 1500 800 | 6800 Az 680 1500 950 5200
Ais 800 900 420 | 3900 As7 920 780 480 3400
A 820 500 450 | 3200 Azg 1204 1200 550 5300
A7 1000 1200 780 4600 A 39 580 1000 850 5500
A 1300 720 420 | 4200 A 850 960 520 | 4500
A1 950 700 330 3500 Aau 565 665 380 2500
A 1550 550 390 4100 A 980 920 650 4400
A2 850 780 480 | 3800 Aus 810 810 520 4200

Table 2 Preference matrix R; of Example 1

Ppij | Az Ar Ag Az A A, Az Ay
As 14 16 2 1.2 2 0.5

A7 05 15 2 0.5 2
Ag 2.5 2 12 15
Ais 06 06 08

A7 05 05 07
Az 0.5
Aj 2
Asy
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A

(a) (b) (c)
Figure 1 Advantage of a sphere model (a) Display line segments on a 2-D plane (b)
Display curves on a sphere (c) Display four points that are not on the same plane

Figure 2 The resulting Decision Ball Figure 3 The resulting Decision Ball
after Phase 2 after Phase 3

Figure 4 The resulting Decision Ball Figure 5 The resulting Decision Ball
after adjusting Ass > A after adjusting &, > J, 4
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